Commit Graph

1174 Commits

Author SHA1 Message Date
Yu Zhao
de08eaa615 mm: multi-gen LRU: fix crash during cgroup migration
lru_gen_migrate_mm() assumes lru_gen_add_mm() runs prior to itself.  This
isn't true for the following scenario:

    CPU 1                         CPU 2

  clone()
    cgroup_can_fork()
                                cgroup_procs_write()
    cgroup_post_fork()
                                  task_lock()
                                  lru_gen_migrate_mm()
                                  task_unlock()
    task_lock()
    lru_gen_add_mm()
    task_unlock()

And when the above happens, kernel crashes because of linked list
corruption (mm_struct->lru_gen.list).

Link: https://lore.kernel.org/r/20230115134651.30028-1-msizanoen@qtmlabs.xyz/
Link: https://lkml.kernel.org/r/20230116034405.2960276-1-yuzhao@google.com
Fixes: bd74fdaea1 ("mm: multi-gen LRU: support page table walks")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: msizanoen <msizanoen@qtmlabs.xyz>
Tested-by: msizanoen <msizanoen@qtmlabs.xyz>
Cc: <stable@vger.kernel.org>	[6.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-31 16:44:08 -08:00
Michal Hocko
55ab834a86 Revert "mm: add nodes= arg to memory.reclaim"
This reverts commit 12a5d39552.

Although it is recognized that a finer grained pro-active reclaim is
something we need and want the semantic of this implementation is really
ambiguous.

In a follow up discussion it became clear that there are two essential
usecases here.  One is to use memory.reclaim to pro-actively reclaim
memory and expectation is that the requested and reported amount of memory
is uncharged from the memcg.  Another usecase focuses on pro-active
demotion when the memory is merely shuffled around to demotion targets
while the overall charged memory stays unchanged.

The current implementation considers demoted pages as reclaimed and that
break both usecases.  [1] has tried to address the reporting part but
there are more issues with that summarized in [2] and follow up emails.

Let's revert the nodemask based extension of the memcg pro-active
reclaim for now until we settle with a more robust semantic.

[1] http://lkml.kernel.org/r/http://lkml.kernel.org/r/20221206023406.3182800-1-almasrymina@google.com
[2] http://lkml.kernel.org/r/Y5bsmpCyeryu3Zz1@dhcp22.suse.cz

Link: https://lkml.kernel.org/r/Y5xASNe1x8cusiTx@dhcp22.suse.cz
Fixes: 12a5d39552 ("mm: add nodes= arg to memory.reclaim")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-31 16:44:07 -08:00
Linus Torvalds
4f292c4de4 New Feature:
* Randomize the per-cpu entry areas
 Cleanups:
 * Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open
   coding it
 * Move to "native" set_memory_rox() helper
 * Clean up pmd_get_atomic() and i386-PAE
 * Remove some unused page table size macros
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOc53UACgkQaDWVMHDJ
 krCUHw//SGZ+La0hLZLAiAiZTXLZZHpYkOmg1Oj1+11qSU11uZzTFqDpauhaKpRS
 cJCSh+D+RXe5e2ipgt0+Zl0hESLt7pJf8258OE4ra0DL/IlyO9uqruAs9Kn3eRS/
 Fk76nG8gdEU+JKJqpG02GqOLslYQuIy96n9hpuj1x25b614+uezPfC7S4XEat0NT
 MbJQ+jnVDf16aJIJkzT+iSwhubDVeh+bSHeO0SSCzX23WLUqDeg5NvlyxoCHGbBh
 UpUTWggV/0pYAkBKRHToeJs8qTWREwuuH/8JGewpe9A0tjdB5wyZfNL2PuracweN
 9MauXC3T5f0+Ca4yIIaPq1fF7Ny/PR2dBFihk27rOD0N7tjaZxNwal2pB1sZcmvZ
 +PAokjyTPVH5ZXjkMYGGAUe1jyjwr2+TgFSZxhTnDuGtyVQiY4pihGKOifLCX6tv
 x6khvYeTBw7wfaDRtKEAf+2kLHYn+71HszHP/8bNKX9T03h+Zf0i1wdZu5xbM5Gc
 VK2wR7bCC+UftJJYG0pldcHg2qaF19RBHK2tLwp7zngUv7lTbkKfkgKjre73KV2a
 D4b76lrqdUMo6UYwYdw7WtDyarZS4OVLq2DcNhwwMddBCaX8kyN5a4AqwQlZYJ0u
 dM+kuMofE8U3yMxmMhJimkZUsj09yLHIqfynY0jbAcU3nhKZZNY=
 =wwVF
 -----END PGP SIGNATURE-----

Merge tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm updates from Dave Hansen:
 "New Feature:

   - Randomize the per-cpu entry areas

  Cleanups:

   - Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it

   - Move to "native" set_memory_rox() helper

   - Clean up pmd_get_atomic() and i386-PAE

   - Remove some unused page table size macros"

* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
  x86/mm: Ensure forced page table splitting
  x86/kasan: Populate shadow for shared chunk of the CPU entry area
  x86/kasan: Add helpers to align shadow addresses up and down
  x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
  x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
  x86/mm: Recompute physical address for every page of per-CPU CEA mapping
  x86/mm: Rename __change_page_attr_set_clr(.checkalias)
  x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
  x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
  x86/mm: Add a few comments
  x86/mm: Fix CR3_ADDR_MASK
  x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
  mm: Convert __HAVE_ARCH_P..P_GET to the new style
  mm: Remove pointless barrier() after pmdp_get_lockless()
  x86/mm/pae: Get rid of set_64bit()
  x86_64: Remove pointless set_64bit() usage
  x86/mm/pae: Be consistent with pXXp_get_and_clear()
  x86/mm/pae: Use WRITE_ONCE()
  x86/mm/pae: Don't (ab)use atomic64
  mm/gup: Fix the lockless PMD access
  ...
2022-12-17 14:06:53 -06:00
Peter Zijlstra
eb780dcae0 mm: Remove pointless barrier() after pmdp_get_lockless()
pmdp_get_lockless() should itself imply any ordering required.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114425.298833095%40infradead.org
2022-12-15 10:37:27 -08:00
Peter Zijlstra
dab6e71742 mm: Rename pmd_read_atomic()
There's no point in having the identical routines for PTE/PMD have
different names.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.841277397%40infradead.org
2022-12-15 10:37:27 -08:00
Hugh Dickins
c449deb2b9 mm: memcg: fix swapcached stat accounting
I'd been worried by high "swapcached" counts in memcg OOM reports, thought
we had a problem freeing swapcache, but it was just the accounting that
was wrong.

Two issues:

1.  When __remove_mapping() removes swapcache,
   __delete_from_swap_cache() relies on memcg_data for the right counts to
   be updated; but that had already been reset by mem_cgroup_swapout(). 
   Swap those calls around - mem_cgroup_swapout() does not require the
   swapcached flag to be set.

   6.1 commit ac35a49023 ("mm: multi-gen LRU: minimal
   implementation") already made a similar swap for workingset_eviction(),
   but not for this.

2.  memcg's "swapcached" count was added for memcg v2 stats, but
   displayed on OOM even for memcg v1: so mem_cgroup_move_account() ought
   to move it.

Link: https://lkml.kernel.org/r/b8b96ee0-1e1e-85f8-df97-c82a11d7cd14@google.com
Fixes: b603894248 ("mm: memcg: add swapcache stat for memcg v2")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:20 -08:00
Mina Almasry
12a5d39552 mm: add nodes= arg to memory.reclaim
The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim.  For example use cases, consider a 2 tier memory
system:

nodes 0,1 -> top tier
nodes 2,3 -> second tier

$ echo "1m nodes=0" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory from node 0. 
Since node 0 is a top tier node, demotion will be attempted first.  This
is useful to direct proactive reclaim to specific nodes that are under
pressure.

$ echo "1m nodes=2,3" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.

$ echo "1m nodes=0,1" > memory.reclaim

Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers.  Since these nodes have demotion targets, the kernel will
attempt demotion first.

Since commit 3f1509c57b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion.  Reclaim and demotion incur different latency costs
to the jobs in the cgroup.  Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.

The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.

Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:19 -08:00
Mina Almasry
6b426d0714 mm: disable top-tier fallback to reclaim on proactive reclaim
Reclaiming directly from top tier nodes breaks the aging pipeline of
memory tiers.  If we have a RAM -> CXL -> storage hierarchy, we should
demote from RAM to CXL and from CXL to storage.  If we reclaim a page from
RAM, it means we 'demote' it directly from RAM to storage, bypassing
potentially a huge amount of pages colder than it in CXL.

However disabling reclaim from top tier nodes entirely would cause ooms in
edge scenarios where lower tier memory is unreclaimable for whatever
reason, e.g.  memory being mlocked() or too hot to reclaim.  In these
cases we would rather the job run with a performance regression rather
than it oom altogether.

However, we can disable reclaim from top tier nodes for proactive reclaim.
That reclaim is not real memory pressure, and we don't have any cause to
be breaking the aging pipeline.

[akpm@linux-foundation.org: restore comment layout, per Ying Huang]
Link: https://lkml.kernel.org/r/20221201233317.1394958-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:19 -08:00
Yosry Ahmed
adb8213014 mm: memcg: fix stale protection of reclaim target memcg
Patch series "mm: memcg: fix protection of reclaim target memcg", v3.

This series fixes a bug in calculating the protection of the reclaim
target memcg where we end up using stale effective protection values from
the last reclaim operation, instead of completely ignoring the protection
of the reclaim target as intended.  More detailed explanation and examples
in patch 1, which includes the fix.  Patches 2 & 3 introduce a selftest
case that catches the bug.


This patch (of 3):

When we are doing memcg reclaim, the intended behavior is that we
ignore any protection (memory.min, memory.low) of the target memcg (but
not its children).  Ever since the patch pointed to by the "Fixes" tag,
we actually read a stale value for the target memcg protection when
deciding whether to skip the memcg or not because it is protected.  If
the stale value happens to be high enough, we don't reclaim from the
target memcg.

Essentially, in some cases we may falsely skip reclaiming from the
target memcg of reclaim because we read a stale protection value from
last time we reclaimed from it.


During reclaim, mem_cgroup_calculate_protection() is used to determine the
effective protection (emin and elow) values of a memcg.  The protection of
the reclaim target is ignored, but we cannot set their effective
protection to 0 due to a limitation of the current implementation (see
comment in mem_cgroup_protection()).  Instead, we leave their effective
protection values unchaged, and later ignore it in
mem_cgroup_protection().

However, mem_cgroup_protection() is called later in
shrink_lruvec()->get_scan_count(), which is after the
mem_cgroup_below_{min/low}() checks in shrink_node_memcgs().  As a result,
the stale effective protection values of the target memcg may lead us to
skip reclaiming from the target memcg entirely, before calling
shrink_lruvec().  This can be even worse with recursive protection, where
the stale target memcg protection can be higher than its standalone
protection.  See two examples below (a similar version of example (a) is
added to test_memcontrol in a later patch).

(a) A simple example with proactive reclaim is as follows. Consider the
following hierarchy:
ROOT
 |
 A
 |
 B (memory.min = 10M)

Consider the following scenario:
- B has memory.current = 10M.
- The system undergoes global reclaim (or memcg reclaim in A).
- In shrink_node_memcgs():
  - mem_cgroup_calculate_protection() calculates the effective min (emin)
    of B as 10M.
  - mem_cgroup_below_min() returns true for B, we do not reclaim from B.
- Now if we want to reclaim 5M from B using proactive reclaim
  (memory.reclaim), we should be able to, as the protection of the
  target memcg should be ignored.
- In shrink_node_memcgs():
  - mem_cgroup_calculate_protection() immediately returns for B without
    doing anything, as B is the target memcg, relying on
    mem_cgroup_protection() to ignore B's stale effective min (still 10M).
  - mem_cgroup_below_min() reads the stale effective min for B and we
    skip it instead of ignoring its protection as intended, as we never
    reach mem_cgroup_protection().

(b) An more complex example with recursive protection is as follows.
Consider the following hierarchy with memory_recursiveprot:
ROOT
 |
 A (memory.min = 50M)
 |
 B (memory.min = 10M, memory.high = 40M)

Consider the following scenario:
- B has memory.current = 35M.
- The system undergoes global reclaim (target memcg is NULL).
- B will have an effective min of 50M (all of A's unclaimed protection).
- B will not be reclaimed from.
- Now allocate 10M more memory in B, pushing it above it's high limit.
- The system undergoes memcg reclaim from B (target memcg is B).
- Like example (a), we do nothing in mem_cgroup_calculate_protection(),
  then call mem_cgroup_below_min(), which will read the stale effective
  min for B (50M) and skip it. In this case, it's even worse because we
  are not just considering B's standalone protection (10M), but we are
  reading a much higher stale protection (50M) which will cause us to not
  reclaim from B at all.

This is an artifact of commit 45c7f7e1ef ("mm, memcg: decouple
e{low,min} state mutations from protection checks") which made
mem_cgroup_calculate_protection() only change the state without returning
any value.  Before that commit, we used to return MEMCG_PROT_NONE for the
target memcg, which would cause us to skip the
mem_cgroup_below_{min/low}() checks.  After that commit we do not return
anything and we end up checking the min & low effective protections for
the target memcg, which are stale.

Update mem_cgroup_supports_protection() to also check if we are reclaiming
from the target, and rename it to mem_cgroup_unprotected() (now returns
true if we should not protect the memcg, much simpler logic).

Link: https://lkml.kernel.org/r/20221202031512.1365483-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20221202031512.1365483-2-yosryahmed@google.com
Fixes: 45c7f7e1ef ("mm, memcg: decouple e{low,min} state mutations from protection checks")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Chris Down <chris@chrisdown.name>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:19 -08:00
Xu Panda
8ef9c32a12 mm: vmscan: use sysfs_emit() to instead of scnprintf()
Replace open-coded snprintf() with sysfs_emit() to simplify the code.

Link: https://lkml.kernel.org/r/202211241929015476424@zte.com.cn
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: Yang Yang <yang.yang29@zte.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:08 -08:00
Yu Zhao
931b6a8b36 mm: multi-gen LRU: remove NULL checks on NODE_DATA()
NODE_DATA() is preallocated for all possible nodes after commit
09f49dca57 ("mm: handle uninitialized numa nodes gracefully").  Checking
its return value against NULL is now unnecessary.

Link: https://lkml.kernel.org/r/20221116013808.3995280-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:00 -08:00
Jan Kara
e83b39d6bb mm: make drop_caches keep reclaiming on all nodes
Currently, drop_caches are reclaiming node-by-node, looping on each node
until reclaim could not make progress.  This can however leave quite some
slab entries (such as filesystem inodes) unreclaimed if objects say on
node 1 keep objects on node 0 pinned.  So move the "loop until no
progress" loop to the node-by-node iteration to retry reclaim also on
other nodes if reclaim on some nodes made progress.  This fixes problem
when drop_caches was not reclaiming lots of otherwise perfectly fine to
reclaim inodes.

Link: https://lkml.kernel.org/r/20221115123255.12559-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: You Zhou <you.zhou@intel.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:55 -08:00
Johannes Weiner
57e9cc50f4 mm: vmscan: split khugepaged stats from direct reclaim stats
Direct reclaim stats are useful for identifying a potential source for
application latency, as well as spotting issues with kswapd.  However,
khugepaged currently distorts the picture: as a kernel thread it doesn't
impose allocation latencies on userspace, and it explicitly opts out of
kswapd reclaim.  Its activity showing up in the direct reclaim stats is
misleading.  Counting it as kswapd reclaim could also cause confusion when
trying to understand actual kswapd behavior.

Break out khugepaged from the direct reclaim counters into new
pgsteal_khugepaged, pgdemote_khugepaged, pgscan_khugepaged counters.

Test with a huge executable (CONFIG_READ_ONLY_THP_FOR_FS):

pgsteal_kswapd 1342185
pgsteal_direct 0
pgsteal_khugepaged 3623
pgscan_kswapd 1345025
pgscan_direct 0
pgscan_khugepaged 3623

Link: https://lkml.kernel.org/r/20221026180133.377671-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Eric Bergen <ebergen@meta.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:41 -08:00
Andrew Morton
a38358c934 Merge branch 'mm-hotfixes-stable' into mm-stable 2022-11-30 14:58:42 -08:00
Juergen Gross
4aaf269c76 mm: introduce arch_has_hw_nonleaf_pmd_young()
When running as a Xen PV guests commit eed9a328aa ("mm: x86: add
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG") can cause a protection violation in
pmdp_test_and_clear_young():

 BUG: unable to handle page fault for address: ffff8880083374d0
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0003) - permissions violation
 PGD 3026067 P4D 3026067 PUD 3027067 PMD 7fee5067 PTE 8010000008337065
 Oops: 0003 [#1] PREEMPT SMP NOPTI
 CPU: 7 PID: 158 Comm: kswapd0 Not tainted 6.1.0-rc5-20221118-doflr+ #1
 RIP: e030:pmdp_test_and_clear_young+0x25/0x40

This happens because the Xen hypervisor can't emulate direct writes to
page table entries other than PTEs.

This can easily be fixed by introducing arch_has_hw_nonleaf_pmd_young()
similar to arch_has_hw_pte_young() and test that instead of
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG.

Link: https://lkml.kernel.org/r/20221123064510.16225-1-jgross@suse.com
Fixes: eed9a328aa ("mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Acked-by: Yu Zhao <yuzhao@google.com>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Acked-by: David Hildenbrand <david@redhat.com>	[core changes]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:41 -08:00
Aneesh Kumar K.V
81a70c21d9 mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1
balance_dirty_pages doesn't do the required dirty throttling on cgroupv1. 
See commit 9badce000e ("cgroup, writeback: don't enable cgroup writeback
on traditional hierarchies").  Instead, the kernel depends on writeback
throttling in shrink_folio_list to achieve the same goal.  With large
memory systems, the flusher may not be able to writeback quickly enough
such that we will start finding pages in the shrink_folio_list already in
writeback.  Hence for cgroupv1 let's do a reclaim throttle after waking up
the flusher.

The below test which used to fail on a 256GB system completes till the the
file system is full with this change.

root@lp2:/sys/fs/cgroup/memory# mkdir test
root@lp2:/sys/fs/cgroup/memory# cd test/
root@lp2:/sys/fs/cgroup/memory/test# echo 120M > memory.limit_in_bytes
root@lp2:/sys/fs/cgroup/memory/test# echo $$ > tasks
root@lp2:/sys/fs/cgroup/memory/test# dd if=/dev/zero of=/home/kvaneesh/test bs=1M
Killed

Link: https://lkml.kernel.org/r/20221118070603.84081-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: zefan li <lizefan.x@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:45 -08:00
Yu Zhao
359a5e1416 mm: multi-gen LRU: retry folios written back while isolated
The page reclaim isolates a batch of folios from the tail of one of the
LRU lists and works on those folios one by one.  For a suitable
swap-backed folio, if the swap device is async, it queues that folio for
writeback.  After the page reclaim finishes an entire batch, it puts back
the folios it queued for writeback to the head of the original LRU list.

In the meantime, the page writeback flushes the queued folios also by
batches.  Its batching logic is independent from that of the page reclaim.
For each of the folios it writes back, the page writeback calls
folio_rotate_reclaimable() which tries to rotate a folio to the tail.

folio_rotate_reclaimable() only works for a folio after the page reclaim
has put it back.  If an async swap device is fast enough, the page
writeback can finish with that folio while the page reclaim is still
working on the rest of the batch containing it.  In this case, that folio
will remain at the head and the page reclaim will not retry it before
reaching there.

This patch adds a retry to evict_folios().  After evict_folios() has
finished an entire batch and before it puts back folios it cannot free
immediately, it retries those that may have missed the rotation.

Before this patch, ~60% of folios swapped to an Intel Optane missed
folio_rotate_reclaimable().  After this patch, ~99% of missed folios were
reclaimed upon retry.

This problem affects relatively slow async swap devices like Samsung 980
Pro much less and does not affect sync swap devices like zram or zswap at
all.

Link: https://lkml.kernel.org/r/20221116013808.3995280-1-yuzhao@google.com
Fixes: ac35a49023 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:43 -08:00
Johannes Weiner
f53af4285d mm: vmscan: fix extreme overreclaim and swap floods
During proactive reclaim, we sometimes observe severe overreclaim, with
several thousand times more pages reclaimed than requested.

This trace was obtained from shrink_lruvec() during such an instance:

    prio:0 anon_cost:1141521 file_cost:7767
    nr_reclaimed:4387406 nr_to_reclaim:1047 (or_factor:4190)
    nr=[7161123 345 578 1111]

While he reclaimer requested 4M, vmscan reclaimed close to 16G, most of it
by swapping.  These requests take over a minute, during which the write()
to memory.reclaim is unkillably stuck inside the kernel.

Digging into the source, this is caused by the proportional reclaim
bailout logic.  This code tries to resolve a fundamental conflict: to
reclaim roughly what was requested, while also aging all LRUs fairly and
in accordance to their size, swappiness, refault rates etc.  The way it
attempts fairness is that once the reclaim goal has been reached, it stops
scanning the LRUs with the smaller remaining scan targets, and adjusts the
remainder of the bigger LRUs according to how much of the smaller LRUs was
scanned.  It then finishes scanning that remainder regardless of the
reclaim goal.

This works fine if priority levels are low and the LRU lists are
comparable in size.  However, in this instance, the cgroup that is
targeted by proactive reclaim has almost no files left - they've already
been squeezed out by proactive reclaim earlier - and the remaining anon
pages are hot.  Anon rotations cause the priority level to drop to 0,
which results in reclaim targeting all of anon (a lot) and all of file
(almost nothing).  By the time reclaim decides to bail, it has scanned
most or all of the file target, and therefor must also scan most or all of
the enormous anon target.  This target is thousands of times larger than
the reclaim goal, thus causing the overreclaim.

The bailout code hasn't changed in years, why is this failing now?  The
most likely explanations are two other recent changes in anon reclaim:

1. Before the series starting with commit 5df741963d ("mm: fix LRU
   balancing effect of new transparent huge pages"), the VM was
   overall relatively reluctant to swap at all, even if swap was
   configured. This means the LRU balancing code didn't come into play
   as often as it does now, and mostly in high pressure situations
   where pronounced swap activity wouldn't be as surprising.

2. For historic reasons, shrink_lruvec() loops on the scan targets of
   all LRU lists except the active anon one, meaning it would bail if
   the only remaining pages to scan were active anon - even if there
   were a lot of them.

   Before the series starting with commit ccc5dc6734 ("mm/vmscan:
   make active/inactive ratio as 1:1 for anon lru"), most anon pages
   would live on the active LRU; the inactive one would contain only a
   handful of preselected reclaim candidates. After the series, anon
   gets aged similarly to file, and the inactive list is the default
   for new anon pages as well, making it often the much bigger list.

   As a result, the VM is now more likely to actually finish large
   anon targets than before.

Change the code such that only one SWAP_CLUSTER_MAX-sized nudge toward the
larger LRU lists is made before bailing out on a met reclaim goal.

This fixes the extreme overreclaim problem.

Fairness is more subtle and harder to evaluate.  No obvious misbehavior
was observed on the test workload, in any case.  Conceptually, fairness
should primarily be a cumulative effect from regular, lower priority
scans.  Once the VM is in trouble and needs to escalate scan targets to
make forward progress, fairness needs to take a backseat.  This is also
acknowledged by the myriad exceptions in get_scan_count().  This patch
makes fairness decrease gradually, as it keeps fairness work static over
increasing priority levels with growing scan targets.  This should make
more sense - although we may have to re-visit the exact values.

Link: https://lkml.kernel.org/r/20220802162811.39216-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:41 -08:00
Johannes Weiner
0538a82c39 mm: vmscan: make rotations a secondary factor in balancing anon vs file
We noticed a 2% webserver throughput regression after upgrading from 5.6. 
This could be tracked down to a shift in the anon/file reclaim balance
(confirmed with swappiness) that resulted in worse reclaim efficiency and
thus more kswapd activity for the same outcome.

The change that exposed the problem is aae466b005 ("mm/swap: implement
workingset detection for anonymous LRU").  By qualifying swapins based on
their refault distance, it lowered the cost of anon reclaim in this
workload, in turn causing (much) more anon scanning than before.  Scanning
the anon list is more expensive due to the higher ratio of mmapped pages
that may rotate during reclaim, and so the result was an increase in %sys
time.

Right now, rotations aren't considered a cost when balancing scan pressure
between LRUs.  We can end up with very few file refaults putting all the
scan pressure on hot anon pages that are rotated en masse, don't get
reclaimed, and never push back on the file LRU again.  We still only
reclaim file cache in that case, but we burn a lot CPU rotating anon
pages.  It's "fair" from an LRU age POV, but doesn't reflect the real cost
it imposes on the system.

Consider rotations as a secondary factor in balancing the LRUs.  This
doesn't attempt to make a precise comparison between IO cost and CPU cost,
it just says: if reloads are about comparable between the lists, or
rotations are overwhelmingly different, adjust for CPU work.

This fixed the regression on our webservers.  It has since been deployed
to the entire Meta fleet and hasn't caused any problems.

Link: https://lkml.kernel.org/r/20221013193113.726425-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 17:37:11 -08:00
Yu Zhao
e4fea72b14 mglru: mm/vmscan.c: fix imprecise comments
Link: https://lkml.kernel.org/r/YzSWfFI+MOeb1ils@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-07 14:28:40 -07:00
Yu Zhao
14aa8b2d5c mm/mglru: don't sync disk for each aging cycle
wakeup_flusher_threads() was added under the assumption that if a system
runs out of clean cold pages, it might want to write back dirty pages more
aggressively so that they can become clean and be dropped.

However, doing so can breach the rate limit a system wants to impose on
writeback, resulting in early SSD wearout.

Link: https://lkml.kernel.org/r/YzSiWq9UEER5LKup@google.com
Fixes: bd74fdaea1 ("mm: multi-gen LRU: support page table walks")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Axel Rasmussen <axelrasmussen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-07 14:28:39 -07:00
Matthew Wilcox (Oracle)
9202d527b7 memcg: convert mem_cgroup_swap_full() to take a folio
All callers now have a folio, so convert the function to take a folio. 
Saves a couple of calls to compound_head().

Link: https://lkml.kernel.org/r/20220902194653.1739778-48-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:53 -07:00
Matthew Wilcox (Oracle)
4081f7446d mm/swap: convert put_swap_page() to put_swap_folio()
With all callers now using a folio, we can convert this function.

Link: https://lkml.kernel.org/r/20220902194653.1739778-14-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:46 -07:00
Matthew Wilcox (Oracle)
bdb0ed54a4 mm/swapfile: convert try_to_free_swap() to folio_free_swap()
Add kernel-doc for folio_free_swap() and make it return bool.  Add a
try_to_free_swap() compatibility wrapper.

Link: https://lkml.kernel.org/r/20220902194653.1739778-11-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:46 -07:00
Matthew Wilcox (Oracle)
49fd9b6df5 mm/vmscan: fix a lot of comments
Patch series "MM folio changes for 6.1", v2.

My focus this round has been on shmem.  I believe it is now fully
converted to folios.  Of course, shmem interacts with a lot of the swap
cache and other parts of the kernel, so there are patches all over the MM.

This patch series survives a round of xfstests on tmpfs, which is nice,
but hardly an exhaustive test.  Hugh was nice enough to run a round of
tests on it and found a bug which is fixed in this edition.


This patch (of 57):

A lot of comments mention pages when they should say folios.
Fix them up.

[akpm@linux-foundation.org: fixups for mglru additions]
Link: https://lkml.kernel.org/r/20220902194653.1739778-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20220902194653.1739778-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:44 -07:00
Liam R. Howlett
78ba531ff3 mm/vmscan: use vma iterator instead of vm_next
Use the vma iterator in in get_next_vma() instead of the linked list.

[yuzhao@google.com: mm/vmscan: use the proper VMA iterator]
  Link: https://lkml.kernel.org/r/Yx+QGOgHg1Wk8tGK@google.com
Link: https://lkml.kernel.org/r/20220906194824.2110408-68-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Yu Zhao <yuzhao@google.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:26 -07:00
Jagdish Gediya
3200802728 mm/demotion: demote pages according to allocation fallback order
Currently, a higher tier node can only be demoted to selected nodes on the
next lower tier as defined by the demotion path.  This strict demotion
order does not work in all use cases (e.g.  some use cases may want to
allow cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space).  This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that currently.

This patch adds support to get all the allowed demotion targets for a
memory tier.  demote_page_list() function is now modified to utilize this
allowed node mask as the fallback allocation mask.

Link: https://lkml.kernel.org/r/20220818131042.113280-9-aneesh.kumar@linux.ibm.com
Signed-off-by: Jagdish Gediya <jvgediya.oss@gmail.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:12 -07:00
Aneesh Kumar K.V
9195244022 mm/demotion: move memory demotion related code
This moves memory demotion related code to mm/memory-tiers.c.  No
functional change in this patch.

Link: https://lkml.kernel.org/r/20220818131042.113280-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:11 -07:00
Yu Zhao
07017acb06 mm: multi-gen LRU: admin guide
Add an admin guide.

Link: https://lkml.kernel.org/r/20220918080010.2920238-14-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:10 -07:00
Yu Zhao
d6c3af7d8a mm: multi-gen LRU: debugfs interface
Add /sys/kernel/debug/lru_gen for working set estimation and proactive
reclaim.  These techniques are commonly used to optimize job scheduling
(bin packing) in data centers [1][2].

Compared with the page table-based approach and the PFN-based
approach, this lruvec-based approach has the following advantages:
1. It offers better choices because it is aware of memcgs, NUMA nodes,
   shared mappings and unmapped page cache.
2. It is more scalable because it is O(nr_hot_pages), whereas the
   PFN-based approach is O(nr_total_pages).

Add /sys/kernel/debug/lru_gen_full for debugging.

[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731

Link: https://lkml.kernel.org/r/20220918080010.2920238-13-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:10 -07:00
Yu Zhao
1332a809d9 mm: multi-gen LRU: thrashing prevention
Add /sys/kernel/mm/lru_gen/min_ttl_ms for thrashing prevention, as
requested by many desktop users [1].

When set to value N, it prevents the working set of N milliseconds from
getting evicted.  The OOM killer is triggered if this working set cannot
be kept in memory.  Based on the average human detectable lag (~100ms),
N=1000 usually eliminates intolerable lags due to thrashing.  Larger
values like N=3000 make lags less noticeable at the risk of premature OOM
kills.

Compared with the size-based approach [2], this time-based approach
has the following advantages:

1. It is easier to configure because it is agnostic to applications
   and memory sizes.
2. It is more reliable because it is directly wired to the OOM killer.

[1] https://lore.kernel.org/r/Ydza%2FzXKY9ATRoh6@google.com/
[2] https://lore.kernel.org/r/20101028191523.GA14972@google.com/

Link: https://lkml.kernel.org/r/20220918080010.2920238-12-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:10 -07:00
Yu Zhao
354ed59744 mm: multi-gen LRU: kill switch
Add /sys/kernel/mm/lru_gen/enabled as a kill switch. Components that
can be disabled include:
  0x0001: the multi-gen LRU core
  0x0002: walking page table, when arch_has_hw_pte_young() returns
          true
  0x0004: clearing the accessed bit in non-leaf PMD entries, when
          CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y
  [yYnN]: apply to all the components above
E.g.,
  echo y >/sys/kernel/mm/lru_gen/enabled
  cat /sys/kernel/mm/lru_gen/enabled
  0x0007
  echo 5 >/sys/kernel/mm/lru_gen/enabled
  cat /sys/kernel/mm/lru_gen/enabled
  0x0005

NB: the page table walks happen on the scale of seconds under heavy memory
pressure, in which case the mmap_lock contention is a lesser concern,
compared with the LRU lock contention and the I/O congestion.  So far the
only well-known case of the mmap_lock contention happens on Android, due
to Scudo [1] which allocates several thousand VMAs for merely a few
hundred MBs.  The SPF and the Maple Tree also have provided their own
assessments [2][3].  However, if walking page tables does worsen the
mmap_lock contention, the kill switch can be used to disable it.  In this
case the multi-gen LRU will suffer a minor performance degradation, as
shown previously.

Clearing the accessed bit in non-leaf PMD entries can also be disabled,
since this behavior was not tested on x86 varieties other than Intel and
AMD.

[1] https://source.android.com/devices/tech/debug/scudo
[2] https://lore.kernel.org/r/20220128131006.67712-1-michel@lespinasse.org/
[3] https://lore.kernel.org/r/20220426150616.3937571-1-Liam.Howlett@oracle.com/

Link: https://lkml.kernel.org/r/20220918080010.2920238-11-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:10 -07:00
Yu Zhao
f76c833788 mm: multi-gen LRU: optimize multiple memcgs
When multiple memcgs are available, it is possible to use generations as a
frame of reference to make better choices and improve overall performance
under global memory pressure.  This patch adds a basic optimization to
select memcgs that can drop single-use unmapped clean pages first.  Doing
so reduces the chance of going into the aging path or swapping, which can
be costly.

A typical example that benefits from this optimization is a server running
mixed types of workloads, e.g., heavy anon workload in one memcg and heavy
buffered I/O workload in the other.

Though this optimization can be applied to both kswapd and direct reclaim,
it is only added to kswapd to keep the patchset manageable.  Later
improvements may cover the direct reclaim path.

While ensuring certain fairness to all eligible memcgs, proportional scans
of individual memcgs also require proper backoff to avoid overshooting
their aggregate reclaim target by too much.  Otherwise it can cause high
direct reclaim latency.  The conditions for backoff are:

1. At low priorities, for direct reclaim, if aging fairness or direct
   reclaim latency is at risk, i.e., aging one memcg multiple times or
   swapping after the target is met.
2. At high priorities, for global reclaim, if per-zone free pages are
   above respective watermarks.

Server benchmark results:
  Mixed workloads:
    fio (buffered I/O): +[19, 21]%
                IOPS         BW
      patch1-8: 1880k        7343MiB/s
      patch1-9: 2252k        8796MiB/s

    memcached (anon): +[119, 123]%
                Ops/sec      KB/sec
      patch1-8: 862768.65    33514.68
      patch1-9: 1911022.12   74234.54

  Mixed workloads:
    fio (buffered I/O): +[75, 77]%
                IOPS         BW
      5.19-rc1: 1279k        4996MiB/s
      patch1-9: 2252k        8796MiB/s

    memcached (anon): +[13, 15]%
                Ops/sec      KB/sec
      5.19-rc1: 1673524.04   65008.87
      patch1-9: 1911022.12   74234.54

  Configurations:
    (changes since patch 6)

    cat mixed.sh
    modprobe brd rd_nr=2 rd_size=56623104

    swapoff -a
    mkswap /dev/ram0
    swapon /dev/ram0

    mkfs.ext4 /dev/ram1
    mount -t ext4 /dev/ram1 /mnt

    memtier_benchmark -S /var/run/memcached/memcached.sock \
      -P memcache_binary -n allkeys --key-minimum=1 \
      --key-maximum=50000000 --key-pattern=P:P -c 1 -t 36 \
      --ratio 1:0 --pipeline 8 -d 2000

    fio -name=mglru --numjobs=36 --directory=/mnt --size=1408m \
      --buffered=1 --ioengine=io_uring --iodepth=128 \
      --iodepth_batch_submit=32 --iodepth_batch_complete=32 \
      --rw=randread --random_distribution=random --norandommap \
      --time_based --ramp_time=10m --runtime=90m --group_reporting &
    pid=$!

    sleep 200

    memtier_benchmark -S /var/run/memcached/memcached.sock \
      -P memcache_binary -n allkeys --key-minimum=1 \
      --key-maximum=50000000 --key-pattern=R:R -c 1 -t 36 \
      --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed

    kill -INT $pid
    wait

Client benchmark results:
  no change (CONFIG_MEMCG=n)

Link: https://lkml.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Yu Zhao
bd74fdaea1 mm: multi-gen LRU: support page table walks
To further exploit spatial locality, the aging prefers to walk page tables
to search for young PTEs and promote hot pages.  A kill switch will be
added in the next patch to disable this behavior.  When disabled, the
aging relies on the rmap only.

NB: this behavior has nothing similar with the page table scanning in the
2.4 kernel [1], which searches page tables for old PTEs, adds cold pages
to swapcache and unmaps them.

To avoid confusion, the term "iteration" specifically means the traversal
of an entire mm_struct list; the term "walk" will be applied to page
tables and the rmap, as usual.

An mm_struct list is maintained for each memcg, and an mm_struct follows
its owner task to the new memcg when this task is migrated.  Given an
lruvec, the aging iterates lruvec_memcg()->mm_list and calls
walk_page_range() with each mm_struct on this list to promote hot pages
before it increments max_seq.

When multiple page table walkers iterate the same list, each of them gets
a unique mm_struct; therefore they can run concurrently.  Page table
walkers ignore any misplaced pages, e.g., if an mm_struct was migrated,
pages it left in the previous memcg will not be promoted when its current
memcg is under reclaim.  Similarly, page table walkers will not promote
pages from nodes other than the one under reclaim.

This patch uses the following optimizations when walking page tables:
1. It tracks the usage of mm_struct's between context switches so that
   page table walkers can skip processes that have been sleeping since
   the last iteration.
2. It uses generational Bloom filters to record populated branches so
   that page table walkers can reduce their search space based on the
   query results, e.g., to skip page tables containing mostly holes or
   misplaced pages.
3. It takes advantage of the accessed bit in non-leaf PMD entries when
   CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y.
4. It does not zigzag between a PGD table and the same PMD table
   spanning multiple VMAs. IOW, it finishes all the VMAs within the
   range of the same PMD table before it returns to a PGD table. This
   improves the cache performance for workloads that have large
   numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5.

Server benchmark results:
  Single workload:
    fio (buffered I/O): no change

  Single workload:
    memcached (anon): +[8, 10]%
                Ops/sec      KB/sec
      patch1-7: 1147696.57   44640.29
      patch1-8: 1245274.91   48435.66

  Configurations:
    no change

Client benchmark results:
  kswapd profiles:
    patch1-7
      48.16%  lzo1x_1_do_compress (real work)
       8.20%  page_vma_mapped_walk (overhead)
       7.06%  _raw_spin_unlock_irq
       2.92%  ptep_clear_flush
       2.53%  __zram_bvec_write
       2.11%  do_raw_spin_lock
       2.02%  memmove
       1.93%  lru_gen_look_around
       1.56%  free_unref_page_list
       1.40%  memset

    patch1-8
      49.44%  lzo1x_1_do_compress (real work)
       6.19%  page_vma_mapped_walk (overhead)
       5.97%  _raw_spin_unlock_irq
       3.13%  get_pfn_folio
       2.85%  ptep_clear_flush
       2.42%  __zram_bvec_write
       2.08%  do_raw_spin_lock
       1.92%  memmove
       1.44%  alloc_zspage
       1.36%  memset

  Configurations:
    no change

Thanks to the following developers for their efforts [3].
  kernel test robot <lkp@intel.com>

[1] https://lwn.net/Articles/23732/
[2] https://llvm.org/docs/ScudoHardenedAllocator.html
[3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/

Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Yu Zhao
018ee47f14 mm: multi-gen LRU: exploit locality in rmap
Searching the rmap for PTEs mapping each page on an LRU list (to test and
clear the accessed bit) can be expensive because pages from different VMAs
(PA space) are not cache friendly to the rmap (VA space).  For workloads
mostly using mapped pages, searching the rmap can incur the highest CPU
cost in the reclaim path.

This patch exploits spatial locality to reduce the trips into the rmap. 
When shrink_page_list() walks the rmap and finds a young PTE, a new
function lru_gen_look_around() scans at most BITS_PER_LONG-1 adjacent
PTEs.  On finding another young PTE, it clears the accessed bit and
updates the gen counter of the page mapped by this PTE to
(max_seq%MAX_NR_GENS)+1.

Server benchmark results:
  Single workload:
    fio (buffered I/O): no change

  Single workload:
    memcached (anon): +[3, 5]%
                Ops/sec      KB/sec
      patch1-6: 1106168.46   43025.04
      patch1-7: 1147696.57   44640.29

  Configurations:
    no change

Client benchmark results:
  kswapd profiles:
    patch1-6
      39.03%  lzo1x_1_do_compress (real work)
      18.47%  page_vma_mapped_walk (overhead)
       6.74%  _raw_spin_unlock_irq
       3.97%  do_raw_spin_lock
       2.49%  ptep_clear_flush
       2.48%  anon_vma_interval_tree_iter_first
       1.92%  folio_referenced_one
       1.88%  __zram_bvec_write
       1.48%  memmove
       1.31%  vma_interval_tree_iter_next

    patch1-7
      48.16%  lzo1x_1_do_compress (real work)
       8.20%  page_vma_mapped_walk (overhead)
       7.06%  _raw_spin_unlock_irq
       2.92%  ptep_clear_flush
       2.53%  __zram_bvec_write
       2.11%  do_raw_spin_lock
       2.02%  memmove
       1.93%  lru_gen_look_around
       1.56%  free_unref_page_list
       1.40%  memset

  Configurations:
    no change

Link: https://lkml.kernel.org/r/20220918080010.2920238-8-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Barry Song <baohua@kernel.org>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Yu Zhao
ac35a49023 mm: multi-gen LRU: minimal implementation
To avoid confusion, the terms "promotion" and "demotion" will be applied
to the multi-gen LRU, as a new convention; the terms "activation" and
"deactivation" will be applied to the active/inactive LRU, as usual.

The aging produces young generations.  Given an lruvec, it increments
max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS.  The aging promotes
hot pages to the youngest generation when it finds them accessed through
page tables; the demotion of cold pages happens consequently when it
increments max_seq.  Promotion in the aging path does not involve any LRU
list operations, only the updates of the gen counter and
lrugen->nr_pages[]; demotion, unless as the result of the increment of
max_seq, requires LRU list operations, e.g., lru_deactivate_fn().  The
aging has the complexity O(nr_hot_pages), since it is only interested in
hot pages.

The eviction consumes old generations.  Given an lruvec, it increments
min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty.
A feedback loop modeled after the PID controller monitors refaults over
anon and file types and decides which type to evict when both types are
available from the same generation.

The protection of pages accessed multiple times through file descriptors
takes place in the eviction path.  Each generation is divided into
multiple tiers.  A page accessed N times through file descriptors is in
tier order_base_2(N).  Tiers do not have dedicated lrugen->lists[], only
bits in folio->flags.  The aforementioned feedback loop also monitors
refaults over all tiers and decides when to protect pages in which tiers
(N>1), using the first tier (N=0,1) as a baseline.  The first tier
contains single-use unmapped clean pages, which are most likely the best
choices.  In contrast to promotion in the aging path, the protection of a
page in the eviction path is achieved by moving this page to the next
generation, i.e., min_seq+1, if the feedback loop decides so.  This
approach has the following advantages:

1. It removes the cost of activation in the buffered access path by
   inferring whether pages accessed multiple times through file
   descriptors are statistically hot and thus worth protecting in the
   eviction path.
2. It takes pages accessed through page tables into account and avoids
   overprotecting pages accessed multiple times through file
   descriptors. (Pages accessed through page tables are in the first
   tier, since N=0.)
3. More tiers provide better protection for pages accessed more than
   twice through file descriptors, when under heavy buffered I/O
   workloads.

Server benchmark results:
  Single workload:
    fio (buffered I/O): +[30, 32]%
                IOPS         BW
      5.19-rc1: 2673k        10.2GiB/s
      patch1-6: 3491k        13.3GiB/s

  Single workload:
    memcached (anon): -[4, 6]%
                Ops/sec      KB/sec
      5.19-rc1: 1161501.04   45177.25
      patch1-6: 1106168.46   43025.04

  Configurations:
    CPU: two Xeon 6154
    Mem: total 256G

    Node 1 was only used as a ram disk to reduce the variance in the
    results.

    patch drivers/block/brd.c <<EOF
    99,100c99,100
    < 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
    < 	page = alloc_page(gfp_flags);
    ---
    > 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE;
    > 	page = alloc_pages_node(1, gfp_flags, 0);
    EOF

    cat >>/etc/systemd/system.conf <<EOF
    CPUAffinity=numa
    NUMAPolicy=bind
    NUMAMask=0
    EOF

    cat >>/etc/memcached.conf <<EOF
    -m 184320
    -s /var/run/memcached/memcached.sock
    -a 0766
    -t 36
    -B binary
    EOF

    cat fio.sh
    modprobe brd rd_nr=1 rd_size=113246208
    swapoff -a
    mkfs.ext4 /dev/ram0
    mount -t ext4 /dev/ram0 /mnt

    mkdir /sys/fs/cgroup/user.slice/test
    echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max
    echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs
    fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \
      --buffered=1 --ioengine=io_uring --iodepth=128 \
      --iodepth_batch_submit=32 --iodepth_batch_complete=32 \
      --rw=randread --random_distribution=random --norandommap \
      --time_based --ramp_time=10m --runtime=5m --group_reporting

    cat memcached.sh
    modprobe brd rd_nr=1 rd_size=113246208
    swapoff -a
    mkswap /dev/ram0
    swapon /dev/ram0

    memtier_benchmark -S /var/run/memcached/memcached.sock \
      -P memcache_binary -n allkeys --key-minimum=1 \
      --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \
      --ratio 1:0 --pipeline 8 -d 2000

    memtier_benchmark -S /var/run/memcached/memcached.sock \
      -P memcache_binary -n allkeys --key-minimum=1 \
      --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \
      --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed

Client benchmark results:
  kswapd profiles:
    5.19-rc1
      40.33%  page_vma_mapped_walk (overhead)
      21.80%  lzo1x_1_do_compress (real work)
       7.53%  do_raw_spin_lock
       3.95%  _raw_spin_unlock_irq
       2.52%  vma_interval_tree_iter_next
       2.37%  folio_referenced_one
       2.28%  vma_interval_tree_subtree_search
       1.97%  anon_vma_interval_tree_iter_first
       1.60%  ptep_clear_flush
       1.06%  __zram_bvec_write

    patch1-6
      39.03%  lzo1x_1_do_compress (real work)
      18.47%  page_vma_mapped_walk (overhead)
       6.74%  _raw_spin_unlock_irq
       3.97%  do_raw_spin_lock
       2.49%  ptep_clear_flush
       2.48%  anon_vma_interval_tree_iter_first
       1.92%  folio_referenced_one
       1.88%  __zram_bvec_write
       1.48%  memmove
       1.31%  vma_interval_tree_iter_next

  Configurations:
    CPU: single Snapdragon 7c
    Mem: total 4G

    ChromeOS MemoryPressure [1]

[1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/

Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Yu Zhao
ec1c86b25f mm: multi-gen LRU: groundwork
Evictable pages are divided into multiple generations for each lruvec.
The youngest generation number is stored in lrugen->max_seq for both
anon and file types as they are aged on an equal footing. The oldest
generation numbers are stored in lrugen->min_seq[] separately for anon
and file types as clean file pages can be evicted regardless of swap
constraints. These three variables are monotonically increasing.

Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits
in order to fit into the gen counter in folio->flags. Each truncated
generation number is an index to lrugen->lists[]. The sliding window
technique is used to track at least MIN_NR_GENS and at most
MAX_NR_GENS generations. The gen counter stores a value within [1,
MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it
stores 0.

There are two conceptually independent procedures: "the aging", which
produces young generations, and "the eviction", which consumes old
generations.  They form a closed-loop system, i.e., "the page reclaim". 
Both procedures can be invoked from userspace for the purposes of working
set estimation and proactive reclaim.  These techniques are commonly used
to optimize job scheduling (bin packing) in data centers [1][2].

To avoid confusion, the terms "hot" and "cold" will be applied to the
multi-gen LRU, as a new convention; the terms "active" and "inactive" will
be applied to the active/inactive LRU, as usual.

The protection of hot pages and the selection of cold pages are based
on page access channels and patterns. There are two access channels:
one through page tables and the other through file descriptors. The
protection of the former channel is by design stronger because:
1. The uncertainty in determining the access patterns of the former
   channel is higher due to the approximation of the accessed bit.
2. The cost of evicting the former channel is higher due to the TLB
   flushes required and the likelihood of encountering the dirty bit.
3. The penalty of underprotecting the former channel is higher because
   applications usually do not prepare themselves for major page
   faults like they do for blocked I/O. E.g., GUI applications
   commonly use dedicated I/O threads to avoid blocking rendering
   threads.

There are also two access patterns: one with temporal locality and the
other without.  For the reasons listed above, the former channel is
assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is
present; the latter channel is assumed to follow the latter pattern unless
outlying refaults have been observed [3][4].

The next patch will address the "outlying refaults".  Three macros, i.e.,
LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in
this patch to make the entire patchset less diffy.

A page is added to the youngest generation on faulting.  The aging needs
to check the accessed bit at least twice before handing this page over to
the eviction.  The first check takes care of the accessed bit set on the
initial fault; the second check makes sure this page has not been used
since then.  This protocol, AKA second chance, requires a minimum of two
generations, hence MIN_NR_GENS.

[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731
[3] https://lwn.net/Articles/495543/
[4] https://lwn.net/Articles/815342/

Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Yu Zhao
f1e1a7be47 mm/vmscan.c: refactor shrink_node()
This patch refactors shrink_node() to improve readability for the upcoming
changes to mm/vmscan.c.

Link: https://lkml.kernel.org/r/20220918080010.2920238-4-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:08 -07:00
Andrew Morton
6d751329e7 Merge branch 'mm-hotfixes-stable' into mm-stable 2022-09-26 13:13:15 -07:00
Kefeng Wang
b4a0215e11 mm: fix null-ptr-deref in kswapd_is_running()
kswapd_run/stop() will set pgdat->kswapd to NULL, which could race with
kswapd_is_running() in kcompactd(),

kswapd_run/stop()                       kcompactd()
                                          kswapd_is_running()
  pgdat->kswapd // error or nomal ptr
                                          verify pgdat->kswapd
                                            // load non-NULL
pgdat->kswapd
  pgdat->kswapd = NULL
                                          task_is_running(pgdat->kswapd)
                                            // Null pointer derefence

KASAN reports the null-ptr-deref shown below,

  vmscan: Failed to start kswapd on node 0
  ...
  BUG: KASAN: null-ptr-deref in kcompactd+0x440/0x504
  Read of size 8 at addr 0000000000000024 by task kcompactd0/37

  CPU: 0 PID: 37 Comm: kcompactd0 Kdump: loaded Tainted: G           OE     5.10.60 #1
  Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
  Call trace:
   dump_backtrace+0x0/0x394
   show_stack+0x34/0x4c
   dump_stack+0x158/0x1e4
   __kasan_report+0x138/0x140
   kasan_report+0x44/0xdc
   __asan_load8+0x94/0xd0
   kcompactd+0x440/0x504
   kthread+0x1a4/0x1f0
   ret_from_fork+0x10/0x18

At present kswapd/kcompactd_run() and kswapd/kcompactd_stop() are protected
by mem_hotplug_begin/done(), but without kcompactd(). There is no need to
involve memory hotplug lock in kcompactd(), so let's add a new mutex to
protect pgdat->kswapd accesses.

Also, because the kcompactd task will check the state of kswapd task, it's
better to call kcompactd_stop() before kswapd_stop() to reduce lock
conflicts.

[akpm@linux-foundation.org: add comments]
Link: https://lkml.kernel.org/r/20220827111959.186838-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:26:04 -07:00
Yang Yang
d3629af59f mm/vmscan: make the annotations of refaults code at the right place
After patch "mm/workingset: prepare the workingset detection
infrastructure for anon LRU", we can handle the refaults of anonymous
pages too.  So the annotations of refaults should cover both of anonymous
pages and file pages.

Link: https://lkml.kernel.org/r/20220813080757.59131-1-yang.yang29@zte.com.cn
Fixes: 170b04b7ae ("mm/workingset: prepare the workingset detection infrastructure for anon LRU")
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: CGEL ZTE <cgel.zte@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:25:51 -07:00
Yang Yang
e9c2dbc8bf mm/vmscan: define macros for refaults in struct lruvec
The magic number 0 and 1 are used in several places in vmscan.c.
Define macros for them to improve code readability.

Link: https://lkml.kernel.org/r/20220808005644.1721066-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:25:49 -07:00
Matthew Wilcox (Oracle)
36a3b14b5f vmscan: check folio_test_private(), not folio_get_private()
These two predicates are the same for file pages, but are not the same for
anonymous pages.

Link: https://lkml.kernel.org/r/20220902192639.1737108-3-willy@infradead.org
Fixes: 07f67a8ded ("mm/vmscan: convert shrink_active_list() to use a folio")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 16:22:31 -07:00
Linus Torvalds
6614a3c316 - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
 
 - Some kmemleak fixes from Patrick Wang and Waiman Long
 
 - DAMON updates from SeongJae Park
 
 - memcg debug/visibility work from Roman Gushchin
 
 - vmalloc speedup from Uladzislau Rezki
 
 - more folio conversion work from Matthew Wilcox
 
 - enhancements for coherent device memory mapping from Alex Sierra
 
 - addition of shared pages tracking and CoW support for fsdax, from
   Shiyang Ruan
 
 - hugetlb optimizations from Mike Kravetz
 
 - Mel Gorman has contributed some pagealloc changes to improve latency
   and realtime behaviour.
 
 - mprotect soft-dirty checking has been improved by Peter Xu
 
 - Many other singleton patches all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
 jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
 SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
 =w/UH
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Most of the MM queue. A few things are still pending.

  Liam's maple tree rework didn't make it. This has resulted in a few
  other minor patch series being held over for next time.

  Multi-gen LRU still isn't merged as we were waiting for mapletree to
  stabilize. The current plan is to merge MGLRU into -mm soon and to
  later reintroduce mapletree, with a view to hopefully getting both
  into 6.1-rc1.

  Summary:

   - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
     Lin, Yang Shi, Anshuman Khandual and Mike Rapoport

   - Some kmemleak fixes from Patrick Wang and Waiman Long

   - DAMON updates from SeongJae Park

   - memcg debug/visibility work from Roman Gushchin

   - vmalloc speedup from Uladzislau Rezki

   - more folio conversion work from Matthew Wilcox

   - enhancements for coherent device memory mapping from Alex Sierra

   - addition of shared pages tracking and CoW support for fsdax, from
     Shiyang Ruan

   - hugetlb optimizations from Mike Kravetz

   - Mel Gorman has contributed some pagealloc changes to improve
     latency and realtime behaviour.

   - mprotect soft-dirty checking has been improved by Peter Xu

   - Many other singleton patches all over the place"

 [ XFS merge from hell as per Darrick Wong in

   https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]

* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
  tools/testing/selftests/vm/hmm-tests.c: fix build
  mm: Kconfig: fix typo
  mm: memory-failure: convert to pr_fmt()
  mm: use is_zone_movable_page() helper
  hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
  hugetlbfs: cleanup some comments in inode.c
  hugetlbfs: remove unneeded header file
  hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
  hugetlbfs: use helper macro SZ_1{K,M}
  mm: cleanup is_highmem()
  mm/hmm: add a test for cross device private faults
  selftests: add soft-dirty into run_vmtests.sh
  selftests: soft-dirty: add test for mprotect
  mm/mprotect: fix soft-dirty check in can_change_pte_writable()
  mm: memcontrol: fix potential oom_lock recursion deadlock
  mm/gup.c: fix formatting in check_and_migrate_movable_page()
  xfs: fail dax mount if reflink is enabled on a partition
  mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
  userfaultfd: don't fail on unrecognized features
  hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
  ...
2022-08-05 16:32:45 -07:00
Yosry Ahmed
73b73bac90 mm: vmpressure: don't count proactive reclaim in vmpressure
memory.reclaim is a cgroup v2 interface that allows users to proactively
reclaim memory from a memcg, without real memory pressure.  Reclaim
operations invoke vmpressure, which is used: (a) To notify userspace of
reclaim efficiency in cgroup v1, and (b) As a signal for a memcg being
under memory pressure for networking (see
mem_cgroup_under_socket_pressure()).

For (a), vmpressure notifications in v1 are not affected by this change
since memory.reclaim is a v2 feature.

For (b), the effects of the vmpressure signal (according to Shakeel [1])
are as follows:
1. Reducing send and receive buffers of the current socket.
2. May drop packets on the rx path.
3. May throttle current thread on the tx path.

Since proactive reclaim is invoked directly by userspace, not by memory
pressure, it makes sense not to throttle networking.  Hence, this change
makes sure that proactive reclaim caused by memory.reclaim does not
trigger vmpressure.

[1] https://lore.kernel.org/lkml/CALvZod68WdrXEmBpOkadhB5GPYmCXaDZzXH=yyGOCAjFRn4NDQ@mail.gmail.com/

[yosryahmed@google.com: update documentation]
  Link: https://lkml.kernel.org/r/20220721173015.2643248-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20220714064918.2576464-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-29 18:07:15 -07:00
Tetsuo Handa
14773bfa70 mm: shrinkers: fix double kfree on shrinker name
syzbot is reporting double kfree() at free_prealloced_shrinker() [1], for
destroy_unused_super() calls free_prealloced_shrinker() even if
prealloc_shrinker() returned an error.  Explicitly clear shrinker name
when prealloc_shrinker() called kfree().

[roman.gushchin@linux.dev: zero shrinker->name in all cases where shrinker->name is freed]
  Link: https://lkml.kernel.org/r/YtgteTnQTgyuKUSY@castle
Link: https://syzkaller.appspot.com/bug?extid=8b481578352d4637f510 [1]
Link: https://lkml.kernel.org/r/ffa62ece-6a42-2644-16cf-0d33ef32c676@I-love.SAKURA.ne.jp
Fixes: e33c267ab7 ("mm: shrinkers: provide shrinkers with names")
Reported-by: syzbot <syzbot+8b481578352d4637f510@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-29 18:07:13 -07:00
Yun-Ze Li
e8da368a1e mm, docs: fix comments that mention mem_hotplug_end()
Comments that mention mem_hotplug_end() are confusing as there is no
function called mem_hotplug_end().  Fix them by replacing all the
occurences of mem_hotplug_end() in the comments with mem_hotplug_done().

[akpm@linux-foundation.org: grammatical fixes]
Link: https://lkml.kernel.org/r/20220620071516.1286101-1-p76091292@gs.ncku.edu.tw
Signed-off-by: Yun-Ze Li <p76091292@gs.ncku.edu.tw>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:50 -07:00
Matthew Wilcox (Oracle)
ceff9d3354 mm/swap: convert __delete_from_swap_cache() to a folio
All callers now have a folio, so convert the entire function to operate
on folios.

Link: https://lkml.kernel.org/r/20220617175020.717127-23-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:48 -07:00
Matthew Wilcox (Oracle)
b98c359f1d mm: convert page_swap_flags to folio_swap_flags
The only caller already has a folio, so push the folio->page conversion
down a level.

Link: https://lkml.kernel.org/r/20220617175020.717127-21-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:48 -07:00
Matthew Wilcox (Oracle)
5375336c8c mm: convert destroy_compound_page() to destroy_large_folio()
All callers now have a folio, so push the folio->page conversion
down to this function.

[akpm@linux-foundation.org: uninline destroy_large_folio() to fix build issue]
Link: https://lkml.kernel.org/r/20220617175020.717127-20-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:48 -07:00