The __omap_dm_timer_set_source() function is only used by the system timer
(clock-events and clock-source) code for OMAP2+ devices. Therefore, we can
remove this code from the dmtimer driver and move it to the system timer
code for OMAP2+ devices.
The current __omap_dm_timer_set_source() function calls clk_disable() before
calling clk_set_parent() and clk_enable() afterwards. We can avoid these calls
to clk_disable/enable by moving the calls to omap_hwmod_setup_one() and
omap_hwmod_enable() to after the call to clk_set_parent() in
omap_dm_timer_init_one().
The function omap_hwmod_setup_one() will enable the timers functional clock
and therefore increment the use-count of the functional clock to 1.
clk_set_parent() will fail if the use-count is not 0 when called. Hence, if
omap_hwmod_setup_one() is called before clk_set_parent(), we will need to call
clk_disable() before calling clk_set_parent() to decrement the use-count.
Hence, avoid these extra calls to disable and enable the functional clock by
moving the calls to omap_hwmod_setup_one() and omap_hwmod_enable() to after
clk_set_parent().
We can also remove the delay from the __omap_dm_timer_set_source() function
because enabling the clock will now be handled via the HWMOD framework by
calling omap_hwmod_setup_one(). Therefore, by moving the calls to
omap_hwmod_setup_one() and omap_hwmod_enable() to after the call to
clk_set_parent(), we can simply replace __omap_dm_timer_set_source() with
clk_set_parent().
It should be safe to move these hwmod calls to later in the
omap_dm_timer_init_one() because other calls to the hwmod layer that occur
before are just requesting resource information.
Testing includes boot testing on OMAP2420 H4, OMAP3430 SDP and OMAP4430 Blaze
with the following configurations:
1. CONFIG_OMAP_32K_TIMER=y
2. CONFIG_OMAP_32K_TIMER=y and boot parameter "clocksource=gp_timer"
3. CONFIG_OMAP_32K_TIMER not set
4. CONFIG_OMAP_32K_TIMER not set and boot parameter "clocksource=gp_timer"
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Currently OMAP2+ devices are using the function __omap_dm_timer_reset() to
configure the clock-activity, idle, wakeup-enable and auto-idle fields in the
timer OCP_CFG register. The name of the function is mis-leading because this
function does not actually perform a reset of the timer.
For OMAP2+ devices, HWMOD is responsible for reseting and configuring the
timer OCP_CFG register. Therefore, do not use __omap_dm_timer_reset() for
OMAP2+ devices and rely on HWMOD. Furthermore, some timer instances do not
have the fields clock-activity, wakeup-enable and auto-idle and so this
function could configure the OCP_CFG register incorrectly.
Currently HWMOD is not configuring the clock-activity field in the OCP_CFG
register for timers that have this field. Commit 0f0d080 (ARM: OMAP: DMTimer:
Use posted mode) configures the clock-activity field to keep the f-clk enabled
so that the wake-up capability is enabled. Therefore, add the appropriate flags
to the timer HWMOD structures to configure this field in the same way.
For OMAP2/3 devices all dmtimers have the clock-activity field, where as for
OMAP4 devices, only dmtimer 1, 2 and 10 have the clock-activity field.
Verified on OMAP2420 H4, OMAP3430 Beagle and OMAP4430 Panda that HWMOD is
configuring the dmtimer OCP_CFG register as expected for clock-events timer.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
For OMAP2/3 devices, the HWMOD data does not define a software reset status
field for the DMTIMERs. Therefore, when HWMOD performs a soft-reset of the
DMTIMER we don't check and wait for the reset to complete. For OMAP2/3 devices,
the software reset status for a DMTIMER can be read from bit 0 of the DMTIMER
TISTAT register (referred to as the SYSS register in HWMOD). Add the
appropriate HWMOD definitions so that HWMOD will check the software reset
status when performing a software reset of the DMTIMER.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Currently, the OMAP3 HWMOD data defines two TIOCP_CFG register structures
(referred to as the SYSC register in the HWMOD data) where timers 1, 2 and 10
use one of the defintions and the other timers use the other definition. For
OMAP3 devices the structure of the DMTIMER TIOCP_CFG register is the same for
all 12 instances of the DMTIMER. Please note that this is a difference between
OMAP3 and OMAP4 and could be the source of the confusion.
For OMAP3 devices, the DMTIMER TIOCP_CFG register has the fields,
clock-activity, emufree, idlemode, enwakeup, softreset and autoidle for all
12 timers. Therefore, remove one of the SYSC register definitions for the
DMTIMERs and ensure the appropriate register fields are defined for all
DMTIMERs.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Errata Titles:
i103: Delay needed to read some GP timer, WD timer and sync timer
registers after wakeup (OMAP3/4)
i767: Delay needed to read some GP timer registers after wakeup (OMAP5)
Description (i103/i767):
If a General Purpose Timer (GPTimer) is in posted mode
(TSICR [2].POSTED=1), due to internal resynchronizations, values read in
TCRR, TCAR1 and TCAR2 registers right after the timer interface clock
(L4) goes from stopped to active may not return the expected values. The
most common event leading to this situation occurs upon wake up from
idle.
GPTimer non-posted synchronization mode is not impacted by this
limitation.
Workarounds:
1). Disable posted mode
2). Use static dependency between timer clock domain and MPUSS clock
domain
3). Use no-idle mode when the timer is active
Workarounds #2 and #3 are not pratical from a power standpoint and so
workaround #1 has been implemented. Disabling posted mode adds some CPU
overhead for configuring and reading the timers as the CPU has to wait
for accesses to be re-synchronised within the timer. However, disabling
posted mode guarantees correct operation.
Please note that it is safe to use posted mode for timers if the counter
(TCRR) and capture (TCARx) registers will never be read. An example of
this is the clock-event system timer. This is used by the kernel to
schedule events however, the timers counter is never read and capture
registers are not used. Given that the kernel configures this timer
often yet never reads the counter register it is safe to enable posted
mode in this case. Hence, for the timer used for kernel clock-events,
posted mode is enabled by overriding the errata for devices that are
impacted by this defect.
For drivers using the timers that do not read the counter or capture
registers and wish to use posted mode, can override the errata and
enable posted mode by making the following function calls.
__omap_dm_timer_override_errata(timer, OMAP_TIMER_ERRATA_I103_I767);
__omap_dm_timer_enable_posted(timer);
Both dmtimers and watchdogs are impacted by this defect this patch only
implements the workaround for the dmtimer. Currently the watchdog driver
does not read the counter register and so no workaround is necessary.
Posted mode will be disabled for all OMAP2+ devices (including AM33xx)
using a GP timer as a clock-source timer to guarantee correct operation.
This is not necessary for OMAP24xx devices but the default clock-source
timer for OMAP24xx devices is the 32k-sync timer and not the GP timer
and so should not have any impact. This should be re-visited for future
devices if this errata is fixed.
Confirmed with Vaibhav Hiremath that this bug also impacts AM33xx
devices.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
For OMAP2+ devices, when using DMTIMERs for system timers (clock-events and
clock-source) the posted mode configuration of the timers is used. To allow
the compiler to optimise the functions for configuring and reading the system
timers, the posted flag variable is hard-coded with the value 1. To make it
clear that posted mode is being used add some definitions so that it is more
readable.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The only thing omap_init_consistent_dma_size() does is increase the
consistent DMA size if CONFIG_FB_OMAP_CONSISTENT_DMA_SIZE is defined.
Increasing the consistent DMA size should no longer be needed with CMA
in place.
This patch removes omap_init_consistent_dma_size() and also
arch/arm/mach-omap2/io.c:omap_common_init_early() which becomes an empty
function.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
[tony@atomide.com: updated for moved dma.h]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Omap no longer needs this option, mach/gpio.h is
empty.
Also remove mach/irqs.h from gpio-omap.h and
include it directly from the related omap1
gpio init files.
Otherwise omap2+ build fails for MULTI_PLATFORM.
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jarkko Nikula <jarkko.nikula@bitmer.com>
Cc: Liam Girdwood <lrg@ti.com>
Cc: alsa-devel@alsa-project.org
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Now mach/hardware.h is empty for omap2+ and can be
removed except for plat-omap/dmtimer.c for omap1.
Also the include of mach/irqs.h can now be removed
for shared plat-omap/i2c.c as it's no longer needed.
Signed-off-by: Tony Lindgren <tony@atomide.com>
For OMAP devices, the 32kHz counter is the default clock-source for the kernel.
However, this is not the only possible clock-source the kernel can use for OMAP
devices.
When booting with device-tree, if the 32kHz counter is the desired clock-source
for the kernel, then parse the device-tree blob to ensure that the counter is
present and if so map memory for the counter using the device-tree of_iomap()
function so we are no longer reliant on the OMAP HWMOD framework to do this for
us.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
In order to add device-tree support to the timer driver the following changes
were made ...
1. Allocate system timers (used for clock-events and clock-source) based upon
timer properties rather than using an hard-coded timer instance ID. To allow
this a new helper function called omap_dmtimer_find_by_property() has been
added for finding a timer with the particular properties in the device-tree
blob. Please note that this is an internal helper function for system timers
only to find a timer in the device-tree blob. This cannot be used by device
drivers, another API has been added for that (see below). Timers that are
allocated for system timers are dynamically disabled at boot time by adding
a status property with the value "disabled" to the timer's device-tree node.
Please note that when allocating system timers we now pass a timer ID and
timer property. The timer ID is only be used for allocating a timer when
booting without device-tree. Once device-tree migration is complete, all
the timer ID references will be removed.
2. System timer resources (memory and interrupts) are directly obtained from
the device-tree timer node when booting with device-tree, so that system
timers are no longer reliant upon the OMAP HWMOD framework to provide these
resources.
3. If DT blob is present, then let device-tree create the timer devices
dynamically.
4. When device-tree is present the "id" field in the platform_device structure
(pdev->id) is initialised to -1 and hence cannot be used to identify a timer
instance. Due to this the following changes were made ...
a). The API omap_dm_timer_request_specific() is not supported when using
device-tree, because it uses the device ID to request a specific timer.
This function will return an error if called when device-tree is present.
Users of this API should use omap_dm_timer_request_by_cap() instead.
b). When removing the DMTIMER driver, the timer "id" was used to identify the
timer instance. The remove function has been modified to use the device
name instead of the "id".
5. When device-tree is present the platform_data structure will be NULL and so
check for this.
6. The OMAP timer device tree binding has the following optional parameters ...
a). ti,timer-alwon --> Timer is in an always-on power domain
b). ti,timer-dsp --> Timer can generate an interrupt to the on-chip DSP
c). ti,timer-pwm --> Timer can generate a PWM output
d). ti,timer-secure --> Timer is reserved on a secure OMAP device
Search for the above parameters and set the appropriate timer attribute
flags.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
OMAP3 devices may or may not have security features enabled. Security enabled
devices are known as high-secure (HS) and devices without security are known as
general purpose (GP).
Some OMAP3 boards, such as the OMAP3 beagle board, only use GP devices and for
GP devices there is a 12th timer available on-chip that can operate at 32kHz.
The clock for 12th timer is generated by an internal oscillator and is unique
this timer. Boards such as the beagle board use this timer as a 32kHz based
clock-events timer because early versions of the board had a hardware problem
preventing them from using other on-chip timers clocked by a external 32kHz
clock.
When booting with device-tree all OMAP3 devices use timer 1 by default for
the clock-events timer. Therefore, add a generic machine descriptor for boards
with OMAP3 GP devices so that they can use the 12th timer as the clock-events
timer instead of the default.
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
OMAP3 devices may or may not have security features enabled. Security enabled
devices are known as high-secure (HS) and devices without security are known as
general purpose (GP).
For OMAP3 devices there are 12 general purpose timers available. On secure
devices the 12th timer is reserved for secure usage and so cannot be used by
the kernel, where as for a GP device it is available. We can detect the OMAP
device type, secure or GP, at runtime via an on-chip register. Today, when not
using DT, we do not register the 12th timer as a linux device if the device is
secure.
When using device tree, device tree is going to register all the timer devices
it finds in the device tree blob. To prevent device tree from registering 12th
timer on a secure OMAP3 device we can add a status property to the timer
binding with the value "disabled" at boot time. Note that timer 12 on a OMAP3
device has a property "ti,timer-secure" to indicate that it will not be
available on a secure device and so for secure OMAP3 devices, we search for
timers with this property and then disable them. Using the prom_add_property()
function to dynamically add a property was a recommended approach suggested by
Rob Herring [1].
I have tested this on an OMAP3 GP device and faking it to pretend to be a
secure device to ensure that any timers marked with "ti,timer-secure" are not
registered on boot. I have also made sure that all timers are registered as
expected on a GP device by default.
[1] http://comments.gmane.org/gmane.linux.ports.arm.omap/79203
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
As discussed on linux-arm-kernel, we want to avoid
relative includes for the arch/arm/*omap* code:
http://www.spinics.net/lists/linux-omap/msg80520.html
Fix serial.h by moving it to mach/serial.h.
Signed-off-by: Tony Lindgren <tony@atomide.com>
This code will be eventually in drivers, and for the
code in the drivers we don't want to have any cpu_is_omap
usage. Those macros should be private to arch/arm/mach-omap1
and arch/arm/mach-omap2.
To fix this, let's move the define for dma_omap2plus()
to dma-omap.h, and use the existing dma_attr passed in
the platform_data as the revision registers are what they
are.
Note that we can now also remove the relative includes
introduced by the recent clean-up patches.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
As discussed on linux-arm-kernel, we want to avoid
relative includes for the arch/arm/*omap* shared code:
http://www.spinics.net/lists/linux-omap/msg80520.html
Let's add plat/debug-devices.h for debug_card_init()
to fix the relative includes.
Note that drivers must not use this header as it will
break build for omap2+ CONFIG_MULTIPLATFORM builds.
Cc: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Most of the prototypes in plat-omap/common.h are not
common to omap1 and omap2+, they are local to omap2+
and should not be in plat-omap/common.h.
The only shared function prototype in this file is
omap_init_clocksource_32k(), let's put that into
counter-32k.h.
Note that the new plat/counter-32k.h must not be
included from drivers, that will break omap2+ build
for CONFIG_MULTIPLATFORM.
Signed-off-by: Tony Lindgren <tony@atomide.com>
This code should be private to mach-omap2.
The only use for it in for omap1 has been in dmtimer.c
to check for context loss. However, omap1 does not
lose context during idle, so the code is not needed.
Further, omap1 timer has OMAP_TIMER_ALWON set, so omap1
was not hitting omap_pm_get_dev_context_loss_count()
test.
Cc: Jon Hunter <jon-hunter@ti.com>
Cc: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
As discussed on linux-arm-kernel, we want to avoid
relative includes for the arch/arm/*omap* shared code:
http://www.spinics.net/lists/linux-omap/msg80520.html
To fix this for the shared i2c.h, let's re-introduce
a minimal plat/i2c.h.
Note that drivers must not use this header as it will
break build for omap2+ CONFIG_MULTIPLATFORM builds.
Signed-off-by: Tony Lindgren <tony@atomide.com>
The common code should not have any omap1 or omap2+
specific code, and should not need to call the cpu_is_omap
macros.
The only remaining user for cpu_is_omap macros is
omap_i2c_nr_ports(). Let's make those checks in
the omap specific implementation of omap_i2c_add_bus()
instead in order to remove cpu_is_omap usage from
the common code.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Let's make the omap2+ specific parts private to mach-omap2.
This leaves just a minimal shared code into plat-omap like
it should be.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Most of the defines are specific to omap1 and omap2+,
and should be in the local headers. Only minimal function
prototypes need to be shared.
As discussed on linux-arm-kernel, we want to avoid
relative includes for the arch/arm/*omap* shared code:
http://www.spinics.net/lists/linux-omap/msg80520.html
So this patch re-adds a minimal plat/sram.h.
The new plat/sram.h must not be included from drivers,
that will break build for omap2+ CONFIG_MULTIPLATFORM.
Note that this patch temporarily adds two more
relative includes; Those will be removed in the
following patch.
Signed-off-by: Tony Lindgren <tony@atomide.com>
In order to make single zImage work for ARM architecture,
we need to make sure we don't depend on private headers.
Move USB platform_data to <linux/platform_data/omap-usb.h>
and add a minimal drivers/mfd/usb-omap.h.
Cc: Samuel Ortiz <sameo@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Partha Basak <parthab@india.ti.com>
Cc: Keshava Munegowda <keshava_mgowda@ti.com>
Cc: linux-usb@vger.kernel.org
Signed-off-by: Felipe Balbi <balbi@ti.com>
[tony@atomide.com: updated for local mfd/usb-omap.h]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Let's move what we can from plat/usb.h to the local usb.h
for ARM common zImage support.
This is needed so we can remove plat/usb.h for ARM common
zImage support.
Cc: Samuel Ortiz <sameo@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Partha Basak <parthab@india.ti.com>
Cc: Keshava Munegowda <keshava_mgowda@ti.com>
Cc: linux-usb@vger.kernel.org
Acked-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
For omap1, we'll keep mach/serial.h around for 8250.c hardware
workarounds. For omap2+, we no longer need mach/serial.h and
can make it local to mach-omap2.
Signed-off-by: Tony Lindgren <tony@atomide.com>
This allows us to eventually move omap2+ to generic
debug code that's configured in Kconfig for the port.
Signed-off-by: Tony Lindgren <tony@atomide.com>
window to remove most of the remaining plat includes to get us
closer to ARM common zImage support.
To avoid a huge amount of trivial merge conflicts with includes,
this branch is based on several small topic branches coordinated
with the driver subsystem maintainers. These branches are based on
v3.7-rc1 and can also be merged into the related driver subsystem
branches as needed:
omap-for-v3.8/cleanup-headers-prepare few trivial driver changes
omap-for-v3.8/cleanup-headers-dma move of the DMA header
omap-for-v3.8/cleanup-headers-gpmc GPMC and MTD changes
omap-for-v3.8/cleanup-headers-mmc MMC related changes
omap-for-v3.8/cleanup-headers-dss DSS related changes
omap-for-v3.8/cleanup-headers-asoc ASoC related changes
Note that for the dma-omap.h, it was decided that it should be
is completed. For the related discussion, please see:
https://patchwork.kernel.org/patch/1519591/#
After these patches we still have a few plat headers remaining
that will be handled in later pull requests.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQgLn6AAoJEBvUPslcq6VztJIQAMDLmUr4XRa0pV9ASPieMSnP
LqXQ8Gpr8JP6I2A7mjj5K/PVvU2PCIgefX5/F7PssWeDzPs1p6T5eQc6/Oo88j+k
6xIaPJtuU6aiMKiH4QJBU9mfFZN4tvKNX8sJZ4YhzAmkKshwSd2XdWQlkSWYV7Ii
QFRXOdYdX3dgvt3Pv5LYhFMlRDzXlMtCNkdyO0C5yDc038FvT5kxcgpOJ99ndX1F
aSpNPchDwEXP7WZl3O7uZs732hRHQbKraMkzalVJ5mgvLSwF7VsB+BLdjOgRqFfg
edpAPt/izpTk7cg7RQiItrW3xz3eSiN/fiAg2wLvxr6ewzB5DguPLa6DNPF+uyup
BlpQAvNsICIixfKb/qimQBOkB71TTRxqvBnG0Vt/cExS1dTuWlhyCYzA6dhZtl+w
7ETCo7Mmj+L9T1EfzhMPgjWvMZ4Luli4NHSUYxMl5Cs8nu1y6ytIXxH9e0mnZAbK
n4ANoIuFE3ZueXWnHAVCOs0YZj2F1OLB+mFkIFg3OVpB4WCXiOTgJuDNsAAQNS3/
VsYVehNFRB/E/lMWkN293j95LRSwl/sIKbvlpxe7M3XQi4IWh1bDPwcg1YhGPxRV
HIuQSSMIIzcsFoDqbQYv9qzpvslfee58fBV0L8BzMyXNd1lYzWJ5Af6A8ddSVVFS
Hh+btZObC1zP/2IKbImk
=HUTj
-----END PGP SIGNATURE-----
Merge tag 'omap-for-v3.8/cleanup-headers-signed' into omap-for-v3.8/cleanup-headers-serial-take2
This is the first set of omap cleanup patches for v3.8 merge
window to remove most of the remaining plat includes to get us
closer to ARM common zImage support.
To avoid a huge amount of trivial merge conflicts with includes,
this branch is based on several small topic branches coordinated
with the driver subsystem maintainers. These branches are based on
v3.7-rc1 and can also be merged into the related driver subsystem
branches as needed:
omap-for-v3.8/cleanup-headers-prepare few trivial driver changes
omap-for-v3.8/cleanup-headers-dma move of the DMA header
omap-for-v3.8/cleanup-headers-gpmc GPMC and MTD changes
omap-for-v3.8/cleanup-headers-mmc MMC related changes
omap-for-v3.8/cleanup-headers-dss DSS related changes
omap-for-v3.8/cleanup-headers-asoc ASoC related changes
Note that for the dma-omap.h, it was decided that it should be
is completed. For the related discussion, please see:
https://patchwork.kernel.org/patch/1519591/#
After these patches we still have a few plat headers remaining
that will be handled in later pull requests.
Add dmtimer clock aliases for AM33XX devices so that the parent clock for
the dmtimer can be set correctly by the dmtimer driver. Without these clock
aliases the dmtimer driver will fail to find the parent clocks for the dmtimer.
Verified that DMTIMERs can be successfully requested on AM335x beagle bone.
Original patch was provided by Vaibhav Hiremath [1]. Changelog and
additional verification performed by Jon Hunter.
[1] http://marc.info/?l=linux-omap&m=134693631608018&w=2
Signed-off-by: Vaibhav Hiremath <hvaibhav@ti.com>
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Tested-by: Jon Hunter <jon-hunter@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
After commit 24d7b40a60 (ARM: OMAP2+:
PM: MPU DVFS: use generic CPU device for MPU-SS), OPPs are registered
using an existing CPU device, not the omap_device for MPU-SS.
First, fix the board file to use get_cpu_device() as required by the
above commit, otherwise custom OPPs will be added to the wrong device.
Second, the board files OPP init is called from the its init_machine
method, and the generic CPU devices are not yet created when
init_machine is run. Therefore OPP initialization will fail. To fix,
use a device_initcall() for the board file's OPP customization, and
make the device_initcall board-specific by using a machine_is check.
Reported-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
On n900 uart1 pins are not not used for uart, instead they are
used to connect to a cell modem over ssi. Looks like we're
currently missing these signal names for 3430 for some reason,
and only have some of them listed for 3630. Obviously the signals
are there for 3430 if n900 is using them and they are documented
in some TRMs.
Note that these will eventually be replaced by device tree
based pinctrl-single.c driver. But for now these are needed
to verify the SSI pins for devices like Nokia N900.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Commit 8f31cefe (ARM: OMAP2+: select PINCTRL in Kconfig)
added select PINCTRL, but accdentally added it to a wrong
location.
We want to select if for ARCH_OMAP2PLUS, not for
ARCH_OMAP2PLUS_TYPICAL.
Signed-off-by: Tony Lindgren <tony@atomide.com>
The runtime PM framework assumes that the hardware state of devices
when initialized is disabled. For all omap_devices, we idle/disable
device by default. However, the console uart uses a "no idle" option
during omap_device init in order to allow earlyprintk usage to work
seamlessly during boot.
Because the hardware is left partially enabled after init (whatever
the bootloader settings were), the omap_device should later be fully
initialized (including mux) and the runtime PM framework should be
told that the device is active, and not disabled so that the hardware
state is in sync with runtime PM state.
To fix, after the device has been created/registered, call
omap_device_enable() to finialize init and use pm_runtime_set_active()
to tell the runtime PM core the device is enabled.
Tested on 2420/n810, 3530/Overo, 3530/Beagle, 3730/OveroSTORM,
3730/Beagle-xM, 4460/PandaES.
Suggested-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Sourav Poddar <sourav.poddar@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
On OMAP34xx/35xx, and OMAP36xx chips with ES < 1.2, if the PER
powerdomain goes to OSWR or OFF while CORE stays at CSWR or ON, or if,
upon chip wakeup from OSWR or OFF, the CORE powerdomain goes ON before
PER, the UART3/4 FIFOs and McBSP2/3 SIDETONE memories will be
unusable. This is erratum i582 in the OMAP36xx Silicon Errata
document.
This patch implements one of several parts of the workaround: the
addition of the wakeup dependency between the PER and WKUP
clockdomains, such that PER will wake up at the same time CORE_L3
does.
This is not a complete workaround. For it to be complete:
1. the PER powerdomain's next power state must not be set to OSWR or
OFF if the CORE powerdomain's next power state is set to CSWR or
ON;
2. the UART3/4 FIFO and McBSP2/3 SIDETONE loopback tests should be run
if the LASTPOWERSTATEENTERED bits for PER and CORE indicate that
PER went OFF while CORE stayed on. If loopback tests fail, then
those devices will be unusable until PER and CORE can undergo a
transition from ON to OSWR/OFF and back ON.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Tero Kristo <t-kristo@ti.com>
Cc: Kevin Hilman <khilman@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
We want to remove plat/cpu.h. To do this, let's first split
it to private soc.h to mach-omap1 and mach-omap2. We have to
keep plat/cpu.h around until the remaining drivers are fixed,
so let's include the local soc.h in plat/cpu.h and for drivers
still including plat/cpu.h.
Once the drivers are fixed not to include plat/cpu.h, we
can remove the file.
This is needed for the ARM common zImage support.
[tony@atomide.com: updated to not print a warning]
Signed-off-by: Tony Lindgren <tony@atomide.com>
To facilitate the ARM single image work, split
arch/arm/plat-omap/include/plat/clkdev_omap.h into the
arch/arm/mach-omap1/clock.h and arch/arm/mach-omap2/clock.h files.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Remove arch/arm/plat-omap/include/plat/clock.h by merging it into
arch/arm/mach-omap1/clock.h and arch/arm/mach-omap2/clock.h.
The goal here is to facilitate ARM single image kernels by removing
includes via the "plat/" symlink.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
[tony@atomide.com: fixed to remove duplicate clock.h includes]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Duplicate arch/arm/plat-omap/clock.c into arch/arm/mach-omap1/clock.c
and arch/arm/mach-omap2/clock.c. This is to support people who are working
on the ARM single image kernel and the OMAP common clock framework
conversion.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Moving plat/omap-secure.h locally to mach-omap2/
as part of single zImage work
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
omap_reserve() callback is defned only for mach-omap2.
So, moving definition of omap_reserve() to mach-omap2.
This helps is moving plat/omap_secure.h local to
mach-omap2
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
We must move this for ARM common zImage support.
Note that neither drivers/media/rc/ir-rx51.c or
drivers/media/platform/omap3isp/ispvideo.c need
to include omap-pm.h, so this patch removes the
include for those files.
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: Timo Kokkonen <timo.t.kokkonen@iki.fi>
Cc: linux-media@vger.kernel.org
Signed-off-by: Tony Lindgren <tony@atomide.com>
This is private to cpu.h and no other places should
need to include it and we can drop the include
in mach-omap2/io.c.
Signed-off-by: Tony Lindgren <tony@atomide.com>