We've started to see the following kernel traces:
WARNING: CPU: 83 PID: 0 at net/core/filter.c:6641 sk_lookup+0x1bd/0x1d0
Call Trace:
<IRQ>
__bpf_skc_lookup+0x10d/0x120
bpf_sk_lookup+0x48/0xd0
bpf_sk_lookup_tcp+0x19/0x20
bpf_prog_<redacted>+0x37c/0x16a3
cls_bpf_classify+0x205/0x2e0
tcf_classify+0x92/0x160
__netif_receive_skb_core+0xe52/0xf10
__netif_receive_skb_list_core+0x96/0x2b0
napi_complete_done+0x7b5/0xb70
<redacted>_poll+0x94/0xb0
net_rx_action+0x163/0x1d70
__do_softirq+0xdc/0x32e
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x36/0x50
do_softirq+0x44/0x70
__inet_hash can race with lockless (rcu) readers on the other cpus:
__inet_hash
__sk_nulls_add_node_rcu
<- (bpf triggers here)
sock_set_flag(SOCK_RCU_FREE)
Let's move the SOCK_RCU_FREE part up a bit, before we are inserting
the socket into hashtables. Note, that the race is really harmless;
the bpf callers are handling this situation (where listener socket
doesn't have SOCK_RCU_FREE set) correctly, so the only
annoyance is a WARN_ONCE.
More details from Eric regarding SOCK_RCU_FREE timeline:
Commit 3b24d854cb ("tcp/dccp: do not touch listener sk_refcnt under
synflood") added SOCK_RCU_FREE. At that time, the precise location of
sock_set_flag(sk, SOCK_RCU_FREE) did not matter, because the thread calling
__inet_hash() owns a reference on sk. SOCK_RCU_FREE was only tested
at dismantle time.
Commit 6acc9b432e ("bpf: Add helper to retrieve socket in BPF")
started checking SOCK_RCU_FREE _after_ the lookup to infer whether
the refcount has been taken care of.
Fixes: 6acc9b432e ("bpf: Add helper to retrieve socket in BPF")
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
syzbot reported a warning [0] introduced by commit c48ef9c4ae ("tcp: Fix
bind() regression for v4-mapped-v6 non-wildcard address.").
After the cited commit, a v4 socket's address matches the corresponding
v4-mapped-v6 tb2 in inet_bind2_bucket_match_addr(), not vice versa.
During X.X.X.X -> ::ffff:X.X.X.X order bind()s, the second bind() uses
bhash and conflicts properly without checking bhash2 so that we need not
check if a v4-mapped-v6 sk matches the corresponding v4 address tb2 in
inet_bind2_bucket_match_addr(). However, the repro shows that we need
to check that in a no-conflict case.
The repro bind()s two sockets to the 2-tuples using SO_REUSEPORT and calls
listen() for the first socket:
from socket import *
s1 = socket()
s1.setsockopt(SOL_SOCKET, SO_REUSEPORT, 1)
s1.bind(('127.0.0.1', 0))
s2 = socket(AF_INET6)
s2.setsockopt(SOL_SOCKET, SO_REUSEPORT, 1)
s2.bind(('::ffff:127.0.0.1', s1.getsockname()[1]))
s1.listen()
The second socket should belong to the first socket's tb2, but the second
bind() creates another tb2 bucket because inet_bind2_bucket_find() returns
NULL in inet_csk_get_port() as the v4-mapped-v6 sk does not match the
corresponding v4 address tb2.
bhash2[] -> tb2(::ffff:X.X.X.X) -> tb2(X.X.X.X)
Then, listen() for the first socket calls inet_csk_get_port(), where the
v4 address matches the v4-mapped-v6 tb2 and WARN_ON() is triggered.
To avoid that, we need to check if v4-mapped-v6 sk address matches with
the corresponding v4 address tb2 in inet_bind2_bucket_match().
The same checks are needed in inet_bind2_bucket_addr_match() too, so we
can move all checks there and call it from inet_bind2_bucket_match().
Note that now tb->family is just an address family of tb->(v6_)?rcv_saddr
and not of sockets in the bucket. This could be refactored later by
defining tb->rcv_saddr as tb->v6_rcv_saddr.s6_addr32[3] and prepending
::ffff: when creating v4 tb2.
[0]:
WARNING: CPU: 0 PID: 5049 at net/ipv4/inet_connection_sock.c:587 inet_csk_get_port+0xf96/0x2350 net/ipv4/inet_connection_sock.c:587
Modules linked in:
CPU: 0 PID: 5049 Comm: syz-executor288 Not tainted 6.6.0-rc2-syzkaller-00018-g2cf0f7156238 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
RIP: 0010:inet_csk_get_port+0xf96/0x2350 net/ipv4/inet_connection_sock.c:587
Code: 7c 24 08 e8 4c b6 8a 01 31 d2 be 88 01 00 00 48 c7 c7 e0 94 ae 8b e8 59 2e a3 f8 2e 2e 2e 31 c0 e9 04 fe ff ff e8 ca 88 d0 f8 <0f> 0b e9 0f f9 ff ff e8 be 88 d0 f8 49 8d 7e 48 e8 65 ca 5a 00 31
RSP: 0018:ffffc90003abfbf0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff888026429100 RCX: 0000000000000000
RDX: ffff88807edcbb80 RSI: ffffffff88b73d66 RDI: ffff888026c49f38
RBP: ffff888026c49f30 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: ffffffff9260f200
R13: ffff888026c49880 R14: 0000000000000000 R15: ffff888026429100
FS: 00005555557d5380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000045ad50 CR3: 0000000025754000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
inet_csk_listen_start+0x155/0x360 net/ipv4/inet_connection_sock.c:1256
__inet_listen_sk+0x1b8/0x5c0 net/ipv4/af_inet.c:217
inet_listen+0x93/0xd0 net/ipv4/af_inet.c:239
__sys_listen+0x194/0x270 net/socket.c:1866
__do_sys_listen net/socket.c:1875 [inline]
__se_sys_listen net/socket.c:1873 [inline]
__x64_sys_listen+0x53/0x80 net/socket.c:1873
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f3a5bce3af9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc1a1c79e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000032
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f3a5bce3af9
RDX: 00007f3a5bce3af9 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007f3a5bd565f0 R08: 0000000000000006 R09: 0000000000000006
R10: 0000000000000006 R11: 0000000000000246 R12: 0000000000000001
R13: 431bde82d7b634db R14: 0000000000000001 R15: 0000000000000001
</TASK>
Fixes: c48ef9c4ae ("tcp: Fix bind() regression for v4-mapped-v6 non-wildcard address.")
Reported-by: syzbot+71e724675ba3958edb31@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=71e724675ba3958edb31
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20231010013814.70571-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since bhash2 was introduced, the example below does not work as expected.
These two bind() should conflict, but the 2nd bind() now succeeds.
from socket import *
s1 = socket(AF_INET6, SOCK_STREAM)
s1.bind(('::ffff:127.0.0.1', 0))
s2 = socket(AF_INET, SOCK_STREAM)
s2.bind(('127.0.0.1', s1.getsockname()[1]))
During the 2nd bind() in inet_csk_get_port(), inet_bind2_bucket_find()
fails to find the 1st socket's tb2, so inet_bind2_bucket_create() allocates
a new tb2 for the 2nd socket. Then, we call inet_csk_bind_conflict() that
checks conflicts in the new tb2 by inet_bhash2_conflict(). However, the
new tb2 does not include the 1st socket, thus the bind() finally succeeds.
In this case, inet_bind2_bucket_match() must check if AF_INET6 tb2 has
the conflicting v4-mapped-v6 address so that inet_bind2_bucket_find()
returns the 1st socket's tb2.
Note that if we bind two sockets to 127.0.0.1 and then ::FFFF:127.0.0.1,
the 2nd bind() fails properly for the same reason mentinoed in the previous
commit.
Fixes: 28044fc1d4 ("net: Add a bhash2 table hashed by port and address")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Andrei Vagin reported bind() regression with strace logs.
If we bind() a TCPv6 socket to ::FFFF:0.0.0.0 and then bind() a TCPv4
socket to 127.0.0.1, the 2nd bind() should fail but now succeeds.
from socket import *
s1 = socket(AF_INET6, SOCK_STREAM)
s1.bind(('::ffff:0.0.0.0', 0))
s2 = socket(AF_INET, SOCK_STREAM)
s2.bind(('127.0.0.1', s1.getsockname()[1]))
During the 2nd bind(), if tb->family is AF_INET6 and sk->sk_family is
AF_INET in inet_bind2_bucket_match_addr_any(), we still need to check
if tb has the v4-mapped-v6 wildcard address.
The example above does not work after commit 5456262d2b ("net: Fix
incorrect address comparison when searching for a bind2 bucket"), but
the blamed change is not the commit.
Before the commit, the leading zeros of ::FFFF:0.0.0.0 were treated
as 0.0.0.0, and the sequence above worked by chance. Technically, this
case has been broken since bhash2 was introduced.
Note that if we bind() two sockets to 127.0.0.1 and then ::FFFF:0.0.0.0,
the 2nd bind() fails properly because we fall back to using bhash to
detect conflicts for the v4-mapped-v6 address.
Fixes: 28044fc1d4 ("net: Add a bhash2 table hashed by port and address")
Reported-by: Andrei Vagin <avagin@google.com>
Closes: https://lore.kernel.org/netdev/ZPuYBOFC8zsK6r9T@google.com/
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a prep patch to make the following patches cleaner that touch
inet_bind2_bucket_match() and inet_bind2_bucket_match_addr_any().
Both functions have duplicated comparison for netns, port, and l3mdev.
Let's factorise them.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are already INDIRECT_CALLABLE_DECLARE in the hashtable
headers, no need to declare them again.
Fixes: 0f495f7617 ("net: remove duplicate reuseport_lookup functions")
Suggested-by: Martin Lau <martin.lau@linux.dev>
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230731-indir-call-v1-1-4cd0aeaee64f@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Now that inet[6]_lookup_reuseport are parameterised on the ehashfn
we can remove two sk_lookup helpers.
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230720-so-reuseport-v6-6-7021b683cdae@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The current implementation was extracted from inet[6]_lhash2_lookup
in commit 80b373f74f ("inet: Extract helper for selecting socket
from reuseport group") and commit 5df6531292 ("inet6: Extract helper
for selecting socket from reuseport group"). In the original context,
sk is always in TCP_LISTEN state and so did not have a separate check.
Add documentation that specifies which sk_state are valid to pass to
the function.
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230720-so-reuseport-v6-5-7021b683cdae@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
There are currently four copies of reuseport_lookup: one each for
(TCP, UDP)x(IPv4, IPv6). This forces us to duplicate all callers of
those functions as well. This is already the case for sk_lookup
helpers (inet,inet6,udp4,udp6)_lookup_run_bpf.
There are two differences between the reuseport_lookup helpers:
1. They call different hash functions depending on protocol
2. UDP reuseport_lookup checks that sk_state != TCP_ESTABLISHED
Move the check for sk_state into the caller and use the INDIRECT_CALL
infrastructure to cut down the helpers to one per IP version.
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230720-so-reuseport-v6-4-7021b683cdae@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Rename the existing reuseport helpers for IPv4 and IPv6 so that they
can be invoked in the follow up commit. Export them so that building
DCCP and IPv6 as a module works.
No change in functionality.
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230720-so-reuseport-v6-3-7021b683cdae@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
This reverts commit 3f4ca5fafc.
Commit 3f4ca5fafc ("tcp: avoid the lookup process failing to get sk in
ehash table") reversed the order in how a socket is inserted into ehash
to fix an issue that ehash-lookup could fail when reqsk/full sk/twsk are
swapped. However, it introduced another lookup failure.
The full socket in ehash is allocated from a slab with SLAB_TYPESAFE_BY_RCU
and does not have SOCK_RCU_FREE, so the socket could be reused even while
it is being referenced on another CPU doing RCU lookup.
Let's say a socket is reused and inserted into the same hash bucket during
lookup. After the blamed commit, a new socket is inserted at the end of
the list. If that happens, we will skip sockets placed after the previous
position of the reused socket, resulting in ehash lookup failure.
As described in Documentation/RCU/rculist_nulls.rst, we should insert a
new socket at the head of the list to avoid such an issue.
This issue, the swap-lookup-failure, and another variant reported in [0]
can all be handled properly by adding a locked ehash lookup suggested by
Eric Dumazet [1].
However, this issue could occur for every packet, thus more likely than
the other two races, so let's revert the change for now.
Link: https://lore.kernel.org/netdev/20230606064306.9192-1-duanmuquan@baidu.com/ [0]
Link: https://lore.kernel.org/netdev/CANn89iK8snOz8TYOhhwfimC7ykYA78GA3Nyv8x06SZYa1nKdyA@mail.gmail.com/ [1]
Fixes: 3f4ca5fafc ("tcp: avoid the lookup process failing to get sk in ehash table")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230717215918.15723-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Some code defines the IPv6 wildcard address as a local variable and
use it with memcmp() or ipv6_addr_equal().
Let's use in6addr_any and ipv6_addr_any() instead.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Mark Bloch <mbloch@nvidia.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Paul Holzinger reported [0] that commit 5456262d2b ("net: Fix
incorrect address comparison when searching for a bind2 bucket")
introduced a bind() regression. Paul also gave a nice repro that
calls two types of bind() on the same port, both of which now
succeed, but the second call should fail:
bind(fd1, ::, port) + bind(fd2, 127.0.0.1, port)
The cited commit added address family tests in three functions to
fix the uninit-value KMSAN report. [1] However, the test added to
inet_bind2_bucket_match_addr_any() removed a necessary conflict
check; the dual-stack wildcard address no longer conflicts with
an IPv4 non-wildcard address.
If tb->family is AF_INET6 and sk->sk_family is AF_INET in
inet_bind2_bucket_match_addr_any(), we still need to check
if tb has the dual-stack wildcard address.
Note that the IPv4 wildcard address does not conflict with
IPv6 non-wildcard addresses.
[0]: https://lore.kernel.org/netdev/e21bf153-80b0-9ec0-15ba-e04a4ad42c34@redhat.com/
[1]: https://lore.kernel.org/netdev/CAG_fn=Ud3zSW7AZWXc+asfMhZVL5ETnvuY44Pmyv4NPv-ijN-A@mail.gmail.com/
Fixes: 5456262d2b ("net: Fix incorrect address comparison when searching for a bind2 bucket")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reported-by: Paul Holzinger <pholzing@redhat.com>
Link: https://lore.kernel.org/netdev/CAG_fn=Ud3zSW7AZWXc+asfMhZVL5ETnvuY44Pmyv4NPv-ijN-A@mail.gmail.com/
Reviewed-by: Eric Dumazet <edumazet@google.com>
Tested-by: Paul Holzinger <pholzing@redhat.com>
Reviewed-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Users who want to share a single public IP address for outgoing connections
between several hosts traditionally reach for SNAT. However, SNAT requires
state keeping on the node(s) performing the NAT.
A stateless alternative exists, where a single IP address used for egress
can be shared between several hosts by partitioning the available ephemeral
port range. In such a setup:
1. Each host gets assigned a disjoint range of ephemeral ports.
2. Applications open connections from the host-assigned port range.
3. Return traffic gets routed to the host based on both, the destination IP
and the destination port.
An application which wants to open an outgoing connection (connect) from a
given port range today can choose between two solutions:
1. Manually pick the source port by bind()'ing to it before connect()'ing
the socket.
This approach has a couple of downsides:
a) Search for a free port has to be implemented in the user-space. If
the chosen 4-tuple happens to be busy, the application needs to retry
from a different local port number.
Detecting if 4-tuple is busy can be either easy (TCP) or hard
(UDP). In TCP case, the application simply has to check if connect()
returned an error (EADDRNOTAVAIL). That is assuming that the local
port sharing was enabled (REUSEADDR) by all the sockets.
# Assume desired local port range is 60_000-60_511
s = socket(AF_INET, SOCK_STREAM)
s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
s.bind(("192.0.2.1", 60_000))
s.connect(("1.1.1.1", 53))
# Fails only if 192.0.2.1:60000 -> 1.1.1.1:53 is busy
# Application must retry with another local port
In case of UDP, the network stack allows binding more than one socket
to the same 4-tuple, when local port sharing is enabled
(REUSEADDR). Hence detecting the conflict is much harder and involves
querying sock_diag and toggling the REUSEADDR flag [1].
b) For TCP, bind()-ing to a port within the ephemeral port range means
that no connecting sockets, that is those which leave it to the
network stack to find a free local port at connect() time, can use
the this port.
IOW, the bind hash bucket tb->fastreuse will be 0 or 1, and the port
will be skipped during the free port search at connect() time.
2. Isolate the app in a dedicated netns and use the use the per-netns
ip_local_port_range sysctl to adjust the ephemeral port range bounds.
The per-netns setting affects all sockets, so this approach can be used
only if:
- there is just one egress IP address, or
- the desired egress port range is the same for all egress IP addresses
used by the application.
For TCP, this approach avoids the downsides of (1). Free port search and
4-tuple conflict detection is done by the network stack:
system("sysctl -w net.ipv4.ip_local_port_range='60000 60511'")
s = socket(AF_INET, SOCK_STREAM)
s.setsockopt(SOL_IP, IP_BIND_ADDRESS_NO_PORT, 1)
s.bind(("192.0.2.1", 0))
s.connect(("1.1.1.1", 53))
# Fails if all 4-tuples 192.0.2.1:60000-60511 -> 1.1.1.1:53 are busy
For UDP this approach has limited applicability. Setting the
IP_BIND_ADDRESS_NO_PORT socket option does not result in local source
port being shared with other connected UDP sockets.
Hence relying on the network stack to find a free source port, limits the
number of outgoing UDP flows from a single IP address down to the number
of available ephemeral ports.
To put it another way, partitioning the ephemeral port range between hosts
using the existing Linux networking API is cumbersome.
To address this use case, add a new socket option at the SOL_IP level,
named IP_LOCAL_PORT_RANGE. The new option can be used to clamp down the
ephemeral port range for each socket individually.
The option can be used only to narrow down the per-netns local port
range. If the per-socket range lies outside of the per-netns range, the
latter takes precedence.
UAPI-wise, the low and high range bounds are passed to the kernel as a pair
of u16 values in host byte order packed into a u32. This avoids pointer
passing.
PORT_LO = 40_000
PORT_HI = 40_511
s = socket(AF_INET, SOCK_STREAM)
v = struct.pack("I", PORT_HI << 16 | PORT_LO)
s.setsockopt(SOL_IP, IP_LOCAL_PORT_RANGE, v)
s.bind(("127.0.0.1", 0))
s.getsockname()
# Local address between ("127.0.0.1", 40_000) and ("127.0.0.1", 40_511),
# if there is a free port. EADDRINUSE otherwise.
[1] https://github.com/cloudflare/cloudflare-blog/blob/232b432c1d57/2022-02-connectx/connectx.py#L116
Reviewed-by: Marek Majkowski <marek@cloudflare.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
While one cpu is working on looking up the right socket from ehash
table, another cpu is done deleting the request socket and is about
to add (or is adding) the big socket from the table. It means that
we could miss both of them, even though it has little chance.
Let me draw a call trace map of the server side.
CPU 0 CPU 1
----- -----
tcp_v4_rcv() syn_recv_sock()
inet_ehash_insert()
-> sk_nulls_del_node_init_rcu(osk)
__inet_lookup_established()
-> __sk_nulls_add_node_rcu(sk, list)
Notice that the CPU 0 is receiving the data after the final ack
during 3-way shakehands and CPU 1 is still handling the final ack.
Why could this be a real problem?
This case is happening only when the final ack and the first data
receiving by different CPUs. Then the server receiving data with
ACK flag tries to search one proper established socket from ehash
table, but apparently it fails as my map shows above. After that,
the server fetches a listener socket and then sends a RST because
it finds a ACK flag in the skb (data), which obeys RST definition
in RFC 793.
Besides, Eric pointed out there's one more race condition where it
handles tw socket hashdance. Only by adding to the tail of the list
before deleting the old one can we avoid the race if the reader has
already begun the bucket traversal and it would possibly miss the head.
Many thanks to Eric for great help from beginning to end.
Fixes: 5e0724d027 ("tcp/dccp: fix hashdance race for passive sessions")
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/lkml/20230112065336.41034-1-kerneljasonxing@gmail.com/
Link: https://lore.kernel.org/r/20230118015941.1313-1-kerneljasonxing@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
__inet_hash_connect() has a fast path taken if sk_head(&tb->owners) is
equal to the sk parameter.
sk_head() returns the hlist_entry() with respect to the sk_node field.
However entries in the tb->owners list are inserted with respect to the
sk_bind_node field with sk_add_bind_node().
Thus the check would never pass and the fast path never execute.
This fast path has never been executed or tested as this bug seems
to be present since commit 1da177e4c3 ("Linux-2.6.12-rc2"), thus
remove it to reduce code complexity.
Signed-off-by: Pietro Borrello <borrello@diag.uniroma1.it>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230112-inet_hash_connect_bind_head-v3-1-b591fd212b93@diag.uniroma1.it
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Jiri Slaby reported regression of bind() with a simple repro. [0]
The repro creates a TIME_WAIT socket and tries to bind() a new socket
with the same local address and port. Before commit 28044fc1d4 ("net:
Add a bhash2 table hashed by port and address"), the bind() failed with
-EADDRINUSE, but now it succeeds.
The cited commit should have put TIME_WAIT sockets into bhash2; otherwise,
inet_bhash2_conflict() misses TIME_WAIT sockets when validating bind()
requests if the address is not a wildcard one.
The straight option is to move sk_bind2_node from struct sock to struct
sock_common to add twsk to bhash2 as implemented as RFC. [1] However, the
binary layout change in the struct sock could affect performances moving
hot fields on different cachelines.
To avoid that, we add another TIME_WAIT list in inet_bind2_bucket and check
it while validating bind().
[0]: https://lore.kernel.org/netdev/6b971a4e-c7d8-411e-1f92-fda29b5b2fb9@kernel.org/
[1]: https://lore.kernel.org/netdev/20221221151258.25748-2-kuniyu@amazon.com/
Fixes: 28044fc1d4 ("net: Add a bhash2 table hashed by port and address")
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Suggested-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
/ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
=QRhK
-----END PGP SIGNATURE-----
Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
When we call connect() for a socket bound to a wildcard address, we update
saddr locklessly. However, it could result in a data race; another thread
iterating over bhash might see a corrupted address.
Let's update saddr under the bhash bucket's lock.
Fixes: 3df80d9320 ("[DCCP]: Introduce DCCPv6")
Fixes: 7c657876b6 ("[DCCP]: Initial implementation")
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When we call inet_bhash2_update_saddr(), prev_saddr is always non-NULL.
Let's remove the unnecessary test.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
On embedded systems with little memory and no relevant
security concerns, it is beneficial to reduce the size
of the table.
Reducing the size from 2^16 to 2^8 saves 255 KiB
of kernel RAM.
Makes the table size configurable as an expert option.
The size was previously increased from 2^8 to 2^16
in commit 4c2c8f03a5 ("tcp: increase source port perturb table to
2^16").
Signed-off-by: Gleb Mazovetskiy <glex.spb@gmail.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The _SLOW designation wasn't really descriptive of anything. This is
meant to be called from process context when it's possible to sleep. So
name this more aptly _SLEEPABLE, which better fits its intended use.
Fixes: 62c07983be ("once: add DO_ONCE_SLOW() for sleepable contexts")
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20221003181413.1221968-1-Jason@zx2c4.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Christophe Leroy reported a ~80ms latency spike
happening at first TCP connect() time.
This is because __inet_hash_connect() uses get_random_once()
to populate a perturbation table which became quite big
after commit 4c2c8f03a5 ("tcp: increase source port perturb table to 2^16")
get_random_once() uses DO_ONCE(), which block hard irqs for the duration
of the operation.
This patch adds DO_ONCE_SLOW() which uses a mutex instead of a spinlock
for operations where we prefer to stay in process context.
Then __inet_hash_connect() can use get_random_slow_once()
to populate its perturbation table.
Fixes: 4c2c8f03a5 ("tcp: increase source port perturb table to 2^16")
Fixes: 190cc82489 ("tcp: change source port randomizarion at connect() time")
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/netdev/CANn89iLAEYBaoYajy0Y9UmGFff5GPxDUoG-ErVB2jDdRNQ5Tug@mail.gmail.com/T/#t
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Willy Tarreau <w@1wt.eu>
Tested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
The v6_rcv_saddr and rcv_saddr are inside a union in the
'struct inet_bind2_bucket'. When searching a bucket by following the
bhash2 hashtable chain, eg. inet_bind2_bucket_match, it is only using
the sk->sk_family and there is no way to check if the inet_bind2_bucket
has a v6 or v4 address in the union. This leads to an uninit-value
KMSAN report in [0] and also potentially incorrect matches.
This patch fixes it by adding a family member to the inet_bind2_bucket
and then tests 'sk->sk_family != tb->family' before matching
the sk's address to the tb's address.
Cc: Joanne Koong <joannelkoong@gmail.com>
Fixes: 28044fc1d4 ("net: Add a bhash2 table hashed by port and address")
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/r/20220927002544.3381205-1-kafai@fb.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The more sockets we have in the hash table, the longer we spend looking
up the socket. While running a number of small workloads on the same
host, they penalise each other and cause performance degradation.
The root cause might be a single workload that consumes much more
resources than the others. It often happens on a cloud service where
different workloads share the same computing resource.
On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash
entries), after running iperf3 in different netns, creating 24Mi sockets
without data transfer in the root netns causes about 10% performance
regression for the iperf3's connection.
thash_entries sockets length Gbps
524288 1 1 50.7
24Mi 48 45.1
It is basically related to the length of the list of each hash bucket.
For testing purposes to see how performance drops along the length,
I set 131072 (1Mi / 8) to thash_entries, and here's the result.
thash_entries sockets length Gbps
131072 1 1 50.7
1Mi 8 49.9
2Mi 16 48.9
4Mi 32 47.3
8Mi 64 44.6
16Mi 128 40.6
24Mi 192 36.3
32Mi 256 32.5
40Mi 320 27.0
48Mi 384 25.0
To resolve the socket lookup degradation, we introduce an optional
per-netns hash table for TCP, but it's just ehash, and we still share
the global bhash, bhash2 and lhash2.
With a smaller ehash, we can look up non-listener sockets faster and
isolate such noisy neighbours. In addition, we can reduce lock contention.
We can control the ehash size by a new sysctl knob. However, depending
on workloads, it will require very sensitive tuning, so we disable the
feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover,
we can fall back to using the global ehash in case we fail to allocate
enough memory for a new ehash. The maximum size is 16Mi, which is large
enough that even if we have 48Mi sockets, the average list length is 3,
and regression would be less than 1%.
We can check the current ehash size by another read-only sysctl knob,
net.ipv4.tcp_ehash_entries. A negative value means the netns shares
the global ehash (per-netns ehash is disabled or failed to allocate
memory).
# dmesg | cut -d ' ' -f 5- | grep "established hash"
TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage)
# sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries
# sysctl net.ipv4.tcp_child_ehash_entries
net.ipv4.tcp_child_ehash_entries = 0 # disabled by default
# ip netns add test1
# ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = -524288 # share the global ehash
# sysctl -w net.ipv4.tcp_child_ehash_entries=100
net.ipv4.tcp_child_ehash_entries = 100
# ip netns add test2
# ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets
When more than two processes in the same netns create per-netns ehash
concurrently with different sizes, we need to guarantee the size in
one of the following ways:
1) Share the global ehash and create per-netns ehash
First, unshare() with tcp_child_ehash_entries==0. It creates dedicated
netns sysctl knobs where we can safely change tcp_child_ehash_entries
and clone()/unshare() to create a per-netns ehash.
2) Control write on sysctl by BPF
We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on
sysctl knobs.
Note that the global ehash allocated at the boot time is spread over
available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate
pages for each per-netns ehash depending on the current process's NUMA
policy. By default, the allocation is done in the local node only, so
the per-netns hash table could fully reside on a random node. Thus,
depending on the NUMA policy the netns is created with and the CPU the
current thread is running on, we could see some performance differences
for highly optimised networking applications.
Note also that the default values of two sysctl knobs depend on the ehash
size and should be tuned carefully:
tcp_max_tw_buckets : tcp_child_ehash_entries / 2
tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128)
As a bonus, we can dismantle netns faster. Currently, while destroying
netns, we call inet_twsk_purge(), which walks through the global ehash.
It can be potentially big because it can have many sockets other than
TIME_WAIT in all netns. Splitting ehash changes that situation, where
it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets
in each netns.
With regard to this, we do not free the per-netns ehash in inet_twsk_kill()
to avoid UAF while iterating the per-netns ehash in inet_twsk_purge().
Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to
keep it protocol-family-independent.
In the future, we could optimise ehash lookup/iteration further by removing
netns comparison for the per-netns ehash.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will soon introduce an optional per-netns ehash.
This means we cannot use tcp_hashinfo directly in most places.
Instead, access it via net->ipv4.tcp_death_row.hashinfo.
The access will be valid only while initialising tcp_hashinfo
itself and creating/destroying each netns.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will soon introduce an optional per-netns ehash.
This means we cannot use the global sk->sk_prot->h.hashinfo
to fetch a TCP hashinfo.
Instead, set NULL to sk->sk_prot->h.hashinfo for TCP and get
a proper hashinfo from net->ipv4.tcp_death_row.hashinfo.
Note that we need not use sk->sk_prot->h.hashinfo if DCCP is
disabled.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch adds no functional change and cleans up some functions
that the following patches touch around so that we make them tidy
and easy to review/revert. The changes are
- Keep reverse christmas tree order
- Remove unnecessary init of port in inet_csk_find_open_port()
- Use req_to_sk() once in reqsk_queue_unlink()
- Use sock_net(sk) once in tcp_time_wait() and tcp_v[46]_connect()
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The current bind hashtable (bhash) is hashed by port only.
In the socket bind path, we have to check for bind conflicts by
traversing the specified port's inet_bind_bucket while holding the
hashbucket's spinlock (see inet_csk_get_port() and
inet_csk_bind_conflict()). In instances where there are tons of
sockets hashed to the same port at different addresses, the bind
conflict check is time-intensive and can cause softirq cpu lockups,
as well as stops new tcp connections since __inet_inherit_port()
also contests for the spinlock.
This patch adds a second bind table, bhash2, that hashes by
port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6).
Searching the bhash2 table leads to significantly faster conflict
resolution and less time holding the hashbucket spinlock.
Please note a few things:
* There can be the case where the a socket's address changes after it
has been bound. There are two cases where this happens:
1) The case where there is a bind() call on INADDR_ANY (ipv4) or
IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will
assign the socket an address when it handles the connect()
2) In inet_sk_reselect_saddr(), which is called when rebuilding the
sk header and a few pre-conditions are met (eg rerouting fails).
In these two cases, we need to update the bhash2 table by removing the
entry for the old address, and add a new entry reflecting the updated
address.
* The bhash2 table must have its own lock, even though concurrent
accesses on the same port are protected by the bhash lock. Bhash2 must
have its own lock to protect against cases where sockets on different
ports hash to different bhash hashbuckets but to the same bhash2
hashbucket.
This brings up a few stipulations:
1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock
will always be acquired after the bhash lock and released before the
bhash lock is released.
2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always
acquired+released before another bhash2 lock is acquired+released.
* The bhash table cannot be superseded by the bhash2 table because for
bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket
bound to that port must be checked for a potential conflict. The bhash
table is the only source of port->socket associations.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In our server, there may be no high order (>= 6) memory since we reserve
lots of HugeTLB pages when booting. Then the system panic. So use
alloc_large_system_hash() to allocate table_perturb.
Fixes: e926147618 ("tcp: dynamically allocate the perturb table used by source ports")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220607070214.94443-1-songmuchun@bytedance.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We currently have one tcp bind table (bhash) which hashes by port
number only. In the socket bind path, we check for bind conflicts by
traversing the specified port's inet_bind2_bucket while holding the
bucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()).
In instances where there are tons of sockets hashed to the same port
at different addresses, checking for a bind conflict is time-intensive
and can cause softirq cpu lockups, as well as stops new tcp connections
since __inet_inherit_port() also contests for the spinlock.
This patch proposes adding a second bind table, bhash2, that hashes by
port and ip address. Searching the bhash2 table leads to significantly
faster conflict resolution and less time holding the spinlock.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is no longer a macro, but an inlined function.
INET_MATCH() -> inet_match()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Olivier Hartkopp <socketcan@hartkopp.net>
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
INET6_MATCH() runs without holding a lock on the socket.
We probably need to annotate most reads.
This patch makes INET6_MATCH() an inline function
to ease our changes.
v2: inline function only defined if IS_ENABLED(CONFIG_IPV6)
Change the name to inet6_match(), this is no longer a macro.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
INET_MATCH() runs without holding a lock on the socket.
We probably need to annotate most reads.
This patch makes INET_MATCH() an inline function
to ease our changes.
v2:
We remove the 32bit version of it, as modern compilers
should generate the same code really, no need to
try to be smarter.
Also make 'struct net *net' the first argument.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The listen sk is currently stored in two hash tables,
listening_hash (hashed by port) and lhash2 (hashed by port and address).
After commit 0ee58dad5b ("net: tcp6: prefer listeners bound to an address")
and commit d9fbc7f643 ("net: tcp: prefer listeners bound to an address"),
the TCP-SYN lookup fast path does not use listening_hash.
The commit 05c0b35709 ("tcp: seq_file: Replace listening_hash with lhash2")
also moved the seq_file (/proc/net/tcp) iteration usage from
listening_hash to lhash2.
There are still a few listening_hash usages left.
One of them is inet_reuseport_add_sock() which uses the listening_hash
to search a listen sk during the listen() system call. This turns
out to be very slow on use cases that listen on many different
VIPs at a popular port (e.g. 443). [ On top of the slowness in
adding to the tail in the IPv6 case ]. The latter patch has a
selftest to demonstrate this case.
This patch takes this chance to move all remaining listening_hash
usages to lhash2 and then retire listening_hash.
Since most changes need to be done together, it is hard to cut
the listening_hash to lhash2 switch into small patches. The
changes in this patch is highlighted here for the review
purpose.
1. Because of the listening_hash removal, lhash2 can use the
sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node.
This will also keep the sk_unhashed() check to work as is
after stop adding sk to listening_hash.
The union is removed from inet_listen_hashbucket because
only nulls_head is needed.
2. icsk->icsk_listen_portaddr_node and its helpers are removed.
3. The current lhash2 users needs to iterate with sk_nulls_node
instead of icsk_listen_portaddr_node.
One case is in the inet[6]_lhash2_lookup().
Another case is the seq_file iterator in tcp_ipv4.c.
One thing to note is sk_nulls_next() is needed
because the old inet_lhash2_for_each_icsk_continue()
does a "next" first before iterating.
4. Move the remaining listening_hash usage to lhash2
inet_reuseport_add_sock() which this series is
trying to improve.
inet_diag.c and mptcp_diag.c are the final two
remaining use cases and is moved to lhash2 now also.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch folds lhash2 related functions into __inet_hash and
inet_unhash. This will make the removal of the listening_hash
in a latter patch easier to review.
First, this patch folds inet_hash2 into __inet_hash.
For unhash, the current call sequence is like
inet_unhash() => __inet_unhash() => inet_unhash2().
The specific testing cases in __inet_unhash() are mostly related
to TCP_LISTEN sk and its caller inet_unhash() already has
the TCP_LISTEN test, so this patch folds both __inet_unhash() and
inet_unhash2() into inet_unhash().
Note that all listening_hash users also have lhash2 initialized,
so the !h->lhash2 check is no longer needed.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
After commit 0ee58dad5b ("net: tcp6: prefer listeners bound to an address")
and commit d9fbc7f643 ("net: tcp: prefer listeners bound to an address"),
the count is no longer used. This patch removes it.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In commit 190cc82489 ("tcp: change source port randomizarion at
connect() time"), the table_perturb[] array was introduced and an
index was taken from the port_offset via hash_32(). But it turns
out that hash_32() performs a multiplication while the input here
comes from the output of SipHash in secure_seq, that is well
distributed enough to avoid the need for yet another hash.
Suggested-by: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Moshe Kol, Amit Klein, and Yossi Gilad reported being able to accurately
identify a client by forcing it to emit only 40 times more connections
than there are entries in the table_perturb[] table. The previous two
improvements consisting in resalting the secret every 10s and adding
randomness to each port selection only slightly improved the situation,
and the current value of 2^8 was too small as it's not very difficult
to make a client emit 10k connections in less than 10 seconds.
Thus we're increasing the perturb table from 2^8 to 2^16 so that the
same precision now requires 2.6M connections, which is more difficult in
this time frame and harder to hide as a background activity. The impact
is that the table now uses 256 kB instead of 1 kB, which could mostly
affect devices making frequent outgoing connections. However such
components usually target a small set of destinations (load balancers,
database clients, perf assessment tools), and in practice only a few
entries will be visited, like before.
A live test at 1 million connections per second showed no performance
difference from the previous value.
Reported-by: Moshe Kol <moshe.kol@mail.huji.ac.il>
Reported-by: Yossi Gilad <yossi.gilad@mail.huji.ac.il>
Reported-by: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We'll need to further increase the size of this table and it's likely
that at some point its size will not be suitable anymore for a static
table. Let's allocate it on boot from inet_hashinfo2_init(), which is
called from tcp_init().
Cc: Moshe Kol <moshe.kol@mail.huji.ac.il>
Cc: Yossi Gilad <yossi.gilad@mail.huji.ac.il>
Cc: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Here we're randomly adding between 0 and 7 random increments to the
selected source port in order to add some noise in the source port
selection that will make the next port less predictable.
With the default port range of 32768-60999 this means a worst case
reuse scenario of 14116/8=1764 connections between two consecutive
uses of the same port, with an average of 14116/4.5=3137. This code
was stressed at more than 800000 connections per second to a fixed
target with all connections closed by the client using RSTs (worst
condition) and only 2 connections failed among 13 billion, despite
the hash being reseeded every 10 seconds, indicating a perfectly
safe situation.
Cc: Moshe Kol <moshe.kol@mail.huji.ac.il>
Cc: Yossi Gilad <yossi.gilad@mail.huji.ac.il>
Cc: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Amit Klein suggests that we use different parts of port_offset for the
table's index and the port offset so that there is no direct relation
between them.
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Moshe Kol <moshe.kol@mail.huji.ac.il>
Cc: Yossi Gilad <yossi.gilad@mail.huji.ac.il>
Cc: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
SipHash replaced MD5 in secure_ipv{4,6}_port_ephemeral() via commit
7cd23e5300 ("secure_seq: use SipHash in place of MD5"), but the output
remained truncated to 32-bit only. In order to exploit more bits from the
hash, let's make the functions return the full 64-bit of siphash_3u32().
We also make sure the port offset calculation in __inet_hash_connect()
remains done on 32-bit to avoid the need for div_u64_rem() and an extra
cost on 32-bit systems.
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Moshe Kol <moshe.kol@mail.huji.ac.il>
Cc: Yossi Gilad <yossi.gilad@mail.huji.ac.il>
Cc: Amit Klein <aksecurity@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Commit
9652dc2eb9 ("tcp: relax listening_hash operations")
removed the need to disable bottom half while acquiring
listening_hash.lock. There are still two callers left which disable
bottom half before the lock is acquired.
On PREEMPT_RT the softirqs are preemptible and local_bh_disable() acts
as a lock to ensure that resources, that are protected by disabling
bottom halves, remain protected.
This leads to a circular locking dependency if the lock acquired with
disabled bottom halves is also acquired with enabled bottom halves
followed by disabling bottom halves. This is the reverse locking order.
It has been observed with inet_listen_hashbucket:🔒
local_bh_disable() + spin_lock(&ilb->lock):
inet_listen()
inet_csk_listen_start()
sk->sk_prot->hash() := inet_hash()
local_bh_disable()
__inet_hash()
spin_lock(&ilb->lock);
acquire(&ilb->lock);
Reverse order: spin_lock(&ilb2->lock) + local_bh_disable():
tcp_seq_next()
listening_get_next()
spin_lock(&ilb2->lock);
acquire(&ilb2->lock);
tcp4_seq_show()
get_tcp4_sock()
sock_i_ino()
read_lock_bh(&sk->sk_callback_lock);
acquire(softirq_ctrl) // <---- whoops
acquire(&sk->sk_callback_lock)
Drop local_bh_disable() around __inet_hash() which acquires
listening_hash->lock. Split inet_unhash() and acquire the
listen_hashbucket lock without disabling bottom halves; the inet_ehash
lock with disabled bottom halves.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/12d6f9879a97cd56c09fb53dee343cbb14f7f1f7.camel@gmx.de
Link: https://lkml.kernel.org/r/X9CheYjuXWc75Spa@hirez.programming.kicks-ass.net
Link: https://lore.kernel.org/r/YgQOebeZ10eNx1W6@linutronix.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It may be helpful to have access to the ifindex during bpf socket
lookup. An example may be to scope certain socket lookup logic to
specific interfaces, i.e. an interface may be made exempt from custom
lookup code.
Add the ifindex of the arriving connection to the bpf_sk_lookup API.
Signed-off-by: Mark Pashmfouroush <markpash@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211110111016.5670-2-markpash@cloudflare.com