Future hardware may introduce new algorithms wherein the
driver will need to manage resources for different versions
of the cryptographic coprocessor. This precursor patch
determines the version of the available device, and marks
and registers algorithms accordingly. A structure is added
which manages the version-specific data.
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable management of >1 CCPs in a system. Each device will
get a unique identifier, as well as uniquely named
resources. Treat each CCP as an orthogonal unit and register
resources individually.
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Each x86 SoC will make use of a unique PCI ID for the CCP
device so it is not necessary to check for the CPU family
and model.
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Where applicable, convert calls to their devm_ counterparts, e.g. kzalloc
to devm_kzalloc.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Changes to address warnings and errors reported by the checkpatch
script.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If the ccp is built as a built-in module, then ccp-crypto (whether
built as a module or a built-in module) will be able to load and
it will register its crypto algorithms. If the system does not have
a CCP this will result in -ENODEV being returned whenever a command
is attempted to be queued by the registered crypto algorithms.
Add an API, ccp_present(), that checks for the presence of a CCP
on the system. The ccp-crypto module can use this to determine if it
should register it's crypto alogorithms.
Cc: stable@vger.kernel.org
Reported-by: Scot Doyle <lkml14@scotdoyle.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Scot Doyle <lkml14@scotdoyle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The default cache operations for ARM64 were changed during 3.15.
To use coherent operations a "dma-coherent" device tree property
is required. If that property is not present in the device tree
node then the non-coherent operations are assigned for the device.
Add support to the ccp driver to assign the AXI DMA cache settings
based on whether the "dma-coherent" property is present in the device
node. If present, use settings that work with the caches. If not
present, use settings that do not look at the caches.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for the CCP on arm64 as a platform device.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Change from scheduling work to scheduling a tasklet to perform
the callback operations.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CCP cannot be hot-plugged so it will either be there
or it won't. Do not allow the driver to stay loaded if the
CCP does not successfully initialize.
Provide stub routines in the ccp.h file that return -ENODEV
if the CCP has not been configured in the build.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These routines provide the device driver support for the AMD
Cryptographic Coprocessor (CCP).
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>