* Expose KVM_CAP_ENABLE_CAP since it is supported
* Disable KVM_HC_CLOCK_PAIRING in TSC catchup mode
* Ensure async page fault token is nonzero
* Fix lockdep false negative
* Fix FPU migration regression from the AMX changes
x86 guest:
* Don't use PV TLB/IPI/yield on uniprocessor guests
PPC:
* reserve capability id (topic branch for ppc/kvm)
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmIXyQAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPKJQf/T9NeXOFIPIIlH4ZKM7155qlwX8dx
NR2YV+RNYd27MDkaEm9w4ucXacGpPuBPPx9v7UiLlAqAN+NP7nF3rQKC0SpQMC6H
EKFtm+8al8EzyDYP36fqnwDne/xWHlOeGXRRJMKPGhXBSoXoY5cK35IXmNZjfteQ
hK7siBs2saJ2VFqMCbJ9Pqdu1NDO6OEt8HWz2Dnx6EUd90O0pHWZy5JvWOYfyLjL
Y2pP0dZQxuB/PmqkpVj2gV9jK2Zhj33eerzDV4tVXPV7le8fgGeTaJ8ft+SUIizS
YCcPR89+u5c9yzlwY2i7mvloayKnuqkECiGtRG6VHNlrPZTPijems8tH1w==
=lWjy
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"x86 host:
- Expose KVM_CAP_ENABLE_CAP since it is supported
- Disable KVM_HC_CLOCK_PAIRING in TSC catchup mode
- Ensure async page fault token is nonzero
- Fix lockdep false negative
- Fix FPU migration regression from the AMX changes
x86 guest:
- Don't use PV TLB/IPI/yield on uniprocessor guests
PPC:
- reserve capability id (topic branch for ppc/kvm)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: nSVM: disallow userspace setting of MSR_AMD64_TSC_RATIO to non default value when tsc scaling disabled
KVM: x86/mmu: make apf token non-zero to fix bug
KVM: PPC: reserve capability 210 for KVM_CAP_PPC_AIL_MODE_3
x86/kvm: Don't use pv tlb/ipi/sched_yield if on 1 vCPU
x86/kvm: Fix compilation warning in non-x86_64 builds
x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0
x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0
kvm: x86: Disable KVM_HC_CLOCK_PAIRING if tsc is in always catchup mode
KVM: Fix lockdep false negative during host resume
KVM: x86: Add KVM_CAP_ENABLE_CAP to x86
xfpregs_set() handles 32-bit REGSET_XFP and 64-bit REGSET_FP. The actual
code treats these regsets as modern FX state (i.e. the beginning part of
XSTATE). The declarations of the regsets thought they were the legacy
i387 format. The code thought they were the 32-bit (no xmm8..15) variant
of XSTATE and, for good measure, made the high bits disappear by zeroing
the wrong part of the buffer. The latter broke ptrace, and everything
else confused anyone trying to understand the code. In particular, the
nonsense definitions of the regsets confused me when I wrote this code.
Clean this all up. Change the declarations to match reality (which
shouldn't change the generated code, let alone the ABI) and fix
xfpregs_set() to clear the correct bits and to only do so for 32-bit
callers.
Fixes: 6164331d15 ("x86/fpu: Rewrite xfpregs_set()")
Reported-by: Luís Ferreira <contact@lsferreira.net>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215524
Link: https://lore.kernel.org/r/YgpFnZpF01WwR8wU@zn.tnic
During host/guest switch (like in kvm_arch_vcpu_ioctl_run()), the kernel
swaps the fpu between host/guest contexts, by using fpu_swap_kvm_fpstate().
When xsave feature is available, the fpu swap is done by:
- xsave(s) instruction, with guest's fpstate->xfeatures as mask, is used
to store the current state of the fpu registers to a buffer.
- xrstor(s) instruction, with (fpu_kernel_cfg.max_features &
XFEATURE_MASK_FPSTATE) as mask, is used to put the buffer into fpu regs.
For xsave(s) the mask is used to limit what parts of the fpu regs will
be copied to the buffer. Likewise on xrstor(s), the mask is used to
limit what parts of the fpu regs will be changed.
The mask for xsave(s), the guest's fpstate->xfeatures, is defined on
kvm_arch_vcpu_create(), which (in summary) sets it to all features
supported by the cpu which are enabled on kernel config.
This means that xsave(s) will save to guest buffer all the fpu regs
contents the cpu has enabled when the guest is paused, even if they
are not used.
This would not be an issue, if xrstor(s) would also do that.
xrstor(s)'s mask for host/guest swap is basically every valid feature
contained in kernel config, except XFEATURE_MASK_PKRU.
Accordingto kernel src, it is instead switched in switch_to() and
flush_thread().
Then, the following happens with a host supporting PKRU starts a
guest that does not support it:
1 - Host has XFEATURE_MASK_PKRU set. 1st switch to guest,
2 - xsave(s) fpu regs to host fpustate (buffer has XFEATURE_MASK_PKRU)
3 - xrstor(s) guest fpustate to fpu regs (fpu regs have XFEATURE_MASK_PKRU)
4 - guest runs, then switch back to host,
5 - xsave(s) fpu regs to guest fpstate (buffer now have XFEATURE_MASK_PKRU)
6 - xrstor(s) host fpstate to fpu regs.
7 - kvm_vcpu_ioctl_x86_get_xsave() copy guest fpstate to userspace (with
XFEATURE_MASK_PKRU, which should not be supported by guest vcpu)
On 5, even though the guest does not support PKRU, it does have the flag
set on guest fpstate, which is transferred to userspace via vcpu ioctl
KVM_GET_XSAVE.
This becomes a problem when the user decides on migrating the above guest
to another machine that does not support PKRU: the new host restores
guest's fpu regs to as they were before (xrstor(s)), but since the new
host don't support PKRU, a general-protection exception ocurs in xrstor(s)
and that crashes the guest.
This can be solved by making the guest's fpstate->user_xfeatures hold
a copy of guest_supported_xcr0. This way, on 7 the only flags copied to
userspace will be the ones compatible to guest requirements, and thus
there will be no issue during migration.
As a bonus, it will also fail if userspace tries to set fpu features
(with the KVM_SET_XSAVE ioctl) that are not compatible to the guest
configuration. Such features will never be returned by KVM_GET_XSAVE
or KVM_GET_XSAVE2.
Also, since kvm_vcpu_after_set_cpuid() now sets fpstate->user_xfeatures,
there is not need to set it in kvm_check_cpuid(). So, change
fpstate_realloc() so it does not touch fpstate->user_xfeatures if a
non-NULL guest_fpu is passed, which is the case when kvm_check_cpuid()
calls it.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-2-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
KVM can disable the write emulation for the XFD MSR when the vCPU's fpstate
is already correctly sized to reduce the overhead.
When write emulation is disabled the XFD MSR state after a VMEXIT is
unknown and therefore not in sync with the software states in fpstate and
the per CPU XFD cache.
Provide fpu_sync_guest_vmexit_xfd_state() which has to be invoked after a
VMEXIT before enabling interrupts when write emulation is disabled for the
XFD MSR.
It could be invoked unconditionally even when write emulation is enabled
for the price of a pointless MSR read.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-21-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace needs to inquire KVM about the buffer size to work
with the new KVM_SET_XSAVE and KVM_GET_XSAVE2. Add the size info
to guest_fpu for KVM to access.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-18-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest XFD can be updated either in the emulation path or in the
restore path.
Provide a wrapper to update guest_fpu::fpstate::xfd. If the guest
fpstate is currently in-use, also update the per-cpu xfd cache and
the actual MSR.
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-10-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a wrapper for expanding the guest fpstate buffer according
to requested xfeatures. KVM wants to call this wrapper to manage
any dynamic xstate used by the guest.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220105123532.12586-8-yang.zhong@intel.com>
[Remove unnecessary 32-bit check. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest support for dynamically enabled FPU features requires a few
modifications to the enablement function which is currently invoked from
the #NM handler:
1) Use guest permissions and sizes for the update
2) Update fpu_guest state accordingly
3) Take into account that the enabling can be triggered either from a
running guest via XSETBV and MSR_IA32_XFD write emulation or from
a guest restore. In the latter case the guests fpstate is not the
current tasks active fpstate.
Split the function and implement the guest mechanics throughout the
callchain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-7-yang.zhong@intel.com>
[Add 32-bit stub for __xfd_enable_feature. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vCPU threads are different from native tasks regarding to the initial XFD
value. While all native tasks follow a fixed value (init_fpstate::xfd)
established by the FPU core at boot, vCPU threads need to obey the reset
value (i.e. ZERO) defined by the specification, to meet the expectation of
the guest.
Let the caller supply an argument and adjust the host and guest related
invocations accordingly.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-6-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
misleading/wrong stacktraces and confuse RELIABLE_STACKTRACE and
LIVEPATCH as the backtrace misses the function which is being fixed up.
- Add Straight Light Speculation mitigation support which uses a new
compiler switch -mharden-sls= which sticks an INT3 after a RET or an
indirect branch in order to block speculation after them. Reportedly,
CPUs do speculate behind such insns.
- The usual set of cleanups and improvements
-----BEGIN PGP SIGNATURE-----
iQIyBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHfKA0ACgkQEsHwGGHe
VUqLJg/2I2X2xXr5filJVaK+sQgmvDzk67DKnbxRBW2xcPF+B5sSW5yhe3G5UPW7
SJVdhQ3gHcTiliGGlBf/VE7KXbqxFN0vO4/VFHZm78r43g7OrXTxz6WXXQRJ1n67
U3YwRH3b6cqXZNFMs+X4bJt6qsGJM1kdTTZ2as4aERnaFr5AOAfQvfKbyhxLe/XA
3SakfYISVKCBQ2RkTfpMpwmqlsatGFhTC5IrvuDQ83dDsM7O+Dx1J6Gu3fwjKmie
iVzPOjCh+xTpZQp/SIZmt7MzoduZvpSym4YVyHvEnMiexQT4AmyaRthWqrhnEXY/
qOvj8/XIqxmix8EaooGqRIK0Y2ZegxkPckNFzaeC3lsWohwMIGIhNXwHNEeuhNyH
yvNGAW9Cq6NeDRgz5MRUXcimYw4P4oQKYLObS1WqFZhNMqm4sNtoEAYpai/lPYfs
zUDckgXF2AoPOsSqy3hFAVaGovAgzfDaJVzkt0Lk4kzzjX2WQiNLhmiior460w+K
0l2Iej58IajSp3MkWmFH368Jo8YfUVmkjbbpsmjsBppA08e1xamJB7RmswI/Ezj6
s5re6UioCD+UYdjWx41kgbvYdvIkkZ2RLrktoZd/hqHrOLWEIiwEbyFO2nRFJIAh
YjvPkB1p7iNuAeYcP1x9Ft9GNYVIsUlJ+hK86wtFCqy+abV+zQ==
=R52z
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Get rid of all the .fixup sections because this generates
misleading/wrong stacktraces and confuse RELIABLE_STACKTRACE and
LIVEPATCH as the backtrace misses the function which is being fixed
up.
- Add Straight Line Speculation mitigation support which uses a new
compiler switch -mharden-sls= which sticks an INT3 after a RET or an
indirect branch in order to block speculation after them. Reportedly,
CPUs do speculate behind such insns.
- The usual set of cleanups and improvements
* tag 'x86_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/entry_32: Fix segment exceptions
objtool: Remove .fixup handling
x86: Remove .fixup section
x86/word-at-a-time: Remove .fixup usage
x86/usercopy: Remove .fixup usage
x86/usercopy_32: Simplify __copy_user_intel_nocache()
x86/sgx: Remove .fixup usage
x86/checksum_32: Remove .fixup usage
x86/vmx: Remove .fixup usage
x86/kvm: Remove .fixup usage
x86/segment: Remove .fixup usage
x86/fpu: Remove .fixup usage
x86/xen: Remove .fixup usage
x86/uaccess: Remove .fixup usage
x86/futex: Remove .fixup usage
x86/msr: Remove .fixup usage
x86/extable: Extend extable functionality
x86/entry_32: Remove .fixup usage
x86/entry_64: Remove .fixup usage
x86/copy_mc_64: Remove .fixup usage
...
don't contribute to frequency throttling
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcAjYACgkQEsHwGGHe
VUqgkw//RixgjMiu/YH50mqrpYCtk6WPtecssMeVMth4ATWD/JoDzyh+r4ZqfYXI
owSQ3tZA+bByXT7TRhI8XONYQhj1+45UvG6bI6LNJN0CVzw64g7MkHsh0f1tfjft
Tt2SsKDWYQibMmHLZ01aLi7/ibTevkdKeEIvtbJSTW/qyjXYKKzpcFDBQeoPcP8R
qfUwfLm/YbWR0wCoeaR2WCGwgXwV+6rUk+mHMK0sxws8/jrtz+OQWnTHsmvUg1Re
pJqRSQvwkeXU+j2JMOntz//66Cw00fOrbe1sQ6VWf0+VbHGKdhXXiWjMBXj+Ye8d
53CSsQzkIeNwD505W+Yx+Ju2irxk2H2NgCN7HXokohYYLy8rGpy5jK8AinCHWflU
3HD9ee1nF9laiyDZczu8yL6tD5gWWuHJRgDr3jm5juOPaYVEAbZMEc747JOPpi8V
4HBlQSzXh179vNEEBBiTOuJN7t9PkJD7SHfW9sHo6tQ7wyd42qDCw0gGGAqh+upp
1p+2IoGM9r2fL8aAWlV2HALf0E+ugywIfmb2O5HpKgk+3z+fb/DwaZ6T7posM+gr
r6JwXNOCUFcyJzVeTokmRzWO079qHyxmL+pWF1S5y7mHiVHoCpjM1olDsCkDdsKI
Sp4iZ70soqDSOq4EO6twVyyrt0GsoshNd/p9GHWA2rRQKyJFRhs=
=aPgM
-----END PGP SIGNATURE-----
Merge tag 'x86_fpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu update from Borislav Petkov:
"A single x86/fpu update for 5.17:
- Exclude AVX opmask registers use from AVX512 state tracking as they
don't contribute to frequency throttling"
* tag 'x86_fpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Correct AVX512 state tracking
To support dynamically enabled FPU features for guests prepare the guest
pseudo FPU container to keep track of the currently enabled xfeatures and
the guest permissions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-3-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM requires a clear separation of host user space and guest permissions
for dynamic XSTATE components.
Add a guest permissions member to struct fpu and a separate set of prctl()
arguments: ARCH_GET_XCOMP_GUEST_PERM and ARCH_REQ_XCOMP_GUEST_PERM.
The semantics are equivalent to the host user space permission control
except for the following constraints:
1) Permissions have to be requested before the first vCPU is created
2) Permissions are frozen when the first vCPU is created to ensure
consistency. Any attempt to expand permissions via the prctl() after
that point is rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-2-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Employ EX_TYPE_EFAULT_REG to store '-EFAULT' into the %[err] register
on exception. All the callers only ever test for 0, so the change
from -1 to -EFAULT is immaterial.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101325.604494664@infradead.org
Add a separate, local mask for tracking AVX512 usage which does not
include the opmask xfeature set. Opmask registers usage does not cause
frequency throttling so it is a completely unnecessary false positive.
While at it, carve it out into a separate function to keep that
abomination extracted out.
[ bp: Rediff and cleanup ontop of 5.16-rc1. ]
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20210920053951.4093668-1-goldstein.w.n@gmail.com
- Do not log spurious corrected MCEs on SKL too, due to an erratum
- Clarify the path of paravirt ops patches upstream
- Add an optimization to avoid writing out AMX components to sigframes
when former are in init state
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmGQ3CgACgkQEsHwGGHe
VUoLAA/+NXRvcBHYkLaByT9f4OI6B79HzyguIBSfipYiw8ir0H7uEdV5FUCCUgCz
egBRVFpOsXWt1teeuu6ViO+WBHncUxG/ryZ0ka35lri/3kuVYnugZExWDs4MrGR5
vehRXehOxYNRaYc3oLYjubSbxqF1nWz3WWfGfhiBKk0jT/S1T9tX6lsRXlKsJCgj
M4x5aqBWP8HTbFQfqjdHwagNitmSKzgjZvMcC4UWcql33ZCycbjvRdrAzBtw7WRI
UBvgxWVmeMoagu5fqEOoph1oSoFxWuFrweFUjnxJmT6uZrTsfF7BVgXkxdG6eYUy
2Xogcd4bPDBiRgbs0vPEog1tyyrKHOQ6p1pvksySKMPq6ULcSZ6hBpEZRpgr6Y9u
0jB3P6weQgCckx5Hd+iwvX1a+GvEuHSEqAE+j160wFyrsBS5Cir3P1WqthWaPd5I
3nH3h955PokUHPUioUhdf+8cfuP6h6K0nz1gdYI8GR8+fJHhEceT+pLLeyIxj/VM
yr+bq+V7D6Cg62w3z3s9Dzg2XKpxStu1R9L1N/K8MtIGf6Uc7paL6xR27XxhmBp5
Y6bGZw0mxxFhp6AEsFWo3rwLL9Dl5DmFcfgUHHpPK5VP0pVWp48Uapx2Hi2/JzAo
c1o4UkPQa/EZJBPTklmGkS1JNp/2TsEL4Fw7sew+j7DWtsJpCfk=
=Ge2T
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Add the model number of a new, Raptor Lake CPU, to intel-family.h
- Do not log spurious corrected MCEs on SKL too, due to an erratum
- Clarify the path of paravirt ops patches upstream
- Add an optimization to avoid writing out AMX components to sigframes
when former are in init state
* tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Raptor Lake to Intel family
x86/mce: Add errata workaround for Skylake SKX37
MAINTAINERS: Add some information to PARAVIRT_OPS entry
x86/fpu: Optimize out sigframe xfeatures when in init state
tl;dr: AMX state is ~8k. Signal frames can have space for this
~8k and each signal entry writes out all 8k even if it is zeros.
Skip writing zeros for AMX to speed up signal delivery by about
4% overall when AMX is in its init state.
This is a user-visible change to the sigframe ABI.
== Hardware XSAVE Background ==
XSAVE state components may be tracked by the processor as being
in their initial configuration. Software can detect which
features are in this configuration by looking at the XSTATE_BV
field in an XSAVE buffer or with the XGETBV(1) instruction.
Both the XSAVE and XSAVEOPT instructions enumerate features s
being in the initial configuration via the XSTATE_BV field in the
XSAVE header, However, XSAVEOPT declines to actually write
features in their initial configuration to the buffer. XSAVE
writes the feature unconditionally, regardless of whether it is
in the initial configuration or not.
Basically, XSAVE users never need to inspect XSTATE_BV to
determine if the feature has been written to the buffer.
XSAVEOPT users *do* need to inspect XSTATE_BV. They might also
need to clear out the buffer if they want to make an isolated
change to the state, like modifying one register.
== Software Signal / XSAVE Background ==
Signal frames have historically been written with XSAVE itself.
Each state is written in its entirety, regardless of being in its
initial configuration.
In other words, the signal frame ABI uses the XSAVE behavior, not
the XSAVEOPT behavior.
== Problem ==
This means that any application which has acquired permission to
use AMX via ARCH_REQ_XCOMP_PERM will write 8k of state to the
signal frame. This 8k write will occur even when AMX was in its
initial configuration and software *knows* this because of
XSTATE_BV.
This problem also exists to a lesser degree with AVX-512 and its
2k of state. However, AVX-512 use does not require
ARCH_REQ_XCOMP_PERM and is more likely to have existing users
which would be impacted by any change in behavior.
== Solution ==
Stop writing out AMX xfeatures which are in their initial state
to the signal frame. This effectively makes the signal frame
XSAVE buffer look as if it were written with a combination of
XSAVEOPT and XSAVE behavior. Userspace which handles XSAVEOPT-
style buffers should be able to handle this naturally.
For now, include only the AMX xfeatures: XTILE and XTILEDATA in
this new behavior. These require new ABI to use anyway, which
makes their users very unlikely to be broken. This XSAVEOPT-like
behavior should be expected for all future dynamic xfeatures. It
may also be extended to legacy features like AVX-512 in the
future.
Only attempt this optimization on systems with dynamic features.
Disable dynamic feature support (XFD) if XGETBV1 is unavailable
by adding a CPUID dependency.
This has been measured to reduce the *overall* cycle cost of
signal delivery by about 4%.
Fixes: 2308ee57d9 ("x86/fpu/amx: Enable the AMX feature in 64-bit mode")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: "Chang S. Bae" <chang.seok.bae@intel.com>
Link: https://lore.kernel.org/r/20211102224750.FA412E26@davehans-spike.ostc.intel.com
Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock. In the most basic scenario, that buffer will not be
resident and it will be mapped to the same file. Accessing the buffer
will trigger a page fault, and gfs2 will deadlock trying to take the
same inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEJZs3krPW0xkhLMTc1b+f6wMTZToFAmGBPisUHGFncnVlbmJh
QHJlZGhhdC5jb20ACgkQ1b+f6wMTZTpE6A/7BezUnGuNJxJrR8pC+vcLYA7xAgUU
6STQ6IN7w5UHRlSkNzZxZ2XPxW4uVQ4SxSEeaLqBsHZihepjcLNFZ/8MhQ6UPSD0
8noHOi7CoIcp6IuWQtCpxRM/xjjm2SlMt2XbVJZaiJcdzCV9gB6TU9EkBRq7Zm/X
9WFBbv1xZF0skn9ISCJvNtiiI+VyWKgMDUKxJUiTQjmJcklyyqHcVGmQi9BjqPz4
4s3F+WH6CoGbDKlmNk/6Y9wZ/2+sbvGswVscUxPwJVPoZWsR1xBBUdAeAmEMD1P4
BgE/Y1J8JXyVPYtyvZKq70XUhKdQkxB7RfX87YasOk9mY4Kjd5rIIGEykh+o2vC9
kDhCHvf2Mnw5I6Rum3B7UXyB1vemY+fECIHsXhgBnS+ztabRtcAdpCuWoqb43ymw
yEX1KwXyU4FpRYbrRvdZT42Fmh6ty8TW+N4swg8S2TrffirvgAi5yrcHZ4mPupYv
lyzvsCW7Wv8hPXn/twNObX+okRgJnsxcCdBXARdCnRXfA8tH23xmu88u8RA1Vdxh
nzTvv6Dx2EowwojuDWMx29Mw3fA2IqIfbOV+4FaRU7NZ2ZKtknL8yGl27qQUsMoJ
vYsHTmagasjQr+NDJ3vQRLCw+JQ6B1hENpdkmixFD9moo7X1ZFW3HBi/UL973Bv6
5CmgeXto8FRUFjI=
=WeNd
-----END PGP SIGNATURE-----
Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
Explicitly include that header to avoid build errors when vzalloc()
becomes "invisible" to the compiler due to header reorganizations.
This is not a problem in the tip tree but occurred when integrating
linux-next.
[ bp: Commit message. ]
Link: https://lore.kernel.org/r/20211025151144.552c60ca@canb.auug.org.au
Fixes: 69f6ed1d14 ("x86/fpu: Provide infrastructure for KVM FPU cleanup")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Add the AMX state components in XFEATURE_MASK_USER_SUPPORTED and the
TILE_DATA component to the dynamic states and update the permission check
table accordingly.
This is only effective on 64 bit kernels as for 32bit kernels
XFEATURE_MASK_TILE is defined as 0.
TILE_DATA is caller-saved state and the only dynamic state. Add build time
sanity check to ensure the assumption that every dynamic feature is caller-
saved.
Make AMX state depend on XFD as it is dynamic feature.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-24-chang.seok.bae@intel.com
To handle the dynamic sizing of buffers on first use the XFD MSR has to be
armed. Store the delta between the maximum available and the default
feature bits in init_fpstate where it can be retrieved for task creation.
If the delta is non zero then dynamic features are enabled. This needs also
to enable the static key which guards the XFD updates. This is delayed to
an initcall because the FPU setup runs before jump labels are initialized.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-23-chang.seok.bae@intel.com
When dynamically enabled states are supported the maximum and default sizes
for the kernel buffers and user space interfaces are not longer identical.
Put the necessary calculations in place which only take the default enabled
features into account.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-22-chang.seok.bae@intel.com
The XSTATE initialization uses check_xstate_against_struct() to sanity
check the size of XSTATE-enabled features. AMX is a XSAVE-enabled feature,
and its size is not hard-coded but discoverable at run-time via CPUID.
The AMX state is composed of state components 17 and 18, which are all user
state components. The first component is the XTILECFG state of a 64-byte
tile-related control register. The state component 18, called XTILEDATA,
contains the actual tile data, and the state size varies on
implementations. The architectural maximum, as defined in the CPUID(0x1d,
1): EAX[15:0], is a byte less than 64KB. The first implementation supports
8KB.
Check the XTILEDATA state size dynamically. The feature introduces the new
tile register, TMM. Define one register struct only and read the number of
registers from CPUID. Cross-check the overall size with CPUID again.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-21-chang.seok.bae@intel.com
The kernel checks at boot time which features are available by walking a
XSAVE feature table which contains the CPUID feature bit numbers which need
to be checked whether a feature is available on a CPU or not. So far the
feature numbers have been linear, but AMX will create a gap which the
current code cannot handle.
Make the table entries explicitly indexed and adjust the loop code
accordingly to prepare for that.
No functional change.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Len Brown <len.brown@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-20-chang.seok.bae@intel.com
The fpstate embedded in struct fpu is the default state for storing the FPU
registers. It's sized so that the default supported features can be stored.
For dynamically enabled features the register buffer is too small.
The #NM handler detects first use of a feature which is disabled in the
XFD MSR. After handling permission checks it recalculates the size for
kernel space and user space state and invokes fpstate_realloc() which
tries to reallocate fpstate and install it.
Provide the allocator function which checks whether the current buffer size
is sufficient and if not allocates one. If allocation is successful the new
fpstate is initialized with the new features and sizes and the now enabled
features is removed from the task's XFD mask.
realloc_fpstate() uses vzalloc(). If use of this mechanism grows to
re-allocate buffers larger than 64KB, a more sophisticated allocation
scheme that includes purpose-built reclaim capability might be justified.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-19-chang.seok.bae@intel.com
If the XFD MSR has feature bits set then #NM will be raised when user space
attempts to use an instruction related to one of these features.
When the task has no permissions to use that feature, raise SIGILL, which
is the same behavior as #UD.
If the task has permissions, calculate the new buffer size for the extended
feature set and allocate a larger fpstate. In the unlikely case that
vzalloc() fails, SIGSEGV is raised.
The allocation function will be added in the next step. Provide a stub
which fails for now.
[ tglx: Updated serialization ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-18-chang.seok.bae@intel.com
The IA32_XFD_MSR allows to arm #NM traps for XSTATE components which are
enabled in XCR0. The register has to be restored before the tasks XSTATE is
restored. The life time rules are the same as for FPU state.
XFD is updated on return to userspace only when the FPU state of the task
is not up to date in the registers. It's updated before the XRSTORS so
that eventually enabled dynamic features are restored as well and not
brought into init state.
Also in signal handling for restoring FPU state from user space the
correctness of the XFD state has to be ensured.
Add it to CPU initialization and resume as well.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-17-chang.seok.bae@intel.com
Add debug functionality to ensure that the XFD MSR is up to date for XSAVE*
and XRSTOR* operations.
[ tglx: Improve comment. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-16-chang.seok.bae@intel.com
Add storage for XFD register state to struct fpstate. This will be used to
store the XFD MSR state. This will be used for switching the XFD MSR when
FPU content is restored.
Add a per-CPU variable to cache the current MSR value so the MSR has only
to be written when the values are different.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-15-chang.seok.bae@intel.com
On exec(), extended register states saved in the buffer is cleared. With
dynamic features, each task carries variables besides the register states.
The struct fpu has permission information and struct fpstate contains
buffer size and feature masks. They are all dynamically updated with
dynamic features.
Reset the current task's entire FPU data before an exec() so that the new
task starts with default permission and fpstate.
Rename the register state reset function because the old naming confuses as
it does not reset struct fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-12-chang.seok.bae@intel.com
The default portion of the parent's FPU state is saved in a child task.
With dynamic features enabled, the non-default portion is not saved in a
child's fpstate because these register states are defined to be
caller-saved. The new task's fpstate is therefore the default buffer.
Fork inherits the permission of the parent.
Also, do not use memcpy() when TIF_NEED_FPU_LOAD is set because it is
invalid when the parent has dynamic features.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-11-chang.seok.bae@intel.com
The software reserved portion of the fxsave frame in the signal frame
is copied from structures which have been set up at boot time. With
dynamically enabled features the content of these structures is no
longer correct because the xfeatures and size can be different per task.
Calculate the software reserved portion at runtime and fill in the
xfeatures and size values from the tasks active fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-10-chang.seok.bae@intel.com
To allow building up the infrastructure required to support dynamically
enabled FPU features, add:
- XFEATURES_MASK_DYNAMIC
This constant will hold xfeatures which can be dynamically enabled.
- fpu_state_size_dynamic()
A static branch for 64-bit and a simple 'return false' for 32-bit.
This helper allows to add dynamic-feature-specific changes to common
code which is shared between 32-bit and 64-bit without #ifdeffery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-8-chang.seok.bae@intel.com
Dynamically enabled XSTATE features are by default disabled for all
processes. A process has to request permission to use such a feature.
To support this implement a architecture specific prctl() with the options:
- ARCH_GET_XCOMP_SUPP
Copies the supported feature bitmap into the user space provided
u64 storage. The pointer is handed in via arg2
- ARCH_GET_XCOMP_PERM
Copies the process wide permitted feature bitmap into the user space
provided u64 storage. The pointer is handed in via arg2
- ARCH_REQ_XCOMP_PERM
Request permission for a feature set. A feature set can be mapped to a
facility, e.g. AMX, and can require one or more XSTATE components to
be enabled.
The feature argument is the number of the highest XSTATE component
which is required for a facility to work.
The request argument is not a user supplied bitmap because that makes
filtering harder (think seccomp) and even impossible because to
support 32bit tasks the argument would have to be a pointer.
The permission mechanism works this way:
Task asks for permission for a facility and kernel checks whether that's
supported. If supported it does:
1) Check whether permission has already been granted
2) Compute the size of the required kernel and user space buffer
(sigframe) size.
3) Validate that no task has a sigaltstack installed
which is smaller than the resulting sigframe size
4) Add the requested feature bit(s) to the permission bitmap of
current->group_leader->fpu and store the sizes in the group
leaders fpu struct as well.
If that is successful then the feature is still not enabled for any of the
tasks. The first usage of a related instruction will result in a #NM
trap. The trap handler validates the permission bit of the tasks group
leader and if permitted it installs a larger kernel buffer and transfers
the permission and size info to the new fpstate container which makes all
the FPU functions which require per task information aware of the extended
feature set.
[ tglx: Adopted to new base code, added missing serialization,
massaged namings, comments and changelog ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-7-chang.seok.bae@intel.com
The upcoming prctl() which is required to request the permission for a
dynamically enabled feature will also provide an option to retrieve the
supported features. If the CPU does not support XSAVE, the supported
features would be 0 even when the CPU supports FP and SSE.
Provide separate storage for the legacy feature set to avoid that and fill
in the bits in the legacy init function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-6-chang.seok.bae@intel.com
Dynamically enabled features can be requested by any thread of a running
process at any time. The request does neither enable the feature nor
allocate larger buffers. It just stores the permission to use the feature
by adding the features to the permission bitmap and by calculating the
required sizes for kernel and user space.
The reallocation of the kernel buffer happens when the feature is used
for the first time which is caught by an exception. The permission
bitmap is then checked and if the feature is permitted, then it becomes
fully enabled. If not, the task dies similarly to a task which uses an
undefined instruction.
The size information is precomputed to allow proper sigaltstack size checks
once the feature is permitted, but not yet in use because otherwise this
would open race windows where too small stacks could be installed causing
a later fail on signal delivery.
Initialize them to the default feature set and sizes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-5-chang.seok.bae@intel.com
Split out the size calculation from the paranoia check so it can be used
for recalculating buffer sizes when dynamically enabled features are
supported.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
[ tglx: Adopted to changed base code ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-4-chang.seok.bae@intel.com
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().
With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.
Convert the KVM FPU code over to this new scheme.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().
With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.
Provide:
- An allocator which initializes the state properly
- A replacement for the existing FPU swap mechanim
Aside of the reduced memory footprint, this also makes state switching
more efficient when TIF_FPU_NEED_LOAD is set. It does not require a
memcpy as the state is already correct in the to be swapped out fpstate.
The existing interfaces will be removed once KVM is converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185312.954684740@linutronix.de
Now that everything is mopped up, move all the helpers and prototypes into
the core header. They are not required by the outside.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.514095101@linutronix.de
xfeatures_mask_fpstate() is no longer valid when dynamically enabled
features come into play.
Rework restore_regs_from_fpstate() so it takes a constant mask which will
then be applied against the maximum feature set so that the restore
operation brings all features which are not in the xsave buffer xfeature
bitmap into init state.
This ensures that if the previous task used a dynamically enabled feature
that the task which restores has all unused components properly initialized.
Cleanup the last user of xfeatures_mask_fpstate() as well and remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.461348278@linutronix.de
Use the new fpu_user_cfg to retrieve the information instead of
xfeatures_mask_uabi() which will be no longer correct when dynamically
enabled features become available.
Using fpu_user_cfg is appropriate when setting XCOMP_BV in the
init_fpstate since it has space allocated for "max_features". But,
normal fpstates might only have space for default xfeatures. Since
XRSTOR* derives the format of the XSAVE buffer from XCOMP_BV, this can
lead to XRSTOR reading out of bounds.
So when copying actively used fpstate, simply read the XCOMP_BV features
bits directly out of the fpstate instead.
This correction courtesy of Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.408879849@linutronix.de
Move the feature mask storage to the kernel and user config
structs. Default and maximum feature set are the same for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.352041752@linutronix.de
Use the new kernel and user space config storage to store and retrieve the
XSTATE buffer sizes. The default and the maximum size are the same for now,
but will change when support for dynamically enabled features is added.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.296830097@linutronix.de
The size calculations are partially unreadable gunk. Clean them up.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.241223689@linutronix.de