Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).
For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)
For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.
For examples of how skb dynptrs can be used, please see the attached
selftests.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In commit 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc"), a new
bpf_cgroup_from_id() kfunc was added which allows a BPF program to
lookup and acquire a reference to a cgroup from a cgroup id. The
commit's doxygen comment seems to have copy-pasted fields, which causes
BPF kfunc helper documentation to fail to render:
<snip>/helpers.c:2114: warning: Excess function parameter 'cgrp'...
<snip>/helpers.c:2114: warning: Excess function parameter 'level'...
<snip>
<snip>/helpers.c:2114: warning: Excess function parameter 'level'...
This patch fixes the doxygen header.
Fixes: 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc")
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230228152845.294695-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
cgroup ID is an userspace-visible 64bit value uniquely identifying a given
cgroup. As the IDs are used widely, it's useful to be able to look up the
matching cgroups. Add bpf_cgroup_from_id().
v2: Separate out selftest into its own patch as suggested by Alexei.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/Y/bBaG96t0/gQl9/@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.
All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:
* bpf_rbtree_add: Takes 'less' callback, need to verify it
* bpf_rbtree_first: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). Return value ref is
non-owning.
* bpf_rbtree_remove: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). 2nd arg (node) is a
non-owning reference.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.
structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.
btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.
btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.
After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that we have the __bpf_kfunc tag, we should use add it to all
existing kfuncs to ensure that they'll never be elided in LTO builds.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230201173016.342758-4-void@manifault.com
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:
include/linux/bpf.h:
struct btf_field_list_head -> struct btf_field_graph_root
list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
list_head -> graph_root in struct btf_field_info
This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Both bpf_trace_printk and bpf_trace_vprintk helpers use static buffer guarded
with trace_printk_lock spin lock.
The spin lock contention causes issues with bpf programs attached to
contention_begin tracepoint [1][2].
Andrii suggested we could get rid of the contention by using trylock, but we
could actually get rid of the spinlock completely by using percpu buffers the
same way as for bin_args in bpf_bprintf_prepare function.
Adding new return 'buf' argument to struct bpf_bprintf_data and making
bpf_bprintf_prepare to return also the buffer for printk helpers.
[1] https://lore.kernel.org/bpf/CACkBjsakT_yWxnSWr4r-0TpPvbKm9-OBmVUhJb7hV3hY8fdCkw@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CACkBjsaCsTovQHFfkqJKto6S4Z8d02ud1D7MPESrHa1cVNNTrw@mail.gmail.com/
Reported-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-4-jolsa@kernel.org
Currently we always cleanup/decrement bpf_bprintf_nest_level variable
in bpf_bprintf_cleanup if it's > 0.
There's possible scenario where this could cause a problem, when
bpf_bprintf_prepare does not get bin_args buffer (because num_args is 0)
and following bpf_bprintf_cleanup call decrements bpf_bprintf_nest_level
variable, like:
in task context:
bpf_bprintf_prepare(num_args != 0) increments 'bpf_bprintf_nest_level = 1'
-> first irq :
bpf_bprintf_prepare(num_args == 0)
bpf_bprintf_cleanup decrements 'bpf_bprintf_nest_level = 0'
-> second irq:
bpf_bprintf_prepare(num_args != 0) bpf_bprintf_nest_level = 1
gets same buffer as task context above
Adding check to bpf_bprintf_cleanup and doing the real cleanup only if we
got bin_args data in the first place.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-3-jolsa@kernel.org
Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.
We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org
It may happen that destination buffer memory overlaps with memory dynptr
points to. Hence, we must use memmove to correctly copy from dynptr to
destination buffer, or source buffer to dynptr.
This actually isn't a problem right now, as memcpy implementation falls
back to memmove on detecting overlap and warns about it, but we
shouldn't be relying on that.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.
However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.
In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.
The rejection for helpers that release the dynptr is already handled.
For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.
First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.
Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.
When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.
With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.
A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.
The next patch will add a couple of selftest cases to make sure this
doesn't break.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_cgroup_acquire(), bpf_cgroup_release(), bpf_cgroup_kptr_get(), and
bpf_cgroup_ancestor(), are kfuncs that were recently added to
kernel/bpf/helpers.c. These are "core" kfuncs in that they're available
for use in any tracepoint or struct_ops BPF program. Though they have no
ABI stability guarantees, we should still document them. This patch adds
a struct cgroup * subsection to the Core kfuncs section which describes
each of these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_task_acquire(), bpf_task_release(), and bpf_task_from_pid() are
kfuncs that were recently added to kernel/bpf/helpers.c. These are
"core" kfuncs in that they're available for use for any tracepoint or
struct_ops BPF program. Though they have no ABI stability guarantees, we
should still document them. This patch adds a new Core kfuncs section to
the BPF kfuncs doc, and adds entries for all of these task kfuncs.
Note that bpf_task_kptr_get() is not documented, as it still returns
NULL while we're working to resolve how it can use RCU to ensure struct
task_struct * lifetime.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A series of prior patches added some kfuncs that allow struct
task_struct * objects to be used as kptrs. These kfuncs leveraged the
'refcount_t rcu_users' field of the task for performing refcounting.
This field was used instead of 'refcount_t usage', as we wanted to
leverage the safety provided by RCU for ensuring a task's lifetime.
A struct task_struct is refcounted by two different refcount_t fields:
1. p->usage: The "true" refcount field which task lifetime. The
task is freed as soon as this refcount drops to 0.
2. p->rcu_users: An "RCU users" refcount field which is statically
initialized to 2, and is co-located in a union with
a struct rcu_head field (p->rcu). p->rcu_users
essentially encapsulates a single p->usage
refcount, and when p->rcu_users goes to 0, an RCU
callback is scheduled on the struct rcu_head which
decrements the p->usage refcount.
Our logic was that by using p->rcu_users, we would be able to use RCU to
safely issue refcount_inc_not_zero() a task's rcu_users field to
determine if a task could still be acquired, or was exiting.
Unfortunately, this does not work due to p->rcu_users and p->rcu sharing
a union. When p->rcu_users goes to 0, an RCU callback is scheduled to
drop a single p->usage refcount, and because the fields share a union,
the refcount immediately becomes nonzero again after the callback is
scheduled.
If we were to split the fields out of the union, this wouldn't be a
problem. Doing so should also be rather non-controversial, as there are
a number of places in struct task_struct that have padding which we
could use to avoid growing the structure by splitting up the fields.
For now, so as to fix the kfuncs to be correct, this patch instead
updates bpf_task_acquire() and bpf_task_release() to use the p->usage
field for refcounting via the get_task_struct() and put_task_struct()
functions. Because we can no longer rely on RCU, the change also guts
the bpf_task_acquire_not_zero() and bpf_task_kptr_get() functions
pending a resolution on the above problem.
In addition, the task fixes the kfunc and rcu_read_lock selftests to
expect this new behavior.
Fixes: 90660309b0 ("bpf: Add kfuncs for storing struct task_struct * as a kptr")
Fixes: fca1aa7551 ("bpf: Handle MEM_RCU type properly")
Reported-by: Matus Jokay <matus.jokay@stuba.sk>
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221206210538.597606-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.
Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.
This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.
[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().
struct task_struct {
...
struct task_struct *last_wakee;
struct task_struct __rcu *real_parent;
...
};
Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
- 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
region. This is to simulate rcu_dereference() operation. The
'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
- 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
region since it tries to access rcu protected memory.
- the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
it is not clear whether the object pointed by 'last_wakee' is valid or
not even inside bpf_rcu_read_lock region.
The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.
The current implementation does not support nested rcu read lock
region in the prog.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_func_proto->might_sleep to indicate a particular helper
might sleep. This will make later check whether a helper might be
sleepable or not easier.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053211.2373553-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Callers can currently store tasks as kptrs using bpf_task_acquire(),
bpf_task_kptr_get(), and bpf_task_release(). These are useful if a
caller already has a struct task_struct *, but there may be some callers
who only have a pid, and want to look up the associated struct
task_struct * from that to e.g. find task->comm.
This patch therefore adds a new bpf_task_from_pid() kfunc which allows
BPF programs to get a struct task_struct * kptr from a pid.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122145300.251210-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In commit fda01efc61 ("bpf: Enable cgroups to be used as kptrs"), I
added an 'int idx' variable to kfunc_init() which was meant to
dynamically set the index of the btf id entries of the
'generic_dtor_ids' array. This was done to make the code slightly less
brittle as the struct cgroup * kptr kfuncs such as bpf_cgroup_aquire()
are compiled out if CONFIG_CGROUPS is not defined. This, however, causes
an lkp build warning:
>> kernel/bpf/helpers.c:2005:40: warning: multiple unsequenced
modifications to 'idx' [-Wunsequenced]
.btf_id = generic_dtor_ids[idx++],
Fix the warning by just hard-coding the indices.
Fixes: fda01efc61 ("bpf: Enable cgroups to be used as kptrs")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221123135253.637525-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
struct cgroup * objects have a variably sized struct cgroup *ancestors[]
field which stores pointers to their ancestor cgroups. If using a cgroup
as a kptr, it can be useful to access these ancestors, but doing so
requires variable offset accesses for PTR_TO_BTF_ID, which is currently
unsupported.
This is a very useful field to access for cgroup kptrs, as programs may
wish to walk their ancestor cgroups when determining e.g. their
proportional cpu.weight. So as to enable this functionality with cgroup
kptrs before var_off is supported for PTR_TO_BTF_ID, this patch adds a
bpf_cgroup_ancestor() kfunc which accesses the cgroup node on behalf of
the caller, and acquires a reference on it. Once var_off is supported
for PTR_TO_BTF_ID, and fields inside a struct can be marked as trusted
so they retain the PTR_TRUSTED modifier when walked, this can be
removed.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that tasks can be used as kfuncs, and the PTR_TRUSTED flag is
available for us to easily add basic acquire / get / release kfuncs, we
can do the same for cgroups. This patch set adds the following kfuncs
which enable using cgroups as kptrs:
struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp);
struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp);
void bpf_cgroup_release(struct cgroup *cgrp);
A follow-on patch will add a selftest suite which validates these
kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.
The signature of bpf_rdonly_cast() looks like
void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.
Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and
bpf_rdonly_cast() which apply to all program types. Currently kfunc set
only supports individual prog types. This patch added support for kfunc
applying to all program types.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that BPF supports adding new kernel functions with kfuncs, and
storing kernel objects in maps with kptrs, we can add a set of kfuncs
which allow struct task_struct objects to be stored in maps as
referenced kptrs. The possible use cases for doing this are plentiful.
During tracing, for example, it would be useful to be able to collect
some tasks that performed a certain operation, and then periodically
summarize who they are, which cgroup they're in, how much CPU time
they've utilized, etc.
In order to enable this, this patch adds three new kfuncs:
struct task_struct *bpf_task_acquire(struct task_struct *p);
struct task_struct *bpf_task_kptr_get(struct task_struct **pp);
void bpf_task_release(struct task_struct *p);
A follow-on patch will add selftests validating these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.
The following functions are added to kick things off:
// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);
// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);
// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);
// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);
The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.
Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.
bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.
With these additions, programs can now manage their own linked lists and
store their objects in them.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.
Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.
For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.
Continuing the previous example:
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
bpf_obj_drop(f);
}
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.
Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.
The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).
The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.
It would also be needed in the next patch to perform proper destruction
of the object's special fields.
Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.
Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.
A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}
A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.
Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.
Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.
The definition of bpf_list_head in a map value will be done as follows:
struct foo {
struct bpf_list_node node;
int data;
};
struct map_value {
struct bpf_list_head head __contains(foo, node);
};
Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.
The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.
This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.
For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.
Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.
While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to sk/inode/task storage, implement similar cgroup local storage.
There already exists a local storage implementation for cgroup-attached
bpf programs. See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.
The life-cycle of storage is managed with the life-cycle of the
cgroup struct. i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.
The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.
Typically, the following code is used to get the current cgroup:
struct task_struct *task = bpf_get_current_task_btf();
... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
struct task_struct {
....
struct css_set __rcu *cgroups;
....
}
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.
Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Export bpf_dynptr_get_size(), so that kernel code dealing with eBPF dynamic
pointers can obtain the real size of data carried by this data structure.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-6-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
eBPF dynamic pointers is a new feature recently added to upstream. It binds
together a pointer to a memory area and its size. The internal kernel
structure bpf_dynptr_kern is not accessible by eBPF programs in user space.
They instead see bpf_dynptr, which is then translated to the internal
kernel structure by the eBPF verifier.
The problem is that it is not possible to include at the same time the uapi
include linux/bpf.h and the vmlinux BTF vmlinux.h, as they both contain the
definition of some structures/enums. The compiler complains saying that the
structures/enums are redefined.
As bpf_dynptr is defined in the uapi include linux/bpf.h, this makes it
impossible to include vmlinux.h. However, in some cases, e.g. when using
kfuncs, vmlinux.h has to be included. The only option until now was to
include vmlinux.h and add the definition of bpf_dynptr directly in the eBPF
program source code from linux/bpf.h.
Solve the problem by using the same approach as for bpf_timer (which also
follows the same scheme with the _kern suffix for the internal kernel
structure).
Add the following line in one of the dynamic pointer helpers,
bpf_dynptr_from_mem():
BTF_TYPE_EMIT(struct bpf_dynptr);
Cc: stable@vger.kernel.org
Cc: Joanne Koong <joannelkoong@gmail.com>
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Tested-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/r/20220920075951.929132-3-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:
bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)
BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:
long callback_fn(struct bpf_dynptr *dynptr, void *context);
Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.
In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.
Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
This has been enabled for unprivileged programs for only one kernel
release, hence the expected annoyances due to this move are low. Users
using ringbuf can stick to non-dynptr APIs. The actual use cases dynptr
is meant to serve may not make sense in unprivileged BPF programs.
Hence, gate these helpers behind CAP_BPF and limit use to privileged
BPF programs.
Fixes: 263ae152e9 ("bpf: Add bpf_dynptr_from_mem for local dynptrs")
Fixes: bc34dee65a ("bpf: Dynptr support for ring buffers")
Fixes: 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
Fixes: 34d4ef5775 ("bpf: Add dynptr data slices")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220921143550.30247-1-memxor@gmail.com
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF_PTR_POISON was added in commit c0a5a21c25 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.
This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.
If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.
Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
[1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
They would require func_info which needs prog BTF anyway. Loading BTF
and setting the prog btf_fd while loading the prog indirectly requires
CAP_BPF, so just to reduce confusion, move both these helpers taking
callback under bpf_capable() protection as well, since they cannot be
used without CAP_BPF.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013117.24916-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_strncmp is already exposed everywhere. The motivation is to keep
those helpers in kernel/bpf/helpers.c. Otherwise it's tempting to move
them under kernel/bpf/cgroup.c because they are currently only used
by sysctl prog types.
Suggested-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220823222555.523590-4-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Split cgroup_base_func_proto into the following:
* cgroup_common_func_proto - common helpers for all cgroup hooks
* cgroup_current_func_proto - common helpers for all cgroup hooks
running in the process context (== have meaningful 'current').
Move bpf_{g,s}et_retval and other cgroup-related helpers into
kernel/bpf/cgroup.c so they closer to where they are being used.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220823222555.523590-2-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 3dc6ffae2d ("timekeeping: Introduce fast accessor to clock tai")
introduced a fast and NMI-safe accessor for CLOCK_TAI. Especially in time
sensitive networks (TSN), where all nodes are synchronized by Precision Time
Protocol (PTP), it's helpful to have the possibility to generate timestamps
based on CLOCK_TAI instead of CLOCK_MONOTONIC. With a BPF helper for TAI in
place, it becomes very convenient to correlate activity across different
machines in the network.
Use cases for such a BPF helper include functionalities such as Tx launch
time (e.g. ETF and TAPRIO Qdiscs) and timestamping.
Note: CLOCK_TAI is nothing new per se, only the NMI-safe variant of it is.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
[Kurt: Wrote changelog and renamed helper]
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Link: https://lore.kernel.org/r/20220809060803.5773-2-kurt@linutronix.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
added the bpf_dynptr_write() and bpf_dynptr_read() APIs.
However, it will be needed for some dynptr types to pass in flags as
well (e.g. when writing to a skb, the user may like to invalidate the
hash or recompute the checksum).
This patch adds a "u64 flags" arg to the bpf_dynptr_read() and
bpf_dynptr_write() APIs before their UAPI signature freezes where
we then cannot change them anymore with a 5.19.x released kernel.
Fixes: 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20220706232547.4016651-1-joannelkoong@gmail.com
This patch adds a new helper function
void *bpf_dynptr_data(struct bpf_dynptr *ptr, u32 offset, u32 len);
which returns a pointer to the underlying data of a dynptr. *len*
must be a statically known value. The bpf program may access the returned
data slice as a normal buffer (eg can do direct reads and writes), since
the verifier associates the length with the returned pointer, and
enforces that no out of bounds accesses occur.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-6-joannelkoong@gmail.com
This patch adds two helper functions, bpf_dynptr_read and
bpf_dynptr_write:
long bpf_dynptr_read(void *dst, u32 len, struct bpf_dynptr *src, u32 offset);
long bpf_dynptr_write(struct bpf_dynptr *dst, u32 offset, void *src, u32 len);
The dynptr passed into these functions must be valid dynptrs that have
been initialized.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-5-joannelkoong@gmail.com