Commit Graph

19 Commits

Author SHA1 Message Date
Sasha Levin
a3a8784454 KEYS: close race between key lookup and freeing
When a key is being garbage collected, it's key->user would get put before
the ->destroy() callback is called, where the key is removed from it's
respective tracking structures.

This leaves a key hanging in a semi-invalid state which leaves a window open
for a different task to try an access key->user. An example is
find_keyring_by_name() which would dereference key->user for a key that is
in the process of being garbage collected (where key->user was freed but
->destroy() wasn't called yet - so it's still present in the linked list).

This would cause either a panic, or corrupt memory.

Fixes CVE-2014-9529.

Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2015-01-05 15:58:01 +00:00
NeilBrown
743162013d sched: Remove proliferation of wait_on_bit() action functions
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().

So:
 Rename wait_on_bit and        wait_on_bit_lock to
        wait_on_bit_action and wait_on_bit_lock_action
 to make it explicit that they need an action function.

 Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
 which are *not* given an action function but implicitly use
 a standard one.
 The decision to error-out if a signal is pending is now made
 based on the 'mode' argument rather than being encoded in the action
 function.

 All instances of the old wait_on_bit and wait_on_bit_lock which
 can use the new version have been changed accordingly and their
 action functions have been discarded.
 wait_on_bit{_lock} does not return any specific error code in the
 event of a signal so the caller must check for non-zero and
 interpolate their own error code as appropriate.

The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"

The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.

A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack.  So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).

Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS.  CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.

Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 15:10:39 +02:00
David Howells
62fe318256 KEYS: Fix keyring content gc scanner
Key pointers stored in the keyring are marked in bit 1 to indicate if they
point to a keyring.  We need to strip off this bit before using the pointer
when iterating over the keyring for the purpose of looking for links to garbage
collect.

This means that expirable keyrings aren't correctly expiring because the
checker is seeing their key pointer with 2 added to it.

Since the fix for this involves knowing about the internals of the keyring,
key_gc_keyring() is moved to keyring.c and merged into keyring_gc().

This can be tested by:

	echo 2 >/proc/sys/kernel/keys/gc_delay
	keyctl timeout `keyctl add keyring qwerty "" @s` 2
	cat /proc/keys
	sleep 5; cat /proc/keys

which should see a keyring called "qwerty" appear in the session keyring and
then disappear after it expires, and:

	echo 2 >/proc/sys/kernel/keys/gc_delay
	a=`keyctl get_persistent @s`
	b=`keyctl add keyring 0 "" $a`
	keyctl add user a a $b
	keyctl timeout $b 2
	cat /proc/keys
	sleep 5; cat /proc/keys

which should see a keyring called "0" with a key called "a" in it appear in the
user's persistent keyring (which will be attached to the session keyring) and
then both the "0" keyring and the "a" key should disappear when the "0" keyring
expires.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Simo Sorce <simo@redhat.com>
2013-11-14 14:09:53 +00:00
David Howells
b2a4df200d KEYS: Expand the capacity of a keyring
Expand the capacity of a keyring to be able to hold a lot more keys by using
the previously added associative array implementation.  Currently the maximum
capacity is:

	(PAGE_SIZE - sizeof(header)) / sizeof(struct key *)

which, on a 64-bit system, is a little more 500.  However, since this is being
used for the NFS uid mapper, we need more than that.  The new implementation
gives us effectively unlimited capacity.

With some alterations, the keyutils testsuite runs successfully to completion
after this patch is applied.  The alterations are because (a) keyrings that
are simply added to no longer appear ordered and (b) some of the errors have
changed a bit.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:18 +01:00
Tejun Heo
3b07e9ca26 workqueue: deprecate system_nrt[_freezable]_wq
system_nrt[_freezable]_wq are now spurious.  Mark them deprecated and
convert all users to system[_freezable]_wq.

If you're cc'd and wondering what's going on: Now all workqueues are
non-reentrant, so there's no reason to use system_nrt[_freezable]_wq.
Please use system[_freezable]_wq instead.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-By: Lai Jiangshan <laijs@cn.fujitsu.com>

Cc: Jens Axboe <axboe@kernel.dk>
Cc: David Airlie <airlied@linux.ie>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: David Howells <dhowells@redhat.com>
2012-08-20 14:51:24 -07:00
David Howells
fd75815f72 KEYS: Add invalidation support
Add support for invalidating a key - which renders it immediately invisible to
further searches and causes the garbage collector to immediately wake up,
remove it from keyrings and then destroy it when it's no longer referenced.

It's better not to do this with keyctl_revoke() as that marks the key to start
returning -EKEYREVOKED to searches when what is actually desired is to have the
key refetched.

To invalidate a key the caller must be granted SEARCH permission by the key.
This may be too strict.  It may be better to also permit invalidation if the
caller has any of READ, WRITE or SETATTR permission.

The primary use for this is to evict keys that are cached in special keyrings,
such as the DNS resolver or an ID mapper.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells
233e4735f2 KEYS: Permit in-place link replacement in keyring list
Make use of the previous patch that makes the garbage collector perform RCU
synchronisation before destroying defunct keys.  Key pointers can now be
replaced in-place without creating a new keyring payload and replacing the
whole thing as the discarded keys will not be destroyed until all currently
held RCU read locks are released.

If the keyring payload space needs to be expanded or contracted, then a
replacement will still need allocating, and the original will still have to be
freed by RCU.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells
65d87fe68a KEYS: Perform RCU synchronisation on keys prior to key destruction
Make the keys garbage collector invoke synchronize_rcu() prior to destroying
keys with a zero usage count.  This means that a key can be examined under the
RCU read lock in the safe knowledge that it won't get deallocated until after
the lock is released - even if its usage count becomes zero whilst we're
looking at it.

This is useful in keyring search vs key link.  Consider a keyring containing a
link to a key.  That link can be replaced in-place in the keyring without
requiring an RCU copy-and-replace on the keyring contents without breaking a
search underway on that keyring when the displaced key is released, provided
the key is actually destroyed only after the RCU read lock held by the search
algorithm is released.

This permits __key_link() to replace a key without having to reallocate the key
payload.  A key gets replaced if a new key being linked into a keyring has the
same type and description.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2012-05-11 10:56:56 +01:00
David Howells
efde8b6e16 KEYS: Add missing smp_rmb() primitives to the keyring search code
Add missing smp_rmb() primitives to the keyring search code.

When keyring payloads are appended to without replacement (thus using up spare
slots in the key pointer array), an smp_wmb() is issued between the pointer
assignment and the increment of the key count (nkeys).

There should be corresponding read barriers between the read of nkeys and
dereferences of keys[n] when n is dependent on the value of nkeys.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2012-01-18 10:41:27 +11:00
David Howells
0c061b5707 KEYS: Correctly destroy key payloads when their keytype is removed
unregister_key_type() has code to mark a key as dead and make it unavailable in
one loop and then destroy all those unavailable key payloads in the next loop.
However, the loop to mark keys dead renders the key undetectable to the second
loop by changing the key type pointer also.

Fix this by the following means:

 (1) The key code has two garbage collectors: one deletes unreferenced keys and
     the other alters keyrings to delete links to old dead, revoked and expired
     keys.  They can end up holding each other up as both want to scan the key
     serial tree under spinlock.  Combine these into a single routine.

 (2) Move the dead key marking, dead link removal and dead key removal into the
     garbage collector as a three phase process running over the three cycles
     of the normal garbage collection procedure.  This is tracked by the
     KEY_GC_REAPING_DEAD_1, _2 and _3 state flags.

     unregister_key_type() then just unlinks the key type from the list, wakes
     up the garbage collector and waits for the third phase to complete.

 (3) Downgrade the key types sem in unregister_key_type() once it has deleted
     the key type from the list so that it doesn't block the keyctl() syscall.

 (4) Dead keys that cannot be simply removed in the third phase have their
     payloads destroyed with the key's semaphore write-locked to prevent
     interference by the keyctl() syscall.  There should be no in-kernel users
     of dead keys of that type by the point of unregistration, though keyctl()
     may be holding a reference.

 (5) Only perform timer recalculation in the GC if the timer actually expired.
     If it didn't, we'll get another cycle when it goes off - and if the key
     that actually triggered it has been removed, it's not a problem.

 (6) Only garbage collect link if the timer expired or if we're doing dead key
     clean up phase 2.

 (7) As only key_garbage_collector() is permitted to use rb_erase() on the key
     serial tree, it doesn't need to revalidate its cursor after dropping the
     spinlock as the node the cursor points to must still exist in the tree.

 (8) Drop the spinlock in the GC if there is contention on it or if we need to
     reschedule.  After dealing with that, get the spinlock again and resume
     scanning.

This has been tested in the following ways:

 (1) Run the keyutils testsuite against it.

 (2) Using the AF_RXRPC and RxKAD modules to test keytype removal:

     Load the rxrpc_s key type:

	# insmod /tmp/af-rxrpc.ko
	# insmod /tmp/rxkad.ko

     Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c):

	# /tmp/listen &
	[1] 8173

     Find the key:

	# grep rxrpc_s /proc/keys
	091086e1 I--Q--     1 perm 39390000     0     0 rxrpc_s   52:2

     Link it to a session keyring, preferably one with a higher serial number:

	# keyctl link 0x20e36251 @s

     Kill the process (the key should remain as it's linked to another place):

	# fg
	/tmp/listen
	^C

     Remove the key type:

	rmmod rxkad
	rmmod af-rxrpc

     This can be made a more effective test by altering the following part of
     the patch:

	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
		/* Make sure everyone revalidates their keys if we marked a
		 * bunch as being dead and make sure all keyring ex-payloads
		 * are destroyed.
		 */
		kdebug("dead sync");
		synchronize_rcu();

     To call synchronize_rcu() in GC phase 1 instead.  That causes that the
     keyring's old payload content to hang around longer until it's RCU
     destroyed - which usually happens after GC phase 3 is complete.  This
     allows the destroy_dead_key branch to be tested.

Reported-by: Benjamin Coddington <bcodding@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-23 09:57:37 +10:00
David Howells
d199798bdf KEYS: The dead key link reaper should be non-reentrant
The dead key link reaper should be non-reentrant as it relies on global state
to keep track of where it's got to when it returns to the work queue manager to
give it some air.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-23 09:57:36 +10:00
David Howells
8bc16deabc KEYS: Move the unreferenced key reaper to the keys garbage collector file
Move the unreferenced key reaper function to the keys garbage collector file
as that's a more appropriate place with the dead key link reaper.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-08-23 09:57:36 +10:00
David Howells
973c9f4f49 KEYS: Fix up comments in key management code
Fix up comments in the key management code.  No functional changes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21 14:59:30 -08:00
David Howells
cf8304e8f3 KEYS: Fix RCU handling in key_gc_keyring()
key_gc_keyring() needs to either hold the RCU read lock or hold the keyring
semaphore if it's going to scan the keyring's list.  Given that it only needs
to read the key list, and it's doing so under a spinlock, the RCU read lock is
the thing to use.

Furthermore, the RCU check added in e7b0a61b79 is
incorrect as holding the spinlock on key_serial_lock is not grounds for
assuming a keyring's pointer list can be read safely.  Instead, a simple
rcu_dereference() inside of the previously mentioned RCU read lock is what we
want.

Reported-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 11:39:23 +10:00
Paul E. McKenney
e7b0a61b79 security: Apply lockdep-based checking to rcu_dereference() uses
Apply lockdep-ified RCU primitives to key_gc_keyring() and
keyring_destroy().

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-12-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:52 +01:00
David Howells
606531c316 KEYS: Have the garbage collector set its timer for live expired keys
The key garbage collector sets a timer to start a new collection cycle at the
point the earliest key to expire should be considered garbage.  However, it
currently only does this if the key it is considering hasn't yet expired.

If the key being considering has expired, but hasn't yet reached the collection
time then it is ignored, and won't be collected until some other key provokes a
round of collection.

Make the garbage collector set the timer for the earliest key that hasn't yet
passed its collection time, rather than the earliest key that hasn't yet
expired.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-23 11:03:47 -07:00
David Howells
c08ef808ef KEYS: Fix garbage collector
Fix a number of problems with the new key garbage collector:

 (1) A rogue semicolon in keyring_gc() was causing the initial count of dead
     keys to be miscalculated.

 (2) A missing return in keyring_gc() meant that under certain circumstances,
     the keyring semaphore would be unlocked twice.

 (3) The key serial tree iterator (key_garbage_collector()) part of the garbage
     collector has been modified to:

     (a) Complete each scan of the keyrings before setting the new timer.

     (b) Only set the new timer for keys that have yet to expire.  This means
         that the new timer is now calculated correctly, and the gc doesn't
         get into a loop continually scanning for keys that have expired, and
         preventing other things from happening, like RCU cleaning up the old
         keyring contents.

     (c) Perform an extra scan if any keys were garbage collected in this one
     	 as a key might become garbage during a scan, and (b) could mean we
     	 don't set the timer again.

 (4) Made key_schedule_gc() take the time at which to do a collection run,
     rather than the time at which the key expires.  This means the collection
     of dead keys (key type unregistered) can happen immediately.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-15 09:11:02 +10:00
David Howells
ee18d64c1f KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent.  This
replaces the parent's session keyring.  Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again.  Normally this
will be after a wait*() syscall.

To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.

The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.

Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
replacement to be performed at the point the parent process resumes userspace
execution.

This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership.  However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.

This can be tested with the following program:

	#include <stdio.h>
	#include <stdlib.h>
	#include <keyutils.h>

	#define KEYCTL_SESSION_TO_PARENT	18

	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)

	int main(int argc, char **argv)
	{
		key_serial_t keyring, key;
		long ret;

		keyring = keyctl_join_session_keyring(argv[1]);
		OSERROR(keyring, "keyctl_join_session_keyring");

		key = add_key("user", "a", "b", 1, keyring);
		OSERROR(key, "add_key");

		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");

		return 0;
	}

Compiled and linked with -lkeyutils, you should see something like:

	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
	[dhowells@andromeda ~]$ /tmp/newpag
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	1055658746 --alswrv   4043  4043   \_ user: a
	[dhowells@andromeda ~]$ /tmp/newpag hello
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: hello
	340417692 --alswrv   4043  4043   \_ user: a

Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:22 +10:00
David Howells
5d135440fa KEYS: Add garbage collection for dead, revoked and expired keys. [try #6]
Add garbage collection for dead, revoked and expired keys.  This involved
erasing all links to such keys from keyrings that point to them.  At that
point, the key will be deleted in the normal manner.

Keyrings from which garbage collection occurs are shrunk and their quota
consumption reduced as appropriate.

Dead keys (for which the key type has been removed) will be garbage collected
immediately.

Revoked and expired keys will hang around for a number of seconds, as set in
/proc/sys/kernel/keys/gc_delay before being automatically removed.  The default
is 5 minutes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:11 +10:00