Make clock_was_set() unconditional and rename hres_timers_resume to
hrtimers_resume. This is a preparatory patch for hrtimers which are
cancelled when clock realtime was set.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Ingo pointed out that the alarmtimers won't build if CONFIG_RTC_CLASS=n.
This patch adds proper ifdefs to the alarmtimer code to disable the rtc
usage if it is not built in.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thomas asked about the delayed irq work in the alarmtimers code,
and I realized that it was a legacy from when the alarmtimer base
lock was a mutex (due to concerns that we'd be interacting with
the RTC device, which is protected by mutexes).
Since the alarmtimer base is now protected by a spinlock, we can
simply execute alarmtimer functions directly from the hrtimer
callback. Should any future alarmtimer functions sleep, they can
simply manage scheduling any delayed work themselves.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch addresses a number of minor comment improvements and
other minor issues from Thomas' review of the alarmtimers code.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch exposes alarm-timers to userland via the posix clock
and timers interface, using two new clockids: CLOCK_REALTIME_ALARM
and CLOCK_BOOTTIME_ALARM. Both clockids behave identically to
CLOCK_REALTIME and CLOCK_BOOTTIME, respectively, but timers
set against the _ALARM suffixed clockids will wake the system if
it is suspended.
Some background can be found here:
https://lwn.net/Articles/429925/
The concept for Alarm-timers was inspired by the Android Alarm
driver (by Arve Hjønnevåg) found in the Android kernel tree.
See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36
While the in-kernel interface is pretty similar between
alarm-timers and Android alarm driver, the user-space interface
for the Android alarm driver is via ioctls to a new char device.
As mentioned above, I've instead chosen to export this functionality
via the posix interface, as it seemed a little simpler and avoids
creating duplicate interfaces to things like CLOCK_REALTIME and
CLOCK_MONOTONIC under alternate names (ie:ANDROID_ALARM_RTC and
ANDROID_ALARM_SYSTEMTIME).
The semantics of the Android alarm driver are different from what
this posix interface provides. For instance, threads other then
the thread waiting on the Android alarm driver are able to modify
the alarm being waited on. Also this interface does not allow
the same wakelock semantics that the Android driver provides
(ie: kernel takes a wakelock on RTC alarm-interupt, and holds it
through process wakeup, and while the process runs, until the
process either closes the char device or calls back in to wait
on a new alarm).
One potential way to implement similar semantics may be via
the timerfd infrastructure, but this needs more research.
There may also need to be some sort of sysfs system level policy
hooks that allow alarm timers to be disabled to keep them
from firing at inappropriate times (ie: laptop in a well insulated
bag, mid-flight).
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This provides the in kernel interface and infrastructure for
alarm-timers.
Alarm-timers are a hybrid style timer, similar to hrtimers,
but when the system is suspended, the RTC device is set to
fire and wake the system for when the soonest alarm-timer
expires.
The concept for Alarm-timers was inspired by the Android Alarm
driver (by Arve Hjønnevåg) found in the Android kernel tree.
See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36
This in-kernel interface should be fairly compatible with the
Android alarm driver in-kernel interface, but has the advantage
of utilizing the new RTC timerqueue code instead of doing direct
RTC manipulation.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Some platforms cannot implement read_persistent_clock, as
their RTC devices are only accessible when interrupts are enabled.
This keeps them from being used by the timekeeping code on resume
to measure the time in suspend.
The RTC layer tries to work around this, by calling do_settimeofday
on resume after irqs are reenabled to set the time properly. However,
this only corrects CLOCK_REALTIME, and does not properly adjust
the sleep time value. This causes btime in /proc/stat to be incorrect
as well as making the new CLOCK_BOTTTIME inaccurate.
This patch resolves the issue by introducing a new timekeeping hook
to allow the RTC layer to inject the sleep time on resume.
The code also checks to make sure that read_persistent_clock is
nonfunctional before setting the sleep time, so that should the RTC's
HCTOSYS option be configured in on a system that does support
read_persistent_clock we will not increase the total_sleep_time twice.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
A dynamic posix clock is protected from asynchronous removal by a mutex.
However, using a mutex has the unwanted effect that a long running clock
operation in one process will unnecessarily block other processes.
For example, one process might call read() to get an external time stamp
coming in at one pulse per second. A second process calling clock_gettime
would have to wait for almost a whole second.
This patch fixes the issue by using a reader/writer semaphore instead of
a mutex.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/%3C20110330132421.GA31771%40riccoc20.at.omicron.at%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The ADJ_SETOFFSET bit added in commit 094aa188 ("ntp: Add ADJ_SETOFFSET
mode bit") also introduced a way for any user to change the system time.
Sneaky or buggy calls to adjtimex() could set
ADJ_OFFSET_SS_READ | ADJ_SETOFFSET
which would result in a successful call to timekeeping_inject_offset().
This patch fixes the issue by adding the capability check.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The timekeeping subsystem uses a sysdev class and a sysdev for
executing timekeeping_suspend() after interrupts have been turned off
on the boot CPU (during system suspend) and for executing
timekeeping_resume() before turning on interrupts on the boot CPU
(during system resume). However, since both of these functions
ignore their arguments, the entire mechanism may be replaced with a
struct syscore_ops object which is simpler.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (62 commits)
posix-clocks: Check write permissions in posix syscalls
hrtimer: Remove empty hrtimer_init_hres_timer()
hrtimer: Update hrtimer->state documentation
hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
timers: Export CLOCK_BOOTTIME via the posix timers interface
timers: Add CLOCK_BOOTTIME hrtimer base
time: Extend get_xtime_and_monotonic_offset() to also return sleep
time: Introduce get_monotonic_boottime and ktime_get_boottime
hrtimers: extend hrtimer base code to handle more then 2 clockids
ntp: Remove redundant and incorrect parameter check
mn10300: Switch do_timer() to xtimer_update()
posix clocks: Introduce dynamic clocks
posix-timers: Cleanup namespace
posix-timers: Add support for fd based clocks
x86: Add clock_adjtime for x86
posix-timers: Introduce a syscall for clock tuning.
time: Splitout compat timex accessors
ntp: Add ADJ_SETOFFSET mode bit
time: Introduce timekeeping_inject_offset
posix-timer: Update comment
...
Fix up new system-call-related conflicts in
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
(name_to_handle_at()/open_by_handle_at() vs clock_adjtime()), and some
due to movement of get_jiffies_64() in:
kernel/time.c
pc_clock_settime() and pc_clock_adjtime() do not check whether the fd
was opened in write mode, so a clock can be set with a read only fd.
[ tglx: We deliberately do not return -EPERM as we want this to be
distingushable from the capability based permission check ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
LKML-Reference: <1299173174-348-4-git-send-email-torbenh@gmx.de>
Cc: Richard Cochran <richard.cochran@omicron.at>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
When the per cpu timer is marked CLOCK_EVT_FEAT_C3STOP, then we only
can switch into oneshot mode, when the backup broadcast device
supports oneshot mode as well. Otherwise we would try to switch the
broadcast device into an unsupported mode unconditionally. This went
unnoticed so far as the current available broadcast devices support
oneshot mode. Seth unearthed this problem while debugging and working
around an hpet related BIOS wreckage.
Add the necessary check to tick_is_oneshot_available().
Reported-and-tested-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <alpine.LFD.2.00.1102252231200.2701@localhost6.localdomain6>
Cc: stable@kernel.org # .21 ->
This adds new functions that return the monotonic time since boot
(in other words, CLOCK_MONOTONIC + suspend time).
CC: Jamie Lokier <jamie@shareable.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alexander Shishkin <virtuoso@slind.org>
CC: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The ADJ_SETOFFSET code redundantly checks the range of the nanoseconds
field of the time value. This field is checked again in the subsequent
call to timekeeping_inject_offset(). Also, as is, the check will not
detect whether the number of microseconds is out of range.
Let timekeeping_inject_offset() do the error checking.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Cc: johnstul@us.ibm.com
LKML-Reference: <20110218090724.GA2924@riccoc20.at.omicron.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds support for adding and removing posix clocks. The
clock lifetime cycle is patterned after usb devices. Each clock is
represented by a standard character device. In addition, the driver
may optionally implement custom character device operations.
The posix clock and timer system calls listed below now work with
dynamic posix clocks, as well as the traditional static clocks.
The following system calls are affected:
- clock_adjtime (brand new syscall)
- clock_gettime
- clock_getres
- clock_settime
- timer_create
- timer_delete
- timer_gettime
- timer_settime
[ tglx: Adapted to the posix-timer cleanup. Moved clock_posix_dynamic
to posix-clock.c and made all referenced functions static ]
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134420.164172635@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a new mode bit into the timex structure. When set, the bit
instructs the kernel to add the given time value to the current time.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134320.688829863@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This adds a kernel-internal timekeeping interface to add or subtract
a fixed amount from CLOCK_REALTIME. This makes it so kernel users or
interfaces trying to do so do not have to read the time, then add an
offset and then call settimeofday(), which adds some extra error in
comparision to just simply adding the offset in the kernel timekeeping
core.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134419.584311693@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Both settimeofday() and clock_settime() promise with a 'const'
attribute not to alter the arguments passed in. This patch adds the
missing 'const' attribute into the various kernel functions
implementing these calls.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134417.545698637@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The xtime/dotimer cleanup broke architectures which do not implement
clockevents. Time to send out another __do_IRQ threat.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145905.23248.30458.stgit@localhost>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All callers of do_timer() are converted to xtime_update(). The only
users of xtime_lock are in kernel/time/. Make both local to
kernel/time/ and remove them from the global header files.
[ tglx: Reuse tick-internal.h instead of creating another local header
file. Massaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The hrtimer code accesses timekeeping variables under
xtime_lock. Provide a sensible accessor function and use it.
[ tglx: Removed the conditionals, unused variable, fixed codingstyle
and massaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145905.23248.30458.stgit@localhost>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
do_timer() is primary timekeeping related. calc_global_load() is
called from do_timer() as well, but that's more for historical
reasons.
[ tglx: Fixed up the calc_global_load() reject andmassaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145855.23248.56933.stgit@localhost>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When NOHZ=y and high res timers are disabled (via cmdline or
Kconfig) tick_nohz_switch_to_nohz() will notify the user about
switching into NOHZ mode. Nothing is printed for the case where
HIGH_RES_TIMERS=y. Fix this for the HIGH_RES_TIMERS=y case by
duplicating the printk from the low res NOHZ path in the high
res NOHZ path.
This confused me since I was thinking 'dmesg | grep -i NOHZ' would
tell me if NOHZ was enabled, but if I have hrtimers there is
nothing.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1295419594-13085-1-git-send-email-sboyd@codeaurora.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: avoid pointless blocked-task warnings
rcu: demote SRCU_SYNCHRONIZE_DELAY from kernel-parameter status
rtmutex: Fix comment about why new_owner can be NULL in wake_futex_pi()
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, olpc: Add missing Kconfig dependencies
x86, mrst: Set correct APB timer IRQ affinity for secondary cpu
x86: tsc: Fix calibration refinement conditionals to avoid divide by zero
x86, ia64, acpi: Clean up x86-ism in drivers/acpi/numa.c
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timekeeping: Make local variables static
time: Rename misnamed minsec argument of clocks_calc_mult_shift()
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Remove syscall_exit_fields
tracing: Only process module tracepoints once
perf record: Add "nodelay" mode, disabled by default
perf sched: Fix list of events, dropping unsupported ':r' modifier
Revert "perf tools: Emit clearer message for sys_perf_event_open ENOENT return"
perf top: Fix annotate segv
perf evsel: Fix order of event list deletion
MONOTONIC_RAW clock timestamps are ideally suited for frequency
calculation and also fit well into the original NTP hardpps design. Now
phase and frequency can be adjusted separately: the former based on
REALTIME clock and the latter based on MONOTONIC_RAW clock.
A new function getnstime_raw_and_real is added to timekeeping subsystem to
capture both timestamps at the same time and atomically.
Signed-off-by: Alexander Gordeev <lasaine@lvk.cs.msu.su>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Rodolfo Giometti <giometti@enneenne.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds hardpps() implementation based upon the original one from
the NTPv4 reference kernel code from David Mills. However, it is highly
optimized towards very fast syncronization and maximum stickness to PPS
signal. The typical error is less then a microsecond.
To make it sync faster I had to throw away exponential phase filter so
that the full phase offset is corrected immediately. Then I also had to
throw away median phase filter because it gives a bigger error itself if
used without exponential filter.
Maybe we will find an appropriate filtering scheme in the future but it's
not necessary if the signal quality is ok.
Signed-off-by: Alexander Gordeev <lasaine@lvk.cs.msu.su>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Rodolfo Giometti <giometti@enneenne.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <0D753D10438DA54287A00B027084269764CE0E54B7@AUSP01VMBX24.collaborationhost.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The minsec argument to clocks_calc_mult_shift() is misnamed. It is used
to clamp the magnitude of the mult factor so that a multiplication with
any value in the given range won't overflow a 64 bit result. Let's
rename it to match the actual usage.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <alpine.LFD.2.00.1101111207140.17086@xanadu.home>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (416 commits)
ARM: DMA: add support for DMA debugging
ARM: PL011: add DMA burst threshold support for ST variants
ARM: PL011: Add support for transmit DMA
ARM: PL011: Ensure IRQs are disabled in UART interrupt handler
ARM: PL011: Separate hardware FIFO size from TTY FIFO size
ARM: PL011: Allow better handling of vendor data
ARM: PL011: Ensure error flags are clear at startup
ARM: PL011: include revision number in boot-time port printk
ARM: vexpress: add sched_clock() for Versatile Express
ARM i.MX53: Make MX53 EVK bootable
ARM i.MX53: Some bug fix about MX53 MSL code
ARM: 6607/1: sa1100: Update platform device registration
ARM: 6606/1: sa1100: Fix platform device registration
ARM i.MX51: rename IPU irqs
ARM i.MX51: Add ipu clock support
ARM: imx/mx27_3ds: Add PMIC support
ARM: DMA: Replace page_to_dma()/dma_to_page() with pfn_to_dma()/dma_to_pfn()
mx51: fix usb clock support
MX51: Add support for usb host 2
arch/arm/plat-mxc/ehci.c: fix errors/typos
...
Russell King reports:
| On the ARM dev boards, we have a 32-bit counter running at 24MHz. Calling
| clocks_calc_mult_shift(&mult, &shift, 24MHz, NSEC_PER_SEC, 60) gives
| us a multiplier of 2796202666 and a shift of 26.
|
| Over a large counter delta, this produces an error - lets take a count
| from 362976315 to 4280663372:
|
| (4280663372-362976315) * 2796202666 / 2^26 - (4280663372-362976315) * (1000/24)
| => -38.91872422891230269990
|
| Can we do better?
|
| (4280663372-362976315) * 2796202667 / 2^26 - (4280663372-362976315) * (1000/24)
| 19.45936211449532822051
|
| which is about twice as good as the 2796202666 multiplier.
|
| Looking at the equivalent divisions obtained, 2796202666 / 2^26 gives
| 41.66666665673255920410ns per tick, whereas 2796202667 / 2^26 gives
| 41.66666667163372039794ns. The actual value wanted is 1000/24 =
| 41.66666666666666666666ns.
Fix this by ensuring we round to nearest when calculating the
multiplier.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Eric Miao <eric.y.miao@gmail.com>
Tested-by: Olof Johansson <olof@lixom.net>
Tested-by: Jamie Iles <jamie@jamieiles.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Converts the hrtimer code to use the new timerlist infrastructure
Signed-off-by: John Stultz <john.stultz@linaro.org>
LKML Reference: <1290136329-18291-3-git-send-email-john.stultz@linaro.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Richard Cochran <richardcochran@gmail.com>
Replace sizeof(buffer)/sizeof(buffer[0]) with ARRAY_SIZE(buffer) in
kernel/time/timecompare.c
Signed-off-by: Nikitas Angelinas <nikitasangelinas@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the clocksource is not a multiple of HZ, the clock will be off. For
acpi_pm, HZ=1000 the error is 127.111 ppm:
The rounding of cycle_interval ends up generating a false error term in
ntp_error accumulation since xtime_interval is not exactly 1/HZ. So, we
subtract out the error caused by the rounding.
This has been visible since 2.6.32-rc2
commit a092ff0f90
time: Implement logarithmic time accumulation
That commit raised NTP_INTERVAL_FREQ and exposed the rounding error.
testing tool: http://n1.taur.dk/permanent/testpmt.c
Also tested with ntpd and a frequency counter.
Signed-off-by: Kasper Pedersen <kkp2010@kasperkp.dk>
Acked-by: john stultz <johnstul@us.ibm.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Clamp update interval to reduce PLL gain with low sampling rate (e.g.
intermittent network connection) to avoid instability.
The clamp roughly corresponds to the loop time constant, it's 8 * poll
interval for SHIFT_PLL 2 and 32 * poll interval for SHIFT_PLL 4. This
gives good results without affecting the gain in normal conditions where
ntpd skips only up to seven consecutive samples.
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Acked-by: john stultz <johnstul@us.ibm.com>
LKML-Reference: <1283870626-9472-1-git-send-email-mlichvar@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Early 4.3 versions of gcc apparently aggressively optimize the raw
time accumulation loop, replacing it with a divide.
On 32bit systems, this causes the following link errors:
undefined reference to `__umoddi3'
undefined reference to `__udivdi3'
The gcc issue has been fixed in 4.4 and greater.
This patch replaces the accumulation loop with a do_div, as suggested
by Linus.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
CC: Jason Wessel <jason.wessel@windriver.com>
CC: Larry Finger <Larry.Finger@lwfinger.net>
CC: Ingo Molnar <mingo@elte.hu>
CC: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tv_nsec is a long and when added to the shifted interval it can wrap
and become negative which later causes looping problems in the
getrawmonotonic(). The edge case occurs when the system has slept for
a short period of time of ~2 seconds.
A trace printk of the values in this patch illustrate the problem:
ftrace time stamp: log
43.716079: logarithmic_accumulation: raw: 3d0913 tv_nsec d687faa
43.718513: logarithmic_accumulation: raw: 3d0913 tv_nsec da588bd
43.722161: logarithmic_accumulation: raw: 3d0913 tv_nsec de291d0
46.349925: logarithmic_accumulation: raw: 7a122600 tv_nsec e1f9ae3
46.349930: logarithmic_accumulation: raw: 1e848980 tv_nsec 8831c0e3
The kernel starts looping at 46.349925 in the getrawmonotonic() due to
the negative value from adding the raw value to tv_nsec.
A simple solution is to accumulate into a u64, and then normalize it
to a timespec_t.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
[ Reworked variable names and simplified some of the code. - John ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-timekeeping-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
um: Fix read_persistent_clock fallout
kgdb: Do not access xtime directly
powerpc: Clean up obsolete code relating to decrementer and timebase
powerpc: Rework VDSO gettimeofday to prevent time going backwards
clocksource: Add __clocksource_updatefreq_hz/khz methods
x86: Convert common clocksources to use clocksource_register_hz/khz
timekeeping: Make xtime and wall_to_monotonic static
hrtimer: Cleanup direct access to wall_to_monotonic
um: Convert to use read_persistent_clock
timkeeping: Fix update_vsyscall to provide wall_to_monotonic offset
powerpc: Cleanup xtime usage
powerpc: Simplify update_vsyscall
time: Kill off CONFIG_GENERIC_TIME
time: Implement timespec_add
x86: Fix vtime/file timestamp inconsistencies
Trivial conflicts in Documentation/feature-removal-schedule.txt
Much less trivial conflicts in arch/powerpc/kernel/time.c resolved as
per Thomas' earlier merge commit 47916be4e2 ("Merge branch
'powerpc.cherry-picks' into timers/clocksource")
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
Documentation: Add timers/timers-howto.txt
timer: Added usleep_range timer
Revert "timer: Added usleep[_range] timer"
clockevents: Remove the per cpu tick skew
posix_timer: Move copy_to_user(created_timer_id) down in timer_create()
timer: Added usleep[_range] timer
timers: Document meaning of deferrable timer