Commit Graph

244 Commits

Author SHA1 Message Date
Linus Torvalds
92b29b86fe Merge branch 'tracing-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (131 commits)
  tracing/fastboot: improve help text
  tracing/stacktrace: improve help text
  tracing/fastboot: fix initcalls disposition in bootgraph.pl
  tracing/fastboot: fix bootgraph.pl initcall name regexp
  tracing/fastboot: fix issues and improve output of bootgraph.pl
  tracepoints: synchronize unregister static inline
  tracepoints: tracepoint_synchronize_unregister()
  ftrace: make ftrace_test_p6nop disassembler-friendly
  markers: fix synchronize marker unregister static inline
  tracing/fastboot: add better resolution to initcall debug/tracing
  trace: add build-time check to avoid overrunning hex buffer
  ftrace: fix hex output mode of ftrace
  tracing/fastboot: fix initcalls disposition in bootgraph.pl
  tracing/fastboot: fix printk format typo in boot tracer
  ftrace: return an error when setting a nonexistent tracer
  ftrace: make some tracers reentrant
  ring-buffer: make reentrant
  ring-buffer: move page indexes into page headers
  tracing/fastboot: only trace non-module initcalls
  ftrace: move pc counter in irqtrace
  ...

Manually fix conflicts:
 - init/main.c: initcall tracing
 - kernel/module.c: verbose level vs tracepoints
 - scripts/bootgraph.pl: fallout from cherry-picking commits.
2008-10-20 13:35:07 -07:00
Thomas Gleixner
c465a76af6 Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', 'timers/ntp', 'timers/posixtimers' and 'timers/debug' into v28-timers-for-linus 2008-10-20 13:14:06 +02:00
Mathieu Desnoyers
0a16b60758 tracing, sched: LTTng instrumentation - scheduler
Instrument the scheduler activity (sched_switch, migration, wakeups,
wait for a task, signal delivery) and process/thread
creation/destruction (fork, exit, kthread stop). Actually, kthread
creation is not instrumented in this patch because it is architecture
dependent. It allows to connect tracers such as ftrace which detects
scheduling latencies, good/bad scheduler decisions. Tools like LTTng can
export this scheduler information along with instrumentation of the rest
of the kernel activity to perform post-mortem analysis on the scheduler
activity.

About the performance impact of tracepoints (which is comparable to
markers), even without immediate values optimizations, tests done by
Hideo Aoki on ia64 show no regression. His test case was using hackbench
on a kernel where scheduler instrumentation (about 5 events in code
scheduler code) was added. See the "Tracepoints" patch header for
performance result detail.

Changelog :

- Change instrumentation location and parameter to match ftrace
  instrumentation, previously done with kernel markers.

[ mingo@elte.hu: conflict resolutions ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: 'Peter Zijlstra' <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:30:52 +02:00
Alan Cox
9c9f4ded90 tty: Add a kref count
Introduce a kref to the tty structure and use it to protect the tty->signal
tty references. For now we don't introduce it for anything else.

Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-13 09:51:40 -07:00
Frank Mayhar
bb34d92f64 timers: fix itimer/many thread hang, v2
This is the second resubmission of the posix timer rework patch, posted
a few days ago.

This includes the changes from the previous resubmittion, which addressed
Oleg Nesterov's comments, removing the RCU stuff from the patch and
un-inlining the thread_group_cputime() function for SMP.

In addition, per Ingo Molnar it simplifies the UP code, consolidating much
of it with the SMP version and depending on lower-level SMP/UP handling to
take care of the differences.

It also cleans up some UP compile errors, moves the scheduler stats-related
macros into kernel/sched_stats.h, cleans up a merge error in
kernel/fork.c and has a few other minor fixes and cleanups as suggested
by Oleg and Ingo. Thanks for the review, guys.

Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-23 13:38:44 +02:00
Ingo Molnar
430b5294bd timers: fix itimer/many thread hang, fix
fix:

 kernel/fork.c:843: error: ‘struct signal_struct’ has no member named ‘sum_sched_runtime’
 kernel/irq/handle.c:117: warning: ‘sparse_irq_lock’ defined but not used

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14 16:40:11 +02:00
Frank Mayhar
f06febc96b timers: fix itimer/many thread hang
Overview

This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling.  It was put together
with the help of Roland McGrath, the owner and original writer of this code.

The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads.  It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.

This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."

Code Changes

This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine.  (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.)  To do this, at each tick we now update fields in
signal_struct as well as task_struct.  The run_posix_cpu_timers() function
uses those fields to make its decisions.

We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:

struct task_cputime {
	cputime_t utime;
	cputime_t stime;
	unsigned long long sum_exec_runtime;
};

This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels.  For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:

struct thread_group_cputime {
	struct task_cputime totals;
};

struct thread_group_cputime {
	struct task_cputime *totals;
};

We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers).  The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends.  In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention).  For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu().  The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().

We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel.  The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields.  The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures.  The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated.  The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU.  Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.

Non-SMP operation is trivial and will not be mentioned further.

The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().

All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.

Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away.  All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline.  When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.

Performance

The fix appears not to add significant overhead to existing operations.  It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below).  Overall it's a wash except in those
two cases.

I've since done somewhat more involved testing on a dual-core Opteron system.

Case 1: With no itimer running, for a test with 100,000 threads, the fixed
	kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
	all of which was spent in the system.  There were twice as many
	voluntary context switches with the fix as without it.

Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
	an unmodified kernel can handle), the fixed kernel ran the test in
	eight percent of the time (5.8 seconds as opposed to 70 seconds) and
	had better tick accuracy (.012 seconds per tick as opposed to .023
	seconds per tick).

Case 3: A 4000-thread test with an initial timer tick of .01 second and an
	interval of 10,000 seconds (i.e. a timer that ticks only once) had
	very nearly the same performance in both cases:  6.3 seconds elapsed
	for the fixed kernel versus 5.5 seconds for the unfixed kernel.

With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds).  The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.

Since the fix affected the rlimit code, I also tested soft and hard CPU limits.

Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
	running), the modified kernel was very slightly favored in that while
	it killed the process in 19.997 seconds of CPU time (5.002 seconds of
	wall time), only .003 seconds of that was system time, the rest was
	user time.  The unmodified kernel killed the process in 20.001 seconds
	of CPU (5.014 seconds of wall time) of which .016 seconds was system
	time.  Really, though, the results were too close to call.  The results
	were essentially the same with no itimer running.

Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
	(where the hard limit would never be reached) and an itimer running,
	the modified kernel exhibited worse tick accuracy than the unmodified
	kernel: .050 seconds/tick versus .028 seconds/tick.  Otherwise,
	performance was almost indistinguishable.  With no itimer running this
	test exhibited virtually identical behavior and times in both cases.

In times past I did some limited performance testing.  those results are below.

On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s.  On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds.  Performance with eight, four and one
thread were comparable.  Interestingly, the timer ticks with the fix seemed
more accurate:  The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick.  Both cases were configured for an interval of
0.01 seconds.  Again, the other tests were comparable.  Each thread in this
test computed the primes up to 25,000,000.

I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix.  In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable).  System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s).  It received 147651 ticks for 0.015 seconds per tick, still quite
accurate.  There is obviously no comparable test without the fix.

Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14 16:25:35 +02:00
Andrea Arcangeli
cddb8a5c14 mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
 There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte".  In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present).  The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.

Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set.  Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).

The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space.  Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.

To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page.  Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0.  This is just an example.

This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).

At least for KVM without this patch it's impossible to swap guests
reliably.  And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.

Dependencies:

1) mm_take_all_locks() to register the mmu notifier when the whole VM
   isn't doing anything with "mm".  This allows mmu notifier users to keep
   track if the VM is in the middle of the invalidate_range_begin/end
   critical section with an atomic counter incraese in range_begin and
   decreased in range_end.  No secondary MMU page fault is allowed to map
   any spte or secondary tlb reference, while the VM is in the middle of
   range_begin/end as any page returned by get_user_pages in that critical
   section could later immediately be freed without any further
   ->invalidate_page notification (invalidate_range_begin/end works on
   ranges and ->invalidate_page isn't called immediately before freeing
   the page).  To stop all page freeing and pagetable overwrites the
   mmap_sem must be taken in write mode and all other anon_vma/i_mmap
   locks must be taken too.

2) It'd be a waste to add branches in the VM if nobody could possibly
   run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
   CONFIG_KVM=m/y.  In the current kernel kvm won't yet take advantage of
   mmu notifiers, but this already allows to compile a KVM external module
   against a kernel with mmu notifiers enabled and from the next pull from
   kvm.git we'll start using them.  And GRU/XPMEM will also be able to
   continue the development by enabling KVM=m in their config, until they
   submit all GRU/XPMEM GPLv2 code to the mainline kernel.  Then they can
   also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
   This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
   are all =n.

The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR.  Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled.  Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.

 struct  kvm *kvm_arch_create_vm(void)
 {
        struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+       int err;

        if (!kvm)
                return ERR_PTR(-ENOMEM);

        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);

+       kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+       err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+       if (err) {
+               kfree(kvm);
+               return ERR_PTR(err);
+       }
+
        return kvm;
 }

mmu_notifier_unregister returns void and it's reliable.

The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 16:30:21 -07:00
Andrea Righi
5995477ab7 task IO accounting: improve code readability
Put all i/o statistics in struct proc_io_accounting and use inline functions to
initialize and increment statistics, removing a lot of single variable
assignments.

This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and
CONFIG_TASK_IO_ACCOUNTING=y).

    text    data     bss     dec     hex filename
   11651       0       0   11651    2d83 kernel/exit.o.before
   11619       0       0   11619    2d63 kernel/exit.o.after
   10886     132     136   11154    2b92 kernel/fork.o.before
   10758     132     136   11026    2b12 kernel/fork.o.after

 3082029  807968 4818600 8708597  84e1f5 vmlinux.o.before
 3081869  807968 4818600 8708437  84e155 vmlinux.o.after

Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-27 09:58:20 -07:00
Al Viro
7f2da1e7d0 [PATCH] kill altroot
long overdue...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-07-26 20:53:20 -04:00
Roland McGrath
daded34be9 tracehook: vfork-done
This moves the PTRACE_EVENT_VFORK_DONE tracing into a tracehook.h inline,
tracehook_report_vfork_done().  The change has no effect, just clean-up.

Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:08 -07:00
Roland McGrath
09a05394fe tracehook: clone
This moves all the ptrace initialization and tracing logic for task
creation into tracehook.h and ptrace.h inlines.  It reorganizes the code
slightly, but should not change any behavior.

There are four tracehook entry points, at each important stage of task
creation.  This keeps the interface from the core fork.c code fairly
clean, while supporting the complex setup required for ptrace or something
like it.

Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:08 -07:00
Alexey Dobriyan
51cc50685a SL*B: drop kmem cache argument from constructor
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres.  Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.

Non-trivial places are:
	arch/powerpc/mm/init_64.c
	arch/powerpc/mm/hugetlbpage.c

This is flag day, yes.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:07 -07:00
Andrea Righi
297c5d9263 task IO accounting: provide distinct tgid/tid I/O statistics
Report per-thread I/O statistics in /proc/pid/task/tid/io and aggregate
parent I/O statistics in /proc/pid/io.  This approach follows the same
model used to account per-process and per-thread CPU times.

As a practial application, this allows for example to quickly find the top
I/O consumer when a process spawns many child threads that perform the
actual I/O work, because the aggregated I/O statistics can always be found
in /proc/pid/io.

[ Oleg Nesterov points out that we should check that the task is still
  alive before we iterate over the threads, but also says that we can do
  that fixup on top of this later.  - Linus ]

Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: Matt Heaton <matt@hostmonster.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Acked-by-with-comments: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:47 -07:00
Oleg Nesterov
999d9fc167 coredump: move mm->core_waiters into struct core_state
Move mm->core_waiters into "struct core_state" allocated on stack.  This
shrinks mm_struct a little bit and allows further changes.

This patch mostly does s/core_waiters/core_state.  The only essential
change is that coredump_wait() must clear mm->core_state before return.

The coredump_wait()'s path is uglified and .text grows by 30 bytes, this
is fixed by the next patch.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:39 -07:00
Oleg Nesterov
246bb0b1de kill PF_BORROWED_MM in favour of PF_KTHREAD
Kill PF_BORROWED_MM.  Change use_mm/unuse_mm to not play with ->flags, and
do s/PF_BORROWED_MM/PF_KTHREAD/ for a couple of other users.

No functional changes yet.  But this allows us to do further
fixes/cleanups.

oom_kill/ptrace/etc often check "p->mm != NULL" to filter out the
kthreads, this is wrong because of use_mm().  The problem with
PF_BORROWED_MM is that we need task_lock() to avoid races.  With this
patch we can check PF_KTHREAD directly, or use a simple lockless helper:

	/* The result must not be dereferenced !!! */
	struct mm_struct *__get_task_mm(struct task_struct *tsk)
	{
		if (tsk->flags & PF_KTHREAD)
			return NULL;
		return tsk->mm;
	}

Note also ecard_task().  It runs with ->mm != NULL, but it's the kernel
thread without PF_BORROWED_MM.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:39 -07:00
Serge E. Hallyn
e885dcde75 cgroup_clone: use pid of newly created task for new cgroup
cgroup_clone creates a new cgroup with the pid of the task.  This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid is
created.  As a result, the new cgroup was created with current's pid.
This patch:

	1. Moves the call inside copy_process to after the new pid
	   is created
	2. Passes the struct pid into ns_cgroup_clone (as it is not
	   yet attached to the task)
	3. Passes a name from ns_cgroup_clone() into cgroup_clone()
	   so as to keep cgroup_clone() itself simpler
	4. Uses pid_vnr() to get the process id value, so that the
	   pid used to name the new cgroup is always the pid as it
	   would be known to the task which did the cloning or
	   unsharing.  I think that is the most intuitive thing to
	   do.  This way, task t1 does clone(CLONE_NEWPID) to get
	   t2, which does clone(CLONE_NEWPID) to get t3, then the
	   cgroup for t3 will be named for the pid by which t2 knows
	   t3.

(Thanks to Dan Smith for finding the main bug)

Changelog:
	June 11: Incorporate Paul Menage's feedback:  don't pass
	         NULL to ns_cgroup_clone from unshare, and reduce
		 patch size by using 'nodename' in cgroup_clone.
	June 10: Original version

[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge Hallyn <serge@us.ibm.com>
Acked-by: Paul Menage <menage@google.com>
Tested-by: Dan Smith <danms@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:37 -07:00
FUJITA Tomonori
b69c49b784 clean up duplicated alloc/free_thread_info
We duplicate alloc/free_thread_info defines on many platforms (the
majority uses __get_free_pages/free_pages).  This patch defines common
defines and removes these duplicated defines.
__HAVE_ARCH_THREAD_INFO_ALLOCATOR is introduced for platforms that do
something different.

Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:28 -07:00
Mel Gorman
a1e78772d7 hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork()
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in
a similar manner to the reservations taken for MAP_SHARED mappings.  The
reserve count is accounted both globally and on a per-VMA basis for
private mappings.  This guarantees that a process that successfully calls
mmap() will successfully fault all pages in the future unless fork() is
called.

The characteristics of private mappings of hugetlbfs files behaviour after
this patch are;

1. The process calling mmap() is guaranteed to succeed all future faults until
   it forks().
2. On fork(), the parent may die due to SIGKILL on writes to the private
   mapping if enough pages are not available for the COW. For reasonably
   reliable behaviour in the face of a small huge page pool, children of
   hugepage-aware processes should not reference the mappings; such as
   might occur when fork()ing to exec().
3. On fork(), the child VMAs inherit no reserves. Reads on pages already
   faulted by the parent will succeed. Successful writes will depend on enough
   huge pages being free in the pool.
4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper
   and at fault time otherwise.

Before this patch, all reads or writes in the child potentially needs page
allocations that can later lead to the death of the parent.  This applies
to reads and writes of uninstantiated pages as well as COW.  After the
patch it is only a write to an instantiated page that causes problems.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:16 -07:00
Roland McGrath
f470021adb ptrace children revamp
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone.  Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.

There should be no user-visible difference that matters.  The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees.  Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.

Signed-off-by: Roland McGrath <roland@redhat.com>
2008-07-16 18:02:33 -07:00
Linus Torvalds
40e7babbb5 Merge branch 'core/locking' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core/locking' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  lockdep: fix kernel/fork.c warning
  lockdep: fix ftrace irq tracing false positive
  lockdep: remove duplicate definition of STATIC_LOCKDEP_MAP_INIT
  lockdep: add lock_class information to lock_chain and output it
  lockdep: add lock_class information to lock_chain and output it
  lockdep: output lock_class key instead of address for forward dependency output
  __mutex_lock_common: use signal_pending_state()
  mutex-debug: check mutex magic before owner

Fixed up conflict in kernel/fork.c manually
2008-07-14 14:55:13 -07:00
Linus Torvalds
e18425a0ab Merge branch 'tracing/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (228 commits)
  ftrace: build fix for ftraced_suspend
  ftrace: separate out the function enabled variable
  ftrace: add ftrace_kill_atomic
  ftrace: use current CPU for function startup
  ftrace: start wakeup tracing after setting function tracer
  ftrace: check proper config for preempt type
  ftrace: trace schedule
  ftrace: define function trace nop
  ftrace: move sched_switch enable after markers
  ftrace: prevent ftrace modifications while being kprobe'd, v2
  fix "ftrace: store mcount address in rec->ip"
  mmiotrace broken in linux-next (8-bit writes only)
  ftrace: avoid modifying kprobe'd records
  ftrace: freeze kprobe'd records
  kprobes: enable clean usage of get_kprobe
  ftrace: store mcount address in rec->ip
  ftrace: build fix with gcc 4.3
  namespacecheck: fixes
  ftrace: fix "notrace" filtering priority
  ftrace: fix printout
  ...
2008-07-14 14:49:54 -07:00
Ingo Molnar
d12c1a3792 lockdep: fix kernel/fork.c warning
fix:

[    0.184011] ------------[ cut here ]------------
[    0.188011] WARNING: at kernel/fork.c:918 copy_process+0x1c0/0x1084()
[    0.192011] Pid: 0, comm: swapper Not tainted 2.6.26-tip-00351-g01d4a50-dirty #14521
[    0.196011]  [<c0135d48>] warn_on_slowpath+0x3c/0x60
[    0.200012]  [<c016f805>] ? __alloc_pages_internal+0x92/0x36b
[    0.208012]  [<c033de5e>] ? __spin_lock_init+0x24/0x4a
[    0.212012]  [<c01347e3>] copy_process+0x1c0/0x1084
[    0.216013]  [<c013575f>] do_fork+0xb8/0x1ad
[    0.220013]  [<c034f75e>] ? acpi_os_release_lock+0x8/0xa
[    0.228013]  [<c034ff7a>] ? acpi_os_vprintf+0x20/0x24
[    0.232014]  [<c01129ee>] kernel_thread+0x75/0x7d
[    0.236014]  [<c0a491eb>] ? kernel_init+0x0/0x24a
[    0.240014]  [<c0a491eb>] ? kernel_init+0x0/0x24a
[    0.244014]  [<c01151b0>] ? kernel_thread_helper+0x0/0x10
[    0.252015]  [<c06c6ac0>] rest_init+0x14/0x50
[    0.256015]  [<c0a498ce>] start_kernel+0x2b9/0x2c0
[    0.260015]  [<c0a4904f>] __init_begin+0x4f/0x57
[    0.264016]  =======================
[    0.268016] ---[ end trace 4eaa2a86a8e2da22 ]---
[    0.272016] enabled ExtINT on CPU#0

which occurs if CONFIG_TRACE_IRQFLAGS=y, CONFIG_DEBUG_LOCKDEP=y,
but CONFIG_PROVE_LOCKING is disabled.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-14 12:09:28 +02:00
Jens Axboe
da9cbc8739 block: blkdev.h cleanup, move iocontext stuff to iocontext.h
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-07-03 13:21:14 +02:00
Steven Rostedt
81d68a96a3 ftrace: trace irq disabled critical timings
This patch adds latency tracing for critical timings
(how long interrupts are disabled for).

 "irqsoff" is added to /debugfs/tracing/available_tracers

Note:
  tracing_max_latency
    also holds the max latency for irqsoff (in usecs).
   (default to large number so one must start latency tracing)

  tracing_thresh
    threshold (in usecs) to always print out if irqs off
    is detected to be longer than stated here.
    If irq_thresh is non-zero, then max_irq_latency
    is ignored.

Here's an example of a trace with ftrace_enabled = 0

=======
preemption latency trace v1.1.5 on 2.6.24-rc7
Signed-off-by: Ingo Molnar <mingo@elte.hu>
--------------------------------------------------------------------
 latency: 100 us, #3/3, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: _spin_lock_irqsave+0x2a/0xb7
 => ended at:   _spin_unlock_irqrestore+0x32/0x5f

                 _------=> CPU#
                / _-----=> irqs-off
               | / _----=> need-resched
               || / _---=> hardirq/softirq
               ||| / _--=> preempt-depth
               |||| /
               |||||     delay
   cmd     pid ||||| time  |   caller
      \   /    |||||   \   |   /
 swapper-0     1d.s3    0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000])
 swapper-0     1d.s3  100us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000])
 swapper-0     1d.s3  100us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f)

vim:ft=help
=======

And this is a trace with ftrace_enabled == 1

=======
preemption latency trace v1.1.5 on 2.6.24-rc7
--------------------------------------------------------------------
 latency: 102 us, #12/12, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: _spin_lock_irqsave+0x2a/0xb7
 => ended at:   _spin_unlock_irqrestore+0x32/0x5f

                 _------=> CPU#
                / _-----=> irqs-off
               | / _----=> need-resched
               || / _---=> hardirq/softirq
               ||| / _--=> preempt-depth
               |||| /
               |||||     delay
   cmd     pid ||||| time  |   caller
      \   /    |||||   \   |   /
 swapper-0     1dNs3    0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000])
 swapper-0     1dNs3   46us : e1000_read_phy_reg+0x16/0x225 [e1000] (e1000_update_stats+0x5e2/0x64c [e1000])
 swapper-0     1dNs3   46us : e1000_swfw_sync_acquire+0x10/0x99 [e1000] (e1000_read_phy_reg+0x49/0x225 [e1000])
 swapper-0     1dNs3   46us : e1000_get_hw_eeprom_semaphore+0x12/0xa6 [e1000] (e1000_swfw_sync_acquire+0x36/0x99 [e1000])
 swapper-0     1dNs3   47us : __const_udelay+0x9/0x47 (e1000_read_phy_reg+0x116/0x225 [e1000])
 swapper-0     1dNs3   47us+: __delay+0x9/0x50 (__const_udelay+0x45/0x47)
 swapper-0     1dNs3   97us : preempt_schedule+0xc/0x84 (__delay+0x4e/0x50)
 swapper-0     1dNs3   98us : e1000_swfw_sync_release+0xc/0x55 [e1000] (e1000_read_phy_reg+0x211/0x225 [e1000])
 swapper-0     1dNs3   99us+: e1000_put_hw_eeprom_semaphore+0x9/0x35 [e1000] (e1000_swfw_sync_release+0x50/0x55 [e1000])
 swapper-0     1dNs3  101us : _spin_unlock_irqrestore+0xe/0x5f (e1000_update_stats+0x641/0x64c [e1000])
 swapper-0     1dNs3  102us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000])
 swapper-0     1dNs3  102us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f)

vim:ft=help
=======

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:32:46 +02:00
Al Viro
02afc6267f [PATCH] dup_fd() fixes, part 1
Move the sucker to fs/file.c in preparation to the rest

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-05-16 17:22:26 -04:00
Al Viro
9f3acc3140 [PATCH] split linux/file.h
Initial splitoff of the low-level stuff; taken to fdtable.h

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-05-01 13:08:16 -04:00
Oleg Nesterov
db51aeccd7 signals: microoptimize the usage of ->curr_target
Suggested by Roland McGrath.

Initialize signal->curr_target in copy_signal().  This way ->curr_target is
never == NULL, we can kill the check in __group_complete_signal's hot path.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:35 -07:00
Matt Helsley
925d1c401f procfs task exe symlink
The kernel implements readlink of /proc/pid/exe by getting the file from
the first executable VMA.  Then the path to the file is reconstructed and
reported as the result.

Because of the VMA walk the code is slightly different on nommu systems.
This patch avoids separate /proc/pid/exe code on nommu systems.  Instead of
walking the VMAs to find the first executable file-backed VMA we store a
reference to the exec'd file in the mm_struct.

That reference would prevent the filesystem holding the executable file
from being unmounted even after unmapping the VMAs.  So we track the number
of VM_EXECUTABLE VMAs and drop the new reference when the last one is
unmapped.  This avoids pinning the mounted filesystem.

[akpm@linux-foundation.org: improve comments]
[yamamoto@valinux.co.jp: fix dup_mmap]
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Howells <dhowells@redhat.com>
Cc:"Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:17 -07:00
Manfred Spraul
6013f67fc1 ipc: sysvsem: force unshare(CLONE_SYSVSEM) when CLONE_NEWIPC
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption.  CLONE_NEWIPC must detach from the existing
undo lists.

Fix, part 2: perform an implicit CLONE_SYSVSEM in CLONE_NEWIPC.  CLONE_NEWIPC
creates a new IPC namespace, the task cannot access the existing semaphore
arrays after the unshare syscall.  Thus the task can/must detach from the
existing undo list entries, too.

This fixes the kernel corruption, because it makes it impossible that
undo records from two different namespaces are in sysvsem.undo_list.

Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:14 -07:00
Manfred Spraul
9edff4ab1f ipc: sysvsem: implement sys_unshare(CLONE_SYSVSEM)
sys_unshare(CLONE_NEWIPC) doesn't handle the undo lists properly, this can
cause a kernel memory corruption.  CLONE_NEWIPC must detach from the existing
undo lists.

Fix, part 1: add support for sys_unshare(CLONE_SYSVSEM)

The original reason to not support it was the potential (inevitable?)
confusion due to the fact that sys_unshare(CLONE_SYSVSEM) has the
inverse meaning of clone(CLONE_SYSVSEM).

Our two most reasonable options then appear to be (1) fully support
CLONE_SYSVSEM, or (2) continue to refuse explicit CLONE_SYSVSEM,
but always do it anyway on unshare(CLONE_SYSVSEM).  This patch does
(1).

Changelog:
	Apr 16: SEH: switch to Manfred's alternative patch which
		removes the unshare_semundo() function which
		always refused CLONE_SYSVSEM.

Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Pierre Peiffer <peifferp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:14 -07:00
Balbir Singh
cf475ad28a cgroups: add an owner to the mm_struct
Remove the mem_cgroup member from mm_struct and instead adds an owner.

This approach was suggested by Paul Menage.  The advantage of this approach
is that, once the mm->owner is known, using the subsystem id, the cgroup
can be determined.  It also allows several control groups that are
virtually grouped by mm_struct, to exist independent of the memory
controller i.e., without adding mem_cgroup's for each controller, to
mm_struct.

A new config option CONFIG_MM_OWNER is added and the memory resource
controller selects this config option.

This patch also adds cgroup callbacks to notify subsystems when mm->owner
changes.  The mm_cgroup_changed callback is called with the task_lock() of
the new task held and is called just prior to changing the mm->owner.

I am indebted to Paul Menage for the several reviews of this patchset and
helping me make it lighter and simpler.

This patch was tested on a powerpc box, it was compiled with both the
MM_OWNER config turned on and off.

After the thread group leader exits, it's moved to init_css_state by
cgroup_exit(), thus all future charges from runnings threads would be
redirected to the init_css_set's subsystem.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>,
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:10 -07:00
Lee Schermerhorn
846a16bf0f mempolicy: rename mpol_copy to mpol_dup
This patch renames mpol_copy() to mpol_dup() because, well, that's what it
does.  Like, e.g., strdup() for strings, mpol_dup() takes a pointer to an
existing mempolicy, allocates a new one and copies the contents.

In a later patch, I want to use the name mpol_copy() to copy the contents from
one mempolicy to another like, e.g., strcpy() does for strings.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:23 -07:00
Lee Schermerhorn
f0be3d32b0 mempolicy: rename mpol_free to mpol_put
This is a change that was requested some time ago by Mel Gorman.  Makes sense
to me, so here it is.

Note: I retain the name "mpol_free_shared_policy()" because it actually does
free the shared_policy, which is NOT a reference counted object.  However, ...

The mempolicy object[s] referenced by the shared_policy are reference counted,
so mpol_put() is used to release the reference held by the shared_policy.  The
mempolicy might not be freed at this time, because some task attached to the
shared object associated with the shared policy may be in the process of
allocating a page based on the mempolicy.  In that case, the task performing
the allocation will hold a reference on the mempolicy, obtained via
mpol_shared_policy_lookup().  The mempolicy will be freed when all tasks
holding such a reference have called mpol_put() for the mempolicy.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:23 -07:00
Carsten Otte
402b08622d s390: KVM preparation: provide hook to enable pgstes in user pagetable
The SIE instruction on s390 uses the 2nd half of the page table page to
virtualize the storage keys of a guest. This patch offers the s390_enable_sie
function, which reorganizes the page tables of a single-threaded process to
reserve space in the page table:
s390_enable_sie makes sure that the process is single threaded and then uses
dup_mm to create a new mm with reorganized page tables. The old mm is freed
and the process has now a page status extended field after every page table.

Code that wants to exploit pgstes should SELECT CONFIG_PGSTE.

This patch has a small common code hit, namely making dup_mm non-static.

Edit (Carsten): I've modified Martin's patch, following Jeremy Fitzhardinge's
review feedback. Now we do have the prototype for dup_mm in
include/linux/sched.h. Following Martin's suggestion, s390_enable_sie() does now
call task_lock() to prevent race against ptrace modification of mm_users.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-04-27 12:00:40 +03:00
Al Viro
50704516f3 Fix uninitialized 'copy' in unshare_files
Arrgghhh...

Sorry about that, I'd been sure I'd folded that one, but it actually got
lost.  Please apply - that breaks execve().

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-26 09:24:31 -07:00
Al Viro
3b1253880b [PATCH] sanitize unshare_files/reset_files_struct
* let unshare_files() give caller the displaced files_struct
* don't bother with grabbing reference only to drop it in the
  caller if it hadn't been shared in the first place
* in that form unshare_files() is trivially implemented via
  unshare_fd(), so we eliminate the duplicate logics in fork.c
* reset_files_struct() is not just only called for current;
  it will break the system if somebody ever calls it for anything
  else (we can't modify ->files of somebody else).  Lose the
  task_struct * argument.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-04-25 09:23:59 -04:00
Al Viro
fd8328be87 [PATCH] sanitize handling of shared descriptor tables in failing execve()
* unshare_files() can fail; doing it after irreversible actions is wrong
  and de_thread() is certainly irreversible.
* since we do it unconditionally anyway, we might as well do it in do_execve()
  and save ourselves the PITA in binfmt handlers, etc.
* while we are at it, binfmt_som actually leaked files_struct on failure.

As a side benefit, unshare_files(), put_files_struct() and reset_files_struct()
become unexported.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-04-25 09:23:53 -04:00
Al Viro
6b335d9c80 [PATCH] close race in unshare_files()
updating current->files requires task_lock

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-04-25 09:23:48 -04:00
Suresh Siddha
2adee9b30d x86: fpu xstate split fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-19 19:19:55 +02:00
Suresh Siddha
61c4628b53 x86, fpu: split FPU state from task struct - v5
Split the FPU save area from the task struct. This allows easy migration
of FPU context, and it's generally cleaner. It also allows the following
two optimizations:

1) only allocate when the application actually uses FPU, so in the first
lazy FPU trap. This could save memory for non-fpu using apps. Next patch
does this lazy allocation.

2) allocate the right size for the actual cpu rather than 512 bytes always.
Patches enabling xsave/xrstor support (coming shortly) will take advantage
of this.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-19 19:19:55 +02:00
YAMAMOTO Takashi
1d4a788f15 memcgroup: fix spurious EBUSY on memory cgroup removal
Call mm_free_cgroup earlier.  Otherwise a reference due to lazy mm switching
can prevent cgroup removal.

Signed-off-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-28 14:45:21 -07:00
Jan Blunck
6ac08c39a1 Use struct path in fs_struct
* Use struct path in fs_struct.

Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-14 21:13:33 -08:00
Harvey Harrison
7ad5b3a505 kernel: remove fastcall in kernel/*
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:31 -08:00
Pavel Emelyanov
6c5f3e7b43 Pidns: make full use of xxx_vnr() calls
Some time ago the xxx_vnr() calls (e.g.  pid_vnr or find_task_by_vpid) were
_all_ converted to operate on the current pid namespace.  After this each call
like xxx_nr_ns(foo, current->nsproxy->pid_ns) is nothing but a xxx_vnr(foo)
one.

Switch all the xxx_nr_ns() callers to use the xxx_vnr() calls where
appropriate.

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Reviewed-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:29 -08:00
Oleg Nesterov
fea9d17554 ITIMER_REAL: convert to use struct pid
signal_struct->tsk points to the ->group_leader and thus we have the nasty
code in de_thread() which has to change it and restart ->real_timer if the
leader is changed.

Use "struct pid *leader_pid" instead.  This also allows us to kill now
unneeded send_group_sig_info().

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Roland McGrath <roland@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:29 -08:00
Pavel Emelianov
78fb74669e Memory controller: accounting setup
Basic setup routines, the mm_struct has a pointer to the cgroup that
it belongs to and the the page has a page_cgroup associated with it.

Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Adrian Bunk
6b2fb3c658 idle_regs() must be __cpuinit
Fix the following section mismatch with CONFIG_HOTPLUG=n,
CONFIG_HOTPLUG_CPU=y:

WARNING: vmlinux.o(.text+0x399a6): Section mismatch: reference to .init.text.5:idle_regs (between 'fork_idle' and 'get_task_mm')

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:08 -08:00
Oleg Nesterov
d9ae90ac4b use __set_task_state() for TRACED/STOPPED tasks
1. It is much easier to grep for ->state change if __set_task_state() is used
   instead of the direct assignment.

2. ptrace_stop() and handle_group_stop() use set_task_state() which adds the
   unneeded mb() (btw even if we use mb() it is still possible that do_wait()
   sees the new ->state but not ->exit_code, but this is ok).

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:00 -08:00
Serge E. Hallyn
3b7391de67 capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
 Currently cap_bset is per-system.  It can be manipulated through sysctl,
but only init can add capabilities.  Root can remove capabilities.  By
default it includes all caps except CAP_SETPCAP.

This patch makes the bounding set per-process when file capabilities are
enabled.  It is inherited at fork from parent.  Noone can add elements,
CAP_SETPCAP is required to remove them.

One example use of this is to start a safer container.  For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.

The bounding set will not affect pP and pE immediately.  It will only
affect pP' and pE' after subsequent exec()s.  It also does not affect pI,
and exec() does not constrain pI'.  So to really start a shell with no way
of regain CAP_MKNOD, you would do

	prctl(PR_CAPBSET_DROP, CAP_MKNOD);
	cap_t cap = cap_get_proc();
	cap_value_t caparray[1];
	caparray[0] = CAP_MKNOD;
	cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
	cap_set_proc(cap);
	cap_free(cap);

The following test program will get and set the bounding
set (but not pI).  For instance

	./bset get
		(lists capabilities in bset)
	./bset drop cap_net_raw
		(starts shell with new bset)
		(use capset, setuid binary, or binary with
		file capabilities to try to increase caps)

************************************************************
cap_bound.c
************************************************************
 #include <sys/prctl.h>
 #include <linux/capability.h>
 #include <sys/types.h>
 #include <unistd.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #ifndef PR_CAPBSET_READ
 #define PR_CAPBSET_READ 23
 #endif

 #ifndef PR_CAPBSET_DROP
 #define PR_CAPBSET_DROP 24
 #endif

int usage(char *me)
{
	printf("Usage: %s get\n", me);
	printf("       %s drop <capability>\n", me);
	return 1;
}

 #define numcaps 32
char *captable[numcaps] = {
	"cap_chown",
	"cap_dac_override",
	"cap_dac_read_search",
	"cap_fowner",
	"cap_fsetid",
	"cap_kill",
	"cap_setgid",
	"cap_setuid",
	"cap_setpcap",
	"cap_linux_immutable",
	"cap_net_bind_service",
	"cap_net_broadcast",
	"cap_net_admin",
	"cap_net_raw",
	"cap_ipc_lock",
	"cap_ipc_owner",
	"cap_sys_module",
	"cap_sys_rawio",
	"cap_sys_chroot",
	"cap_sys_ptrace",
	"cap_sys_pacct",
	"cap_sys_admin",
	"cap_sys_boot",
	"cap_sys_nice",
	"cap_sys_resource",
	"cap_sys_time",
	"cap_sys_tty_config",
	"cap_mknod",
	"cap_lease",
	"cap_audit_write",
	"cap_audit_control",
	"cap_setfcap"
};

int getbcap(void)
{
	int comma=0;
	unsigned long i;
	int ret;

	printf("i know of %d capabilities\n", numcaps);
	printf("capability bounding set:");
	for (i=0; i<numcaps; i++) {
		ret = prctl(PR_CAPBSET_READ, i);
		if (ret < 0)
			perror("prctl");
		else if (ret==1)
			printf("%s%s", (comma++) ? ", " : " ", captable[i]);
	}
	printf("\n");
	return 0;
}

int capdrop(char *str)
{
	unsigned long i;

	int found=0;
	for (i=0; i<numcaps; i++) {
		if (strcmp(captable[i], str) == 0) {
			found=1;
			break;
		}
	}
	if (!found)
		return 1;
	if (prctl(PR_CAPBSET_DROP, i)) {
		perror("prctl");
		return 1;
	}
	return 0;
}

int main(int argc, char *argv[])
{
	if (argc<2)
		return usage(argv[0]);
	if (strcmp(argv[1], "get")==0)
		return getbcap();
	if (strcmp(argv[1], "drop")!=0 || argc<3)
		return usage(argv[0]);
	if (capdrop(argv[2])) {
		printf("unknown capability\n");
		return 1;
	}
	return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************

[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:20 -08:00