The .check_member field of struct bpf_struct_ops is currently passed the
member's btf_type via const struct btf_type *t, and a const struct
btf_member *member. This allows the struct_ops implementation to check
whether e.g. an ops is supported, but it would be useful to also enforce
that the struct_ops prog being loaded for that member has other
qualities, like being sleepable (or not). This patch therefore updates
the .check_member() callback to also take a const struct bpf_prog *prog
argument.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF struct_ops programs currently cannot be marked as sleepable. This
need not be the case -- struct_ops programs can be sleepable, and e.g.
invoke kfuncs that export the KF_SLEEPABLE flag. So as to allow future
struct_ops programs to invoke such kfuncs, this patch updates the
verifier to allow struct_ops programs to be sleepable. A follow-on patch
will add support to libbpf for specifying struct_ops.s as a sleepable
struct_ops program, and then another patch will add testcases to the
dummy_st_ops selftest suite which test sleepable struct_ops behavior.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that we've added a series of new cpumask kfuncs, we should document
them so users can easily use them. This patch adds a new cpumasks.rst
file to document them.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-6-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Certain programs may wish to be able to query cpumasks. For example, if
a program that is tracing percpu operations wishes to track which tasks
end up running on which CPUs, it could be useful to associate that with
the tasks' cpumasks. Similarly, programs tracking NUMA allocations, CPU
scheduling domains, etc, could potentially benefit from being able to
see which CPUs a task could be migrated to.
This patch enables these types of use cases by introducing a series of
bpf_cpumask_* kfuncs. Amongst these kfuncs, there are two separate
"classes" of operations:
1. kfuncs which allow the caller to allocate and mutate their own
cpumask kptrs in the form of a struct bpf_cpumask * object. Such
kfuncs include e.g. bpf_cpumask_create() to allocate the cpumask, and
bpf_cpumask_or() to mutate it. "Regular" cpumasks such as p->cpus_ptr
may not be passed to these kfuncs, and the verifier will ensure this
is the case by comparing BTF IDs.
2. Read-only operations which operate on const struct cpumask *
arguments. For example, bpf_cpumask_test_cpu(), which tests whether a
CPU is set in the cpumask. Any trusted struct cpumask * or struct
bpf_cpumask * may be passed to these kfuncs. The verifier allows
struct bpf_cpumask * even though the kfunc is defined with struct
cpumask * because the first element of a struct bpf_cpumask is a
cpumask_t, so it is safe to cast.
A follow-on patch will add selftests which validate these kfuncs, and
another will document them.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
KF_TRUSTED_ARGS kfuncs currently have a subtle and insidious bug in
validating pointers to scalars. Say that you have a kfunc like the
following, which takes an array as the first argument:
bool bpf_cpumask_empty(const struct cpumask *cpumask)
{
return cpumask_empty(cpumask);
}
...
BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_TRUSTED_ARGS)
...
If a BPF program were to invoke the kfunc with a NULL argument, it would
crash the kernel. The reason is that struct cpumask is defined as a
bitmap, which is itself defined as an array, and is accessed as a memory
address by bitmap operations. So when the verifier analyzes the
register, it interprets it as a pointer to a scalar struct, which is an
array of size 8. check_mem_reg() then sees that the register is NULL and
returns 0, and the kfunc crashes when it passes it down to the cpumask
wrappers.
To fix this, this patch adds a check for KF_ARG_PTR_TO_MEM which
verifies that the register doesn't contain a possibly-NULL pointer if
the kfunc is KF_TRUSTED_ARGS.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.
For example, if you have the following type:
struct nf_conn___init {
struct nf_conn ct;
};
The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.
On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF. For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).
Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().
If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).
In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).
Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is
safe, and which the verifier will allow to be passed to a
KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any
pointer to be passed at a nonzero offset, but sometimes this is in fact
safe if the "nested" pointer's lifetime is inherited from its parent.
For example, the const cpumask_t *cpus_ptr field in a struct task_struct
will remain valid until the task itself is destroyed, and thus would
also be safe to pass to a KF_TRUSTED_ARGS kfunc.
While it would be conceptually simple to enable this by using BTF tags,
gcc unfortunately does not yet support this. In the interim, this patch
enables support for this by using a type-naming convention. A new
BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a
developer to specify the nested fields of a type which are considered
trusted if its parent is also trusted. The verifier is also updated to
account for this. A patch with selftests will be added in a follow-on
change, along with documentation for this feature.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of rejecting the attaching of PROG_TYPE_EXT programs to XDP
programs that consume HW metadata, implement support for propagating the
offload information. The extension program doesn't need to set a flag or
ifindex, these will just be propagated from the target by the verifier.
We need to create a separate offload object for the extension program,
though, since it can be reattached to a different program later (which
means we can't just inherit the offload information from the target).
An additional check is added on attach that the new target is compatible
with the offload information in the extension prog.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-9-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Define a new kfunc set (xdp_metadata_kfunc_ids) which implements all possible
XDP metatada kfuncs. Not all devices have to implement them. If kfunc is not
supported by the target device, the default implementation is called instead.
The verifier, at load time, replaces a call to the generic kfunc with a call
to the per-device one. Per-device kfunc pointers are stored in separate
struct xdp_metadata_ops.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-8-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
New flag BPF_F_XDP_DEV_BOUND_ONLY plus all the infra to have a way
to associate a netdev with a BPF program at load time.
netdevsim checks are dropped in favor of generic check in dev_xdp_attach.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-6-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
To avoid adding forward declarations in the main patch, shuffle
some code around. No functional changes.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-5-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
So we don't have to initialize it manually from several paths.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-4-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
BPF offloading infra will be reused to implement
bound-but-not-offloaded bpf programs. Rename existing
helpers for clarity. No functional changes.
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-3-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Currently, process_dynptr_func first calls dynptr_get_spi and then
is_dynptr_reg_valid_init and is_dynptr_reg_valid_uninit have to call it
again to obtain the spi value. Instead of doing this twice, reuse the
already obtained value (which is by default 0, and is only set for
PTR_TO_STACK, and only used in that case in aforementioned functions).
The input value for these two functions will either be -ERANGE or >= 1,
and can either be permitted or rejected based on the respective check.
Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, a check on spi resides in dynptr_get_spi, while others
checking its validity for being within the allocated stack slots happens
in is_spi_bounds_valid. Almost always barring a couple of cases (where
being beyond allocated stack slots is not an error as stack slots need
to be populated), both are used together to make checks. Hence, subsume
the is_spi_bounds_valid check in dynptr_get_spi, and return -ERANGE to
specially distinguish the case where spi is valid but not within
allocated slots in the stack state.
The is_spi_bounds_valid function is still kept around as it is a generic
helper that will be useful for other objects on stack similar to dynptr
in the future.
Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Consider a program like below:
void prog(void)
{
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
...
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
}
Here, the C compiler based on lifetime rules in the C standard would be
well within in its rights to share stack storage for dynptr 'ptr' as
their lifetimes do not overlap in the two distinct scopes. Currently,
such an example would be rejected by the verifier, but this is too
strict. Instead, we should allow reinitializing over dynptr stack slots
and forget information about the old dynptr object.
The destroy_if_dynptr_stack_slot function already makes necessary checks
to avoid overwriting referenced dynptr slots. This is done to present a
better error message instead of forgetting dynptr information on stack
and preserving reference state, leading to an inevitable but
undecipherable error at the end about an unreleased reference which has
to be associated back to its allocating call instruction to make any
sense to the user.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The previous commit implemented destroy_if_dynptr_stack_slot. It
destroys the dynptr which given spi belongs to, but still doesn't
invalidate the slices that belong to such a dynptr. While for the case
of referenced dynptr, we don't allow their overwrite and return an error
early, we still allow it and destroy the dynptr for unreferenced dynptr.
To be able to enable precise and scoped invalidation of dynptr slices in
this case, we must be able to associate the source dynptr of slices that
have been obtained using bpf_dynptr_data. When doing destruction, only
slices belonging to the dynptr being destructed should be invalidated,
and nothing else. Currently, dynptr slices belonging to different
dynptrs are indistinguishible.
Hence, allocate a unique id to each dynptr (CONST_PTR_TO_DYNPTR and
those on stack). This will be stored as part of reg->id. Whenever using
bpf_dynptr_data, transfer this unique dynptr id to the returned
PTR_TO_MEM_OR_NULL slice pointer, and store it in a new per-PTR_TO_MEM
dynptr_id register state member.
Finally, after establishing such a relationship between dynptrs and
their slices, implement precise invalidation logic that only invalidates
slices belong to the destroyed dynptr in destroy_if_dynptr_stack_slot.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, while reads are disallowed for dynptr stack slots, writes are
not. Reads don't work from both direct access and helpers, while writes
do work in both cases, but have the effect of overwriting the slot_type.
While this is fine, handling for a few edge cases is missing. Firstly,
a user can overwrite the stack slots of dynptr partially.
Consider the following layout:
spi: [d][d][?]
2 1 0
First slot is at spi 2, second at spi 1.
Now, do a write of 1 to 8 bytes for spi 1.
This will essentially either write STACK_MISC for all slot_types or
STACK_MISC and STACK_ZERO (in case of size < BPF_REG_SIZE partial write
of zeroes). The end result is that slot is scrubbed.
Now, the layout is:
spi: [d][m][?]
2 1 0
Suppose if user initializes spi = 1 as dynptr.
We get:
spi: [d][d][d]
2 1 0
But this time, both spi 2 and spi 1 have first_slot = true.
Now, when passing spi 2 to dynptr helper, it will consider it as
initialized as it does not check whether second slot has first_slot ==
false. And spi 1 should already work as normal.
This effectively replaced size + offset of first dynptr, hence allowing
invalid OOB reads and writes.
Make a few changes to protect against this:
When writing to PTR_TO_STACK using BPF insns, when we touch spi of a
STACK_DYNPTR type, mark both first and second slot (regardless of which
slot we touch) as STACK_INVALID. Reads are already prevented.
Second, prevent writing to stack memory from helpers if the range may
contain any STACK_DYNPTR slots. Reads are already prevented.
For helpers, we cannot allow it to destroy dynptrs from the writes as
depending on arguments, helper may take uninit_mem and dynptr both at
the same time. This would mean that helper may write to uninit_mem
before it reads the dynptr, which would be bad.
PTR_TO_MEM: [?????dd]
Depending on the code inside the helper, it may end up overwriting the
dynptr contents first and then read those as the dynptr argument.
Verifier would only simulate destruction when it does byte by byte
access simulation in check_helper_call for meta.access_size, and
fail to catch this case, as it happens after argument checks.
The same would need to be done for any other non-trivial objects created
on the stack in the future, such as bpf_list_head on stack, or
bpf_rb_root on stack.
A common misunderstanding in the current code is that MEM_UNINIT means
writes, but note that writes may also be performed even without
MEM_UNINIT in case of helpers, in that case the code after handling meta
&& meta->raw_mode will complain when it sees STACK_DYNPTR. So that
invalid read case also covers writes to potential STACK_DYNPTR slots.
The only loophole was in case of meta->raw_mode which simulated writes
through instructions which could overwrite them.
A future series sequenced after this will focus on the clean up of
helper access checks and bugs around that.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the dynptr function is not checking the variable offset part
of PTR_TO_STACK that it needs to check. The fixed offset is considered
when computing the stack pointer index, but if the variable offset was
not a constant (such that it could not be accumulated in reg->off), we
will end up a discrepency where runtime pointer does not point to the
actual stack slot we mark as STACK_DYNPTR.
It is impossible to precisely track dynptr state when variable offset is
not constant, hence, just like bpf_timer, kptr, bpf_spin_lock, etc.
simply reject the case where reg->var_off is not constant. Then,
consider both reg->off and reg->var_off.value when computing the stack
pointer index.
A new helper dynptr_get_spi is introduced to hide over these details
since the dynptr needs to be located in multiple places outside the
process_dynptr_func checks, hence once we know it's a PTR_TO_STACK, we
need to enforce these checks in all places.
Note that it is disallowed for unprivileged users to have a non-constant
var_off, so this problem should only be possible to trigger from
programs having CAP_PERFMON. However, its effects can vary.
Without the fix, it is possible to replace the contents of the dynptr
arbitrarily by making verifier mark different stack slots than actual
location and then doing writes to the actual stack address of dynptr at
runtime.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The root of the problem is missing liveness marking for STACK_DYNPTR
slots. This leads to all kinds of problems inside stacksafe.
The verifier by default inside stacksafe ignores spilled_ptr in stack
slots which do not have REG_LIVE_READ marks. Since this is being checked
in the 'old' explored state, it must have already done clean_live_states
for this old bpf_func_state. Hence, it won't be receiving any more
liveness marks from to be explored insns (it has received REG_LIVE_DONE
marking from liveness point of view).
What this means is that verifier considers that it's safe to not compare
the stack slot if was never read by children states. While liveness
marks are usually propagated correctly following the parentage chain for
spilled registers (SCALAR_VALUE and PTR_* types), the same is not the
case for STACK_DYNPTR.
clean_live_states hence simply rewrites these stack slots to the type
STACK_INVALID since it sees no REG_LIVE_READ marks.
The end result is that we will never see STACK_DYNPTR slots in explored
state. Even if verifier was conservatively matching !REG_LIVE_READ
slots, very next check continuing the stacksafe loop on seeing
STACK_INVALID would again prevent further checks.
Now as long as verifier stores an explored state which we can compare to
when reaching a pruning point, we can abuse this bug to make verifier
prune search for obviously unsafe paths using STACK_DYNPTR slots
thinking they are never used hence safe.
Doing this in unprivileged mode is a bit challenging. add_new_state is
only set when seeing BPF_F_TEST_STATE_FREQ (which requires privileges)
or when jmps_processed difference is >= 2 and insn_processed difference
is >= 8. So coming up with the unprivileged case requires a little more
work, but it is still totally possible. The test case being discussed
below triggers the heuristic even in unprivileged mode.
However, it no longer works since commit
8addbfc7b3 ("bpf: Gate dynptr API behind CAP_BPF").
Let's try to study the test step by step.
Consider the following program (C style BPF ASM):
0 r0 = 0;
1 r6 = &ringbuf_map;
3 r1 = r6;
4 r2 = 8;
5 r3 = 0;
6 r4 = r10;
7 r4 -= -16;
8 call bpf_ringbuf_reserve_dynptr;
9 if r0 == 0 goto pc+1;
10 goto pc+1;
11 *(r10 - 16) = 0xeB9F;
12 r1 = r10;
13 r1 -= -16;
14 r2 = 0;
15 call bpf_ringbuf_discard_dynptr;
16 r0 = 0;
17 exit;
We know that insn 12 will be a pruning point, hence if we force
add_new_state for it, it will first verify the following path as
safe in straight line exploration:
0 1 3 4 5 6 7 8 9 -> 10 -> (12) 13 14 15 16 17
Then, when we arrive at insn 12 from the following path:
0 1 3 4 5 6 7 8 9 -> 11 (12)
We will find a state that has been verified as safe already at insn 12.
Since register state is same at this point, regsafe will pass. Next, in
stacksafe, for spi = 0 and spi = 1 (location of our dynptr) is skipped
seeing !REG_LIVE_READ. The rest matches, so stacksafe returns true.
Next, refsafe is also true as reference state is unchanged in both
states.
The states are considered equivalent and search is pruned.
Hence, we are able to construct a dynptr with arbitrary contents and use
the dynptr API to operate on this arbitrary pointer and arbitrary size +
offset.
To fix this, first define a mark_dynptr_read function that propagates
liveness marks whenever a valid initialized dynptr is accessed by dynptr
helpers. REG_LIVE_WRITTEN is marked whenever we initialize an
uninitialized dynptr. This is done in mark_stack_slots_dynptr. It allows
screening off mark_reg_read and not propagating marks upwards from that
point.
This ensures that we either set REG_LIVE_READ64 on both dynptr slots, or
none, so clean_live_states either sets both slots to STACK_INVALID or
none of them. This is the invariant the checks inside stacksafe rely on.
Next, do a complete comparison of both stack slots whenever they have
STACK_DYNPTR. Compare the dynptr type stored in the spilled_ptr, and
also whether both form the same first_slot. Only then is the later path
safe.
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We take the BTF reference before we register dtors and we need
to put it back when it's done.
We probably won't se a problem with kernel BTF, but module BTF
would stay loaded (because of the extra ref) even when its module
is removed.
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 5ce937d613 ("bpf: Populate pairs of btf_id and destructor kfunc in btf")
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230120122148.1522359-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:
static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
...
struct bpf_reg_state *reg;
...
*reg = *known_reg;
...
}
However, such assignments also copy the following bpf_reg_state fields:
struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};
Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:
0: call ktime_get_ns()
1: r6 = r0
2: call ktime_get_ns()
3: r7 = r0
4: if r0 > r6 goto +1 ; r0 & r6 are unbound thus generated
; branch states are identical
5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
--- checkpoint ---
6: r1 = 42 ; r1 marked as written
7: *(u8 *)(r10 - 8) = r1 ; 8-bit write, fp[-8] parent & live
; overwritten
8: r2 = *(u64 *)(r10 - 8)
9: r0 = 0
10: exit
This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.
First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
...
state->stack[spi].spilled_ptr = *reg; // <--- parent & live copied
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
...
}
Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.
Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.
This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.
Fixes: 679c782de1 ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
According to the definition of sizes[NUM_CACHES], when the size passed
to bpf_mem_cache_size() is 256, it should return 6 instead 7.
Fixes: 7c8199e24f ("bpf: Introduce any context BPF specific memory allocator.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118084630.3750680-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently we allow to load any tracing program as sleepable,
but BPF_TRACE_RAW_TP can't sleep. Making the check explicit
for tracing programs attach types, so sleepable BPF_TRACE_RAW_TP
will fail to load.
Updating the verifier error to mention iter programs as well.
Acked-by: Song Liu <song@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230117223705.440975-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To mitigate Spectre v4, 2039f26f3a ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.
However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.
To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.
The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:
[...]
// r6 = 0 or 1 (skalar, unknown user input)
// r7 = accessible ptr for side channel
// r10 = frame pointer (fp), to be leaked
//
r9 = r10 # fp alias to encourage ssb
*(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
// lfence added here because of pointer spill to stack.
//
// Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
// for no r9-r10 dependency.
//
*(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
// 2039f26f3a: no lfence added because stack slot was not STACK_INVALID,
// store may be subject to SSB
//
// fix: also add an lfence when the slot contained a ptr
//
r8 = *(u64 *)(r9 - 8)
// r8 = architecturally a scalar, speculatively a ptr
//
// leak ptr using branch-based cache side channel:
r8 &= 1 // choose bit to leak
if r8 == 0 goto SLOW // no mispredict
// architecturally dead code if input r6 is 0,
// only executes speculatively iff ptr bit is 1
r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
[...]
After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.
In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.
Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.
Fixes: 2039f26f3a ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
The deadlock still may occur while accessed in NMI and non-NMI
context. Because in NMI, we still may access the same bucket but with
different map_locked index.
For example, on the same CPU, .max_entries = 2, we update the hash map,
with key = 4, while running bpf prog in NMI nmi_handle(), to update
hash map with key = 20, so it will have the same bucket index but have
different map_locked index.
To fix this issue, using min mask to hash again.
Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Signed-off-by: Tonghao Zhang <tong@infragraf.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230111092903.92389-1-tong@infragraf.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Enabling CONFIG_MODULE_ALLOW_BTF_MISMATCH is an indication that BTF
mismatches are expected and module loading should proceed
anyway. Logging with pr_warn() on every one of these "benign"
mismatches creates unnecessary noise when many such modules are
loaded. Instead, handle this case with a single log warning that BTF
info may be unavailable.
Mismatches also result in calls to __btf_verifier_log() via
__btf_verifier_log_type() or btf_verifier_log_member(), adding several
additional lines of logging per mismatched module. Add checks to these
paths to skip logging for module BTF mismatches in the "allow
mismatch" case.
All existing logging behavior is preserved in the default
CONFIG_MODULE_ALLOW_BTF_MISMATCH=n case.
Signed-off-by: Connor O'Brien <connoro@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230107025331.3240536-1-connoro@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
It was determined that the do_idr_lock parameter to
bpf_prog_free_id() was not necessary as it should always be true.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230106154400.74211-2-paul@paul-moore.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When changing the ebpf program put() routines to support being called
from within IRQ context the program ID was reset to zero prior to
calling the perf event and audit UNLOAD record generators, which
resulted in problems as the ebpf program ID was bogus (always zero).
This patch addresses this problem by removing an unnecessary call to
bpf_prog_free_id() in __bpf_prog_offload_destroy() and adjusting
__bpf_prog_put() to only call bpf_prog_free_id() after audit and perf
have finished their bpf program unload tasks in
bpf_prog_put_deferred(). For the record, no one can determine, or
remember, why it was necessary to free the program ID, and remove it
from the IDR, prior to executing bpf_prog_put_deferred();
regardless, both Stanislav and Alexei agree that the approach in this
patch should be safe.
It is worth noting that when moving the bpf_prog_free_id() call, the
do_idr_lock parameter was forced to true as the ebpf devs determined
this was the correct as the do_idr_lock should always be true. The
do_idr_lock parameter will be removed in a follow-up patch, but it
was kept here to keep the patch small in an effort to ease any stable
backports.
I also modified the bpf_audit_prog() logic used to associate the
AUDIT_BPF record with other associated records, e.g. @ctx != NULL.
Instead of keying off the operation, it now keys off the execution
context, e.g. '!in_irg && !irqs_disabled()', which is much more
appropriate and should help better connect the UNLOAD operations with
the associated audit state (other audit records).
Cc: stable@vger.kernel.org
Fixes: d809e134be ("bpf: Prepare bpf_prog_put() to be called from irq context.")
Reported-by: Burn Alting <burn.alting@iinet.net.au>
Reported-by: Jiri Olsa <olsajiri@gmail.com>
Suggested-by: Stanislav Fomichev <sdf@google.com>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230106154400.74211-1-paul@paul-moore.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:
------------[ cut here ]------------
verifier backtracking bug
WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
kernel/bpf/verifier.c:2756
__mark_chain_precision kernel/bpf/verifier.c:3065
mark_chain_precision kernel/bpf/verifier.c:3165
adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
check_alu_op kernel/bpf/verifier.c:10928
do_check kernel/bpf/verifier.c:13821 [inline]
do_check_common kernel/bpf/verifier.c:16289
[...]
So make backtracking conservative with this by returning ENOTSUPP.
[1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/
Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY7X/4wAKCRDbK58LschI
g7gzAQCjKsLtAWg1OplW+B7pvEPwkQ8g3O1+PYWlToCUACTlzQD+PEMrqGnxB573
oQAk6I2yOTwLgvlHkrm+TIdKSouI4gs=
=2hUY
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2023-01-04
We've added 45 non-merge commits during the last 21 day(s) which contain
a total of 50 files changed, 1454 insertions(+), 375 deletions(-).
The main changes are:
1) Fixes, improvements and refactoring of parts of BPF verifier's
state equivalence checks, from Andrii Nakryiko.
2) Fix a few corner cases in libbpf's BTF-to-C converter in particular
around padding handling and enums, also from Andrii Nakryiko.
3) Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to better
support decap on GRE tunnel devices not operating in collect metadata,
from Christian Ehrig.
4) Improve x86 JIT's codegen for PROBE_MEM runtime error checks,
from Dave Marchevsky.
5) Remove the need for trace_printk_lock for bpf_trace_printk
and bpf_trace_vprintk helpers, from Jiri Olsa.
6) Add proper documentation for BPF_MAP_TYPE_SOCK{MAP,HASH} maps,
from Maryam Tahhan.
7) Improvements in libbpf's btf_parse_elf error handling, from Changbin Du.
8) Bigger batch of improvements to BPF tracing code samples,
from Daniel T. Lee.
9) Add LoongArch support to libbpf's bpf_tracing helper header,
from Hengqi Chen.
10) Fix a libbpf compiler warning in perf_event_open_probe on arm32,
from Khem Raj.
11) Optimize bpf_local_storage_elem by removing 56 bytes of padding,
from Martin KaFai Lau.
12) Use pkg-config to locate libelf for resolve_btfids build,
from Shen Jiamin.
13) Various libbpf improvements around API documentation and errno
handling, from Xin Liu.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (45 commits)
libbpf: Return -ENODATA for missing btf section
libbpf: Add LoongArch support to bpf_tracing.h
libbpf: Restore errno after pr_warn.
libbpf: Added the description of some API functions
libbpf: Fix invalid return address register in s390
samples/bpf: Use BPF_KSYSCALL macro in syscall tracing programs
samples/bpf: Fix tracex2 by using BPF_KSYSCALL macro
samples/bpf: Change _kern suffix to .bpf with syscall tracing program
samples/bpf: Use vmlinux.h instead of implicit headers in syscall tracing program
samples/bpf: Use kyscall instead of kprobe in syscall tracing program
bpf: rename list_head -> graph_root in field info types
libbpf: fix errno is overwritten after being closed.
bpf: fix regs_exact() logic in regsafe() to remap IDs correctly
bpf: perform byte-by-byte comparison only when necessary in regsafe()
bpf: reject non-exact register type matches in regsafe()
bpf: generalize MAYBE_NULL vs non-MAYBE_NULL rule
bpf: reorganize struct bpf_reg_state fields
bpf: teach refsafe() to take into account ID remapping
bpf: Remove unused field initialization in bpf's ctl_table
selftests/bpf: Add jit probe_mem corner case tests to s390x denylist
...
====================
Link: https://lore.kernel.org/r/20230105000926.31350-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:
include/linux/bpf.h:
struct btf_field_list_head -> struct btf_field_graph_root
list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
list_head -> graph_root in struct btf_field_info
This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of counting on prior allocations to have sized allocations to
the next kmalloc bucket size, always perform a krealloc that is at least
ksize(dst) in size (which is a no-op), so the size can be correctly
tracked by all the various allocation size trackers (KASAN,
__alloc_size, etc).
Reported-by: Hyunwoo Kim <v4bel@theori.io>
Link: https://lore.kernel.org/bpf/20221223094551.GA1439509@ubuntu
Fixes: ceb35b666d ("bpf/verifier: Use kmalloc_size_roundup() to match ksize() usage")
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: bpf@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221223182836.never.866-kees@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix the system crash that happens when a task iterator travel through
vma of tasks.
In task iterators, we used to access mm by following the pointer on
the task_struct; however, the death of a task will clear the pointer,
even though we still hold the task_struct. That can cause an
unexpected crash for a null pointer when an iterator is visiting a
task that dies during the visit. Keeping a reference of mm on the
iterator ensures we always have a valid pointer to mm.
Co-developed-by: Song Liu <song@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Reported-by: Nathan Slingerland <slinger@meta.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221216221855.4122288-2-kuifeng@meta.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the scenario where livepatch and kretfunc coexist, the pageattr of
im->image is rox after arch_prepare_bpf_trampoline in
bpf_trampoline_update, and then modify_fentry or register_fentry returns
-EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag
will be configured, and arch_prepare_bpf_trampoline will be re-executed.
At this time, because the pageattr of im->image is rox,
arch_prepare_bpf_trampoline will read and write im->image, which causes
a fault. as follows:
insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c
bpftrace -e 'kretfunc:cmdline_proc_show {}'
BUG: unable to handle page fault for address: ffffffffa0206000
PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5
RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0
RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202
RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000
RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030
RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400
R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8
R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10
FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bpf_trampoline_update+0x25a/0x6b0
__bpf_trampoline_link_prog+0x101/0x240
bpf_trampoline_link_prog+0x2d/0x50
bpf_tracing_prog_attach+0x24c/0x530
bpf_raw_tp_link_attach+0x73/0x1d0
__sys_bpf+0x100e/0x2570
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x5b/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
With this patch, when modify_fentry or register_fentry returns -EAGAIN
from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset
to nx+rw.
Cc: stable@vger.kernel.org
Fixes: 00963a2e75 ("bpf: Support bpf_trampoline on functions with IPMODIFY (e.g. livepatch)")
Signed-off-by: Chuang Wang <nashuiliang@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20221224133146.780578-1-nashuiliang@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract byte-by-byte comparison of bpf_reg_state in regsafe() into
a helper function, which makes it more convenient to use it "on demand"
only for registers that benefit from such checks, instead of doing it
all the time, even if result of such comparison is ignored.
Also, remove WARN_ON_ONCE(1)+return false dead code. There is no risk of
missing some case as compiler will warn about non-void function not
returning value in some branches (and that under assumption that default
case is removed in the future).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Generalize the (somewhat implicit) rule of regsafe(), which states that
if register types in old and current states do not match *exactly*, they
can't be safely considered equivalent.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make generic check to prevent XXX_OR_NULL and XXX register types to be
intermixed. While technically in some situations it could be safe, it's
impossible to enforce due to the loss of an ID when converting
XXX_OR_NULL to its non-NULL variant. So prevent this in general, not
just for PTR_TO_MAP_KEY and PTR_TO_MAP_VALUE.
PTR_TO_MAP_KEY_OR_NULL and PTR_TO_MAP_VALUE_OR_NULL checks, which were
previously special-cased, are simplified to generic check that takes
into account range_within() and tnum_in(). This is correct as BPF
verifier doesn't allow arithmetic on XXX_OR_NULL register types, so
var_off and ranges should stay zero. But even if in the future this
restriction is lifted, it's even more important to enforce that var_off
and ranges are compatible, otherwise it's possible to construct case
where this can be exploited to bypass verifier's memory range safety
checks.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move id and ref_obj_id fields after scalar data section (var_off and
ranges). This is necessary to simplify next patch which will change
regsafe()'s logic to be safer, as it makes the contents that has to be
an exact match (type-specific parts, off, type, and var_off+ranges)
a single sequential block of memory, while id and ref_obj_id should
always be remapped and thus can't be memcp()'ed.
There are few places that assume that var_off is after id/ref_obj_id to
clear out id/ref_obj_id with the single memset(0). These are changed to
explicitly zero-out id/ref_obj_id fields. Other places are adjusted to
preserve exact byte-by-byte comparison behavior.
No functional changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
states_equal() check performs ID mapping between old and new states to
establish a 1-to-1 correspondence between IDs, even if their absolute
numberic values across two equivalent states differ. This is important
both for correctness and to avoid unnecessary work when two states are
equivalent.
With recent changes we partially fixed this logic by maintaining ID map
across all function frames. This patch also makes refsafe() check take
into account (and maintain) ID map, making states_equal() behavior more
optimal and correct.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY6YkXgAKCRDbK58LschI
g25kAP4jYi+YomSlmGUzN/fUbEIHkXXyh85Yh2/yHGYdVuIuvwEA0uXeC7JHQTca
dkcyYvgY6zJwFBV0lAVnhTRzFirFkQk=
=THs1
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net* tree.
We've added 7 non-merge commits during the last 5 day(s) which contain
a total of 11 files changed, 231 insertions(+), 3 deletions(-).
The main changes are:
1) Fix a splat in bpf_skb_generic_pop() under CHECKSUM_PARTIAL due to
misuse of skb_postpull_rcsum(), from Jakub Kicinski with test case
from Martin Lau.
2) Fix BPF verifier's nullness propagation when registers are of
type PTR_TO_BTF_ID, from Hao Sun.
3) Fix bpftool build for JIT disassembler under statically built
libllvm, from Anton Protopopov.
4) Fix warnings reported by resolve_btfids when building vmlinux
with CONFIG_SECURITY_NETWORK disabled, from Hou Tao.
5) Minor fix up for BPF selftest gitignore, from Stanislav Fomichev.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
After befae75856, the verifier would propagate null information after
JEQ/JNE, e.g., if two pointers, one is maybe_null and the other is not,
the former would be marked as non-null in eq path. However, as comment
"PTR_TO_BTF_ID points to a kernel struct that does not need to be null
checked by the BPF program ... The verifier must keep this in mind and
can make no assumptions about null or non-null when doing branch ...".
If one pointer is maybe_null and the other is PTR_TO_BTF, the former is
incorrectly marked non-null. The following BPF prog can trigger a
null-ptr-deref, also see this report for more details[1]:
0: (18) r1 = map_fd ; R1_w=map_ptr(ks=4, vs=4)
2: (79) r6 = *(u64 *)(r1 +8) ; R6_w=bpf_map->inner_map_data
; R6 is PTR_TO_BTF_ID
; equals to null at runtime
3: (bf) r2 = r10
4: (07) r2 += -4
5: (62) *(u32 *)(r2 +0) = 0
6: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null
7: (1d) if r6 == r0 goto pc+1
8: (95) exit
; from 7 to 9: R0=map_value R6=ptr_bpf_map
9: (61) r0 = *(u32 *)(r0 +0) ; null-ptr-deref
10: (95) exit
So, make the verifier propagate nullness information for reg to reg
comparisons only if neither reg is PTR_TO_BTF_ID.
[1] https://lore.kernel.org/bpf/CACkBjsaFJwjC5oiw-1KXvcazywodwXo4zGYsRHwbr2gSG9WcSw@mail.gmail.com/T/#u
Fixes: befae75856 ("bpf: propagate nullness information for reg to reg comparisons")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221222024414.29539-1-sunhao.th@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Maxlen is used by standard proc_handlers such as proc_dointvec(), but in this
case we have our own proc_handler via bpf_stats_handler(). Therefore, remove
the initialization.
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20221221-bpf-syscall-v1-0-9550f5f2c3fc@chromium.org
'struct bpf_local_storage_elem' has an unused 56 byte padding at the
end due to struct's cache-line alignment requirement. This padding
space is overlapped by storage value contents, so if we use sizeof()
to calculate the total size, we overinflate it by 56 bytes. Use
offsetof() instead to calculate more exact memory use.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221221013036.3427431-1-martin.lau@linux.dev
Both bpf_trace_printk and bpf_trace_vprintk helpers use static buffer guarded
with trace_printk_lock spin lock.
The spin lock contention causes issues with bpf programs attached to
contention_begin tracepoint [1][2].
Andrii suggested we could get rid of the contention by using trylock, but we
could actually get rid of the spinlock completely by using percpu buffers the
same way as for bin_args in bpf_bprintf_prepare function.
Adding new return 'buf' argument to struct bpf_bprintf_data and making
bpf_bprintf_prepare to return also the buffer for printk helpers.
[1] https://lore.kernel.org/bpf/CACkBjsakT_yWxnSWr4r-0TpPvbKm9-OBmVUhJb7hV3hY8fdCkw@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CACkBjsaCsTovQHFfkqJKto6S4Z8d02ud1D7MPESrHa1cVNNTrw@mail.gmail.com/
Reported-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-4-jolsa@kernel.org
Currently we always cleanup/decrement bpf_bprintf_nest_level variable
in bpf_bprintf_cleanup if it's > 0.
There's possible scenario where this could cause a problem, when
bpf_bprintf_prepare does not get bin_args buffer (because num_args is 0)
and following bpf_bprintf_cleanup call decrements bpf_bprintf_nest_level
variable, like:
in task context:
bpf_bprintf_prepare(num_args != 0) increments 'bpf_bprintf_nest_level = 1'
-> first irq :
bpf_bprintf_prepare(num_args == 0)
bpf_bprintf_cleanup decrements 'bpf_bprintf_nest_level = 0'
-> second irq:
bpf_bprintf_prepare(num_args != 0) bpf_bprintf_nest_level = 1
gets same buffer as task context above
Adding check to bpf_bprintf_cleanup and doing the real cleanup only if we
got bin_args data in the first place.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-3-jolsa@kernel.org
Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.
We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org
There are warnings reported from resolve_btfids when building vmlinux
with CONFIG_SECURITY_NETWORK disabled:
WARN: resolve_btfids: unresolved symbol bpf_lsm_sk_free_security
WARN: resolve_btfids: unresolved symbol bpf_lsm_sk_alloc_security
So only define BTF IDs for these LSM hooks when CONFIG_SECURITY_NETWORK
is enabled.
Fixes: c0c852dd18 ("bpf: Do not mark certain LSM hook arguments as trusted")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221217062144.2507222-1-houtao@huaweicloud.com
* Randomize the per-cpu entry areas
Cleanups:
* Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open
coding it
* Move to "native" set_memory_rox() helper
* Clean up pmd_get_atomic() and i386-PAE
* Remove some unused page table size macros
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOc53UACgkQaDWVMHDJ
krCUHw//SGZ+La0hLZLAiAiZTXLZZHpYkOmg1Oj1+11qSU11uZzTFqDpauhaKpRS
cJCSh+D+RXe5e2ipgt0+Zl0hESLt7pJf8258OE4ra0DL/IlyO9uqruAs9Kn3eRS/
Fk76nG8gdEU+JKJqpG02GqOLslYQuIy96n9hpuj1x25b614+uezPfC7S4XEat0NT
MbJQ+jnVDf16aJIJkzT+iSwhubDVeh+bSHeO0SSCzX23WLUqDeg5NvlyxoCHGbBh
UpUTWggV/0pYAkBKRHToeJs8qTWREwuuH/8JGewpe9A0tjdB5wyZfNL2PuracweN
9MauXC3T5f0+Ca4yIIaPq1fF7Ny/PR2dBFihk27rOD0N7tjaZxNwal2pB1sZcmvZ
+PAokjyTPVH5ZXjkMYGGAUe1jyjwr2+TgFSZxhTnDuGtyVQiY4pihGKOifLCX6tv
x6khvYeTBw7wfaDRtKEAf+2kLHYn+71HszHP/8bNKX9T03h+Zf0i1wdZu5xbM5Gc
VK2wR7bCC+UftJJYG0pldcHg2qaF19RBHK2tLwp7zngUv7lTbkKfkgKjre73KV2a
D4b76lrqdUMo6UYwYdw7WtDyarZS4OVLq2DcNhwwMddBCaX8kyN5a4AqwQlZYJ0u
dM+kuMofE8U3yMxmMhJimkZUsj09yLHIqfynY0jbAcU3nhKZZNY=
=wwVF
-----END PGP SIGNATURE-----
Merge tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Dave Hansen:
"New Feature:
- Randomize the per-cpu entry areas
Cleanups:
- Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it
- Move to "native" set_memory_rox() helper
- Clean up pmd_get_atomic() and i386-PAE
- Remove some unused page table size macros"
* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/mm: Ensure forced page table splitting
x86/kasan: Populate shadow for shared chunk of the CPU entry area
x86/kasan: Add helpers to align shadow addresses up and down
x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
x86/mm: Recompute physical address for every page of per-CPU CEA mapping
x86/mm: Rename __change_page_attr_set_clr(.checkalias)
x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
x86/mm: Add a few comments
x86/mm: Fix CR3_ADDR_MASK
x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
mm: Convert __HAVE_ARCH_P..P_GET to the new style
mm: Remove pointless barrier() after pmdp_get_lockless()
x86/mm/pae: Get rid of set_64bit()
x86_64: Remove pointless set_64bit() usage
x86/mm/pae: Be consistent with pXXp_get_and_clear()
x86/mm/pae: Use WRITE_ONCE()
x86/mm/pae: Don't (ab)use atomic64
mm/gup: Fix the lockless PMD access
...
The bpf_prog_map_compatible() check makes sure that BPF program types are
not mixed inside BPF map types that can contain programs (tail call maps,
cpumaps and devmaps). It does this by setting the fields of the map->owner
struct to the values of the first program being checked against, and
rejecting any subsequent programs if the values don't match.
One of the values being set in the map owner struct is the program type,
and since the code did not resolve the prog type for fext programs, the map
owner type would be set to PROG_TYPE_EXT and subsequent loading of programs
of the target type into the map would fail.
This bug is seen in particular for XDP programs that are loaded as
PROG_TYPE_EXT using libxdp; these cannot insert programs into devmaps and
cpumaps because the check fails as described above.
Fix the bug by resolving the fext program type to its target program type
as elsewhere in the verifier.
v3:
- Add Yonghong's ACK
Fixes: f45d5b6ce2 ("bpf: generalise tail call map compatibility check")
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20221214230254.790066-1-toke@redhat.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Hao Sun reported crash in dispatcher image [1].
Currently we don't have any sync between bpf_dispatcher_update and
bpf_dispatcher_xdp_func, so following race is possible:
cpu 0: cpu 1:
bpf_prog_run_xdp
...
bpf_dispatcher_xdp_func
in image at offset 0x0
bpf_dispatcher_update
update image at offset 0x800
bpf_dispatcher_update
update image at offset 0x0
in image at offset 0x0 -> crash
Fixing this by synchronizing dispatcher image update (which is done
in bpf_dispatcher_update function) with bpf_dispatcher_xdp_func that
reads and execute the dispatcher image.
Calling synchronize_rcu after updating and installing new image ensures
that readers leave old image before it's changed in the next dispatcher
update. The update itself is locked with dispatcher's mutex.
The bpf_prog_run_xdp is called under local_bh_disable and synchronize_rcu
will wait for it to leave [2].
[1] https://lore.kernel.org/bpf/Y5SFho7ZYXr9ifRn@krava/T/#m00c29ece654bc9f332a17df493bbca33e702896c
[2] https://lore.kernel.org/bpf/0B62D35A-E695-4B7A-A0D4-774767544C1A@gmail.com/T/#mff43e2c003ae99f4a38f353c7969be4c7162e877
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20221214123542.1389719-1-jolsa@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
In [0], we added the ability to bpf_prog_attach LSM programs to cgroups,
but in our validation to make sure the prog is meant to be attached to
BPF_LSM_CGROUP, we return too early if the check fails. This results in
lack of decrementing prog's refcnt (through bpf_prog_put)
leaving the LSM program alive past the point of the expected lifecycle.
This fix allows for the decrement to take place.
[0] https://lore.kernel.org/all/20220628174314.1216643-4-sdf@google.com/
Fixes: 69fd337a97 ("bpf: per-cgroup lsm flavor")
Signed-off-by: Milan Landaverde <milan@mdaverde.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20221213175714.31963-1-milan@mdaverde.com
Core
----
- Allow live renaming when an interface is up
- Add retpoline wrappers for tc, improving considerably the
performances of complex queue discipline configurations.
- Add inet drop monitor support.
- A few GRO performance improvements.
- Add infrastructure for atomic dev stats, addressing long standing
data races.
- De-duplicate common code between OVS and conntrack offloading
infrastructure.
- A bunch of UBSAN_BOUNDS/FORTIFY_SOURCE improvements.
- Netfilter: introduce packet parser for tunneled packets
- Replace IPVS timer-based estimators with kthreads to scale up
the workload with the number of available CPUs.
- Add the helper support for connection-tracking OVS offload.
BPF
---
- Support for user defined BPF objects: the use case is to allocate
own objects, build own object hierarchies and use the building
blocks to build own data structures flexibly, for example, linked
lists in BPF.
- Make cgroup local storage available to non-cgroup attached BPF
programs.
- Avoid unnecessary deadlock detection and failures wrt BPF task
storage helpers.
- A relevant bunch of BPF verifier fixes and improvements.
- Veristat tool improvements to support custom filtering, sorting,
and replay of results.
- Add LLVM disassembler as default library for dumping JITed code.
- Lots of new BPF documentation for various BPF maps.
- Add bpf_rcu_read_{,un}lock() support for sleepable programs.
- Add RCU grace period chaining to BPF to wait for the completion
of access from both sleepable and non-sleepable BPF programs.
- Add support storing struct task_struct objects as kptrs in maps.
- Improve helper UAPI by explicitly defining BPF_FUNC_xxx integer
values.
- Add libbpf *_opts API-variants for bpf_*_get_fd_by_id() functions.
Protocols
---------
- TCP: implement Protective Load Balancing across switch links.
- TCP: allow dynamically disabling TCP-MD5 static key, reverting
back to fast[er]-path.
- UDP: Introduce optional per-netns hash lookup table.
- IPv6: simplify and cleanup sockets disposal.
- Netlink: support different type policies for each generic
netlink operation.
- MPTCP: add MSG_FASTOPEN and FastOpen listener side support.
- MPTCP: add netlink notification support for listener sockets
events.
- SCTP: add VRF support, allowing sctp sockets binding to VRF
devices.
- Add bridging MAC Authentication Bypass (MAB) support.
- Extensions for Ethernet VPN bridging implementation to better
support multicast scenarios.
- More work for Wi-Fi 7 support, comprising conversion of all
the existing drivers to internal TX queue usage.
- IPSec: introduce a new offload type (packet offload) allowing
complete header processing and crypto offloading.
- IPSec: extended ack support for more descriptive XFRM error
reporting.
- RXRPC: increase SACK table size and move processing into a
per-local endpoint kernel thread, reducing considerably the
required locking.
- IEEE 802154: synchronous send frame and extended filtering
support, initial support for scanning available 15.4 networks.
- Tun: bump the link speed from 10Mbps to 10Gbps.
- Tun/VirtioNet: implement UDP segmentation offload support.
Driver API
----------
- PHY/SFP: improve power level switching between standard
level 1 and the higher power levels.
- New API for netdev <-> devlink_port linkage.
- PTP: convert existing drivers to new frequency adjustment
implementation.
- DSA: add support for rx offloading.
- Autoload DSA tagging driver when dynamically changing protocol.
- Add new PCP and APPTRUST attributes to Data Center Bridging.
- Add configuration support for 800Gbps link speed.
- Add devlink port function attribute to enable/disable RoCE and
migratable.
- Extend devlink-rate to support strict prioriry and weighted fair
queuing.
- Add devlink support to directly reading from region memory.
- New device tree helper to fetch MAC address from nvmem.
- New big TCP helper to simplify temporary header stripping.
New hardware / drivers
----------------------
- Ethernet:
- Marvel Octeon CNF95N and CN10KB Ethernet Switches.
- Marvel Prestera AC5X Ethernet Switch.
- WangXun 10 Gigabit NIC.
- Motorcomm yt8521 Gigabit Ethernet.
- Microchip ksz9563 Gigabit Ethernet Switch.
- Microsoft Azure Network Adapter.
- Linux Automation 10Base-T1L adapter.
- PHY:
- Aquantia AQR112 and AQR412.
- Motorcomm YT8531S.
- PTP:
- Orolia ART-CARD.
- WiFi:
- MediaTek Wi-Fi 7 (802.11be) devices.
- RealTek rtw8821cu, rtw8822bu, rtw8822cu and rtw8723du USB
devices.
- Bluetooth:
- Broadcom BCM4377/4378/4387 Bluetooth chipsets.
- Realtek RTL8852BE and RTL8723DS.
- Cypress.CYW4373A0 WiFi + Bluetooth combo device.
Drivers
-------
- CAN:
- gs_usb: bus error reporting support.
- kvaser_usb: listen only and bus error reporting support.
- Ethernet NICs:
- Intel (100G):
- extend action skbedit to RX queue mapping.
- implement devlink-rate support.
- support direct read from memory.
- nVidia/Mellanox (mlx5):
- SW steering improvements, increasing rules update rate.
- Support for enhanced events compression.
- extend H/W offload packet manipulation capabilities.
- implement IPSec packet offload mode.
- nVidia/Mellanox (mlx4):
- better big TCP support.
- Netronome Ethernet NICs (nfp):
- IPsec offload support.
- add support for multicast filter.
- Broadcom:
- RSS and PTP support improvements.
- AMD/SolarFlare:
- netlink extened ack improvements.
- add basic flower matches to offload, and related stats.
- Virtual NICs:
- ibmvnic: introduce affinity hint support.
- small / embedded:
- FreeScale fec: add initial XDP support.
- Marvel mv643xx_eth: support MII/GMII/RGMII modes for Kirkwood.
- TI am65-cpsw: add suspend/resume support.
- Mediatek MT7986: add RX wireless wthernet dispatch support.
- Realtek 8169: enable GRO software interrupt coalescing per
default.
- Ethernet high-speed switches:
- Microchip (sparx5):
- add support for Sparx5 TC/flower H/W offload via VCAP.
- Mellanox mlxsw:
- add 802.1X and MAC Authentication Bypass offload support.
- add ip6gre support.
- Embedded Ethernet switches:
- Mediatek (mtk_eth_soc):
- improve PCS implementation, add DSA untag support.
- enable flow offload support.
- Renesas:
- add rswitch R-Car Gen4 gPTP support.
- Microchip (lan966x):
- add full XDP support.
- add TC H/W offload via VCAP.
- enable PTP on bridge interfaces.
- Microchip (ksz8):
- add MTU support for KSZ8 series.
- Qualcomm 802.11ax WiFi (ath11k):
- support configuring channel dwell time during scan.
- MediaTek WiFi (mt76):
- enable Wireless Ethernet Dispatch (WED) offload support.
- add ack signal support.
- enable coredump support.
- remain_on_channel support.
- Intel WiFi (iwlwifi):
- enable Wi-Fi 7 Extremely High Throughput (EHT) PHY capabilities.
- 320 MHz channels support.
- RealTek WiFi (rtw89):
- new dynamic header firmware format support.
- wake-over-WLAN support.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmOYXUcSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOk8zQP/R7BZtbJMTPiWkRnSoKHnAyupDVwrz5U
ktukLkwPsCyJuEbAjgxrxf4EEEQ9uq2FFlxNSYuKiiQMqIpFxV6KED7LCUygn4Tc
kxtkp0Q+5XiqisWlQmtfExf2OjuuPqcjV9tWCDBI6GebKUbfNwY/eI44RcMu4BSv
DzIlW5GkX/kZAPqnnuqaLsN3FudDTJHGEAD7NbA++7wJ076RWYSLXlFv0Z+SCSPS
H8/PEG0/ZK/65rIWMAFRClJ9BNIDwGVgp0GrsIvs1gqbRUOlA1hl1rDM21TqtNFf
5QPQT7sIfTcCE/nerxKJD5JE3JyP+XRlRn96PaRw3rt4MgI6I/EOj/HOKQ5tMCNc
oPiqb7N70+hkLZyr42qX+vN9eDPjp2koEQm7EO2Zs+/534/zWDs24Zfk/Aa1ps0I
Fa82oGjAgkBhGe/FZ6i5cYoLcyxqRqZV1Ws9XQMl72qRC7/BwvNbIW6beLpCRyeM
yYIU+0e9dEm+wHQEdh2niJuVtR63hy8tvmPx56lyh+6u0+pondkwbfSiC5aD3kAC
ikKsN5DyEsdXyiBAlytCEBxnaOjQy4RAz+3YXSiS0eBNacXp03UUrNGx4Pzpu/D0
QLFJhBnMFFCgy5to8/DvKnrTPgZdSURwqbIUcZdvU21f1HLR8tUTpaQnYffc/Whm
V8gnt1EL+0cc
=CbJC
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Paolo Abeni:
"Core:
- Allow live renaming when an interface is up
- Add retpoline wrappers for tc, improving considerably the
performances of complex queue discipline configurations
- Add inet drop monitor support
- A few GRO performance improvements
- Add infrastructure for atomic dev stats, addressing long standing
data races
- De-duplicate common code between OVS and conntrack offloading
infrastructure
- A bunch of UBSAN_BOUNDS/FORTIFY_SOURCE improvements
- Netfilter: introduce packet parser for tunneled packets
- Replace IPVS timer-based estimators with kthreads to scale up the
workload with the number of available CPUs
- Add the helper support for connection-tracking OVS offload
BPF:
- Support for user defined BPF objects: the use case is to allocate
own objects, build own object hierarchies and use the building
blocks to build own data structures flexibly, for example, linked
lists in BPF
- Make cgroup local storage available to non-cgroup attached BPF
programs
- Avoid unnecessary deadlock detection and failures wrt BPF task
storage helpers
- A relevant bunch of BPF verifier fixes and improvements
- Veristat tool improvements to support custom filtering, sorting,
and replay of results
- Add LLVM disassembler as default library for dumping JITed code
- Lots of new BPF documentation for various BPF maps
- Add bpf_rcu_read_{,un}lock() support for sleepable programs
- Add RCU grace period chaining to BPF to wait for the completion of
access from both sleepable and non-sleepable BPF programs
- Add support storing struct task_struct objects as kptrs in maps
- Improve helper UAPI by explicitly defining BPF_FUNC_xxx integer
values
- Add libbpf *_opts API-variants for bpf_*_get_fd_by_id() functions
Protocols:
- TCP: implement Protective Load Balancing across switch links
- TCP: allow dynamically disabling TCP-MD5 static key, reverting back
to fast[er]-path
- UDP: Introduce optional per-netns hash lookup table
- IPv6: simplify and cleanup sockets disposal
- Netlink: support different type policies for each generic netlink
operation
- MPTCP: add MSG_FASTOPEN and FastOpen listener side support
- MPTCP: add netlink notification support for listener sockets events
- SCTP: add VRF support, allowing sctp sockets binding to VRF devices
- Add bridging MAC Authentication Bypass (MAB) support
- Extensions for Ethernet VPN bridging implementation to better
support multicast scenarios
- More work for Wi-Fi 7 support, comprising conversion of all the
existing drivers to internal TX queue usage
- IPSec: introduce a new offload type (packet offload) allowing
complete header processing and crypto offloading
- IPSec: extended ack support for more descriptive XFRM error
reporting
- RXRPC: increase SACK table size and move processing into a
per-local endpoint kernel thread, reducing considerably the
required locking
- IEEE 802154: synchronous send frame and extended filtering support,
initial support for scanning available 15.4 networks
- Tun: bump the link speed from 10Mbps to 10Gbps
- Tun/VirtioNet: implement UDP segmentation offload support
Driver API:
- PHY/SFP: improve power level switching between standard level 1 and
the higher power levels
- New API for netdev <-> devlink_port linkage
- PTP: convert existing drivers to new frequency adjustment
implementation
- DSA: add support for rx offloading
- Autoload DSA tagging driver when dynamically changing protocol
- Add new PCP and APPTRUST attributes to Data Center Bridging
- Add configuration support for 800Gbps link speed
- Add devlink port function attribute to enable/disable RoCE and
migratable
- Extend devlink-rate to support strict prioriry and weighted fair
queuing
- Add devlink support to directly reading from region memory
- New device tree helper to fetch MAC address from nvmem
- New big TCP helper to simplify temporary header stripping
New hardware / drivers:
- Ethernet:
- Marvel Octeon CNF95N and CN10KB Ethernet Switches
- Marvel Prestera AC5X Ethernet Switch
- WangXun 10 Gigabit NIC
- Motorcomm yt8521 Gigabit Ethernet
- Microchip ksz9563 Gigabit Ethernet Switch
- Microsoft Azure Network Adapter
- Linux Automation 10Base-T1L adapter
- PHY:
- Aquantia AQR112 and AQR412
- Motorcomm YT8531S
- PTP:
- Orolia ART-CARD
- WiFi:
- MediaTek Wi-Fi 7 (802.11be) devices
- RealTek rtw8821cu, rtw8822bu, rtw8822cu and rtw8723du USB
devices
- Bluetooth:
- Broadcom BCM4377/4378/4387 Bluetooth chipsets
- Realtek RTL8852BE and RTL8723DS
- Cypress.CYW4373A0 WiFi + Bluetooth combo device
Drivers:
- CAN:
- gs_usb: bus error reporting support
- kvaser_usb: listen only and bus error reporting support
- Ethernet NICs:
- Intel (100G):
- extend action skbedit to RX queue mapping
- implement devlink-rate support
- support direct read from memory
- nVidia/Mellanox (mlx5):
- SW steering improvements, increasing rules update rate
- Support for enhanced events compression
- extend H/W offload packet manipulation capabilities
- implement IPSec packet offload mode
- nVidia/Mellanox (mlx4):
- better big TCP support
- Netronome Ethernet NICs (nfp):
- IPsec offload support
- add support for multicast filter
- Broadcom:
- RSS and PTP support improvements
- AMD/SolarFlare:
- netlink extened ack improvements
- add basic flower matches to offload, and related stats
- Virtual NICs:
- ibmvnic: introduce affinity hint support
- small / embedded:
- FreeScale fec: add initial XDP support
- Marvel mv643xx_eth: support MII/GMII/RGMII modes for Kirkwood
- TI am65-cpsw: add suspend/resume support
- Mediatek MT7986: add RX wireless wthernet dispatch support
- Realtek 8169: enable GRO software interrupt coalescing per
default
- Ethernet high-speed switches:
- Microchip (sparx5):
- add support for Sparx5 TC/flower H/W offload via VCAP
- Mellanox mlxsw:
- add 802.1X and MAC Authentication Bypass offload support
- add ip6gre support
- Embedded Ethernet switches:
- Mediatek (mtk_eth_soc):
- improve PCS implementation, add DSA untag support
- enable flow offload support
- Renesas:
- add rswitch R-Car Gen4 gPTP support
- Microchip (lan966x):
- add full XDP support
- add TC H/W offload via VCAP
- enable PTP on bridge interfaces
- Microchip (ksz8):
- add MTU support for KSZ8 series
- Qualcomm 802.11ax WiFi (ath11k):
- support configuring channel dwell time during scan
- MediaTek WiFi (mt76):
- enable Wireless Ethernet Dispatch (WED) offload support
- add ack signal support
- enable coredump support
- remain_on_channel support
- Intel WiFi (iwlwifi):
- enable Wi-Fi 7 Extremely High Throughput (EHT) PHY capabilities
- 320 MHz channels support
- RealTek WiFi (rtw89):
- new dynamic header firmware format support
- wake-over-WLAN support"
* tag 'net-next-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2002 commits)
ipvs: fix type warning in do_div() on 32 bit
net: lan966x: Remove a useless test in lan966x_ptp_add_trap()
net: ipa: add IPA v4.7 support
dt-bindings: net: qcom,ipa: Add SM6350 compatible
bnxt: Use generic HBH removal helper in tx path
IPv6/GRO: generic helper to remove temporary HBH/jumbo header in driver
selftests: forwarding: Add bridge MDB test
selftests: forwarding: Rename bridge_mdb test
bridge: mcast: Support replacement of MDB port group entries
bridge: mcast: Allow user space to specify MDB entry routing protocol
bridge: mcast: Allow user space to add (*, G) with a source list and filter mode
bridge: mcast: Add support for (*, G) with a source list and filter mode
bridge: mcast: Avoid arming group timer when (S, G) corresponds to a source
bridge: mcast: Add a flag for user installed source entries
bridge: mcast: Expose __br_multicast_del_group_src()
bridge: mcast: Expose br_multicast_new_group_src()
bridge: mcast: Add a centralized error path
bridge: mcast: Place netlink policy before validation functions
bridge: mcast: Split (*, G) and (S, G) addition into different functions
bridge: mcast: Do not derive entry type from its filter mode
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
/ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
=QRhK
-----END PGP SIGNATURE-----
Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
An update for verifier.c:states_equal()/regsafe() to use check_ids()
for active spin lock comparisons. This fixes the issue reported by
Kumar Kartikeya Dwivedi in [1] using technique suggested by Edward Cree.
W/o this commit the verifier might be tricked to accept the following
program working with a map containing spin locks:
0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: if r9 == 0 goto exit ; r9 -> PTR_TO_MAP_VALUE.
3: if r8 == 0 goto exit ; r8 -> PTR_TO_MAP_VALUE.
4: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
5: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
6: bpf_spin_lock(r8) ; active_lock.id == 2.
7: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
8: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
9: bpf_spin_unlock(r9) ; (a,b) active_lock.id == 2.
; (a) r9.id == 2, (b) r9.id == 1.
10: exit(0)
Consider two verification paths:
(a) 0-10
(b) 0-7,9-10
The path (a) is verified first. If checkpoint is created at (8)
the (b) would assume that (8) is safe because regsafe() does not
compare register ids for registers of type PTR_TO_MAP_VALUE.
[1] https://lore.kernel.org/bpf/20221111202719.982118-1-memxor@gmail.com/
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Suggested-by: Edward Cree <ecree.xilinx@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
verifier.c:states_equal() must maintain register ID mapping across all
function frames. Otherwise the following example might be erroneously
marked as safe:
main:
fp[-24] = map_lookup_elem(...) ; frame[0].fp[-24].id == 1
fp[-32] = map_lookup_elem(...) ; frame[0].fp[-32].id == 2
r1 = &fp[-24]
r2 = &fp[-32]
call foo()
r0 = 0
exit
foo:
0: r9 = r1
1: r8 = r2
2: r7 = ktime_get_ns()
3: r6 = ktime_get_ns()
4: if (r6 > r7) goto skip_assign
5: r9 = r8
skip_assign: ; <--- checkpoint
6: r9 = *r9 ; (a) frame[1].r9.id == 2
; (b) frame[1].r9.id == 1
7: if r9 == 0 goto exit: ; mark_ptr_or_null_regs() transfers != 0 info
; for all regs sharing ID:
; (a) r9 != 0 => &frame[0].fp[-32] != 0
; (b) r9 != 0 => &frame[0].fp[-24] != 0
8: r8 = *r8 ; (a) r8 == &frame[0].fp[-32]
; (b) r8 == &frame[0].fp[-32]
9: r0 = *r8 ; (a) safe
; (b) unsafe
exit:
10: exit
While processing call to foo() verifier considers the following
execution paths:
(a) 0-10
(b) 0-4,6-10
(There is also path 0-7,10 but it is not interesting for the issue at
hand. (a) is verified first.)
Suppose that checkpoint is created at (6) when path (a) is verified,
next path (b) is verified and (6) is reached.
If states_equal() maintains separate 'idmap' for each frame the
mapping at (6) for frame[1] would be empty and
regsafe(r9)::check_ids() would add a pair 2->1 and return true,
which is an error.
If states_equal() maintains single 'idmap' for all frames the mapping
at (6) would be { 1->1, 2->2 } and regsafe(r9)::check_ids() would
return false when trying to add a pair 2->1.
This issue was suggested in the following discussion:
https://lore.kernel.org/bpf/CAEf4BzbFB5g4oUfyxk9rHy-PJSLQ3h8q9mV=rVoXfr_JVm8+1Q@mail.gmail.com/
Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier.c:regsafe() has the following shortcut:
equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
...
if (equal)
return true;
Which is executed regardless old register type. This is incorrect for
register types that might have an ID checked by check_ids(), namely:
- PTR_TO_MAP_KEY
- PTR_TO_MAP_VALUE
- PTR_TO_PACKET_META
- PTR_TO_PACKET
The following pattern could be used to exploit this:
0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
3: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
4: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
5: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
6: if r9 == 0 goto <exit> ; Nullness info is propagated to all
; registers with matching ID.
7: r1 = *(u64 *) r8 ; Not always safe.
Verifier first visits path 1-7 where r8 is verified to be not null
at (6). Later the jump from 4 to 6 is examined. The checkpoint for (6)
looks as follows:
R8_rD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9_rwD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R10=fp0
The current state is:
R0=... R6=... R7=... fp-8=...
R8=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9=map_value_or_null(id=1,off=0,ks=4,vs=8,imm=0)
R10=fp0
Note that R8 states are byte-to-byte identical, so regsafe() would
exit early and skip call to check_ids(), thus ID mapping 2->2 will not
be added to 'idmap'. Next, states for R9 are compared: these are not
identical and check_ids() is executed, but 'idmap' is empty, so
check_ids() adds mapping 2->1 to 'idmap' and returns success.
This commit pushes the 'equal' down to register types that don't need
check_ids().
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It may happen that destination buffer memory overlaps with memory dynptr
points to. Hence, we must use memmove to correctly copy from dynptr to
destination buffer, or source buffer to dynptr.
This actually isn't a problem right now, as memcpy implementation falls
back to memmove on detecting overlap and warns about it, but we
shouldn't be relying on that.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After previous commit, we are minimizing helper specific assumptions
from check_func_arg_reg_off, making it generic, and offloading checks
for a specific argument type to their respective functions called after
check_func_arg_reg_off has been called.
This allows relying on a consistent set of guarantees after that call
and then relying on them in code that deals with registers for each
argument type later. This is in line with how process_spin_lock,
process_timer_func, process_kptr_func check reg->var_off to be constant.
The same reasoning is used here to move the alignment check into
process_dynptr_func. Note that it also needs to check for constant
var_off, and accumulate the constant var_off when computing the spi in
get_spi, but that fix will come in later changes.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While check_func_arg_reg_off is the place which performs generic checks
needed by various candidates of reg->type, there is some handling for
special cases, like ARG_PTR_TO_DYNPTR, OBJ_RELEASE, and
ARG_PTR_TO_RINGBUF_MEM.
This commit aims to streamline these special cases and instead leave
other things up to argument type specific code to handle. The function
will be restrictive by default, and cover all possible cases when
OBJ_RELEASE is set, without having to update the function again (and
missing to do that being a bug).
This is done primarily for two reasons: associating back reg->type to
its argument leaves room for the list getting out of sync when a new
reg->type is supported by an arg_type.
The other case is ARG_PTR_TO_RINGBUF_MEM. The problem there is something
we already handle, whenever a release argument is expected, it should
be passed as the pointer that was received from the acquire function.
Hence zero fixed and variable offset.
There is nothing special about ARG_PTR_TO_RINGBUF_MEM, where technically
its target register type PTR_TO_MEM | MEM_RINGBUF can already be passed
with non-zero offset to other helper functions, which makes sense.
Hence, lift the arg_type_is_release check for reg->off and cover all
possible register types, instead of duplicating the same kind of check
twice for current OBJ_RELEASE arg_types (alloc_mem and ptr_to_btf_id).
For the release argument, arg_type_is_dynptr is the special case, where
we go to actual object being freed through the dynptr, so the offset of
the pointer still needs to allow fixed and variable offset and
process_dynptr_func will verify them later for the release argument case
as well.
This is not specific to ARG_PTR_TO_DYNPTR though, we will need to make
this exception for any future object on the stack that needs to be
released. In this sense, PTR_TO_STACK as a candidate for object on stack
argument is a special case for release offset checks, and they need to
be done by the helper releasing the object on stack.
Since the check has been lifted above all register type checks, remove
the duplicated check that is being done for PTR_TO_BTF_ID.
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.
However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.
In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.
The rejection for helpers that release the dynptr is already handled.
For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.
First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.
Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.
When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.
With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.
A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.
The next patch will add a couple of selftest cases to make sure this
doesn't break.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ARG_PTR_TO_DYNPTR is akin to ARG_PTR_TO_TIMER, ARG_PTR_TO_KPTR, where
the underlying register type is subjected to more special checks to
determine the type of object represented by the pointer and its state
consistency.
Move dynptr checks to their own 'process_dynptr_func' function so that
is consistent and in-line with existing code. This also makes it easier
to reuse this code for kfunc handling.
Then, reuse this consolidated function in kfunc dynptr handling too.
Note that for kfuncs, the arg_type constraint of DYNPTR_TYPE_LOCAL has
been lifted.
Acked-by: David Vernet <void@manifault.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If there are pending rcu callback, free_mem_alloc() will use
rcu_barrier_tasks_trace() and rcu_barrier() to wait for the pending
__free_rcu_tasks_trace() and __free_rcu() callback.
If rcu_trace_implies_rcu_gp() is true, there will be no pending
__free_rcu(), so it will be OK to skip rcu_barrier() as well.
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221209010947.3130477-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When there are batched freeing operations on a specific CPU, part of
the freed elements ((high_watermark - lower_watermark) / 2 + 1) will be
indirectly moved into waiting_for_gp list through free_by_rcu list.
After call_rcu_in_progress becomes false again, the remaining elements
in free_by_rcu list will be moved to waiting_for_gp list by the next
invocation of free_bulk(). However if the expiration of RCU tasks trace
grace period is relatively slow, none element in free_by_rcu list will
be moved.
So instead of invoking __alloc_percpu_gfp() or kmalloc_node() to
allocate a new object, in alloc_bulk() just check whether or not there is
freed element in free_by_rcu list and reuse it if available.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221209010947.3130477-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
insn->imm for kfunc is the relative address of __bpf_call_base,
instead of __bpf_base_call, Fix the comment error.
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20221208013724.257848-1-yangjihong1@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In BPF all global functions, and BPF helpers return a 64-bit
value. For kfunc calls, this is not the case, and they can return
e.g. 32-bit values.
The return register R0 for kfuncs calls can therefore be marked as
subreg_def != DEF_NOT_SUBREG. In general, if a register is marked with
subreg_def != DEF_NOT_SUBREG, some archs (where bpf_jit_needs_zext()
returns true) require the verifier to insert explicit zero-extension
instructions.
For kfuncs calls, however, the caller should do sign/zero extension
for return values. In other words, the compiler is responsible to
insert proper instructions, not the verifier.
An example, provided by Yonghong Song:
$ cat t.c
extern unsigned foo(void);
unsigned bar1(void) {
return foo();
}
unsigned bar2(void) {
if (foo()) return 10; else return 20;
}
$ clang -target bpf -mcpu=v3 -O2 -c t.c && llvm-objdump -d t.o
t.o: file format elf64-bpf
Disassembly of section .text:
0000000000000000 <bar1>:
0: 85 10 00 00 ff ff ff ff call -0x1
1: 95 00 00 00 00 00 00 00 exit
0000000000000010 <bar2>:
2: 85 10 00 00 ff ff ff ff call -0x1
3: bc 01 00 00 00 00 00 00 w1 = w0
4: b4 00 00 00 14 00 00 00 w0 = 0x14
5: 16 01 01 00 00 00 00 00 if w1 == 0x0 goto +0x1 <LBB1_2>
6: b4 00 00 00 0a 00 00 00 w0 = 0xa
0000000000000038 <LBB1_2>:
7: 95 00 00 00 00 00 00 00 exit
If the return value of 'foo()' is used in the BPF program, the proper
zero-extension will be done.
Currently, the verifier correctly marks, say, a 32-bit return value as
subreg_def != DEF_NOT_SUBREG, but will fail performing the actual
zero-extension, due to a verifier bug in
opt_subreg_zext_lo32_rnd_hi32(). load_reg is not properly set to R0,
and the following path will be taken:
if (WARN_ON(load_reg == -1)) {
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
return -EFAULT;
}
A longer discussion from v1 can be found in the link below.
Correct the verifier by avoiding doing explicit zero-extension of R0
for kfunc calls. Note that R0 will still be marked as a sub-register
for return values smaller than 64-bit.
Fixes: 83a2881903 ("bpf: Account for BPF_FETCH in insn_has_def32()")
Link: https://lore.kernel.org/bpf/20221202103620.1915679-1-bjorn@kernel.org/
Suggested-by: Yonghong Song <yhs@meta.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221207103540.396496-1-bjorn@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_cgroup_acquire(), bpf_cgroup_release(), bpf_cgroup_kptr_get(), and
bpf_cgroup_ancestor(), are kfuncs that were recently added to
kernel/bpf/helpers.c. These are "core" kfuncs in that they're available
for use in any tracepoint or struct_ops BPF program. Though they have no
ABI stability guarantees, we should still document them. This patch adds
a struct cgroup * subsection to the Core kfuncs section which describes
each of these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_task_acquire(), bpf_task_release(), and bpf_task_from_pid() are
kfuncs that were recently added to kernel/bpf/helpers.c. These are
"core" kfuncs in that they're available for use for any tracepoint or
struct_ops BPF program. Though they have no ABI stability guarantees, we
should still document them. This patch adds a new Core kfuncs section to
the BPF kfuncs doc, and adds entries for all of these task kfuncs.
Note that bpf_task_kptr_get() is not documented, as it still returns
NULL while we're working to resolve how it can use RCU to ensure struct
task_struct * lifetime.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Number of total instructions in BPF program (including subprogs) can and
is accessed from env->prog->len. visit_func_call_insn() doesn't do any
checks against insn_cnt anymore, relying on push_insn() to do this check
internally. So remove unnecessary insn_cnt input argument from
visit_func_call_insn() and visit_insn() functions.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221207195534.2866030-1-andrii@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJSBAABCAA8FiEEoEVH9lhNrxiMPSyI7MXwXhnZSjYFAmOQpWweHGJlbmphbWlu
LnRpc3NvaXJlc0ByZWRoYXQuY29tAAoJEOzF8F4Z2Uo23ooQAJR4JBv+WKxyDplY
m2Kk1t156kenJNhyRojwNWlYk7S0ziClwfjnJEsiki4S0RAwHcVNuuMLjKSjcDIP
TFrs3kFIlgLITpkPFdMIqMniq0Fynb3N5QDsaohQPQvtLeDx5ASH9D6J+20bcdky
PE+xOo1Nkn1DpnBiGX7P6irMsqrm5cXfBES2u9c7He9VLThviP2v+TvB80gmRi7w
zUU4Uikcr8wlt+9MZoLVoVwAOg5aZmVa/9ogNqaT+cKnW6hQ+3CymxiyiyOdRrAQ
e521+GhQOVTiM0w5C6BwhMx+Wu8r0Qz4Vp49UWf04U/KU+M1TzqAk1z7Vvt72TCr
965qb19TSRNTGQzebAIRd09mFb/nech54dhpyceONBGnUs9r2dDWjfDd/PA7e2WO
FbDE0HGnz/XK7GUrk/BXWU+n9VA7itnhJzB+zr3i6IKFgwwDJ1V4e81CWdBEsp9I
WNDC8LF2bcgHvzFVC23AkKujmbirS6K4Wq+R0f2PISQIs2FdUBl1mgjh2E47lK8E
zCozMRf9bMya5aGkd4S4dtn0NFGByFSXod2TMgfHPvBz06t6YG00DajALzcE5l8U
GAoP5Nz9hRSbmHJCNMqy0SN0WN9Cz+JIFx5Vlb9az3lduRRBOVptgnjx9LOjErVr
+aWWxuQgoHZmB5Ja5WNVN1lIf39/
=FX5W
-----END PGP SIGNATURE-----
Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-next
Merge commit 5b481acab4 ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret")
from hid tree into bpf-next.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.
Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.
Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
Don't mark some instructions as jump points when there are actually no
jumps and instructions are just processed sequentially. Such case is
handled naturally by precision backtracking logic without the need to
update jump history. See get_prev_insn_idx(). It goes back linearly by
one instruction, unless current top of jmp_history is pointing to
current instruction. In such case we use `st->jmp_history[cnt - 1].prev_idx`
to find instruction from which we jumped to the current instruction
non-linearly.
Also remove both jump and prune point marking for instruction right
after unconditional jumps, as program flow can get to the instruction
right after unconditional jump instruction only if there is a jump to
that instruction from somewhere else in the program. In such case we'll
mark such instruction as prune/jump point because it's a destination of
a jump.
This change has no changes in terms of number of instructions or states
processes across Cilium and selftests programs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20221206233345.438540-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Jump history updating and state equivalence checks are conceptually
independent, so move push_jmp_history() out of is_state_visited(). Also
make a decision whether to perform state equivalence checks or not one
layer higher in do_check(), keeping is_state_visited() unconditionally
performing state checks.
push_jmp_history() should be performed after state checks. There is just
one small non-uniformity. When is_state_visited() finds already
validated equivalent state, it propagates precision marks to current
state's parent chain. For this to work correctly, jump history has to be
updated, so is_state_visited() is doing that internally.
But if no equivalent verified state is found, jump history has to be
updated in a newly cloned child state, so is_jmp_point()
+ push_jmp_history() is performed after is_state_visited() exited with
zero result, which means "proceed with validation".
This change has no functional changes. It's not strictly necessary, but
feels right to decouple these two processes.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF verifier marks some instructions as prune points. Currently these
prune points serve two purposes.
It's a point where verifier tries to find previously verified state and
check current state's equivalence to short circuit verification for
current code path.
But also currently it's a point where jump history, used for precision
backtracking, is updated. This is done so that non-linear flow of
execution could be properly backtracked.
Such coupling is coincidental and unnecessary. Some prune points are not
part of some non-linear jump path, so don't need update of jump history.
On the other hand, not all instructions which have to be recorded in
jump history necessarily are good prune points.
This patch splits prune and jump points into independent flags.
Currently all prune points are marked as jump points to minimize amount
of changes in this patch, but next patch will perform some optimization
of prune vs jmp point placement.
No functional changes are intended.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf->struct_meta_tab is populated by btf_parse_struct_metas in btf.c.
There, a BTF record is created for any type containing a spin_lock or
any next-gen datastructure node/head.
Currently, for non-MAP_VALUE types, reg_btf_record will only search for
a record using struct_meta_tab if the reg->type exactly matches
(PTR_TO_BTF_ID | MEM_ALLOC). This exact match is too strict: an
"allocated obj" type - returned from bpf_obj_new - might pick up other
flags while working its way through the program.
Loosen the check to be exact for base_type and just use MEM_ALLOC mask
for type_flag.
This patch is marked Fixes as the original intent of reg_btf_record was
unlikely to have been to fail finding btf_record for valid alloc obj
types with additional flags, some of which (e.g. PTR_UNTRUSTED)
are valid register type states for alloc obj independent of this series.
However, I didn't find a specific broken repro case outside of this
series' added functionality, so it's possible that nothing was
triggering this logic error before.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 4e814da0d5 ("bpf: Allow locking bpf_spin_lock in allocated objects")
Link: https://lore.kernel.org/r/20221206231000.3180914-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A series of prior patches added some kfuncs that allow struct
task_struct * objects to be used as kptrs. These kfuncs leveraged the
'refcount_t rcu_users' field of the task for performing refcounting.
This field was used instead of 'refcount_t usage', as we wanted to
leverage the safety provided by RCU for ensuring a task's lifetime.
A struct task_struct is refcounted by two different refcount_t fields:
1. p->usage: The "true" refcount field which task lifetime. The
task is freed as soon as this refcount drops to 0.
2. p->rcu_users: An "RCU users" refcount field which is statically
initialized to 2, and is co-located in a union with
a struct rcu_head field (p->rcu). p->rcu_users
essentially encapsulates a single p->usage
refcount, and when p->rcu_users goes to 0, an RCU
callback is scheduled on the struct rcu_head which
decrements the p->usage refcount.
Our logic was that by using p->rcu_users, we would be able to use RCU to
safely issue refcount_inc_not_zero() a task's rcu_users field to
determine if a task could still be acquired, or was exiting.
Unfortunately, this does not work due to p->rcu_users and p->rcu sharing
a union. When p->rcu_users goes to 0, an RCU callback is scheduled to
drop a single p->usage refcount, and because the fields share a union,
the refcount immediately becomes nonzero again after the callback is
scheduled.
If we were to split the fields out of the union, this wouldn't be a
problem. Doing so should also be rather non-controversial, as there are
a number of places in struct task_struct that have padding which we
could use to avoid growing the structure by splitting up the fields.
For now, so as to fix the kfuncs to be correct, this patch instead
updates bpf_task_acquire() and bpf_task_release() to use the p->usage
field for refcounting via the get_task_struct() and put_task_struct()
functions. Because we can no longer rely on RCU, the change also guts
the bpf_task_acquire_not_zero() and bpf_task_kptr_get() functions
pending a resolution on the above problem.
In addition, the task fixes the kfunc and rcu_read_lock selftests to
expect this new behavior.
Fixes: 90660309b0 ("bpf: Add kfuncs for storing struct task_struct * as a kptr")
Fixes: fca1aa7551 ("bpf: Handle MEM_RCU type properly")
Reported-by: Matus Jokay <matus.jokay@stuba.sk>
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221206210538.597606-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to sk/inode/task local storage, enable sleepable support for
cgrp local storage.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221201050444.2785007-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Martin mentioned that the verifier cannot assume arguments from
LSM hook sk_alloc_security being trusted since after the hook
is called, the sk ref_count is set to 1. This will overwrite
the ref_count changed by the bpf program and may cause ref_count
underflow later on.
I then further checked some other hooks. For example,
for bpf_lsm_file_alloc() hook in fs/file_table.c,
f->f_cred = get_cred(cred);
error = security_file_alloc(f);
if (unlikely(error)) {
file_free_rcu(&f->f_rcuhead);
return ERR_PTR(error);
}
atomic_long_set(&f->f_count, 1);
The input parameter 'f' to security_file_alloc() cannot be trusted
as well.
Specifically, I investiaged bpf_map/bpf_prog/file/sk/task alloc/free
lsm hooks. Except bpf_map_alloc and task_alloc, arguments for all other
hooks should not be considered as trusted. This may not be a complete
list, but it covers common usage for sk and task.
Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203204954.2043348-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.
Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.
This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.
[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Consider a verifier state with three acquired references, all with
release_on_unlock = true:
idx 0 1 2
state->refs = [2 4 6]
(with 2, 4, and 6 being the ref ids).
When bpf_spin_unlock is called, process_spin_lock will loop through all
acquired_refs and, for each ref, if it's release_on_unlock, calls
release_reference on it. That function in turn calls
release_reference_state, which removes the reference from state->refs by
swapping the reference state with the last reference state in
refs array and decrements acquired_refs count.
process_spin_lock's loop logic, which is essentially:
for (i = 0; i < state->acquired_refs; i++) {
if (!state->refs[i].release_on_unlock)
continue;
release_reference(state->refs[i].id);
}
will fail to release release_on_unlock references which are swapped from
the end. Running this logic on our example demonstrates:
state->refs = [2 4 6] (start of idx=0 iter)
release state->refs[0] by swapping w/ state->refs[2]
state->refs = [6 4] (start of idx=1)
release state->refs[1], no need to swap as it's the last idx
state->refs = [6] (start of idx=2, loop terminates)
ref_id 6 should have been removed but was skipped.
Fix this by looping from back-to-front, which results in refs that are
candidates for removal being swapped with refs which have already been
examined and kept.
If we modify our initial example such that ref 6 is replaced with ref 7,
which is _not_ release_on_unlock, and loop from the back, we'd see:
state->refs = [2 4 7] (start of idx=2)
state->refs = [2 4 7] (start of idx=1)
state->refs = [2 7] (start of idx=0, refs 7 and 4 swapped)
state->refs = [7] (after idx=0, 7 and 2 swapped, loop terminates)
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 534e86bc6c ("bpf: Add 'release on unlock' logic for bpf_list_push_{front,back}")
Link: https://lore.kernel.org/r/20221201183406.1203621-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When building the kernel with clang lto (CONFIG_LTO_CLANG_FULL=y), the
following compilation error will appear:
$ make LLVM=1 LLVM_IAS=1 -j
...
ld.lld: error: ld-temp.o <inline asm>:26889:1: symbol 'cgroup_storage_map_btf_ids' is already defined
cgroup_storage_map_btf_ids:;
^
make[1]: *** [/.../bpf-next/scripts/Makefile.vmlinux_o:61: vmlinux.o] Error 1
In local_storage.c, we have
BTF_ID_LIST_SINGLE(cgroup_storage_map_btf_ids, struct, bpf_local_storage_map)
Commit c4bcfb38a9 ("bpf: Implement cgroup storage available to
non-cgroup-attached bpf progs") added the above identical BTF_ID_LIST_SINGLE
definition in bpf_cgrp_storage.c. With duplicated definitions, llvm linker
complains with lto build.
Also, extracting btf_id of 'struct bpf_local_storage_map' is defined four times
for sk, inode, task and cgrp local storages. Let us define a single global one
with a different name than cgroup_storage_map_btf_ids, which also fixed
the lto compilation error.
Fixes: c4bcfb38a9 ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221130052147.1591625-1-yhs@fb.com
The networking programs typically don't require CAP_PERFMON, but through kfuncs
like bpf_cast_to_kern_ctx() they can access memory through PTR_TO_BTF_ID. In
such case enforce CAP_PERFMON.
Also make sure that only GPL programs can access kernel data structures.
All kfuncs require GPL already.
Also remove allow_ptr_to_map_access. It's the same as allow_ptr_leaks and
different name for the same check only causes confusion.
Fixes: fd264ca020 ("bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx")
Fixes: 50c6b8a9ae ("selftests/bpf: Add a test for btf_type_tag "percpu"")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221125220617.26846-1-alexei.starovoitov@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY4AC5QAKCRDbK58LschI
g1e0AQCfAqduTy7mYd02jDNCV0wLphNp9FbPiP9OrQT37ABpKAEA1ulj1X59bX3d
HnZdDKuatcPZT9MV5hDLM7MFJ9GjOA4=
=fNmM
-----END PGP SIGNATURE-----
Daniel Borkmann says:
====================
bpf-next 2022-11-25
We've added 101 non-merge commits during the last 11 day(s) which contain
a total of 109 files changed, 8827 insertions(+), 1129 deletions(-).
The main changes are:
1) Support for user defined BPF objects: the use case is to allocate own
objects, build own object hierarchies and use the building blocks to
build own data structures flexibly, for example, linked lists in BPF,
from Kumar Kartikeya Dwivedi.
2) Add bpf_rcu_read_{,un}lock() support for sleepable programs,
from Yonghong Song.
3) Add support storing struct task_struct objects as kptrs in maps,
from David Vernet.
4) Batch of BPF map documentation improvements, from Maryam Tahhan
and Donald Hunter.
5) Improve BPF verifier to propagate nullness information for branches
of register to register comparisons, from Eduard Zingerman.
6) Fix cgroup BPF iter infra to hold reference on the start cgroup,
from Hou Tao.
7) Fix BPF verifier to not mark fentry/fexit program arguments as trusted
given it is not the case for them, from Alexei Starovoitov.
8) Improve BPF verifier's realloc handling to better play along with dynamic
runtime analysis tools like KASAN and friends, from Kees Cook.
9) Remove legacy libbpf mode support from bpftool,
from Sahid Orentino Ferdjaoui.
10) Rework zero-len skb redirection checks to avoid potentially breaking
existing BPF test infra users, from Stanislav Fomichev.
11) Two small refactorings which are independent and have been split out
of the XDP queueing RFC series, from Toke Høiland-Jørgensen.
12) Fix a memory leak in LSM cgroup BPF selftest, from Wang Yufen.
13) Documentation on how to run BPF CI without patch submission,
from Daniel Müller.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
====================
Link: https://lore.kernel.org/r/20221125012450.441-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The PTR_TRUSTED flag should only be applied to pointers where the verifier can
guarantee that such pointers are valid.
The fentry/fexit/fmod_ret programs are not in this category.
Only arguments of SEC("tp_btf") and SEC("iter") programs are trusted
(which have BPF_TRACE_RAW_TP and BPF_TRACE_ITER attach_type correspondingly)
This bug was masked because convert_ctx_accesses() was converting trusted
loads into BPF_PROBE_MEM loads. Fix it as well.
The loads from trusted pointers don't need exception handling.
Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221124215314.55890-1-alexei.starovoitov@gmail.com
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().
struct task_struct {
...
struct task_struct *last_wakee;
struct task_struct __rcu *real_parent;
...
};
Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
- 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
region. This is to simulate rcu_dereference() operation. The
'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
- 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
region since it tries to access rcu protected memory.
- the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
it is not clear whether the object pointed by 'last_wakee' is valid or
not even inside bpf_rcu_read_lock region.
The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.
The current implementation does not support nested rcu read lock
region in the prog.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_func_proto->might_sleep to indicate a particular helper
might sleep. This will make later check whether a helper might be
sleepable or not easier.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053211.2373553-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Callers can currently store tasks as kptrs using bpf_task_acquire(),
bpf_task_kptr_get(), and bpf_task_release(). These are useful if a
caller already has a struct task_struct *, but there may be some callers
who only have a pid, and want to look up the associated struct
task_struct * from that to e.g. find task->comm.
This patch therefore adds a new bpf_task_from_pid() kfunc which allows
BPF programs to get a struct task_struct * kptr from a pid.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122145300.251210-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Syzkaller managed to hit another decl_tag issue:
btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
btf_check_all_types kernel/bpf/btf.c:4734 [inline]
btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
btf_parse kernel/bpf/btf.c:5042 [inline]
btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
__sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
__do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
This seems similar to commit ea68376c8b ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.
Reported-by: syzbot+8dd0551dda6020944c5d@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221123035422.872531-2-sdf@google.com
In commit fda01efc61 ("bpf: Enable cgroups to be used as kptrs"), I
added an 'int idx' variable to kfunc_init() which was meant to
dynamically set the index of the btf id entries of the
'generic_dtor_ids' array. This was done to make the code slightly less
brittle as the struct cgroup * kptr kfuncs such as bpf_cgroup_aquire()
are compiled out if CONFIG_CGROUPS is not defined. This, however, causes
an lkp build warning:
>> kernel/bpf/helpers.c:2005:40: warning: multiple unsequenced
modifications to 'idx' [-Wunsequenced]
.btf_id = generic_dtor_ids[idx++],
Fix the warning by just hard-coding the indices.
Fixes: fda01efc61 ("bpf: Enable cgroups to be used as kptrs")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221123135253.637525-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
struct cgroup * objects have a variably sized struct cgroup *ancestors[]
field which stores pointers to their ancestor cgroups. If using a cgroup
as a kptr, it can be useful to access these ancestors, but doing so
requires variable offset accesses for PTR_TO_BTF_ID, which is currently
unsupported.
This is a very useful field to access for cgroup kptrs, as programs may
wish to walk their ancestor cgroups when determining e.g. their
proportional cpu.weight. So as to enable this functionality with cgroup
kptrs before var_off is supported for PTR_TO_BTF_ID, this patch adds a
bpf_cgroup_ancestor() kfunc which accesses the cgroup node on behalf of
the caller, and acquires a reference on it. Once var_off is supported
for PTR_TO_BTF_ID, and fields inside a struct can be marked as trusted
so they retain the PTR_TRUSTED modifier when walked, this can be
removed.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that tasks can be used as kfuncs, and the PTR_TRUSTED flag is
available for us to easily add basic acquire / get / release kfuncs, we
can do the same for cgroups. This patch set adds the following kfuncs
which enable using cgroups as kptrs:
struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp);
struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp);
void bpf_cgroup_release(struct cgroup *cgrp);
A follow-on patch will add a selftest suite which validates these
kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_selem_alloc function is used by inode_storage, sk_storage and
task_storage maps to set map value, for these map types, there may
be a spin lock in the map value, so if we use memcpy to copy the whole
map value from user, the spin lock field may be initialized incorrectly.
Since the spin lock field is zeroed by kzalloc, call copy_map_value
instead of memcpy to skip copying the spin lock field to fix it.
Fixes: 6ac99e8f23 ("bpf: Introduce bpf sk local storage")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Link: https://lore.kernel.org/r/20221114134720.1057939-2-xukuohai@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_iter_attach_cgroup() has already acquired an extra reference for the
start cgroup, but the reference may be released if the iterator link fd
is closed after the creation of iterator fd, and it may lead to
user-after-free problem when reading the iterator fd.
An alternative fix is pinning iterator link when opening iterator,
but it will make iterator link being still visible after the close of
iterator link fd and the behavior is different with other link types, so
just fixing it by acquiring another reference for the start cgroup.
Fixes: d4ccaf58a8 ("bpf: Introduce cgroup iter")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221121073440.1828292-2-houtao@huaweicloud.com
Most allocation sites in the kernel want an explicitly sized allocation
(and not "more"), and that dynamic runtime analysis tools (e.g. KASAN,
UBSAN_BOUNDS, FORTIFY_SOURCE, etc) are looking for precise bounds checking
(i.e. not something that is rounded up). A tiny handful of allocations
were doing an implicit alloc/realloc loop that actually depended on
ksize(), and didn't actually always call realloc. This has created a
long series of bugs and problems over many years related to the runtime
bounds checking, so these callers are finally being adjusted to _not_
depend on the ksize() side-effect, by doing one of several things:
- tracking the allocation size precisely and just never calling ksize()
at all [1].
- always calling realloc and not using ksize() at all. (This solution
ends up actually be a subset of the next solution.)
- using kmalloc_size_roundup() to explicitly round up the desired
allocation size immediately [2].
The bpf/verifier case is this another of this latter case, and is the
last outstanding case to be fixed in the kernel.
Because some of the dynamic bounds checking depends on the size being an
_argument_ to an allocator function (i.e. see the __alloc_size attribute),
the ksize() users are rare, and it could waste local variables, it
was been deemed better to explicitly separate the rounding up from the
allocation itself [3].
Round up allocations with kmalloc_size_roundup() so that the verifier's
use of ksize() is always accurate.
[1] e.g.:
https://git.kernel.org/linus/712f210a457dhttps://git.kernel.org/linus/72c08d9f4c72
[2] e.g.:
https://git.kernel.org/netdev/net-next/c/12d6c1d3a2adhttps://git.kernel.org/netdev/net-next/c/ab3f7828c979https://git.kernel.org/netdev/net-next/c/d6dd508080a3
[3] https://lore.kernel.org/lkml/0ea1fc165a6c6117f982f4f135093e69cb884930.camel@redhat.com/
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20221118183409.give.387-kees@kernel.org
Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.
The signature of bpf_rdonly_cast() looks like
void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.
Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and
bpf_rdonly_cast() which apply to all program types. Currently kfunc set
only supports individual prog types. This patch added support for kfunc
applying to all program types.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that BPF supports adding new kernel functions with kfuncs, and
storing kernel objects in maps with kptrs, we can add a set of kfuncs
which allow struct task_struct objects to be stored in maps as
referenced kptrs. The possible use cases for doing this are plentiful.
During tracing, for example, it would be useful to be able to collect
some tasks that performed a certain operation, and then periodically
summarize who they are, which cgroup they're in, how much CPU time
they've utilized, etc.
In order to enable this, this patch adds three new kfuncs:
struct task_struct *bpf_task_acquire(struct task_struct *p);
struct task_struct *bpf_task_kptr_get(struct task_struct **pp);
void bpf_task_release(struct task_struct *p);
A follow-on patch will add selftests validating these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.
The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.
There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:
SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;
nested = task->last_wakee;
/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;
bpf_task_release(acquired);
return 0;
}
To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.
A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
reg_type_str() in the verifier currently only allows a single register
type modifier to be present in the 'prefix' string which is eventually
stored in the env type_str_buf. This currently works fine because there
are no overlapping type modifiers, but once PTR_TRUSTED is added, that
will no longer be the case. This patch updates reg_type_str() to support
having multiple modifiers in the prefix string, and updates the size of
type_str_buf to be 128 bytes.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The old behavior of bpf_map_meta_equal was that it compared timer_off
to be equal (but not spin_lock_off, because that was not allowed), and
did memcmp of kptr_off_tab.
Now, we memcmp the btf_record of two bpf_map structs, which has all
fields.
We preserve backwards compat as we kzalloc the array, so if only spin
lock and timer exist in map, we only compare offset while the rest of
unused members in the btf_field struct are zeroed out.
In case of kptr, btf and everything else is of vmlinux or module, so as
long type is same it will match, since kernel btf, module, dtor pointer
will be same across maps.
Now with list_head in the mix, things are a bit complicated. We
implicitly add a requirement that both BTFs are same, because struct
btf_field_list_head has btf and value_rec members.
We obviously shouldn't force BTFs to be equal by default, as that breaks
backwards compatibility.
Currently it is only implicitly required due to list_head matching
struct btf and value_rec member. value_rec points back into a btf_record
stashed in the map BTF (btf member of btf_field_list_head). So that
pointer and btf member has to match exactly.
Document all these subtle details so that things don't break in the
future when touching this code.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-19-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit implements the delayed release logic for bpf_list_push_front
and bpf_list_push_back.
Once a node has been added to the list, it's pointer changes to
PTR_UNTRUSTED. However, it is only released once the lock protecting the
list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED
set but an active ref_obj_id, it is still permitted to read them as long
as the lock is held. Writing to them is not allowed.
This allows having read access to push items we no longer own until we
release the lock guarding the list, allowing a little more flexibility
when working with these APIs.
Note that enabling write support has fairly tricky interactions with
what happens inside the critical section. Just as an example, currently,
bpf_obj_drop is not permitted, but if it were, being able to write to
the PTR_UNTRUSTED pointer while the object gets released back to the
memory allocator would violate safety properties we wish to guarantee
(i.e. not crashing the kernel). The memory could be reused for a
different type in the BPF program or even in the kernel as it gets
eventually kfree'd.
Not enabling bpf_obj_drop inside the critical section would appear to
prevent all of the above, but that is more of an artifical limitation
right now. Since the write support is tangled with how we handle
potential aliasing of nodes inside the critical section that may or may
not be part of the list anymore, it has been deferred to a future patch.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.
The following functions are added to kick things off:
// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);
// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);
// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);
// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);
The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.
Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.
bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.
With these additions, programs can now manage their own linked lists and
store their objects in them.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pointer increment on seeing PTR_MAYBE_NULL is already protected against,
hence make an exception for PTR_TO_BTF_ID | MEM_ALLOC while still
keeping the warning for other unintended cases that might creep in.
bpf_list_pop_{front,_back} helpers planned to be introduced in next
commit will return a MEM_ALLOC register with incremented offset pointing
to bpf_list_node field. The user is supposed to then obtain the pointer
to the entry using container_of after NULL checking it. The current
restrictions trigger a warning when doing the NULL checking. Revisiting
the reason, it is meant as an assertion which seems to actually work and
catch the bad case.
Hence, under no other circumstances can reg->off be non-zero for a
register that has the PTR_MAYBE_NULL type flag set.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.
Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.
For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.
Continuing the previous example:
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
bpf_obj_drop(f);
}
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.
Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.
The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).
The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.
It would also be needed in the next patch to perform proper destruction
of the object's special fields.
Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.
Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.
A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}
A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow passing known constant scalars as arguments to kfuncs that do not
represent a size parameter. We use mark_chain_precision for the constant
scalar argument to mark it precise. This makes the search pruning
optimization of verifier more conservative for such kfunc calls, and
each non-distinct argument is considered unequivalent.
We will use this support to then expose a bpf_obj_new function where it
takes the local type ID of a type in program BTF, and returns a
PTR_TO_BTF_ID | MEM_ALLOC to the local type, and allows programs to
allocate their own objects.
Each type ID resolves to a distinct type with a possibly distinct size,
hence the type ID constant matters in terms of program safety and its
precision needs to be checked between old and cur states inside regsafe.
The use of mark_chain_precision enables this.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There is no need to restrict users from locking bpf_spin_lock in map
values of inner maps. Each inner map lookup gets a unique reg->id
assigned to the returned PTR_TO_MAP_VALUE which will be preserved after
the NULL check. Distinct lookups into different inner map get unique
IDs, and distinct lookups into same inner map also get unique IDs.
Hence, lift the restriction by removing the check return -ENOTSUPP in
map_in_map.c. Later commits will add comprehensive test cases to ensure
that invalid cases are rejected.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-11-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.
The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.
This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.
So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.
This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.
Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.
Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).
Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.
Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.
Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.
Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.
Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.
Also update btf_struct_access to reject direct access to these special
fields.
A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.
While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.
Note that the specification of such types can be done just like map
values, e.g.:
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
struct bpf_list_node node;
};
struct map_value {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(foo, node);
};
To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.
Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.
A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.
Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.
For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.
No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Far too much code simply assumes that both btf_record and btf_field_offs
are set to valid pointers together, or both are unset. They go together
hand in hand as btf_record describes the special fields and
btf_field_offs is compact representation for runtime copying/zeroing.
It is very difficult to make this clear in the code when the only
exception to this universal invariant is inner_map_meta which is used
as reg->map_ptr in the verifier. This is simply a bug waiting to happen,
as in verifier context we cannot easily distinguish if PTR_TO_MAP_VALUE
is coming from an inner map, and if we ever end up using field_offs for
any reason in the future, we will silently ignore the special fields for
inner map case (as NULL is not an error but unset field_offs).
Hence, simply copy field_offs from inner map together with btf_record.
While at it, refactor code to unwind properly on errors with gotos.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Whenever btf_record_dup fails, we must free inner_map_meta that was
allocated before.
This fixes a memory leak (in case of errors) during inner map creation.
Fixes: aa3496accc ("bpf: Refactor kptr_off_tab into btf_record")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since the commit being fixed, we now miss freeing btf_record for local
storage maps which will have a btf_record populated in case they have
bpf_spin_lock element.
This was missed because I made the choice of offloading the job to free
kptr_off_tab (now btf_record) to the map_free callback when adding
support for kptrs.
Revisiting the reason for this decision, there is the possibility that
the btf_record gets used inside map_free callback (e.g. in case of maps
embedding kptrs) to iterate over them and free them, hence doing it
before the map_free callback would be leaking special field memory, and
do invalid memory access. The btf_record keeps module references which
is critical to ensure the dtor call made for referenced kptr is safe to
do.
If doing it after map_free callback, the map area is already freed, so
we cannot access bpf_map structure anymore.
To fix this and prevent such lapses in future, move bpf_map_free_record
out of the map_free callback, and do it after map_free by remembering
the btf_record pointer. There is no need to access bpf_map structure in
that case, and we can avoid missing this case when support for new map
types is added for other special fields.
Since a btf_record and its btf_field_offs are used together, for
consistency delay freeing of field_offs as well. While not a problem
right now, a lot of code assumes that either both record and field_offs
are set or none at once.
Note that in case of map of maps (outer maps), inner_map_meta->record is
only used during verification, not to free fields in map value, hence we
simply keep the bpf_map_free_record call as is in bpf_map_meta_free and
never touch map->inner_map_meta in bpf_map_free_deferred.
Add a comment making note of these details.
Fixes: db55911782 ("bpf: Consolidate spin_lock, timer management into btf_record")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of returning directly with -EOPNOTSUPP for the timer case, we
need to free the btf_record before returning to userspace.
Fixes: db55911782 ("bpf: Consolidate spin_lock, timer management into btf_record")
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Currently bpf_map_do_batch() first invokes fdget(batch.map_fd) to get
the target map file, then it invokes generic_map_update_batch() to do
batch update. generic_map_update_batch() will get the target map file
by using fdget(batch.map_fd) again and pass it to bpf_map_update_value().
The problem is map file returned by the second fdget() may be NULL or a
totally different file compared by map file in bpf_map_do_batch(). The
reason is that the first fdget() only guarantees the liveness of struct
file instead of file descriptor and the file description may be released
by concurrent close() through pick_file().
It doesn't incur any problem as for now, because maps with batch update
support don't use map file in .map_fd_get_ptr() ops. But it is better to
fix the potential access of an invalid map file.
Using __bpf_map_get() again in generic_map_update_batch() can not fix
the problem, because batch.map_fd may be closed and reopened, and the
returned map file may be different with map file got in
bpf_map_do_batch(), so just passing the map file directly to
.map_update_batch() in bpf_map_do_batch().
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221116075059.1551277-1-houtao@huaweicloud.com
Propagate nullness information for branches of register to register
equality compare instructions. The following rules are used:
- suppose register A maybe null
- suppose register B is not null
- for JNE A, B, ... - A is not null in the false branch
- for JEQ A, B, ... - A is not null in the true branch
E.g. for program like below:
r6 = skb->sk;
r7 = sk_fullsock(r6);
r0 = sk_fullsock(r6);
if (r0 == 0) return 0; (a)
if (r0 != r7) return 0; (b)
*r7->type; (c)
return 0;
It is safe to dereference r7 at point (c), because of (a) and (b).
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221115224859.2452988-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For queueing packets in XDP we want to add a new redirect map type with
support for 64-bit indexes. To prepare fore this, expand the width of the
'key' argument to the bpf_redirect_map() helper. Since BPF registers are
always 64-bit, this should be safe to do after the fact.
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20221108140601.149971-3-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of having to pass multiple arguments that describe the register,
pass the bpf_reg_state into the btf_struct_access callback. Currently,
all call sites simply reuse the btf and btf_id of the reg they want to
check the access of. The only exception to this pattern is the callsite
in check_ptr_to_map_access, hence for that case create a dummy reg to
simulate PTR_TO_BTF_ID access.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, verifier uses MEM_ALLOC type tag to specially tag memory
returned from bpf_ringbuf_reserve helper. However, this is currently
only used for this purpose and there is an implicit assumption that it
only refers to ringbuf memory (e.g. the check for ARG_PTR_TO_ALLOC_MEM
in check_func_arg_reg_off).
Hence, rename MEM_ALLOC to MEM_RINGBUF to indicate this special
relationship and instead open the use of MEM_ALLOC for more generic
allocations made for user types.
Also, since ARG_PTR_TO_ALLOC_MEM_OR_NULL is unused, simply drop it.
Finally, update selftests using 'alloc_' verifier string to 'ringbuf_'.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the verifier has two return types, RET_PTR_TO_ALLOC_MEM, and
RET_PTR_TO_ALLOC_MEM_OR_NULL, however the former is confusingly named to
imply that it carries MEM_ALLOC, while only the latter does. This causes
confusion during code review leading to conclusions like that the return
value of RET_PTR_TO_DYNPTR_MEM_OR_NULL (which is RET_PTR_TO_ALLOC_MEM |
PTR_MAYBE_NULL) may be consumable by bpf_ringbuf_{submit,commit}.
Rename it to make it clear MEM_ALLOC needs to be tacked on top of
RET_PTR_TO_MEM.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.
The definition of bpf_list_head in a map value will be done as follows:
struct foo {
struct bpf_list_node node;
int data;
};
struct map_value {
struct bpf_list_head head __contains(foo, node);
};
Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.
The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.
This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.
For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.
Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.
While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In f71b2f6417 ("bpf: Refactor map->off_arr handling"), map->off_arr
was refactored to be btf_field_offs. The number of field offsets is
equal to maximum possible fields limited by BTF_FIELDS_MAX. Hence, reuse
BTF_FIELDS_MAX as spin_lock and timer no longer are to be handled
specially for offset sorting, fix the comment, and remove incorrect
WARN_ON as its rec->cnt can never exceed this value. The reason to keep
separate constant was the it was always more 2 more than total kptrs.
This is no longer the case.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEET63h6RnJhTJHuKTjXOwUVIRcSScFAmNu2EkACgkQXOwUVIRc
SSebKhAA0ffmp5jJgEJpQYNABGLYIJcwKkBrGClDbMJLtwCjevGZJajT9fpbCLb1
eK6EIhdfR0NTO+0KtUVkZ8WMa81OmLEJYdTNtJfNE23ENMpssiAWhlhDF8AoXeKv
Bo3j719gn3Cw9PWXQoircH3wpj+5RMDnjxy4iYlA5yNrvzC7XVmssMF+WALvQnuK
CGrfR57hxdgmphmasRqeCzEoriwihwPsG3k6eQN8rf7ZytLhs90tMVgT9L3Cd2u9
DafA0Xl8mZdz2mHhThcJhQVq4MUymZj44ufuHDiOs1j6nhUlWToyQuvegPOqxKti
uLGtZul0ls+3UP0Lbrv1oEGU/MWMxyDz4IBc0EVs0k3ItQbmSKs6r9WuPFGd96Sb
GHk68qFVySeLGN0LfKe3rCHJ9ZoIOPYJg9qT8Rd5bOhetgGwSsxZTxUI39BxkFup
CEqwIDnts1TMU37GDjj+vssKW91k4jEzMZVtRfsL3J36aJs28k/Ez4AqLXg6WU6u
ADqFaejVPcXbN9rX90onIYxxiL28gZSeT+i8qOPELZtqTQmNWz+tC/ySVuWnD8Mn
Nbs7PZ1IWiNZpsKS8pZnpd6j4mlBeJnwXkPKiFy+xHGuwRSRdYl6G9e5CtlRely/
rwQ8DtaOpRYMrGhnmBEdAOCa9t/iqzrzHzjoigjJ7iAST4ToJ5s=
=Y+/e
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Andrii Nakryiko says:
====================
bpf-next 2022-11-11
We've added 49 non-merge commits during the last 9 day(s) which contain
a total of 68 files changed, 3592 insertions(+), 1371 deletions(-).
The main changes are:
1) Veristat tool improvements to support custom filtering, sorting, and replay
of results, from Andrii Nakryiko.
2) BPF verifier precision tracking fixes and improvements,
from Andrii Nakryiko.
3) Lots of new BPF documentation for various BPF maps, from Dave Tucker,
Donald Hunter, Maryam Tahhan, Bagas Sanjaya.
4) BTF dedup improvements and libbpf's hashmap interface clean ups, from
Eduard Zingerman.
5) Fix veth driver panic if XDP program is attached before veth_open, from
John Fastabend.
6) BPF verifier clean ups and fixes in preparation for follow up features,
from Kumar Kartikeya Dwivedi.
7) Add access to hwtstamp field from BPF sockops programs,
from Martin KaFai Lau.
8) Various fixes for BPF selftests and samples, from Artem Savkov,
Domenico Cerasuolo, Kang Minchul, Rong Tao, Yang Jihong.
9) Fix redirection to tunneling device logic, preventing skb->len == 0, from
Stanislav Fomichev.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (49 commits)
selftests/bpf: fix veristat's singular file-or-prog filter
selftests/bpf: Test skops->skb_hwtstamp
selftests/bpf: Fix incorrect ASSERT in the tcp_hdr_options test
bpf: Add hwtstamp field for the sockops prog
selftests/bpf: Fix xdp_synproxy compilation failure in 32-bit arch
bpf, docs: Document BPF_MAP_TYPE_ARRAY
docs/bpf: Document BPF map types QUEUE and STACK
docs/bpf: Document BPF ARRAY_OF_MAPS and HASH_OF_MAPS
docs/bpf: Document BPF_MAP_TYPE_CPUMAP map
docs/bpf: Document BPF_MAP_TYPE_LPM_TRIE map
libbpf: Hashmap.h update to fix build issues using LLVM14
bpf: veth driver panics when xdp prog attached before veth_open
selftests: Fix test group SKIPPED result
selftests/bpf: Tests for btf_dedup_resolve_fwds
libbpf: Resolve unambigous forward declarations
libbpf: Hashmap interface update to allow both long and void* keys/values
samples/bpf: Fix sockex3 error: Missing BPF prog type
selftests/bpf: Fix u32 variable compared with less than zero
Documentation: bpf: Escape underscore in BPF type name prefix
selftests/bpf: Use consistent build-id type for liburandom_read.so
...
====================
Link: https://lore.kernel.org/r/20221111233733.1088228-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pcpu_freelist_populate() initializes nr_elems / num_possible_cpus() + 1
free nodes for some CPUs, and then possibly one CPU with fewer nodes,
followed by remaining cpus with 0 nodes. For example, when nr_elems == 256
and num_possible_cpus() == 32, CPU 0~27 each gets 9 free nodes, CPU 28 gets
4 free nodes, CPU 29~31 get 0 free nodes, while in fact each CPU should get
8 nodes equally.
This patch initializes nr_elems / num_possible_cpus() free nodes for each
CPU firstly, then allocates the remaining free nodes by one for each CPU
until no free nodes left.
Fixes: e19494edab ("bpf: introduce percpu_freelist")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221110122128.105214-1-xukuohai@huawei.com
Add documentation for BPF_MAP_TYPE_CPUMAP including
kernel version introduced, usage and examples.
Co-developed-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Maryam Tahhan <mtahhan@redhat.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221107165207.2682075-2-mtahhan@redhat.com
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/r/1667884291-15666-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When building with clang:
kernel/bpf/dispatcher.c:126:33: error: pointer type mismatch ('void *' and 'unsigned int (*)(const void *, const struct bpf_insn *, bpf_func_t)' (aka 'unsigned int (*)(const void *, const struct bpf_insn *, unsigned int (*)(const void *, const struct bpf_insn *))')) [-Werror,-Wpointer-type-mismatch]
__BPF_DISPATCHER_UPDATE(d, new ?: &bpf_dispatcher_nop_func);
~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/bpf.h:1045:54: note: expanded from macro '__BPF_DISPATCHER_UPDATE'
__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
^~~~
1 error generated.
The warning is pointing out that the type of new ('void *') and
&bpf_dispatcher_nop_func are not compatible, which could have side
effects coming out of a conditional operator due to promotion rules.
Add the explicit cast to 'void *' to make it clear that this is
expected, as __BPF_DISPATCHER_UPDATE() expands to a call to
__static_call_update(), which expects a 'void *' as its final argument.
Fixes: c86df29d11 ("bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace)")
Link: https://github.com/ClangBuiltLinux/linux/issues/1755
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221107170711.42409-1-nathan@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The dispatcher function is currently abusing the ftrace __fentry__
call location for its own purposes -- this obviously gives trouble
when the dispatcher and ftrace are both in use.
A previous solution tried using __attribute__((patchable_function_entry()))
which works, except it is GCC-8+ only, breaking the build on the
earlier still supported compilers. Instead use static_call() -- which
has its own annotations and does not conflict with ftrace -- to
rewrite the dispatch function.
By using: return static_call()(ctx, insni, bpf_func) you get a perfect
forwarding tail call as function body (iow a single jmp instruction).
By having the default static_call() target be bpf_dispatcher_nop_func()
it retains the default behaviour (an indirect call to the argument
function). Only once a dispatcher program is attached is the target
rewritten to directly call the JIT'ed image.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Björn Töpel <bjorn@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lkml.kernel.org/r/Y1/oBlK0yFk5c/Im@hirez.programming.kicks-ass.net
Link: https://lore.kernel.org/bpf/20221103120647.796772565@infradead.org
Because __attribute__((patchable_function_entry)) is only available
since GCC-8 this solution fails to build on the minimum required GCC
version.
Undo these changes so we might try again -- without cluttering up the
patches with too many changes.
This is an almost complete revert of:
dbe69b2998 ("bpf: Fix dispatcher patchable function entry to 5 bytes nop")
ceea991a01 ("bpf: Move bpf_dispatcher function out of ftrace locations")
(notably the arch/x86/Kconfig hunk is kept).
Reported-by: David Laight <David.Laight@aculab.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Björn Töpel <bjorn@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lkml.kernel.org/r/439d8dc735bb4858875377df67f1b29a@AcuMS.aculab.com
Link: https://lore.kernel.org/bpf/20221103120647.728830733@infradead.org
Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.
There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.
Cilium results are more modest, but happen across wider range of programs.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.
Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.
End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.
This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.
But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.
First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.
To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.
More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.
Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.
Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.
This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.
With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When equivalent completed state is found and it has additional precision
restrictions, BPF verifier propagates precision to
currently-being-verified state chain (i.e., including parent states) so
that if some of the states in the chain are not yet completed, necessary
precision restrictions are enforced.
Unfortunately, right now this happens only for the last frame (deepest
active subprogram's frame), not all the frames. This can lead to
incorrect matching of states due to missing precision marker. Currently
this doesn't seem possible as BPF verifier forces everything to precise
when validated BPF program has any subprograms. But with the next patch
lifting this restriction, this becomes problematic.
In fact, without this fix, we'll start getting failure in one of the
existing test_verifier test cases:
#906/p precise: cross frame pruning FAIL
Unexpected success to load!
verification time 48 usec
stack depth 0+0
processed 26 insns (limit 1000000) max_states_per_insn 3 total_states 17 peak_states 17 mark_read 8
This patch adds precision propagation across all frames.
Fixes: a3ce685dd0 ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.
This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.
This does have (negative) effect on some selftest programs and few
Cilium programs. ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_cubic.bpf.linked1.o bpf_cubic_cong_avoid 997 1700 +703 (+70.51%) 62 90 +28 (+45.16%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 5469 +910 (+19.96%) 118 126 +8 (+6.78%)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3396 3446 +50 (+1.47%) 201 203 +2 (+1.00%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_xdp.o tail_lb_ipv4 71736 73442 +1706 (+2.38%) 4295 4370 +75 (+1.75%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.
[0] https://github.com/cilium/cilium/
[1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor map->off_arr handling into generic functions that can work on
their own without hardcoding map specific code. The btf_fields_offs
structure is now returned from btf_parse_field_offs, which can be reused
later for types in program BTF.
All functions like copy_map_value, zero_map_value call generic
underlying functions so that they can also be reused later for copying
to values allocated in programs which encode specific fields.
Later, some helper functions will also require access to this
btf_field_offs structure to be able to skip over special fields at
runtime.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It is not scalable to maintain a list of types that can have non-zero
ref_obj_id. It is never set for scalars anyway, so just remove the
conditional on register types and print it whenever it is non-zero.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For the case where allow_ptr_leaks is false, code is checking whether
slot type is STACK_INVALID and STACK_SPILL and rejecting other cases.
This is a consequence of incorrectly checking for register type instead
of the slot type (NOT_INIT and SCALAR_VALUE respectively). Fix the
check.
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When support was added for spilled PTR_TO_BTF_ID to be accessed by
helper memory access, the stack slot was not overwritten to STACK_MISC
(and that too is only safe when env->allow_ptr_leaks is true).
This means that helpers who take ARG_PTR_TO_MEM and write to it may
essentially overwrite the value while the verifier continues to track
the slot for spilled register.
This can cause issues when PTR_TO_BTF_ID is spilled to stack, and then
overwritten by helper write access, which can then be passed to BPF
helpers or kfuncs.
Handle this by falling back to the case introduced in a later commit,
which will also handle PTR_TO_BTF_ID along with other pointer types,
i.e. cd17d38f8b ("bpf: Permits pointers on stack for helper calls").
Finally, include a comment on why REG_LIVE_WRITTEN is not being set when
clobber is set to true. In short, the reason is that while when clobber
is unset, we know that we won't be writing, when it is true, we *may*
write to any of the stack slots in that range. It may be a partial or
complete write, to just one or many stack slots.
We cannot be sure, hence to be conservative, we leave things as is and
never set REG_LIVE_WRITTEN for any stack slot. However, clobber still
needs to reset them to STACK_MISC assuming writes happened. However read
marks still need to be propagated upwards from liveness point of view,
as parent stack slot's contents may still continue to matter to child
states.
Cc: Yonghong Song <yhs@meta.com>
Fixes: 1d68f22b3d ("bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is useful in particular to mark the pointer as volatile, so that
compiler treats each load and store to the field as a volatile access.
The alternative is having to define and use READ_ONCE and WRITE_ONCE in
the BPF program.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY2GuKgAKCRDbK58LschI
gy32AP9PI0e/bUGDExKJ8g97PeeEtnpj4TTI6g+XKILtYnyXlgD/Rk4j2D/f3IBF
Ha9TmqYvAUim+U/g50vUrNuoNLNJ5w8=
=OKC1
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2022-11-02
We've added 70 non-merge commits during the last 14 day(s) which contain
a total of 96 files changed, 3203 insertions(+), 640 deletions(-).
The main changes are:
1) Make cgroup local storage available to non-cgroup attached BPF programs
such as tc BPF ones, from Yonghong Song.
2) Avoid unnecessary deadlock detection and failures wrt BPF task storage
helpers, from Martin KaFai Lau.
3) Add LLVM disassembler as default library for dumping JITed code
in bpftool, from Quentin Monnet.
4) Various kprobe_multi_link fixes related to kernel modules,
from Jiri Olsa.
5) Optimize x86-64 JIT with emitting BMI2-based shift instructions,
from Jie Meng.
6) Improve BPF verifier's memory type compatibility for map key/value
arguments, from Dave Marchevsky.
7) Only create mmap-able data section maps in libbpf when data is exposed
via skeletons, from Andrii Nakryiko.
8) Add an autoattach option for bpftool to load all object assets,
from Wang Yufen.
9) Various memory handling fixes for libbpf and BPF selftests,
from Xu Kuohai.
10) Initial support for BPF selftest's vmtest.sh on arm64,
from Manu Bretelle.
11) Improve libbpf's BTF handling to dedup identical structs,
from Alan Maguire.
12) Add BPF CI and denylist documentation for BPF selftests,
from Daniel Müller.
13) Check BPF cpumap max_entries before doing allocation work,
from Florian Lehner.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (70 commits)
samples/bpf: Fix typo in README
bpf: Remove the obsolte u64_stats_fetch_*_irq() users.
bpf: check max_entries before allocating memory
bpf: Fix a typo in comment for DFS algorithm
bpftool: Fix spelling mistake "disasembler" -> "disassembler"
selftests/bpf: Fix bpftool synctypes checking failure
selftests/bpf: Panic on hard/soft lockup
docs/bpf: Add documentation for new cgroup local storage
selftests/bpf: Add test cgrp_local_storage to DENYLIST.s390x
selftests/bpf: Add selftests for new cgroup local storage
selftests/bpf: Fix test test_libbpf_str/bpf_map_type_str
bpftool: Support new cgroup local storage
libbpf: Support new cgroup local storage
bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
bpf: Refactor some inode/task/sk storage functions for reuse
bpf: Make struct cgroup btf id global
selftests/bpf: Tracing prog can still do lookup under busy lock
selftests/bpf: Ensure no task storage failure for bpf_lsm.s prog due to deadlock detection
bpf: Add new bpf_task_storage_delete proto with no deadlock detection
bpf: bpf_task_storage_delete_recur does lookup first before the deadlock check
...
====================
Link: https://lore.kernel.org/r/20221102062120.5724-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: c69431aab6 ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Bill Wendling <morbo@google.com>
Cc: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/bpf/20221029025433.2533810-1-keescook@chromium.org
Now that the 32bit UP oddity is gone and 32bit uses always a sequence
count, there is no need for the fetch_irq() variants anymore.
Convert to the regular interface.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20221026123110.331690-1-bigeasy@linutronix.de
For maps of type BPF_MAP_TYPE_CPUMAP memory is allocated first before
checking the max_entries argument. If then max_entries is greater than
NR_CPUS additional work needs to be done to free allocated memory before
an error is returned.
This changes moves the check on max_entries before the allocation
happens.
Signed-off-by: Florian Lehner <dev@der-flo.net>
Link: https://lore.kernel.org/r/20221028183405.59554-1-dev@der-flo.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
There is a typo in comment for DFS algorithm in bpf/verifier.c. The top
element should not be popped until all its neighbors have been checked.
Fix it.
Fixes: 475fb78fbf ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221027034458.2925218-1-xukuohai@huaweicloud.com
Similar to sk/inode/task storage, implement similar cgroup local storage.
There already exists a local storage implementation for cgroup-attached
bpf programs. See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.
The life-cycle of storage is managed with the life-cycle of the
cgroup struct. i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.
The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.
Typically, the following code is used to get the current cgroup:
struct task_struct *task = bpf_get_current_task_btf();
... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
struct task_struct {
....
struct css_set __rcu *cgroups;
....
}
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.
Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor codes so that inode/task/sk storage implementation
can maximally share the same code. I also added some comments
in new function bpf_local_storage_unlink_nolock() to make
codes easy to understand. There is no functionality change.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042845.672944-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make struct cgroup btf id global so later patch can reuse
the same btf id.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042840.672602-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_lsm and bpf_iter do not recur that will cause a deadlock.
The situation is similar to the bpf_pid_task_storage_delete_elem()
which is called from the syscall map_delete_elem. It does not need
deadlock detection. Otherwise, it will cause unnecessary failure
when calling the bpf_task_storage_delete() helper.
This patch adds bpf_task_storage_delete proto that does not do deadlock
detection. It will be used by bpf_lsm and bpf_iter program.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-8-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to the earlier change in bpf_task_storage_get_recur.
This patch changes bpf_task_storage_delete_recur such that it
does the lookup first. It only returns -EBUSY if it needs to
take the spinlock to do the deletion when potential deadlock
is detected.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-7-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_lsm and bpf_iter do not recur that will cause a deadlock.
The situation is similar to the bpf_pid_task_storage_lookup_elem()
which is called from the syscall map_lookup_elem. It does not need
deadlock detection. Otherwise, it will cause unnecessary failure
when calling the bpf_task_storage_get() helper.
This patch adds bpf_task_storage_get proto that does not do deadlock
detection. It will be used by bpf_lsm and bpf_iter programs.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-6-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_task_storage_get() does a lookup and optionally inserts
new data if BPF_LOCAL_STORAGE_GET_F_CREATE is present.
During lookup, it will cache the lookup result and caching requires to
acquire a spinlock. When potential deadlock is detected (by the
bpf_task_storage_busy pcpu-counter added in
commit bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")),
the current behavior is returning NULL immediately to avoid deadlock. It is
too pessimistic. This patch will go ahead to do a lookup (which is a
lockless operation) but it will avoid caching it in order to avoid
acquiring the spinlock.
When lookup fails to find the data and BPF_LOCAL_STORAGE_GET_F_CREATE
is set, an insertion is needed and this requires acquiring a spinlock.
This patch will still return NULL when a potential deadlock is detected.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-5-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch creates a new function __bpf_task_storage_get() and
moves the core logic of the existing bpf_task_storage_get()
into this new function. This new function will be shared
by another new helper proto in the latter patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds the "_recur" naming to the bpf_task_storage_{get,delete}
proto. In a latter patch, they will only be used by the tracing
programs that requires a deadlock detection because a tracing
prog may use bpf_task_storage_{get,delete} recursively and cause a
deadlock.
Another following patch will add a different helper proto for the non
tracing programs because they do not need the deadlock prevention.
This patch does this rename to prepare for this future proto
additions.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The commit 64696c40d0 ("bpf: Add __bpf_prog_{enter,exit}_struct_ops for struct_ops trampoline")
removed prog->active check for struct_ops prog. The bpf_lsm
and bpf_iter is also using trampoline. Like struct_ops, the bpf_lsm
and bpf_iter have fixed hooks for the prog to attach. The
kernel does not call the same hook in a recursive way.
This patch also removes the prog->active check for
bpf_lsm and bpf_iter.
A later patch has a test to reproduce the recursion issue
for a sleepable bpf_lsm program.
This patch appends the '_recur' naming to the existing
enter and exit functions that track the prog->active counter.
New __bpf_prog_{enter,exit}[_sleepable] function are
added to skip the prog->active tracking. The '_struct_ops'
version is also removed.
It also moves the decision on picking the enter and exit function to
the new bpf_trampoline_{enter,exit}(). It returns the '_recur' ones
for all tracing progs to use. For bpf_lsm, bpf_iter,
struct_ops (no prog->active tracking after 64696c40d0), and
bpf_lsm_cgroup (no prog->active tracking after 69fd337a97),
it will return the functions that don't track the prog->active.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmNVkYkACgkQ6rmadz2v
bTqzHw/+NYMwfLm5Ck+BK0+HiYU5VVLoG4jp8G7B3sJL/6nUDduajzoqa+nM19Xl
+HEjbMza7CizmhkCRkzIs1VVtx8mtvKdTxbhvm77SU2+GBn+X1es+XhtFd4EOpok
MINNHs+cOC/HlnPD/QbFgvxKiKkjyjWxInjUp6Y/mLMcKCn7l9KOkc07/la9Dj3j
RI0gXCywq1pJaPuTCnt0/wcYLJvzn6QsZnKmmksQwt59GQqOd11HWid3rBWZhDp6
beEoHDIMGHROtu60vm4DB0p4l6tauZfeXyPCeu3Tx5ZSsypJIyU1iTdKiIUjG963
ilpy55nrX9bWxadB7LIKHyYfW3in4o+D1ZZaUvLIato/69CZJZ7Uc4kU1RF4Ay1F
Df1Fmal2WeNAxxETPmQPvVeCePvQvwLHl4KNogdZZvd/67cyc1cDhnuTJp37iPak
FALHaaw0VOrTdTvxsWym7yEbkhPbCHpPrKYFZFHgGrRTFk/GM2k38mM07lcLxFGw
aKyooS+eoIZMEgtK5Hma2wpeIVSlkJiJk1d0K20OxdnIUyYEsMXmI+uV1gMxq/8z
EHNi0+296xOoxy22I1Bd5Tu7fIeecHFN44q7YFmpGsB54UNLpFsP0vYUmYT/6hLI
Y0KVZu4c3oQDX7ttifMvkeOCURDJBPrZx37bpNpNXF55fB5ehNk=
=eV7W
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Alexei Starovoitov says:
====================
pull-request: bpf 2022-10-23
We've added 7 non-merge commits during the last 18 day(s) which contain
a total of 8 files changed, 69 insertions(+), 5 deletions(-).
The main changes are:
1) Wait for busy refill_work when destroying bpf memory allocator, from Hou.
2) Allow bpf_user_ringbuf_drain() callbacks to return 1, from David.
3) Fix dispatcher patchable function entry to 5 bytes nop, from Jiri.
4) Prevent decl_tag from being referenced in func_proto, from Stanislav.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Use __llist_del_all() whenever possbile during memory draining
bpf: Wait for busy refill_work when destroying bpf memory allocator
bpf: Fix dispatcher patchable function entry to 5 bytes nop
bpf: prevent decl_tag from being referenced in func_proto
selftests/bpf: Add reproducer for decl_tag in func_proto return type
selftests/bpf: Make bpf_user_ringbuf_drain() selftest callback return 1
bpf: Allow bpf_user_ringbuf_drain() callbacks to return 1
====================
Link: https://lore.kernel.org/r/20221023192244.81137-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
After the previous patch, which added PTR_TO_MEM | MEM_ALLOC type
map_key_value_types, the only difference between map_key_value_types and
mem_types sets is PTR_TO_BUF and PTR_TO_MEM, which are in the latter set
but not the former.
Helpers which expect ARG_PTR_TO_MAP_KEY or ARG_PTR_TO_MAP_VALUE
already effectively expect a valid blob of arbitrary memory that isn't
necessarily explicitly associated with a map. When validating a
PTR_TO_MAP_{KEY,VALUE} arg, the verifier expects meta->map_ptr to have
already been set, either by an earlier ARG_CONST_MAP_PTR arg, or custom
logic like that in process_timer_func or process_kptr_func.
So let's get rid of map_key_value_types and just use mem_types for those
args.
This has the effect of adding PTR_TO_BUF and PTR_TO_MEM to the set of
compatible types for ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE.
PTR_TO_BUF is used by various bpf_iter implementations to represent a
chunk of valid r/w memory in ctx args for iter prog.
PTR_TO_MEM is used by networking, tracing, and ringbuf helpers to
represent a chunk of valid memory. The PTR_TO_MEM | MEM_ALLOC
type added in previous commit is specific to ringbuf helpers.
Presence or absence of MEM_ALLOC doesn't change the validity of using
PTR_TO_MEM as a map_{key,val} input.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds support for the following pattern:
struct some_data *data = bpf_ringbuf_reserve(&ringbuf, sizeof(struct some_data, 0));
if (!data)
return;
bpf_map_lookup_elem(&another_map, &data->some_field);
bpf_ringbuf_submit(data);
Currently the verifier does not consider bpf_ringbuf_reserve's
PTR_TO_MEM | MEM_ALLOC ret type a valid key input to bpf_map_lookup_elem.
Since PTR_TO_MEM is by definition a valid region of memory, it is safe
to use it as a key for lookups.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Except for waiting_for_gp list, there are no concurrent operations on
free_by_rcu, free_llist and free_llist_extra lists, so use
__llist_del_all() instead of llist_del_all(). waiting_for_gp list can be
deleted by RCU callback concurrently, so still use llist_del_all().
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221021114913.60508-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A busy irq work is an unfinished irq work and it can be either in the
pending state or in the running state. When destroying bpf memory
allocator, refill_work may be busy for PREEMPT_RT kernel in which irq
work is invoked in a per-CPU RT-kthread. It is also possible for kernel
with arch_irq_work_has_interrupt() being false (e.g. 1-cpu arm32 host or
mips) and irq work is inovked in timer interrupt.
The busy refill_work leads to various issues. The obvious one is that
there will be concurrent operations on free_by_rcu and free_list between
irq work and memory draining. Another one is call_rcu_in_progress will
not be reliable for the checking of pending RCU callback because
do_call_rcu() may have not been invoked by irq work yet. The other is
there will be use-after-free if irq work is freed before the callback
of irq work is invoked as shown below:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 12ab94067 P4D 12ab94067 PUD 1796b4067 PMD 0
Oops: 0010 [#1] PREEMPT_RT SMP
CPU: 5 PID: 64 Comm: irq_work/5 Not tainted 6.0.0-rt11+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffadc080293e78 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffffcdc07fb6a388 RCX: ffffa05000a2e000
RDX: ffffa05000a2e000 RSI: ffffffff96cc9827 RDI: ffffcdc07fb6a388
......
Call Trace:
<TASK>
irq_work_single+0x24/0x60
irq_work_run_list+0x24/0x30
run_irq_workd+0x23/0x30
smpboot_thread_fn+0x203/0x300
kthread+0x126/0x150
ret_from_fork+0x1f/0x30
</TASK>
Considering the ease of concurrency handling, no overhead for
irq_work_sync() under non-PREEMPT_RT kernel and has-irq-work-interrupt
kernel and the short wait time used for irq_work_sync() under PREEMPT_RT
(When running two test_maps on PREEMPT_RT kernel and 72-cpus host, the
max wait time is about 8ms and the 99th percentile is 10us), just using
irq_work_sync() to wait for busy refill_work to complete before memory
draining and memory freeing.
Fixes: 7c8199e24f ("bpf: Introduce any context BPF specific memory allocator.")
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221021114913.60508-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The patchable_function_entry(5) might output 5 single nop
instructions (depends on toolchain), which will clash with
bpf_arch_text_poke check for 5 bytes nop instruction.
Adding early init call for dispatcher that checks and change
the patchable entry into expected 5 nop instruction if needed.
There's no need to take text_mutex, because we are using it
in early init call which is called at pre-smp time.
Fixes: ceea991a01 ("bpf: Move bpf_dispatcher function out of ftrace locations")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221018075934.574415-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY08JQQAKCRDbK58LschI
g0M0AQCWGrJcnQFut1qwR9efZUadwxtKGAgpaA/8Smd8+v7c8AD/SeHQuGfkFiD6
rx18hv1mTfG0HuPnFQy6YZQ98vmznwE=
=DaeS
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-10-18
We've added 33 non-merge commits during the last 14 day(s) which contain
a total of 31 files changed, 874 insertions(+), 538 deletions(-).
The main changes are:
1) Add RCU grace period chaining to BPF to wait for the completion
of access from both sleepable and non-sleepable BPF programs,
from Hou Tao & Paul E. McKenney.
2) Improve helper UAPI by explicitly defining BPF_FUNC_xxx integer
values. In the wild we have seen OS vendors doing buggy backports
where helper call numbers mismatched. This is an attempt to make
backports more foolproof, from Andrii Nakryiko.
3) Add libbpf *_opts API-variants for bpf_*_get_fd_by_id() functions,
from Roberto Sassu.
4) Fix libbpf's BTF dumper for structs with padding-only fields,
from Eduard Zingerman.
5) Fix various libbpf bugs which have been found from fuzzing with
malformed BPF object files, from Shung-Hsi Yu.
6) Clean up an unneeded check on existence of SSE2 in BPF x86-64 JIT,
from Jie Meng.
7) Fix various ASAN bugs in both libbpf and selftests when running
the BPF selftest suite on arm64, from Xu Kuohai.
8) Fix missing bpf_iter_vma_offset__destroy() call in BPF iter selftest
and use in-skeleton link pointer to remove an explicit bpf_link__destroy(),
from Jiri Olsa.
9) Fix BPF CI breakage by pointing to iptables-legacy instead of relying
on symlinked iptables which got upgraded to iptables-nft,
from Martin KaFai Lau.
10) Minor BPF selftest improvements all over the place, from various others.
* tag 'for-netdev' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (33 commits)
bpf/docs: Update README for most recent vmtest.sh
bpf: Use rcu_trace_implies_rcu_gp() for program array freeing
bpf: Use rcu_trace_implies_rcu_gp() in local storage map
bpf: Use rcu_trace_implies_rcu_gp() in bpf memory allocator
rcu-tasks: Provide rcu_trace_implies_rcu_gp()
selftests/bpf: Use sys_pidfd_open() helper when possible
libbpf: Fix null-pointer dereference in find_prog_by_sec_insn()
libbpf: Deal with section with no data gracefully
libbpf: Use elf_getshdrnum() instead of e_shnum
selftest/bpf: Fix error usage of ASSERT_OK in xdp_adjust_tail.c
selftests/bpf: Fix error failure of case test_xdp_adjust_tail_grow
selftest/bpf: Fix memory leak in kprobe_multi_test
selftests/bpf: Fix memory leak caused by not destroying skeleton
libbpf: Fix memory leak in parse_usdt_arg()
libbpf: Fix use-after-free in btf_dump_name_dups
selftests/bpf: S/iptables/iptables-legacy/ in the bpf_nf and xdp_synproxy test
selftests/bpf: Alphabetize DENYLISTs
selftests/bpf: Add tests for _opts variants of bpf_*_get_fd_by_id()
libbpf: Introduce bpf_link_get_fd_by_id_opts()
libbpf: Introduce bpf_btf_get_fd_by_id_opts()
...
====================
Link: https://lore.kernel.org/r/20221018210631.11211-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
To support both sleepable and normal uprobe bpf program, the freeing of
trace program array chains a RCU-tasks-trace grace period and a normal
RCU grace period one after the other.
With the introduction of rcu_trace_implies_rcu_gp(),
__bpf_prog_array_free_sleepable_cb() can check whether or not a normal
RCU grace period has also passed after a RCU-tasks-trace grace period
has passed. If it is true, it is safe to invoke kfree() directly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221014113946.965131-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Local storage map is accessible for both sleepable and non-sleepable bpf
program, and its memory is freed by using both call_rcu_tasks_trace() and
kfree_rcu() to wait for both RCU-tasks-trace grace period and RCU grace
period to pass.
With the introduction of rcu_trace_implies_rcu_gp(), both
bpf_selem_free_rcu() and bpf_local_storage_free_rcu() can check whether
or not a normal RCU grace period has also passed after a RCU-tasks-trace
grace period has passed. If it is true, it is safe to call kfree()
directly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221014113946.965131-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The memory free logic in bpf memory allocator chains a RCU Tasks Trace
grace period and a normal RCU grace period one after the other, so it
can ensure that both sleepable and non-sleepable programs have finished.
With the introduction of rcu_trace_implies_rcu_gp(),
__free_rcu_tasks_trace() can check whether or not a normal RCU grace
period has also passed after a RCU Tasks Trace grace period has passed.
If it is true, freeing these elements directly, else freeing through
call_rcu().
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20221014113946.965131-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* Fix a recent regression where a sleeping kernfs function is called with
css_set_lock (spinlock) held.
* Revert the commit to enable cgroup1 support for cgroup_get_from_fd/file().
Multiple users assume that the lookup only works for cgroup2 and breaks
when fed a cgroup1 file. Instead, introduce a separate set of functions to
lookup both v1 and v2 and use them where the user explicitly wants to
support both versions.
* Compat update for tools/perf/util/bpf_skel/bperf_cgroup.bpf.c.
* Add Josef Bacik as a blkcg maintainer.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCY03MlA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGTkUAQD7fNcSPuc2m/BvW+gySKQkp9PZMA6E6yOIqirc
QKmIgwEAwWECW7RR1alhOGD50RtYkuYVsLD1+6Ka4eMHe+EhwA4=
=kGLI
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.1-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- Fix a recent regression where a sleeping kernfs function is called
with css_set_lock (spinlock) held
- Revert the commit to enable cgroup1 support for cgroup_get_from_fd/file()
Multiple users assume that the lookup only works for cgroup2 and
breaks when fed a cgroup1 file. Instead, introduce a separate set of
functions to lookup both v1 and v2 and use them where the user
explicitly wants to support both versions.
- Compat update for tools/perf/util/bpf_skel/bperf_cgroup.bpf.c.
- Add Josef Bacik as a blkcg maintainer.
* tag 'cgroup-for-6.1-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
blkcg: Update MAINTAINERS entry
mm: cgroup: fix comments for get from fd/file helpers
perf stat: Support old kernels for bperf cgroup counting
bpf: cgroup_iter: support cgroup1 using cgroup fd
cgroup: add cgroup_v1v2_get_from_[fd/file]()
Revert "cgroup: enable cgroup_get_from_file() on cgroup1"
cgroup: Reorganize css_set_lock and kernfs path processing
The bpf_user_ringbuf_drain() helper function allows a BPF program to
specify a callback that is invoked when draining entries from a
BPF_MAP_TYPE_USER_RINGBUF ring buffer map. The API is meant to allow the
callback to return 0 if it wants to continue draining samples, and 1 if
it's done draining. Unfortunately, bpf_user_ringbuf_drain() landed shortly
after commit 1bfe26fb08 ("bpf: Add verifier support for custom
callback return range"), which changed the default behavior of callbacks
to only support returning 0.
This patch corrects that oversight by allowing bpf_user_ringbuf_drain()
callbacks to return 0 or 1. A follow-on patch will update the
user_ringbuf selftests to also return 1 from a bpf_user_ringbuf_drain()
callback to prevent this from regressing in the future.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221012232015.1510043-2-void@manifault.com
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Use cgroup_v1v2_get_from_fd() in cgroup_iter to support attaching to
both cgroup v1 and v2 using fds.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
- PMU driver updates:
- Add AMD Last Branch Record Extension Version 2 (LbrExtV2)
feature support for Zen 4 processors.
- Extend the perf ABI to provide branch speculation information,
if available, and use this on CPUs that have it (eg. LbrExtV2).
- Improve Intel PEBS TSC timestamp handling & integration.
- Add Intel Raptor Lake S CPU support.
- Add 'perf mem' and 'perf c2c' memory profiling support on
AMD CPUs by utilizing IBS tagged load/store samples.
- Clean up & optimize various x86 PMU details.
- HW breakpoints:
- Big rework to optimize the code for systems with hundreds of CPUs and
thousands of breakpoints:
- Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem
per-CPU rwsem that is read-locked during most of the key operations.
- Improve the O(#cpus * #tasks) logic in toggle_bp_slot()
and fetch_bp_busy_slots().
- Apply micro-optimizations & cleanups.
- Misc cleanups & enhancements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/2pMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIMA/+J+MCEVTt9kwZeBtHoPX7iZ5gnq1+McoQ
f6ALX19AO/ZSuA7EBA3cS3Ny5eyGy3ofYUnRW+POezu9CpflLW/5N27R2qkZFrWC
A09B86WH676ZrmXt+oI05rpZ2y/NGw4gJxLLa4/bWF3g9xLfo21i+YGKwdOnNFpl
DEdCVHtjlMcOAU3+on6fOYuhXDcYd7PKGcCfLE7muOMOAtwyj0bUDBt7m+hneZgy
qbZHzDU2DZ5L/LXiMyuZj5rC7V4xUbfZZfXglG38YCW1WTieS3IjefaU2tREhu7I
rRkCK48ULDNNJR3dZK8IzXJRxusq1ICPG68I+nm/K37oZyTZWtfYZWehW/d/TnPa
tUiTwimabz7UUqaGq9ZptxwINcAigax0nl6dZ3EseeGhkDE6j71/3kqrkKPz4jth
+fCwHLOrI3c4Gq5qWgPvqcUlUneKf3DlOMtzPKYg7sMhla2zQmFpYCPzKfm77U/Z
BclGOH3FiwaK6MIjPJRUXTePXqnUseqCR8PCH/UPQUeBEVHFcMvqCaa15nALed8x
dFi76VywR9mahouuLNq6sUNePlvDd2B124PygNwegLlBfY9QmKONg9qRKOnQpuJ6
UprRJjLOOucZ/N/jn6+ShHkqmXsnY2MhfUoHUoMQ0QAI+n++e+2AuePo251kKWr8
QlqKxd9PMQU=
=LcGg
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
"PMU driver updates:
- Add AMD Last Branch Record Extension Version 2 (LbrExtV2) feature
support for Zen 4 processors.
- Extend the perf ABI to provide branch speculation information, if
available, and use this on CPUs that have it (eg. LbrExtV2).
- Improve Intel PEBS TSC timestamp handling & integration.
- Add Intel Raptor Lake S CPU support.
- Add 'perf mem' and 'perf c2c' memory profiling support on AMD CPUs
by utilizing IBS tagged load/store samples.
- Clean up & optimize various x86 PMU details.
HW breakpoints:
- Big rework to optimize the code for systems with hundreds of CPUs
and thousands of breakpoints:
- Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem
per-CPU rwsem that is read-locked during most of the key
operations.
- Improve the O(#cpus * #tasks) logic in toggle_bp_slot() and
fetch_bp_busy_slots().
- Apply micro-optimizations & cleanups.
- Misc cleanups & enhancements"
* tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
perf/hw_breakpoint: Annotate tsk->perf_event_mutex vs ctx->mutex
perf: Fix pmu_filter_match()
perf: Fix lockdep_assert_event_ctx()
perf/x86/amd/lbr: Adjust LBR regardless of filtering
perf/x86/utils: Fix uninitialized var in get_branch_type()
perf/uapi: Define PERF_MEM_SNOOPX_PEER in kernel header file
perf/x86/amd: Support PERF_SAMPLE_PHY_ADDR
perf/x86/amd: Support PERF_SAMPLE_ADDR
perf/x86/amd: Support PERF_SAMPLE_{WEIGHT|WEIGHT_STRUCT}
perf/x86/amd: Support PERF_SAMPLE_DATA_SRC
perf/x86/amd: Add IBS OP_DATA2 DataSrc bit definitions
perf/mem: Introduce PERF_MEM_LVLNUM_{EXTN_MEM|IO}
perf/x86/uncore: Add new Raptor Lake S support
perf/x86/cstate: Add new Raptor Lake S support
perf/x86/msr: Add new Raptor Lake S support
perf/x86: Add new Raptor Lake S support
bpf: Check flags for branch stack in bpf_read_branch_records helper
perf, hw_breakpoint: Fix use-after-free if perf_event_open() fails
perf: Use sample_flags for raw_data
perf: Use sample_flags for addr
...
Core
----
- Introduce and use a single page frag cache for allocating small skb
heads, clawing back the 10-20% performance regression in UDP flood
test from previous fixes.
- Run packets which already went thru HW coalescing thru SW GRO.
This significantly improves TCP segment coalescing and simplifies
deployments as different workloads benefit from HW or SW GRO.
- Shrink the size of the base zero-copy send structure.
- Move TCP init under a new slow / sleepable version of DO_ONCE().
BPF
---
- Add BPF-specific, any-context-safe memory allocator.
- Add helpers/kfuncs for PKCS#7 signature verification from BPF
programs.
- Define a new map type and related helpers for user space -> kernel
communication over a ring buffer (BPF_MAP_TYPE_USER_RINGBUF).
- Allow targeting BPF iterators to loop through resources of one
task/thread.
- Add ability to call selected destructive functions.
Expose crash_kexec() to allow BPF to trigger a kernel dump.
Use CAP_SYS_BOOT check on the loading process to judge permissions.
- Enable BPF to collect custom hierarchical cgroup stats efficiently
by integrating with the rstat framework.
- Support struct arguments for trampoline based programs.
Only structs with size <= 16B and x86 are supported.
- Invoke cgroup/connect{4,6} programs for unprivileged ICMP ping
sockets (instead of just TCP and UDP sockets).
- Add a helper for accessing CLOCK_TAI for time sensitive network
related programs.
- Support accessing network tunnel metadata's flags.
- Make TCP SYN ACK RTO tunable by BPF programs with TCP Fast Open.
- Add support for writing to Netfilter's nf_conn:mark.
Protocols
---------
- WiFi: more Extremely High Throughput (EHT) and Multi-Link
Operation (MLO) work (802.11be, WiFi 7).
- vsock: improve support for SO_RCVLOWAT.
- SMC: support SO_REUSEPORT.
- Netlink: define and document how to use netlink in a "modern" way.
Support reporting missing attributes via extended ACK.
- IPSec: support collect metadata mode for xfrm interfaces.
- TCPv6: send consistent autoflowlabel in SYN_RECV state
and RST packets.
- TCP: introduce optional per-netns connection hash table to allow
better isolation between namespaces (opt-in, at the cost of memory
and cache pressure).
- MPTCP: support TCP_FASTOPEN_CONNECT.
- Add NEXT-C-SID support in Segment Routing (SRv6) End behavior.
- Adjust IP_UNICAST_IF sockopt behavior for connected UDP sockets.
- Open vSwitch:
- Allow specifying ifindex of new interfaces.
- Allow conntrack and metering in non-initial user namespace.
- TLS: support the Korean ARIA-GCM crypto algorithm.
- Remove DECnet support.
Driver API
----------
- Allow selecting the conduit interface used by each port
in DSA switches, at runtime.
- Ethernet Power Sourcing Equipment and Power Device support.
- Add tc-taprio support for queueMaxSDU parameter, i.e. setting
per traffic class max frame size for time-based packet schedules.
- Support PHY rate matching - adapting between differing host-side
and link-side speeds.
- Introduce QUSGMII PHY mode and 1000BASE-KX interface mode.
- Validate OF (device tree) nodes for DSA shared ports; make
phylink-related properties mandatory on DSA and CPU ports.
Enforcing more uniformity should allow transitioning to phylink.
- Require that flash component name used during update matches one
of the components for which version is reported by info_get().
- Remove "weight" argument from driver-facing NAPI API as much
as possible. It's one of those magic knobs which seemed like
a good idea at the time but is too indirect to use in practice.
- Support offload of TLS connections with 256 bit keys.
New hardware / drivers
----------------------
- Ethernet:
- Microchip KSZ9896 6-port Gigabit Ethernet Switch
- Renesas Ethernet AVB (EtherAVB-IF) Gen4 SoCs
- Analog Devices ADIN1110 and ADIN2111 industrial single pair
Ethernet (10BASE-T1L) MAC+PHY.
- Rockchip RV1126 Gigabit Ethernet (a version of stmmac IP).
- Ethernet SFPs / modules:
- RollBall / Hilink / Turris 10G copper SFPs
- HALNy GPON module
- WiFi:
- CYW43439 SDIO chipset (brcmfmac)
- CYW89459 PCIe chipset (brcmfmac)
- BCM4378 on Apple platforms (brcmfmac)
Drivers
-------
- CAN:
- gs_usb: HW timestamp support
- Ethernet PHYs:
- lan8814: cable diagnostics
- Ethernet NICs:
- Intel (100G):
- implement control of FCS/CRC stripping
- port splitting via devlink
- L2TPv3 filtering offload
- nVidia/Mellanox:
- tunnel offload for sub-functions
- MACSec offload, w/ Extended packet number and replay
window offload
- significantly restructure, and optimize the AF_XDP support,
align the behavior with other vendors
- Huawei:
- configuring DSCP map for traffic class selection
- querying standard FEC statistics
- querying SerDes lane number via ethtool
- Marvell/Cavium:
- egress priority flow control
- MACSec offload
- AMD/SolarFlare:
- PTP over IPv6 and raw Ethernet
- small / embedded:
- ax88772: convert to phylink (to support SFP cages)
- altera: tse: convert to phylink
- ftgmac100: support fixed link
- enetc: standard Ethtool counters
- macb: ZynqMP SGMII dynamic configuration support
- tsnep: support multi-queue and use page pool
- lan743x: Rx IP & TCP checksum offload
- igc: add xdp frags support to ndo_xdp_xmit
- Ethernet high-speed switches:
- Marvell (prestera):
- support SPAN port features (traffic mirroring)
- nexthop object offloading
- Microchip (sparx5):
- multicast forwarding offload
- QoS queuing offload (tc-mqprio, tc-tbf, tc-ets)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- support RGMII cmode
- NXP (felix):
- standardized ethtool counters
- Microchip (lan966x):
- QoS queuing offload (tc-mqprio, tc-tbf, tc-cbs, tc-ets)
- traffic policing and mirroring
- link aggregation / bonding offload
- QUSGMII PHY mode support
- Qualcomm 802.11ax WiFi (ath11k):
- cold boot calibration support on WCN6750
- support to connect to a non-transmit MBSSID AP profile
- enable remain-on-channel support on WCN6750
- Wake-on-WLAN support for WCN6750
- support to provide transmit power from firmware via nl80211
- support to get power save duration for each client
- spectral scan support for 160 MHz
- MediaTek WiFi (mt76):
- WiFi-to-Ethernet bridging offload for MT7986 chips
- RealTek WiFi (rtw89):
- P2P support
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmM7vtkACgkQMUZtbf5S
Irvotg//dmh53rC+UMKO3OgOqPlSMnaqzbUdDEfN6mj4Mpox7Csb8zERVURHhBHY
fvlXWsDgxmvgTebI5fvNC5+f1iW5xcqgJV2TWnNmDOKWwvQwb6qQfgixVmunvkpe
IIukMXYt0dAf9bXeeEfbNXcCb85cPwB76stX0tMV6BX7osp3T0TL1fvFk0NJkL0j
TeydLad/yAQtPb4TbeWYjNDoxPVDf0cVpUrevLGmWE88UMYmgTqPze+h1W5Wri52
bzjdLklY/4cgcIZClHQ6F9CeRWqEBxvujA5Hj/cwOcn/ptVVJWUGi7sQo3sYkoSs
HFu+F8XsTec14kGNC0Ab40eVdqs5l/w8+E+4jvgXeKGOtVns8DwoiUIzqXpyty89
Ib04mffrwWNjFtHvo/kIsNwP05X2PGE9HUHfwsTUfisl/ASvMmQp7D7vUoqQC/4B
AMVzT5qpjkmfBHYQQGuw8FxJhMeAOjC6aAo6censhXJyiUhIfleQsN0syHdaNb8q
9RZlhAgQoVb6ZgvBV8r8unQh/WtNZ3AopwifwVJld2unsE/UNfQy2KyqOWBES/zf
LP9sfuX0JnmHn8s1BQEUMPU1jF9ZVZCft7nufJDL6JhlAL+bwZeEN4yCiAHOPZqE
ymSLHI9s8yWZoNpuMWKrI9kFexVnQFKmA3+quAJUcYHNMSsLkL8=
=Gsio
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core:
- Introduce and use a single page frag cache for allocating small skb
heads, clawing back the 10-20% performance regression in UDP flood
test from previous fixes.
- Run packets which already went thru HW coalescing thru SW GRO. This
significantly improves TCP segment coalescing and simplifies
deployments as different workloads benefit from HW or SW GRO.
- Shrink the size of the base zero-copy send structure.
- Move TCP init under a new slow / sleepable version of DO_ONCE().
BPF:
- Add BPF-specific, any-context-safe memory allocator.
- Add helpers/kfuncs for PKCS#7 signature verification from BPF
programs.
- Define a new map type and related helpers for user space -> kernel
communication over a ring buffer (BPF_MAP_TYPE_USER_RINGBUF).
- Allow targeting BPF iterators to loop through resources of one
task/thread.
- Add ability to call selected destructive functions. Expose
crash_kexec() to allow BPF to trigger a kernel dump. Use
CAP_SYS_BOOT check on the loading process to judge permissions.
- Enable BPF to collect custom hierarchical cgroup stats efficiently
by integrating with the rstat framework.
- Support struct arguments for trampoline based programs. Only
structs with size <= 16B and x86 are supported.
- Invoke cgroup/connect{4,6} programs for unprivileged ICMP ping
sockets (instead of just TCP and UDP sockets).
- Add a helper for accessing CLOCK_TAI for time sensitive network
related programs.
- Support accessing network tunnel metadata's flags.
- Make TCP SYN ACK RTO tunable by BPF programs with TCP Fast Open.
- Add support for writing to Netfilter's nf_conn:mark.
Protocols:
- WiFi: more Extremely High Throughput (EHT) and Multi-Link Operation
(MLO) work (802.11be, WiFi 7).
- vsock: improve support for SO_RCVLOWAT.
- SMC: support SO_REUSEPORT.
- Netlink: define and document how to use netlink in a "modern" way.
Support reporting missing attributes via extended ACK.
- IPSec: support collect metadata mode for xfrm interfaces.
- TCPv6: send consistent autoflowlabel in SYN_RECV state and RST
packets.
- TCP: introduce optional per-netns connection hash table to allow
better isolation between namespaces (opt-in, at the cost of memory
and cache pressure).
- MPTCP: support TCP_FASTOPEN_CONNECT.
- Add NEXT-C-SID support in Segment Routing (SRv6) End behavior.
- Adjust IP_UNICAST_IF sockopt behavior for connected UDP sockets.
- Open vSwitch:
- Allow specifying ifindex of new interfaces.
- Allow conntrack and metering in non-initial user namespace.
- TLS: support the Korean ARIA-GCM crypto algorithm.
- Remove DECnet support.
Driver API:
- Allow selecting the conduit interface used by each port in DSA
switches, at runtime.
- Ethernet Power Sourcing Equipment and Power Device support.
- Add tc-taprio support for queueMaxSDU parameter, i.e. setting per
traffic class max frame size for time-based packet schedules.
- Support PHY rate matching - adapting between differing host-side
and link-side speeds.
- Introduce QUSGMII PHY mode and 1000BASE-KX interface mode.
- Validate OF (device tree) nodes for DSA shared ports; make
phylink-related properties mandatory on DSA and CPU ports.
Enforcing more uniformity should allow transitioning to phylink.
- Require that flash component name used during update matches one of
the components for which version is reported by info_get().
- Remove "weight" argument from driver-facing NAPI API as much as
possible. It's one of those magic knobs which seemed like a good
idea at the time but is too indirect to use in practice.
- Support offload of TLS connections with 256 bit keys.
New hardware / drivers:
- Ethernet:
- Microchip KSZ9896 6-port Gigabit Ethernet Switch
- Renesas Ethernet AVB (EtherAVB-IF) Gen4 SoCs
- Analog Devices ADIN1110 and ADIN2111 industrial single pair
Ethernet (10BASE-T1L) MAC+PHY.
- Rockchip RV1126 Gigabit Ethernet (a version of stmmac IP).
- Ethernet SFPs / modules:
- RollBall / Hilink / Turris 10G copper SFPs
- HALNy GPON module
- WiFi:
- CYW43439 SDIO chipset (brcmfmac)
- CYW89459 PCIe chipset (brcmfmac)
- BCM4378 on Apple platforms (brcmfmac)
Drivers:
- CAN:
- gs_usb: HW timestamp support
- Ethernet PHYs:
- lan8814: cable diagnostics
- Ethernet NICs:
- Intel (100G):
- implement control of FCS/CRC stripping
- port splitting via devlink
- L2TPv3 filtering offload
- nVidia/Mellanox:
- tunnel offload for sub-functions
- MACSec offload, w/ Extended packet number and replay window
offload
- significantly restructure, and optimize the AF_XDP support,
align the behavior with other vendors
- Huawei:
- configuring DSCP map for traffic class selection
- querying standard FEC statistics
- querying SerDes lane number via ethtool
- Marvell/Cavium:
- egress priority flow control
- MACSec offload
- AMD/SolarFlare:
- PTP over IPv6 and raw Ethernet
- small / embedded:
- ax88772: convert to phylink (to support SFP cages)
- altera: tse: convert to phylink
- ftgmac100: support fixed link
- enetc: standard Ethtool counters
- macb: ZynqMP SGMII dynamic configuration support
- tsnep: support multi-queue and use page pool
- lan743x: Rx IP & TCP checksum offload
- igc: add xdp frags support to ndo_xdp_xmit
- Ethernet high-speed switches:
- Marvell (prestera):
- support SPAN port features (traffic mirroring)
- nexthop object offloading
- Microchip (sparx5):
- multicast forwarding offload
- QoS queuing offload (tc-mqprio, tc-tbf, tc-ets)
- Ethernet embedded switches:
- Marvell (mv88e6xxx):
- support RGMII cmode
- NXP (felix):
- standardized ethtool counters
- Microchip (lan966x):
- QoS queuing offload (tc-mqprio, tc-tbf, tc-cbs, tc-ets)
- traffic policing and mirroring
- link aggregation / bonding offload
- QUSGMII PHY mode support
- Qualcomm 802.11ax WiFi (ath11k):
- cold boot calibration support on WCN6750
- support to connect to a non-transmit MBSSID AP profile
- enable remain-on-channel support on WCN6750
- Wake-on-WLAN support for WCN6750
- support to provide transmit power from firmware via nl80211
- support to get power save duration for each client
- spectral scan support for 160 MHz
- MediaTek WiFi (mt76):
- WiFi-to-Ethernet bridging offload for MT7986 chips
- RealTek WiFi (rtw89):
- P2P support"
* tag 'net-next-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1864 commits)
eth: pse: add missing static inlines
once: rename _SLOW to _SLEEPABLE
net: pse-pd: add regulator based PSE driver
dt-bindings: net: pse-dt: add bindings for regulator based PoDL PSE controller
ethtool: add interface to interact with Ethernet Power Equipment
net: mdiobus: search for PSE nodes by parsing PHY nodes.
net: mdiobus: fwnode_mdiobus_register_phy() rework error handling
net: add framework to support Ethernet PSE and PDs devices
dt-bindings: net: phy: add PoDL PSE property
net: marvell: prestera: Propagate nh state from hw to kernel
net: marvell: prestera: Add neighbour cache accounting
net: marvell: prestera: add stub handler neighbour events
net: marvell: prestera: Add heplers to interact with fib_notifier_info
net: marvell: prestera: Add length macros for prestera_ip_addr
net: marvell: prestera: add delayed wq and flush wq on deinit
net: marvell: prestera: Add strict cleanup of fib arbiter
net: marvell: prestera: Add cleanup of allocated fib_nodes
net: marvell: prestera: Add router nexthops ABI
eth: octeon: fix build after netif_napi_add() changes
net/mlx5: E-Switch, Return EBUSY if can't get mode lock
...
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAmM68YIUHHBhdWxAcGF1
bC1tb29yZS5jb20ACgkQ6iDy2pc3iXOTbA//TR8i+Wy8iswUCmtfmYg91h1uebpl
/kjNsSmfgivAUTGamr3eN2WRlGhZfkFDPIHa25uybSA6Q+75p4lst83Rt3HDbjkv
Ga7grCXnHwSDwJoHOSeFh0pojV2u7Zvfmiib2U5hPZEmd3kBw3NCgAJVcSGN80B2
dct36fzZNXjvpWDbygmFtRRkmEseslSkft8bUVvNZBP+B0zvv3vcNY1QFuKuK+W2
8wWpvO/cCSmke5i2c2ktHSk2f8/Y6n26Ik/OTHcTVfoKZLRaFbXEzLyxzLrNWd6m
hujXgcxszTtHdmoXx+J6uBauju7TR8pi1x8mO2LSGrlpRc1cX0A5ED8WcH71+HVE
8L1fIOmZShccPZn8xRok7oYycAUm/gIfpmSLzmZA76JsZYAe+mp9Ze9FA6fZtSwp
7Q/rfw/Rlz25WcFBe4xypP078HkOmqutkCk2zy5liR+cWGrgy/WKX15vyC0TaPrX
tbsRKuCLkipgfXrTk0dX3kmhz+3bJYjqeZEt7sfPSZYpaOGkNXVmAW0wnCOTuLMU
+8pIVktvQxMmACEj2gBMz11iooR4DpWLxOcQQR/impgCpNdZ60nA0a6KPJoIXC+5
NfTa422FZkc99QRVblUZyWSgJBW78Z3ZAQcQlo1AGLlFydbfrSFTRLbmNJZo/Nkl
KwpGvWs5nB0rVw0=
=VZl5
-----END PGP SIGNATURE-----
Merge tag 'lsm-pr-20221003' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
Pull LSM updates from Paul Moore:
"Seven patches for the LSM layer and we've got a mix of trivial and
significant patches. Highlights below, starting with the smaller bits
first so they don't get lost in the discussion of the larger items:
- Remove some redundant NULL pointer checks in the common LSM audit
code.
- Ratelimit the lockdown LSM's access denial messages.
With this change there is a chance that the last visible lockdown
message on the console is outdated/old, but it does help preserve
the initial series of lockdown denials that started the denial
message flood and my gut feeling is that these might be the more
valuable messages.
- Open userfaultfds as readonly instead of read/write.
While this code obviously lives outside the LSM, it does have a
noticeable impact on the LSMs with Ondrej explaining the situation
in the commit description. It is worth noting that this patch
languished on the VFS list for over a year without any comments
(objections or otherwise) so I took the liberty of pulling it into
the LSM tree after giving fair notice. It has been in linux-next
since the end of August without any noticeable problems.
- Add a LSM hook for user namespace creation, with implementations
for both the BPF LSM and SELinux.
Even though the changes are fairly small, this is the bulk of the
diffstat as we are also including BPF LSM selftests for the new
hook.
It's also the most contentious of the changes in this pull request
with Eric Biederman NACK'ing the LSM hook multiple times during its
development and discussion upstream. While I've never taken NACK's
lightly, I'm sending these patches to you because it is my belief
that they are of good quality, satisfy a long-standing need of
users and distros, and are in keeping with the existing nature of
the LSM layer and the Linux Kernel as a whole.
The patches in implement a LSM hook for user namespace creation
that allows for a granular approach, configurable at runtime, which
enables both monitoring and control of user namespaces. The general
consensus has been that this is far preferable to the other
solutions that have been adopted downstream including outright
removal from the kernel, disabling via system wide sysctls, or
various other out-of-tree mechanisms that users have been forced to
adopt since we haven't been able to provide them an upstream
solution for their requests. Eric has been steadfast in his
objections to this LSM hook, explaining that any restrictions on
the user namespace could have significant impact on userspace.
While there is the possibility of impacting userspace, it is
important to note that this solution only impacts userspace when it
is requested based on the runtime configuration supplied by the
distro/admin/user. Frederick (the pathset author), the LSM/security
community, and myself have tried to work with Eric during
development of this patchset to find a mutually acceptable
solution, but Eric's approach and unwillingness to engage in a
meaningful way have made this impossible. I have CC'd Eric directly
on this pull request so he has a chance to provide his side of the
story; there have been no objections outside of Eric's"
* tag 'lsm-pr-20221003' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm:
lockdown: ratelimit denial messages
userfaultfd: open userfaultfds with O_RDONLY
selinux: Implement userns_create hook
selftests/bpf: Add tests verifying bpf lsm userns_create hook
bpf-lsm: Make bpf_lsm_userns_create() sleepable
security, lsm: Introduce security_create_user_ns()
lsm: clean up redundant NULL pointer check
When executing BPF programs, certain registers may get passed
uninitialized to helper functions. E.g. when performing a JMP_CALL,
registers BPF_R1-BPF_R5 are always passed to the helper, no matter how
many of them are actually used.
Passing uninitialized values as function parameters is technically
undefined behavior, so we work around it by always initializing the
registers.
Link: https://lkml.kernel.org/r/20220915150417.722975-42-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The struct_ops prog is to allow using bpf to implement the functions in
a struct (eg. kernel module). The current usage is to implement the
tcp_congestion. The kernel does not call the tcp-cc's ops (ie.
the bpf prog) in a recursive way.
The struct_ops is sharing the tracing-trampoline's enter/exit
function which tracks prog->active to avoid recursion. It is
needed for tracing prog. However, it turns out the struct_ops
bpf prog will hit this prog->active and unnecessarily skipped
running the struct_ops prog. eg. The '.ssthresh' may run in_task()
and then interrupted by softirq that runs the same '.ssthresh'.
Skip running the '.ssthresh' will end up returning random value
to the caller.
The patch adds __bpf_prog_{enter,exit}_struct_ops for the
struct_ops trampoline. They do not track the prog->active
to detect recursion.
One exception is when the tcp_congestion's '.init' ops is doing
bpf_setsockopt(TCP_CONGESTION) and then recurs to the same
'.init' ops. This will be addressed in the following patches.
Fixes: ca06f55b90 ("bpf: Add per-program recursion prevention mechanism")
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20220929070407.965581-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Show information of iterators in the respective files under
/proc/<pid>/fdinfo/.
For example, for a task file iterator with 1723 as the value of tid
parameter, its fdinfo would look like the following lines.
pos: 0
flags: 02000000
mnt_id: 14
ino: 38
link_type: iter
link_id: 51
prog_tag: a590ac96db22b825
prog_id: 299
target_name: task_file
task_type: TID
tid: 1723
This patch add the last three fields. task_type is the type of the
task parameter. TID means the iterator visit only the thread
specified by tid. The value of tid in the above example is 1723. For
the case of PID task_type, it means the iterator visits only threads
of a process and will show the pid value of the process instead of a
tid.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/bpf/20220926184957.208194-4-kuifeng@fb.com
Add new fields to bpf_link_info that users can query it through
bpf_obj_get_info_by_fd().
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/bpf/20220926184957.208194-3-kuifeng@fb.com
Allow creating an iterator that loops through resources of one
thread/process.
People could only create iterators to loop through all resources of
files, vma, and tasks in the system, even though they were interested
in only the resources of a specific task or process. Passing the
additional parameters, people can now create an iterator to go
through all resources or only the resources of a task.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/bpf/20220926184957.208194-2-kuifeng@fb.com
Mark the trampoline as RO+X after arch_prepare_bpf_trampoline, so that
the trampoine follows W^X rule strictly. This will turn off warnings like
CPA refuse W^X violation: 8000000000000163 -> 0000000000000163 range: ...
Also remove bpf_jit_alloc_exec_page(), since it is not used any more.
Signed-off-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20220926184739.3512547-3-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allocate bpf_dispatcher with bpf_prog_pack_alloc so that bpf_dispatcher
can share pages with bpf programs.
arch_prepare_bpf_dispatcher() is updated to provide a RW buffer as working
area for arch code to write to.
This also fixes CPA W^X warnning like:
CPA refuse W^X violation: 8000000000000163 -> 0000000000000163 range: ...
Signed-off-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20220926184739.3512547-2-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Use vma_next() and remove reference to the start of the linked list
Link: https://lkml.kernel.org/r/20220906194824.2110408-51-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Instead of forcing all arguments to be referenced pointers with non-zero
reg->ref_obj_id, tweak the definition of KF_TRUSTED_ARGS to mean that
only PTR_TO_BTF_ID (and socket types translated to PTR_TO_BTF_ID) have
that constraint, and require their offset to be set to 0.
The rest of pointer types are also accomodated in this definition of
trusted pointers, but with more relaxed rules regarding offsets.
The inherent meaning of setting this flag is that all kfunc pointer
arguments have a guranteed lifetime, and kernel object pointers
(PTR_TO_BTF_ID, PTR_TO_CTX) are passed in their unmodified form (with
offset 0). In general, this is not true for PTR_TO_BTF_ID as it can be
obtained using pointer walks.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Link: https://lore.kernel.org/r/cdede0043c47ed7a357f0a915d16f9ce06a1d589.1663778601.git.lorenzo@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a non-preallocated hash map on RT kernel, regular spinlock instead
of raw spinlock is used for bucket lock. The reason is that on RT kernel
memory allocation is forbidden under atomic context and regular spinlock
is sleepable under RT.
Now hash map has been fully converted to use bpf_map_alloc, and there
will be no synchronous memory allocation for non-preallocated hash map,
so it is safe to always use raw spinlock for bucket lock on RT. So
removing the usage of htab_use_raw_lock() and updating the comments
accordingly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220921073826.2365800-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We got report from sysbot [1] about warnings that were caused by
bpf program attached to contention_begin raw tracepoint triggering
the same tracepoint by using bpf_trace_printk helper that takes
trace_printk_lock lock.
Call Trace:
<TASK>
? trace_event_raw_event_bpf_trace_printk+0x5f/0x90
bpf_trace_printk+0x2b/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
__unfreeze_partials+0x5b/0x160
...
The can be reproduced by attaching bpf program as raw tracepoint on
contention_begin tracepoint. The bpf prog calls bpf_trace_printk
helper. Then by running perf bench the spin lock code is forced to
take slow path and call contention_begin tracepoint.
Fixing this by skipping execution of the bpf program if it's
already running, Using bpf prog 'active' field, which is being
currently used by trampoline programs for the same reason.
Moving bpf_prog_inc_misses_counter to syscall.c because
trampoline.c is compiled in just for CONFIG_BPF_JIT option.
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Reported-by: syzbot+2251879aa068ad9c960d@syzkaller.appspotmail.com
[1] https://lore.kernel.org/bpf/YxhFe3EwqchC%2FfYf@krava/T/#t
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20220916071914.7156-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Export bpf_dynptr_get_size(), so that kernel code dealing with eBPF dynamic
pointers can obtain the real size of data carried by this data structure.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-6-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move dynptr type check to is_dynptr_type_expected() from
is_dynptr_reg_valid_init(), so that callers can better determine the cause
of a negative result (dynamic pointer not valid/initialized, dynamic
pointer of the wrong type). It will be useful for example for BTF, to
restrict which dynamic pointer types can be passed to kfuncs, as initially
only the local type will be supported.
Also, splitting makes the code more readable, since checking the dynamic
pointer type is not necessarily related to validity and initialization.
Split the validity/initialization and dynamic pointer type check also in
the verifier, and adjust the expected error message in the test (a test for
an unexpected dynptr type passed to a helper cannot be added due to missing
suitable helpers, but this case has been tested manually).
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-4-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
eBPF dynamic pointers is a new feature recently added to upstream. It binds
together a pointer to a memory area and its size. The internal kernel
structure bpf_dynptr_kern is not accessible by eBPF programs in user space.
They instead see bpf_dynptr, which is then translated to the internal
kernel structure by the eBPF verifier.
The problem is that it is not possible to include at the same time the uapi
include linux/bpf.h and the vmlinux BTF vmlinux.h, as they both contain the
definition of some structures/enums. The compiler complains saying that the
structures/enums are redefined.
As bpf_dynptr is defined in the uapi include linux/bpf.h, this makes it
impossible to include vmlinux.h. However, in some cases, e.g. when using
kfuncs, vmlinux.h has to be included. The only option until now was to
include vmlinux.h and add the definition of bpf_dynptr directly in the eBPF
program source code from linux/bpf.h.
Solve the problem by using the same approach as for bpf_timer (which also
follows the same scheme with the _kern suffix for the internal kernel
structure).
Add the following line in one of the dynamic pointer helpers,
bpf_dynptr_from_mem():
BTF_TYPE_EMIT(struct bpf_dynptr);
Cc: stable@vger.kernel.org
Cc: Joanne Koong <joannelkoong@gmail.com>
Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Tested-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/r/20220920075951.929132-3-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation for the addition of new kfuncs, allow kfuncs defined in the
tracing subsystem to be used in LSM programs by mapping the LSM program
type to the TRACING hook.
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-2-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:
bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)
BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:
long callback_fn(struct bpf_dynptr *dynptr, void *context);
Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.
In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.
Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
We want to support a ringbuf map type where samples are published from
user-space, to be consumed by BPF programs. BPF currently supports a
kernel -> user-space circular ring buffer via the BPF_MAP_TYPE_RINGBUF
map type. We'll need to define a new map type for user-space -> kernel,
as none of the helpers exported for BPF_MAP_TYPE_RINGBUF will apply
to a user-space producer ring buffer, and we'll want to add one or
more helper functions that would not apply for a kernel-producer
ring buffer.
This patch therefore adds a new BPF_MAP_TYPE_USER_RINGBUF map type
definition. The map type is useless in its current form, as there is no
way to access or use it for anything until we one or more BPF helpers. A
follow-on patch will therefore add a new helper function that allows BPF
programs to run callbacks on samples that are published to the ring
buffer.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-2-void@manifault.com
This has been enabled for unprivileged programs for only one kernel
release, hence the expected annoyances due to this move are low. Users
using ringbuf can stick to non-dynptr APIs. The actual use cases dynptr
is meant to serve may not make sense in unprivileged BPF programs.
Hence, gate these helpers behind CAP_BPF and limit use to privileged
BPF programs.
Fixes: 263ae152e9 ("bpf: Add bpf_dynptr_from_mem for local dynptrs")
Fixes: bc34dee65a ("bpf: Dynptr support for ring buffers")
Fixes: 13bbbfbea7 ("bpf: Add bpf_dynptr_read and bpf_dynptr_write")
Fixes: 34d4ef5775 ("bpf: Add dynptr data slices")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220921143550.30247-1-memxor@gmail.com
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Attach flags is only valid for attached progs of this layer cgroup,
but not for effective progs. For querying with EFFECTIVE flags,
exporting attach flags does not make sense. So when effective query,
we reject prog_attach_flags array and don't need to populate it.
Also we limit attach_flags to output 0 during effective query.
Fixes: b79c9fc955 ("bpf: implement BPF_PROG_QUERY for BPF_LSM_CGROUP")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Link: https://lore.kernel.org/r/20220921104604.2340580-2-pulehui@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
It could directly return 'btf_check_sec_info' to simplify code.
Signed-off-by: William Dean <williamsukatube@163.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220917084248.3649-1-williamsukatube@163.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
llnode could be NULL if there are new allocations after the checking of
c-free_cnt > c->high_watermark in bpf_mem_refill() and before the
calling of __llist_del_first() in free_bulk (e.g. a PREEMPT_RT kernel
or allocation in NMI context). And it will incur oops as shown below:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT_RT SMP
CPU: 39 PID: 373 Comm: irq_work/39 Tainted: G W 6.0.0-rc6-rt9+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:bpf_mem_refill+0x66/0x130
......
Call Trace:
<TASK>
irq_work_single+0x24/0x60
irq_work_run_list+0x24/0x30
run_irq_workd+0x18/0x20
smpboot_thread_fn+0x13f/0x2c0
kthread+0x121/0x140
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Simply fixing it by checking whether or not llnode is NULL in free_bulk().
Fixes: 8d5a8011b3 ("bpf: Batch call_rcu callbacks instead of SLAB_TYPESAFE_BY_RCU.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220919144811.3570825-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We have btf_type_str(). Use it whenever possible in btf.c, instead of
"btf_kind_str[BTF_INFO_KIND(t->info)]".
Signed-off-by: Peilin Ye <peilin.ye@bytedance.com>
Link: https://lore.kernel.org/r/20220916202800.31421-1-yepeilin.cs@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The documentation for find_vpid() clearly states:
"Must be called with the tasklist_lock or rcu_read_lock() held."
Presently we do neither for find_vpid() instance in bpf_task_fd_query().
Add proper rcu_read_lock/unlock() to fix the issue.
Fixes: 41bdc4b40e ("bpf: introduce bpf subcommand BPF_TASK_FD_QUERY")
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220912133855.1218900-1-lee@kernel.org
BPF_PTR_POISON was added in commit c0a5a21c25 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.
This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.
If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.
Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
[1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If the perf_event has PERF_SAMPLE_CALLCHAIN, BPF can use it for stack trace.
The problematic cases like PEBS and IBS already handled in the PMU driver and
they filled the callchain info in the sample data. For others, we can call
perf_callchain() before the BPF handler.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220908214104.3851807-2-namhyung@kernel.org
Verifier logic to confirm that a callback function returns 0 or 1 was
added in commit 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper").
At the time, callback return value was only used to continue or stop
iteration.
In order to support callbacks with a broader return value range, such as
those added in rbtree series[0] and others, add a callback_ret_range to
bpf_func_state. Verifier's helpers which set in_callback_fn will also
set the new field, which the verifier will later use to check return
value bounds.
Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel
value as the latter would prevent the valid range (0, U64_MAX) being
used. Previous global default tnum_range(0, 1) is explicitly set for
extant callback helpers. The change to global default was made after
discussion around this patch in rbtree series [1], goal here is to make
it more obvious that callback_ret_range should be explicitly set.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/
[1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When trying to finish resolving a struct member, btf_struct_resolve
saves the member type id in a u16 temporary variable. This truncates
the 32 bit type id value if it exceeds UINT16_MAX.
As a result, structs that have members with type ids > UINT16_MAX and
which need resolution will fail with a message like this:
[67414] STRUCT ff_device size=120 vlen=12
effect_owners type_id=67434 bits_offset=960 Member exceeds struct_size
Fix this by changing the type of last_member_type_id to u32.
Fixes: a0791f0df7 ("bpf: fix BTF limits")
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/r/20220910110120.339242-1-oss@lmb.io
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since commit 27ae7997a6 ("bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS")
there has existed bpf_verifier_ops:btf_struct_access. When
btf_struct_access is _unset_ for a prog type, the verifier runs the
default implementation, which is to enforce read only:
if (env->ops->btf_struct_access) {
[...]
} else {
if (atype != BPF_READ) {
verbose(env, "only read is supported\n");
return -EACCES;
}
[...]
}
When btf_struct_access is _set_, the expectation is that
btf_struct_access has full control over accesses, including if writes
are allowed.
Rather than carve out an exception for each prog type that may write to
BTF ptrs, delete the redundant check and give full control to
btf_struct_access.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/962da2bff1238746589e332ff1aecc49403cd7ce.1662568410.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the percpu freelist code, it is a common pattern to iterate over
the possible CPUs mask starting with the current CPU. The pattern is
implemented using a hand rolled while loop with the loop variable
increment being open-coded.
Simplify the code by using for_each_cpu_wrap() helper to iterate over
the possible cpus starting with the current CPU. As a result, some of
the special-casing in the loop also gets simplified.
No functional change intended.
Signed-off-by: Punit Agrawal <punit.agrawal@bytedance.com>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20220907155746.1750329-1-punit.agrawal@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzbot is reporting ODEBUG bug in htab_map_alloc() [1], for
commit 86fe28f769 ("bpf: Optimize element count in non-preallocated
hash map.") added percpu_counter_init() to htab_map_alloc() but forgot to
add percpu_counter_destroy() to the error path.
Link: https://syzkaller.appspot.com/bug?extid=5d1da78b375c3b5e6c2b [1]
Reported-by: syzbot <syzbot+5d1da78b375c3b5e6c2b@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 86fe28f769 ("bpf: Optimize element count in non-preallocated hash map.")
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/e2e4cc0e-9d36-4ca1-9bfa-ce23e6f8310b@I-love.SAKURA.ne.jp
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.
Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.
While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.
Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.
Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Enable support for kptrs in percpu BPF arraymap by wiring up the freeing
of these kptrs from percpu map elements.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Sparse reported a warning at bpf_map_free_kptrs()
"warning: Using plain integer as NULL pointer"
During the process of fixing this warning, it was discovered that the current
code erroneously writes to the pointer variable instead of deferencing and
writing to the actual kptr. Hence, Sparse tool accidentally helped to uncover
this problem. Fix this by doing WRITE_ONCE(*p, 0) instead of WRITE_ONCE(p, 0).
Note that the effect of this bug is that unreferenced kptrs will not be cleared
during check_and_free_fields. It is not a problem if the clearing is not done
during map_free stage, as there is nothing to free for them.
Fixes: 14a324f6a6 ("bpf: Wire up freeing of referenced kptr")
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Link: https://lore.kernel.org/r/Yxi3pJaK6UDjVJSy@playground
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
net/bpf/test_run.c is already presenting 20 kfuncs.
net/netfilter/nf_conntrack_bpf.c is also presenting an extra 10 kfuncs.
Given that all the kfuncs are regrouped into one unique set, having
only 2 space left prevent us to add more selftests.
Bump it to 256.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-6-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a function was trying to access data from context in a syscall eBPF
program, the verifier was rejecting the call unless it was accessing the
first element.
This is because the syscall context is not known at compile time, and
so we need to check this when actually accessing it.
Check for the valid memory access if there is no convert_ctx callback,
and allow such situation to happen.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-4-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf_check_subprog_arg_match() was used twice in verifier.c:
- when checking for the type mismatches between a (sub)prog declaration
and BTF
- when checking the call of a subprog to see if the provided arguments
are correct and valid
This is problematic when we check if the first argument of a program
(pointer to ctx) is correctly accessed:
To be able to ensure we access a valid memory in the ctx, the verifier
assumes the pointer to context is not null.
This has the side effect of marking the program accessing the entire
context, even if the context is never dereferenced.
For example, by checking the context access with the current code, the
following eBPF program would fail with -EINVAL if the ctx is set to null
from the userspace:
```
SEC("syscall")
int prog(struct my_ctx *args) {
return 0;
}
```
In that particular case, we do not want to actually check that the memory
is correct while checking for the BTF validity, but we just want to
ensure that the (sub)prog definition matches the BTF we have.
So split btf_check_subprog_arg_match() in two so we can actually check
for the memory used when in a call, and ignore that part when not.
Note that a further patch is in preparation to disentangled
btf_check_func_arg_match() from these two purposes, and so right now we
just add a new hack around that by adding a boolean to this function.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-3-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow struct argument in trampoline based programs where
the struct size should be <= 16 bytes. In such cases, the argument
will be put into up to 2 registers for bpf, x86_64 and arm64
architectures.
To support arch-specific trampoline manipulation,
add arg_flags for additional struct information about arguments
in btf_func_model. Such information will be used in arch specific
function arch_prepare_bpf_trampoline() to prepare argument access
properly in trampoline.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220831152646.2078089-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
__ksize() was made private. Use ksize() instead.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-09-05
The following pull-request contains BPF updates for your *net-next* tree.
We've added 106 non-merge commits during the last 18 day(s) which contain
a total of 159 files changed, 5225 insertions(+), 1358 deletions(-).
There are two small merge conflicts, resolve them as follows:
1) tools/testing/selftests/bpf/DENYLIST.s390x
Commit 27e23836ce ("selftests/bpf: Add lru_bug to s390x deny list") in
bpf tree was needed to get BPF CI green on s390x, but it conflicted with
newly added tests on bpf-next. Resolve by adding both hunks, result:
[...]
lru_bug # prog 'printk': failed to auto-attach: -524
setget_sockopt # attach unexpected error: -524 (trampoline)
cb_refs # expected error message unexpected error: -524 (trampoline)
cgroup_hierarchical_stats # JIT does not support calling kernel function (kfunc)
htab_update # failed to attach: ERROR: strerror_r(-524)=22 (trampoline)
[...]
2) net/core/filter.c
Commit 1227c1771d ("net: Fix data-races around sysctl_[rw]mem_(max|default).")
from net tree conflicts with commit 29003875bd ("bpf: Change bpf_setsockopt(SOL_SOCKET)
to reuse sk_setsockopt()") from bpf-next tree. Take the code as it is from
bpf-next tree, result:
[...]
if (getopt) {
if (optname == SO_BINDTODEVICE)
return -EINVAL;
return sk_getsockopt(sk, SOL_SOCKET, optname,
KERNEL_SOCKPTR(optval),
KERNEL_SOCKPTR(optlen));
}
return sk_setsockopt(sk, SOL_SOCKET, optname,
KERNEL_SOCKPTR(optval), *optlen);
[...]
The main changes are:
1) Add any-context BPF specific memory allocator which is useful in particular for BPF
tracing with bonus of performance equal to full prealloc, from Alexei Starovoitov.
2) Big batch to remove duplicated code from bpf_{get,set}sockopt() helpers as an effort
to reuse the existing core socket code as much as possible, from Martin KaFai Lau.
3) Extend BPF flow dissector for BPF programs to just augment the in-kernel dissector
with custom logic. In other words, allow for partial replacement, from Shmulik Ladkani.
4) Add a new cgroup iterator to BPF with different traversal options, from Hao Luo.
5) Support for BPF to collect hierarchical cgroup statistics efficiently through BPF
integration with the rstat framework, from Yosry Ahmed.
6) Support bpf_{g,s}et_retval() under more BPF cgroup hooks, from Stanislav Fomichev.
7) BPF hash table and local storages fixes under fully preemptible kernel, from Hou Tao.
8) Add various improvements to BPF selftests and libbpf for compilation with gcc BPF
backend, from James Hilliard.
9) Fix verifier helper permissions and reference state management for synchronous
callbacks, from Kumar Kartikeya Dwivedi.
10) Add support for BPF selftest's xskxceiver to also be used against real devices that
support MAC loopback, from Maciej Fijalkowski.
11) Various fixes to the bpf-helpers(7) man page generation script, from Quentin Monnet.
12) Document BPF verifier's tnum_in(tnum_range(), ...) gotchas, from Shung-Hsi Yu.
13) Various minor misc improvements all over the place.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (106 commits)
bpf: Optimize rcu_barrier usage between hash map and bpf_mem_alloc.
bpf: Remove usage of kmem_cache from bpf_mem_cache.
bpf: Remove prealloc-only restriction for sleepable bpf programs.
bpf: Prepare bpf_mem_alloc to be used by sleepable bpf programs.
bpf: Remove tracing program restriction on map types
bpf: Convert percpu hash map to per-cpu bpf_mem_alloc.
bpf: Add percpu allocation support to bpf_mem_alloc.
bpf: Batch call_rcu callbacks instead of SLAB_TYPESAFE_BY_RCU.
bpf: Adjust low/high watermarks in bpf_mem_cache
bpf: Optimize call_rcu in non-preallocated hash map.
bpf: Optimize element count in non-preallocated hash map.
bpf: Relax the requirement to use preallocated hash maps in tracing progs.
samples/bpf: Reduce syscall overhead in map_perf_test.
selftests/bpf: Improve test coverage of test_maps
bpf: Convert hash map to bpf_mem_alloc.
bpf: Introduce any context BPF specific memory allocator.
selftest/bpf: Add test for bpf_getsockopt()
bpf: Change bpf_getsockopt(SOL_IPV6) to reuse do_ipv6_getsockopt()
bpf: Change bpf_getsockopt(SOL_IP) to reuse do_ip_getsockopt()
bpf: Change bpf_getsockopt(SOL_TCP) to reuse do_tcp_getsockopt()
...
====================
Link: https://lore.kernel.org/r/20220905161136.9150-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
User space might be creating and destroying a lot of hash maps. Synchronous
rcu_barrier-s in a destruction path of hash map delay freeing of hash buckets
and other map memory and may cause artificial OOM situation under stress.
Optimize rcu_barrier usage between bpf hash map and bpf_mem_alloc:
- remove rcu_barrier from hash map, since htab doesn't use call_rcu
directly and there are no callback to wait for.
- bpf_mem_alloc has call_rcu_in_progress flag that indicates pending callbacks.
Use it to avoid barriers in fast path.
- When barriers are needed copy bpf_mem_alloc into temp structure
and wait for rcu barrier-s in the worker to let the rest of
hash map freeing to proceed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220902211058.60789-17-alexei.starovoitov@gmail.com
For bpf_mem_cache based hash maps the following stress test:
for (i = 1; i <= 512; i <<= 1)
for (j = 1; j <= 1 << 18; j <<= 1)
fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, i, j, 2, 0);
creates many kmem_cache-s that are not mergeable in debug kernels
and consume unnecessary amount of memory.
Turned out bpf_mem_cache's free_list logic does batching well,
so usage of kmem_cache for fixes size allocations doesn't bring
any performance benefits vs normal kmalloc.
Hence get rid of kmem_cache in bpf_mem_cache.
That saves memory, speeds up map create/destroy operations,
while maintains hash map update/delete performance.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220902211058.60789-16-alexei.starovoitov@gmail.com
Since hash map is now converted to bpf_mem_alloc and it's waiting for rcu and
rcu_tasks_trace GPs before freeing elements into global memory slabs it's safe
to use dynamically allocated hash maps in sleepable bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-15-alexei.starovoitov@gmail.com
Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
Then use call_rcu() to wait for normal progs to finish
and finally do free_one() on each element when freeing objects
into global memory pool.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-14-alexei.starovoitov@gmail.com
The hash map is now fully converted to bpf_mem_alloc. Its implementation is not
allocating synchronously and not calling call_rcu() directly. It's now safe to
use non-preallocated hash maps in all types of tracing programs including
BPF_PROG_TYPE_PERF_EVENT that runs out of NMI context.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-13-alexei.starovoitov@gmail.com
Convert dynamic allocations in percpu hash map from alloc_percpu() to
bpf_mem_cache_alloc() from per-cpu bpf_mem_alloc. Since bpf_mem_alloc frees
objects after RCU gp the call_rcu() is removed. pcpu_init_value() now needs to
zero-fill per-cpu allocations, since dynamically allocated map elements are now
similar to full prealloc, since alloc_percpu() is not called inline and the
elements are reused in the freelist.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-12-alexei.starovoitov@gmail.com
Extend bpf_mem_alloc to cache free list of fixed size per-cpu allocations.
Once such cache is created bpf_mem_cache_alloc() will return per-cpu objects.
bpf_mem_cache_free() will free them back into global per-cpu pool after
observing RCU grace period.
per-cpu flavor of bpf_mem_alloc is going to be used by per-cpu hash maps.
The free list cache consists of tuples { llist_node, per-cpu pointer }
Unlike alloc_percpu() that returns per-cpu pointer
the bpf_mem_cache_alloc() returns a pointer to per-cpu pointer and
bpf_mem_cache_free() expects to receive it back.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-11-alexei.starovoitov@gmail.com
SLAB_TYPESAFE_BY_RCU makes kmem_caches non mergeable and slows down
kmem_cache_destroy. All bpf_mem_cache are safe to share across different maps
and programs. Convert SLAB_TYPESAFE_BY_RCU to batched call_rcu. This change
solves the memory consumption issue, avoids kmem_cache_destroy latency and
keeps bpf hash map performance the same.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-10-alexei.starovoitov@gmail.com
The same low/high watermarks for every bucket in bpf_mem_cache consume
significant amount of memory. Preallocating 64 elements of 4096 bytes each in
the free list is not efficient. Make low/high watermarks and batching value
dependent on element size. This change brings significant memory savings.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-9-alexei.starovoitov@gmail.com
Doing call_rcu() million times a second becomes a bottle neck.
Convert non-preallocated hash map from call_rcu to SLAB_TYPESAFE_BY_RCU.
The rcu critical section is no longer observed for one htab element
which makes non-preallocated hash map behave just like preallocated hash map.
The map elements are released back to kernel memory after observing
rcu critical section.
This improves 'map_perf_test 4' performance from 100k events per second
to 250k events per second.
bpf_mem_alloc + percpu_counter + typesafe_by_rcu provide 10x performance
boost to non-preallocated hash map and make it within few % of preallocated map
while consuming fraction of memory.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-8-alexei.starovoitov@gmail.com
The atomic_inc/dec might cause extreme cache line bouncing when multiple cpus
access the same bpf map. Based on specified max_entries for the hash map
calculate when percpu_counter becomes faster than atomic_t and use it for such
maps. For example samples/bpf/map_perf_test is using hash map with max_entries
1000. On a system with 16 cpus the 'map_perf_test 4' shows 14k events per
second using atomic_t. On a system with 15 cpus it shows 100k events per second
using percpu. map_perf_test is an extreme case where all cpus colliding on
atomic_t which causes extreme cache bouncing. Note that the slow path of
percpu_counter is 5k events per secound vs 14k for atomic, so the heuristic is
necessary. See comment in the code why the heuristic is based on
num_online_cpus().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-7-alexei.starovoitov@gmail.com
Since bpf hash map was converted to use bpf_mem_alloc it is safe to use
from tracing programs and in RT kernels.
But per-cpu hash map is still using dynamic allocation for per-cpu map
values, hence keep the warning for this map type.
In the future alloc_percpu_gfp can be front-end-ed with bpf_mem_cache
and this restriction will be completely lifted.
perf_event (NMI) bpf programs have to use preallocated hash maps,
because free_htab_elem() is using call_rcu which might crash if re-entered.
Sleepable bpf programs have to use preallocated hash maps, because
life time of the map elements is not protected by rcu_read_lock/unlock.
This restriction can be lifted in the future as well.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-6-alexei.starovoitov@gmail.com
Tracing BPF programs can attach to kprobe and fentry. Hence they
run in unknown context where calling plain kmalloc() might not be safe.
Front-end kmalloc() with minimal per-cpu cache of free elements.
Refill this cache asynchronously from irq_work.
BPF programs always run with migration disabled.
It's safe to allocate from cache of the current cpu with irqs disabled.
Free-ing is always done into bucket of the current cpu as well.
irq_work trims extra free elements from buckets with kfree
and refills them with kmalloc, so global kmalloc logic takes care
of freeing objects allocated by one cpu and freed on another.
struct bpf_mem_alloc supports two modes:
- When size != 0 create kmem_cache and bpf_mem_cache for each cpu.
This is typical bpf hash map use case when all elements have equal size.
- When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
kmalloc/kfree. Max allocation size is 4096 in this case.
This is bpf_dynptr and bpf_kptr use case.
bpf_mem_alloc/bpf_mem_free are bpf specific 'wrappers' of kmalloc/kfree.
bpf_mem_cache_alloc/bpf_mem_cache_free are 'wrappers' of kmem_cache_alloc/kmem_cache_free.
The allocators are NMI-safe from bpf programs only. They are not NMI-safe in general.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-2-alexei.starovoitov@gmail.com
When CONFIG_SECURITY_NETWORK is disabled, there will be build warnings
from resolve_btfids:
WARN: resolve_btfids: unresolved symbol bpf_lsm_socket_socketpair
......
WARN: resolve_btfids: unresolved symbol bpf_lsm_inet_conn_established
Fixing it by wrapping these BTF ID definitions by CONFIG_SECURITY_NETWORK.
Fixes: 69fd337a97 ("bpf: per-cgroup lsm flavor")
Fixes: 9113d7e48e ("bpf: expose bpf_{g,s}etsockopt to lsm cgroup")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220901065126.3856297-1-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The assignment of the else and else if branches is the same, so the else
if here is redundant, so we remove it and add a comment to make the code
here readable.
./kernel/bpf/cgroup_iter.c:81:6-8: WARNING: possible condition with no effect (if == else).
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=2016
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Link: https://lore.kernel.org/r/20220831021618.86770-1-jiapeng.chong@linux.alibaba.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Both __this_cpu_inc_return() and __this_cpu_dec() are not preemption
safe and now migrate_disable() doesn't disable preemption, so the update
of prog-active is not atomic and in theory under fully preemptible kernel
recurisve prevention may do not work.
Fixing by using the preemption-safe and IRQ-safe variants.
Fixes: ca06f55b90 ("bpf: Add per-program recursion prevention mechanism")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20220901061938.3789460-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Now migrate_disable() does not disable preemption and under some
architectures (e.g. arm64) __this_cpu_{inc|dec|inc_return} are neither
preemption-safe nor IRQ-safe, so for fully preemptible kernel concurrent
lookups or updates on the same task local storage and on the same CPU
may make bpf_task_storage_busy be imbalanced, and
bpf_task_storage_trylock() on the specific cpu will always fail.
Fixing it by using this_cpu_{inc|dec|inc_return} when manipulating
bpf_task_storage_busy.
Fixes: bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20220901061938.3789460-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns
-EBUSY, it will go to next bucket. Going to next bucket may not only
skip the elements in current bucket silently, but also incur
out-of-bound memory access or expose kernel memory to userspace if
current bucket_cnt is greater than bucket_size or zero.
Fixing it by stopping batch operation and returning -EBUSY when
htab_lock_bucket() fails, and the application can retry or skip the busy
batch as needed.
Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220831042629.130006-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Per-cpu htab->map_locked is used to prohibit the concurrent accesses
from both NMI and non-NMI contexts. But since commit 74d862b682
("sched: Make migrate_disable/enable() independent of RT"),
migrate_disable() is also preemptible under CONFIG_PREEMPT case, so now
map_locked also disallows concurrent updates from normal contexts
(e.g. userspace processes) unexpectedly as shown below:
process A process B
htab_map_update_elem()
htab_lock_bucket()
migrate_disable()
/* return 1 */
__this_cpu_inc_return()
/* preempted by B */
htab_map_update_elem()
/* the same bucket as A */
htab_lock_bucket()
migrate_disable()
/* return 2, so lock fails */
__this_cpu_inc_return()
return -EBUSY
A fix that seems feasible is using in_nmi() in htab_lock_bucket() and
only checking the value of map_locked for nmi context. But it will
re-introduce dead-lock on bucket lock if htab_lock_bucket() is re-entered
through non-tracing program (e.g. fentry program).
One cannot use preempt_disable() to fix this issue as htab_use_raw_lock
being false causes the bucket lock to be a spin lock which can sleep and
does not work with preempt_disable().
Therefore, use migrate_disable() when using the spinlock instead of
preempt_disable() and defer fixing concurrent updates to when the kernel
has its own BPF memory allocator.
Fixes: 74d862b682 ("sched: Make migrate_disable/enable() independent of RT")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220831042629.130006-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Daniel borkmann says:
====================
The following pull-request contains BPF updates for your *net* tree.
We've added 11 non-merge commits during the last 14 day(s) which contain
a total of 13 files changed, 61 insertions(+), 24 deletions(-).
The main changes are:
1) Fix BPF verifier's precision tracking around BPF ring buffer, from Kumar Kartikeya Dwivedi.
2) Fix regression in tunnel key infra when passing FLOWI_FLAG_ANYSRC, from Eyal Birger.
3) Fix insufficient permissions for bpf_sys_bpf() helper, from YiFei Zhu.
4) Fix splat from hitting BUG when purging effective cgroup programs, from Pu Lehui.
5) Fix range tracking for array poke descriptors, from Daniel Borkmann.
6) Fix corrupted packets for XDP_SHARED_UMEM in aligned mode, from Magnus Karlsson.
7) Fix NULL pointer splat in BPF sockmap sk_msg_recvmsg(), from Liu Jian.
8) Add READ_ONCE() to bpf_jit_limit when reading from sysctl, from Kuniyuki Iwashima.
9) Add BPF selftest lru_bug check to s390x deny list, from Daniel Müller.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Add BPF_MAP_GET_FD_BY_ID and BPF_MAP_DELETE_PROG.
Only BPF_MAP_GET_FD_BY_ID needs to be amended to be able
to access the bpf pointer either from the userspace or the kernel.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220824134055.1328882-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_cgroup_iter_order is globally visible but the entries do not have
CGROUP prefix. As requested by Andrii, put a CGROUP in the names
in bpf_cgroup_iter_order.
This patch fixes two previous commits: one introduced the API and
the other uses the API in bpf selftest (that is, the selftest
cgroup_hierarchical_stats).
I tested this patch via the following command:
test_progs -t cgroup,iter,btf_dump
Fixes: d4ccaf58a8 ("bpf: Introduce cgroup iter")
Fixes: 88886309d2 ("selftests/bpf: add a selftest for cgroup hierarchical stats collection")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220825223936.1865810-1-haoluo@google.com
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:
BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d
The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.
Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Precision markers need to be propagated whenever we have an ARG_CONST_*
style argument, as the verifier cannot consider imprecise scalars to be
equivalent for the purposes of states_equal check when such arguments
refine the return value (in this case, set mem_size for PTR_TO_MEM). The
resultant mem_size for the R0 is derived from the constant value, and if
the verifier incorrectly prunes states considering them equivalent where
such arguments exist (by seeing that both registers have reg->precise as
false in regsafe), we can end up with invalid programs passing the
verifier which can do access beyond what should have been the correct
mem_size in that explored state.
To show a concrete example of the problem:
0000000000000000 <prog>:
0: r2 = *(u32 *)(r1 + 80)
1: r1 = *(u32 *)(r1 + 76)
2: r3 = r1
3: r3 += 4
4: if r3 > r2 goto +18 <LBB5_5>
5: w2 = 0
6: *(u32 *)(r1 + 0) = r2
7: r1 = *(u32 *)(r1 + 0)
8: r2 = 1
9: if w1 == 0 goto +1 <LBB5_3>
10: r2 = -1
0000000000000058 <LBB5_3>:
11: r1 = 0 ll
13: r3 = 0
14: call bpf_ringbuf_reserve
15: if r0 == 0 goto +7 <LBB5_5>
16: r1 = r0
17: r1 += 16777215
18: w2 = 0
19: *(u8 *)(r1 + 0) = r2
20: r1 = r0
21: r2 = 0
22: call bpf_ringbuf_submit
00000000000000b8 <LBB5_5>:
23: w0 = 0
24: exit
For the first case, the single line execution's exploration will prune
the search at insn 14 for the branch insn 9's second leg as it will be
verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will
always be 0 so at runtime we don't get error for being greater than
UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just
sees reg->precise as false for both r2 registers in both states, hence
considers them equal for purposes of states_equal.
If we propagated precise markers using the backtracking support, we
would use the precise marking to then ensure that old r2 (UINT_MAX) was
within the new r2 (1) and this would never be true, so the verification
would rightfully fail.
The end result is that the out of bounds access at instruction 19 would
be permitted without this fix.
Note that reg->precise is always set to true when user does not have
CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static
or global functions)), hence this is only a problem when precision marks
need to be explicitly propagated (i.e. privileged users with CAP_BPF).
A simplified test case has been included in the next patch to prevent
future regressions.
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823185300.406-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes:
- walking a cgroup's descendants in pre-order.
- walking a cgroup's descendants in post-order.
- walking a cgroup's ancestors.
- process only the given cgroup.
When attaching cgroup_iter, one can set a cgroup to the iter_link
created from attaching. This cgroup is passed as a file descriptor
or cgroup id and serves as the starting point of the walk. If no
cgroup is specified, the starting point will be the root cgroup v2.
For walking descendants, one can specify the order: either pre-order or
post-order. For walking ancestors, the walk starts at the specified
cgroup and ends at the root.
One can also terminate the walk early by returning 1 from the iter
program.
Note that because walking cgroup hierarchy holds cgroup_mutex, the iter
program is called with cgroup_mutex held.
Currently only one session is supported, which means, depending on the
volume of data bpf program intends to send to user space, the number
of cgroups that can be walked is limited. For example, given the current
buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each
cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can
be walked is 512. This is a limitation of cgroup_iter. If the output
data is larger than the kernel buffer size, after all data in the
kernel buffer is consumed by user space, the subsequent read() syscall
will signal EOPNOTSUPP. In order to work around, the user may have to
update their program to reduce the volume of data sent to output. For
example, skip some uninteresting cgroups. In future, we may extend
bpf_iter flags to allow customizing buffer size.
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller).
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
They would require func_info which needs prog BTF anyway. Loading BTF
and setting the prog btf_fd while loading the prog indirectly requires
CAP_BPF, so just to reduce confusion, move both these helpers taking
callback under bpf_capable() protection as well, since they cannot be
used without CAP_BPF.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013117.24916-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_strncmp is already exposed everywhere. The motivation is to keep
those helpers in kernel/bpf/helpers.c. Otherwise it's tempting to move
them under kernel/bpf/cgroup.c because they are currently only used
by sysctl prog types.
Suggested-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220823222555.523590-4-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The following hooks are per-cgroup hooks but they are not
using cgroup_{common,current}_func_proto, fix it:
* BPF_PROG_TYPE_CGROUP_SKB (cg_skb)
* BPF_PROG_TYPE_CGROUP_SOCK_ADDR (cg_sock_addr)
* BPF_PROG_TYPE_CGROUP_SOCK (cg_sock)
* BPF_PROG_TYPE_LSM+BPF_LSM_CGROUP
Also:
* move common func_proto's into cgroup func_proto handlers
* make sure bpf_{g,s}et_retval are not accessible from recvmsg,
getpeername and getsockname (return/errno is ignored in these
places)
* as a side effect, expose get_current_pid_tgid, get_current_comm_proto,
get_current_ancestor_cgroup_id, get_cgroup_classid to more cgroup
hooks
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220823222555.523590-3-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Split cgroup_base_func_proto into the following:
* cgroup_common_func_proto - common helpers for all cgroup hooks
* cgroup_current_func_proto - common helpers for all cgroup hooks
running in the process context (== have meaningful 'current').
Move bpf_{g,s}et_retval and other cgroup-related helpers into
kernel/bpf/cgroup.c so they closer to where they are being used.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220823222555.523590-2-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While reading bpf_jit_limit, it can be changed concurrently via sysctl,
WRITE_ONCE() in __do_proc_doulongvec_minmax(). The size of bpf_jit_limit
is long, so we need to add a paired READ_ONCE() to avoid load-tearing.
Fixes: ede95a63b5 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220823215804.2177-1-kuniyu@amazon.com
The bpf-iter-prog for tcp and unix sk can do bpf_setsockopt()
which needs has_current_bpf_ctx() to decide if it is called by a
bpf prog. This patch initializes the bpf_run_ctx in
bpf_iter_run_prog() for the has_current_bpf_ctx() to use.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220817061751.4177657-1-kafai@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Andrii Nakryiko says:
====================
bpf-next 2022-08-17
We've added 45 non-merge commits during the last 14 day(s) which contain
a total of 61 files changed, 986 insertions(+), 372 deletions(-).
The main changes are:
1) New bpf_ktime_get_tai_ns() BPF helper to access CLOCK_TAI, from Kurt
Kanzenbach and Jesper Dangaard Brouer.
2) Few clean ups and improvements for libbpf 1.0, from Andrii Nakryiko.
3) Expose crash_kexec() as kfunc for BPF programs, from Artem Savkov.
4) Add ability to define sleepable-only kfuncs, from Benjamin Tissoires.
5) Teach libbpf's bpf_prog_load() and bpf_map_create() to gracefully handle
unsupported names on old kernels, from Hangbin Liu.
6) Allow opting out from auto-attaching BPF programs by libbpf's BPF skeleton,
from Hao Luo.
7) Relax libbpf's requirement for shared libs to be marked executable, from
Henqgi Chen.
8) Improve bpf_iter internals handling of error returns, from Hao Luo.
9) Few accommodations in libbpf to support GCC-BPF quirks, from James Hilliard.
10) Fix BPF verifier logic around tracking dynptr ref_obj_id, from Joanne Koong.
11) bpftool improvements to handle full BPF program names better, from Manu
Bretelle.
12) bpftool fixes around libcap use, from Quentin Monnet.
13) BPF map internals clean ups and improvements around memory allocations,
from Yafang Shao.
14) Allow to use cgroup_get_from_file() on cgroupv1, allowing BPF cgroup
iterator to work on cgroupv1, from Yosry Ahmed.
15) BPF verifier internal clean ups, from Dave Marchevsky and Joanne Koong.
16) Various fixes and clean ups for selftests/bpf and vmtest.sh, from Daniel
Xu, Artem Savkov, Joanne Koong, Andrii Nakryiko, Shibin Koikkara Reeny.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (45 commits)
selftests/bpf: Few fixes for selftests/bpf built in release mode
libbpf: Clean up deprecated and legacy aliases
libbpf: Streamline bpf_attr and perf_event_attr initialization
libbpf: Fix potential NULL dereference when parsing ELF
selftests/bpf: Tests libbpf autoattach APIs
libbpf: Allows disabling auto attach
selftests/bpf: Fix attach point for non-x86 arches in test_progs/lsm
libbpf: Making bpf_prog_load() ignore name if kernel doesn't support
selftests/bpf: Update CI kconfig
selftests/bpf: Add connmark read test
selftests/bpf: Add existing connection bpf_*_ct_lookup() test
bpftool: Clear errno after libcap's checks
bpf: Clear up confusion in bpf_skb_adjust_room()'s documentation
bpftool: Fix a typo in a comment
libbpf: Add names for auxiliary maps
bpf: Use bpf_map_area_alloc consistently on bpf map creation
bpf: Make __GFP_NOWARN consistent in bpf map creation
bpf: Use bpf_map_area_free instread of kvfree
bpf: Remove unneeded memset in queue_stack_map creation
libbpf: preserve errno across pr_warn/pr_info/pr_debug
...
====================
Link: https://lore.kernel.org/r/20220817215656.1180215-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
bpf_sk_reuseport_detach() calls __rcu_dereference_sk_user_data_with_flags()
to obtain the value of sk->sk_user_data, but that function is only usable
if the RCU read lock is held, and neither that function nor any of its
callers hold it.
Fix this by adding a new helper, __locked_read_sk_user_data_with_flags()
that checks to see if sk->sk_callback_lock() is held and use that here
instead.
Alternatively, making __rcu_dereference_sk_user_data_with_flags() use
rcu_dereference_checked() might suffice.
Without this, the following warning can be occasionally observed:
=============================
WARNING: suspicious RCU usage
6.0.0-rc1-build2+ #563 Not tainted
-----------------------------
include/net/sock.h:592 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
5 locks held by locktest/29873:
#0: ffff88812734b550 (&sb->s_type->i_mutex_key#9){+.+.}-{3:3}, at: __sock_release+0x77/0x121
#1: ffff88812f5621b0 (sk_lock-AF_INET){+.+.}-{0:0}, at: tcp_close+0x1c/0x70
#2: ffff88810312f5c8 (&h->lhash2[i].lock){+.+.}-{2:2}, at: inet_unhash+0x76/0x1c0
#3: ffffffff83768bb8 (reuseport_lock){+...}-{2:2}, at: reuseport_detach_sock+0x18/0xdd
#4: ffff88812f562438 (clock-AF_INET){++..}-{2:2}, at: bpf_sk_reuseport_detach+0x24/0xa4
stack backtrace:
CPU: 1 PID: 29873 Comm: locktest Not tainted 6.0.0-rc1-build2+ #563
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
<TASK>
dump_stack_lvl+0x4c/0x5f
bpf_sk_reuseport_detach+0x6d/0xa4
reuseport_detach_sock+0x75/0xdd
inet_unhash+0xa5/0x1c0
tcp_set_state+0x169/0x20f
? lockdep_sock_is_held+0x3a/0x3a
? __lock_release.isra.0+0x13e/0x220
? reacquire_held_locks+0x1bb/0x1bb
? hlock_class+0x31/0x96
? mark_lock+0x9e/0x1af
__tcp_close+0x50/0x4b6
tcp_close+0x28/0x70
inet_release+0x8e/0xa7
__sock_release+0x95/0x121
sock_close+0x14/0x17
__fput+0x20f/0x36a
task_work_run+0xa3/0xcc
exit_to_user_mode_prepare+0x9c/0x14d
syscall_exit_to_user_mode+0x18/0x44
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: cf8c1e9672 ("net: refactor bpf_sk_reuseport_detach()")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hawkins Jiawei <yin31149@gmail.com>
Link: https://lore.kernel.org/r/166064248071.3502205.10036394558814861778.stgit@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The verifier cannot perform sufficient validation of any pointers passed
into bpf_attr and treats them as integers rather than pointers. The helper
will then read from arbitrary pointers passed into it. Restrict the helper
to CAP_PERFMON since the security model in BPF of arbitrary kernel read is
CAP_BPF + CAP_PERFMON.
Fixes: af2ac3e13e ("bpf: Prepare bpf syscall to be used from kernel and user space.")
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220816205517.682470-1-zhuyifei@google.com
Users may want to audit calls to security_create_user_ns() and access
user space memory. Also create_user_ns() runs without
pagefault_disabled(). Therefore, make bpf_lsm_userns_create() sleepable
for mandatory access control policies.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Frederick Lawler <fred@cloudflare.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Shut up this warning:
kernel/bpf/syscall.c:5089:5: warning: no previous prototype for function 'kern_sys_bpf' [-Wmissing-prototypes]
int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size)
Reported-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
bpf 2022-08-10
We've added 23 non-merge commits during the last 7 day(s) which contain
a total of 19 files changed, 424 insertions(+), 35 deletions(-).
The main changes are:
1) Several fixes for BPF map iterator such as UAFs along with selftests, from Hou Tao.
2) Fix BPF syscall program's {copy,strncpy}_from_bpfptr() to not fault, from Jinghao Jia.
3) Reject BPF syscall programs calling BPF_PROG_RUN, from Alexei Starovoitov and YiFei Zhu.
4) Fix attach_btf_obj_id info to pick proper target BTF, from Stanislav Fomichev.
5) BPF design Q/A doc update to clarify what is not stable ABI, from Paul E. McKenney.
6) Fix BPF map's prealloc_lru_pop to not reinitialize, from Kumar Kartikeya Dwivedi.
7) Fix bpf_trampoline_put to avoid leaking ftrace hash, from Jiri Olsa.
8) Fix arm64 JIT to address sparse errors around BPF trampoline, from Xu Kuohai.
9) Fix arm64 JIT to use kvcalloc instead of kcalloc for internal program address
offset buffer, from Aijun Sun.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf: (23 commits)
selftests/bpf: Ensure sleepable program is rejected by hash map iter
selftests/bpf: Add write tests for sk local storage map iterator
selftests/bpf: Add tests for reading a dangling map iter fd
bpf: Only allow sleepable program for resched-able iterator
bpf: Check the validity of max_rdwr_access for sock local storage map iterator
bpf: Acquire map uref in .init_seq_private for sock{map,hash} iterator
bpf: Acquire map uref in .init_seq_private for sock local storage map iterator
bpf: Acquire map uref in .init_seq_private for hash map iterator
bpf: Acquire map uref in .init_seq_private for array map iterator
bpf: Disallow bpf programs call prog_run command.
bpf, arm64: Fix bpf trampoline instruction endianness
selftests/bpf: Add test for prealloc_lru_pop bug
bpf: Don't reinit map value in prealloc_lru_pop
bpf: Allow calling bpf_prog_test kfuncs in tracing programs
bpf, arm64: Allocate program buffer using kvcalloc instead of kcalloc
selftests/bpf: Excercise bpf_obj_get_info_by_fd for bpf2bpf
bpf: Use proper target btf when exporting attach_btf_obj_id
mptcp, btf: Add struct mptcp_sock definition when CONFIG_MPTCP is disabled
bpf: Cleanup ftrace hash in bpf_trampoline_put
BPF: Fix potential bad pointer dereference in bpf_sys_bpf()
...
====================
Link: https://lore.kernel.org/r/20220810190624.10748-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Refactor sk_user_data dereference using more generic function
__rcu_dereference_sk_user_data_with_flags(), which improve its
maintainability
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Some of the bpf maps are created with __GFP_NOWARN, i.e. arraymap,
bloom_filter, bpf_local_storage, bpf_struct_ops, lpm_trie,
queue_stack_maps, reuseport_array, stackmap and xskmap, while others are
created without __GFP_NOWARN, i.e. cpumap, devmap, hashtab,
local_storage, offload, ringbuf and sock_map. But there are not key
differences between the creation of these maps. So let make this
allocation flag consistent in all bpf maps creation. Then we can use a
generic helper to alloc all bpf maps.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20220810151840.16394-4-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a sleepable program is attached to a hash map iterator, might_fault()
will report "BUG: sleeping function called from invalid context..." if
CONFIG_DEBUG_ATOMIC_SLEEP is enabled. The reason is that rcu_read_lock()
is held in bpf_hash_map_seq_next() and won't be released until all elements
are traversed or bpf_hash_map_seq_stop() is called.
Fixing it by reusing BPF_ITER_RESCHED to indicate that only non-sleepable
program is allowed for iterator without BPF_ITER_RESCHED. We can revise
bpf_iter_link_attach() later if there are other conditions which may
cause rcu_read_lock() or spin_lock() issues.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-7-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
So acquiring an extra map uref in bpf_iter_init_hash_map() and
releasing it in bpf_iter_fini_hash_map().
Fixes: d6c4503cc2 ("bpf: Implement bpf iterator for hash maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.
So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.
Fixes: d3cc2ab546 ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier cannot perform sufficient validation of bpf_attr->test.ctx_in
pointer, therefore bpf programs should not be allowed to call BPF_PROG_RUN
command from within the program.
To fix this issue split bpf_sys_bpf() bpf helper into normal kern_sys_bpf()
kernel function that can only be used by the kernel light skeleton directly.
Reported-by: YiFei Zhu <zhuyifei@google.com>
Fixes: b1d18a7574 ("bpf: Extend sys_bpf commands for bpf_syscall programs.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add KF_DESTRUCTIVE flag for destructive functions. Functions with this
flag set will require CAP_SYS_BOOT capabilities.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The LRU map that is preallocated may have its elements reused while
another program holds a pointer to it from bpf_map_lookup_elem. Hence,
only check_and_free_fields is appropriate when the element is being
deleted, as it ensures proper synchronization against concurrent access
of the map value. After that, we cannot call check_and_init_map_value
again as it may rewrite bpf_spin_lock, bpf_timer, and kptr fields while
they can be concurrently accessed from a BPF program.
This is safe to do as when the map entry is deleted, concurrent access
is protected against by check_and_free_fields, i.e. an existing timer
would be freed, and any existing kptr will be released by it. The
program can create further timers and kptrs after check_and_free_fields,
but they will eventually be released once the preallocated items are
freed on map destruction, even if the item is never reused again. Hence,
the deleted item sitting in the free list can still have resources
attached to it, and they would never leak.
With spin_lock, we never touch the field at all on delete or update, as
we may end up modifying the state of the lock. Since the verifier
ensures that a bpf_spin_lock call is always paired with bpf_spin_unlock
call, the program will eventually release the lock so that on reuse the
new user of the value can take the lock.
Essentially, for the preallocated case, we must assume that the map
value may always be in use by the program, even when it is sitting in
the freelist, and handle things accordingly, i.e. use proper
synchronization inside check_and_free_fields, and never reinitialize the
special fields when it is reused on update.
Fixes: 68134668c1 ("bpf: Add map side support for bpf timers.")
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220809213033.24147-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a data slice is obtained from a dynptr (through the bpf_dynptr_data API),
the ref obj id of the dynptr must be found and then associated with the data
slice.
The ref obj id of the dynptr must be found *before* the caller saved regs are
reset. Without this fix, the ref obj id tracking is not correct for
dynptrs that are at an offset from the frame pointer.
Please also note that the data slice's ref obj id must be assigned after the
ret types are parsed, since RET_PTR_TO_ALLOC_MEM-type return regs get
zero-marked.
Fixes: 34d4ef5775 ("bpf: Add dynptr data slices")
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220809214055.4050604-1-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently in funciton __get_type_size(), the corresponding
btf_type is returned only in invalid cases. Let us always
return btf_type regardless of valid or invalid cases.
Such a new functionality will be used in subsequent patches.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220807175116.4179242-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>