Commit Graph

997035 Commits

Author SHA1 Message Date
Yanan Wang
a4b3c8b583 KVM: selftests: Adapt vm_userspace_mem_region_add to new helpers
With VM_MEM_SRC_ANONYMOUS_THP specified in vm_userspace_mem_region_add(),
we have to get the transparent hugepage size for HVA alignment. With the
new helpers, we can use get_backing_src_pagesz() to check whether THP is
configured and then get the exact configured hugepage size.

As different architectures may have different THP page sizes configured,
this can get the accurate THP page sizes on any platform.

Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-10-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:53 -04:00
Yanan Wang
623653b7d4 KVM: selftests: List all hugetlb src types specified with page sizes
With VM_MEM_SRC_ANONYMOUS_HUGETLB, we currently can only use system
default hugetlb pages to back the testing guest memory. In order to
add flexibility, now list all the known hugetlb backing src types with
different page sizes, so that we can specify use of hugetlb pages of the
exact granularity that we want. And as all the known hugetlb page sizes
are listed, it's appropriate for all architectures.

Besides, the helper get_backing_src_pagesz() is added to get the
granularity of different backing src types(anonumous, thp, hugetlb).

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-9-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:53 -04:00
Yanan Wang
5579fa682a KVM: selftests: Add a helper to get system default hugetlb page size
If HUGETLB is configured in the host kernel, then we can know the system
default hugetlb page size through *cat /proc/meminfo*. Otherwise, we will
not see the information of hugetlb pages in file /proc/meminfo if it's not
configured. So add a helper to determine whether HUGETLB is configured and
then get the default page size by reading /proc/meminfo.

This helper can be useful when a program wants to use the default hugetlb
pages of the system and doesn't know the default page size.

Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-8-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:52 -04:00
Yanan Wang
3b70c4d128 KVM: selftests: Add a helper to get system configured THP page size
If we want to have some tests about transparent hugepages, the system
configured THP hugepage size should better be known by the tests, which
can be used for kinds of alignment or guest memory accessing of vcpus...
So it makes sense to add a helper to get the transparent hugepage size.

With VM_MEM_SRC_ANONYMOUS_THP specified in vm_userspace_mem_region_add(),
we now stat /sys/kernel/mm/transparent_hugepage to check whether THP is
configured in the host kernel before madvise(). Based on this, we can also
read file /sys/kernel/mm/transparent_hugepage/hpage_pmd_size to get THP
hugepage size.

Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-7-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:52 -04:00
Yanan Wang
6436430e29 KVM: selftests: Make a generic helper to get vm guest mode strings
For generality and conciseness, make an API which can be used in all
kvm libs and selftests to get vm guest mode strings. And the index i
is checked in the API in case of possiable faults.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-6-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:52 -04:00
Yanan Wang
c412d6ac28 KVM: selftests: Print the errno besides error-string in TEST_ASSERT
Print the errno besides error-string in TEST_ASSERT in the format of
"errno=%d - %s" will explicitly indicate that the string is an error
information. Besides, the errno is easier to be used for debugging
than the error-string.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20210330080856.14940-5-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:52 -04:00
Yanan Wang
fa76c775be tools/headers: sync headers of asm-generic/hugetlb_encode.h
This patch syncs contents of tools/include/asm-generic/hugetlb_encode.h
and include/uapi/asm-generic/hugetlb_encode.h. Arch powerpc supports 16KB
hugepages and ARM64 supports 32MB/512MB hugepages. The corresponding mmap
flags have already been added in include/uapi/asm-generic/hugetlb_encode.h,
but not tools/include/asm-generic/hugetlb_encode.h.

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210330080856.14940-2-wangyanan55@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:51 -04:00
Haiwei Li
870c575a56 KVM: vmx: add mismatched size assertions in vmcs_check32()
Add compile-time assertions in vmcs_check32() to disallow accesses to
64-bit and 64-bit high fields via vmcs_{read,write}32().  Upper level KVM
code should never do partial accesses to VMCS fields.  KVM handles the
split accesses automatically in vmcs_{read,write}64() when running as a
32-bit kernel.

Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <20210409022456.23528-1-lihaiwei.kernel@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:51 -04:00
Sean Christopherson
7c896d3755 KVM: Add proper lockdep assertion in I/O bus unregister
Convert a comment above kvm_io_bus_unregister_dev() into an actual
lockdep assertion, and opportunistically add curly braces to a multi-line
for-loop.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210412222050.876100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:51 -04:00
Sean Christopherson
5d3c4c7938 KVM: Stop looking for coalesced MMIO zones if the bus is destroyed
Abort the walk of coalesced MMIO zones if kvm_io_bus_unregister_dev()
fails to allocate memory for the new instance of the bus.  If it can't
instantiate a new bus, unregister_dev() destroys all devices _except_ the
target device.   But, it doesn't tell the caller that it obliterated the
bus and invoked the destructor for all devices that were on the bus.  In
the coalesced MMIO case, this can result in a deleted list entry
dereference due to attempting to continue iterating on coalesced_zones
after future entries (in the walk) have been deleted.

Opportunistically add curly braces to the for-loop, which encompasses
many lines but sneaks by without braces due to the guts being a single
if statement.

Fixes: f65886606c ("KVM: fix memory leak in kvm_io_bus_unregister_dev()")
Cc: stable@vger.kernel.org
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210412222050.876100-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:51 -04:00
Sean Christopherson
2ee3757424 KVM: Destroy I/O bus devices on unregister failure _after_ sync'ing SRCU
If allocating a new instance of an I/O bus fails when unregistering a
device, wait to destroy the device until after all readers are guaranteed
to see the new null bus.  Destroying devices before the bus is nullified
could lead to use-after-free since readers expect the devices on their
reference of the bus to remain valid.

Fixes: f65886606c ("KVM: fix memory leak in kvm_io_bus_unregister_dev()")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210412222050.876100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:50 -04:00
Emanuele Giuseppe Esposito
24e7475f93 doc/virt/kvm: move KVM_CAP_PPC_MULTITCE in section 8
KVM_CAP_PPC_MULTITCE is a capability, not an ioctl.
Therefore move it from section 4.97 to the new 8.31 (other capabilities).

To fill the gap, move KVM_X86_SET_MSR_FILTER (was 4.126) to
4.97, and shifted Xen-related ioctl (were 4.127 - 4.130) by
one place (4.126 - 4.129).

Also fixed minor typo in KVM_GET_MSR_INDEX_LIST ioctl description
(section 4.3).

Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20210316170814.64286-1-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:50 -04:00
Keqian Zhu
d90b15edbe KVM: x86: Remove unused function declaration
kvm_mmu_slot_largepage_remove_write_access() is decared but not used,
just remove it.

Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210406063504.17552-1-zhukeqian1@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:50 -04:00
Sean Christopherson
44f1b5586d KVM: SVM: Enhance and clean up the vmcb tracking comment in pre_svm_run()
Explicitly document why a vmcb must be marked dirty and assigned a new
asid when it will be run on a different cpu.  The "what" is relatively
obvious, whereas the "why" requires reading the APM and/or KVM code.

Opportunistically remove a spurious period and several unnecessary
newlines in the comment.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:50 -04:00
Sean Christopherson
554cf31474 KVM: SVM: Add a comment to clarify what vcpu_svm.vmcb points at
Add a comment above the declaration of vcpu_svm.vmcb to call out that it
is simply a shorthand for current_vmcb->ptr.  The myriad accesses to
svm->vmcb are quite confusing without this crucial detail.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:49 -04:00
Sean Christopherson
d1788191fd KVM: SVM: Drop vcpu_svm.vmcb_pa
Remove vmcb_pa from vcpu_svm and simply read current_vmcb->pa directly in
the one path where it is consumed.  Unlike svm->vmcb, use of the current
vmcb's address is very limited, as evidenced by the fact that its use
can be trimmed to a single dereference.

Opportunistically add a comment about using vmcb01 for VMLOAD/VMSAVE, at
first glance using vmcb01 instead of vmcb_pa looks wrong.

No functional change intended.

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:49 -04:00
Sean Christopherson
17e5e964ee KVM: SVM: Don't set current_vmcb->cpu when switching vmcb
Do not update the new vmcb's last-run cpu when switching to a different
vmcb.  If the vCPU is migrated between its last run and a vmcb switch,
e.g. for nested VM-Exit, then setting the cpu without marking the vmcb
dirty will lead to KVM running the vCPU on a different physical cpu with
stale clean bit settings.

                          vcpu->cpu    current_vmcb->cpu    hardware
  pre_svm_run()           cpu0         cpu0                 cpu0,clean
  kvm_arch_vcpu_load()    cpu1         cpu0                 cpu0,clean
  svm_switch_vmcb()       cpu1         cpu1                 cpu0,clean
  pre_svm_run()           cpu1         cpu1                 kaboom

Simply delete the offending code; unlike VMX, which needs to update the
cpu at switch time due to the need to do VMPTRLD, SVM only cares about
which cpu last ran the vCPU.

Fixes: af18fa775d ("KVM: nSVM: Track the physical cpu of the vmcb vmrun through the vmcb")
Cc: Cathy Avery <cavery@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:49 -04:00
Tom Lendacky
a3ba26ecfb KVM: SVM: Make sure GHCB is mapped before updating
Access to the GHCB is mainly in the VMGEXIT path and it is known that the
GHCB will be mapped. But there are two paths where it is possible the GHCB
might not be mapped.

The sev_vcpu_deliver_sipi_vector() routine will update the GHCB to inform
the caller of the AP Reset Hold NAE event that a SIPI has been delivered.
However, if a SIPI is performed without a corresponding AP Reset Hold,
then the GHCB might not be mapped (depending on the previous VMEXIT),
which will result in a NULL pointer dereference.

The svm_complete_emulated_msr() routine will update the GHCB to inform
the caller of a RDMSR/WRMSR operation about any errors. While it is likely
that the GHCB will be mapped in this situation, add a safe guard
in this path to be certain a NULL pointer dereference is not encountered.

Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Fixes: 647daca25d ("KVM: SVM: Add support for booting APs in an SEV-ES guest")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Message-Id: <a5d3ebb600a91170fc88599d5a575452b3e31036.1617979121.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:47 -04:00
Wanpeng Li
a1fa4cbd53 KVM: X86: Do not yield to self
If the target is self we do not need to yield, we can avoid malicious
guest to play this.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-3-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:46 -04:00
Wanpeng Li
4a7132efff KVM: X86: Count attempted/successful directed yield
To analyze some performance issues with lock contention and scheduling,
it is nice to know when directed yield are successful or failing.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:46 -04:00
Wanpeng Li
2b519b5797 x86/kvm: Don't bother __pv_cpu_mask when !CONFIG_SMP
Enable PV TLB shootdown when !CONFIG_SMP doesn't make sense. Let's
move it inside CONFIG_SMP. In addition, we can avoid define and
alloc __pv_cpu_mask when !CONFIG_SMP and get rid of 'alloc' variable
in kvm_alloc_cpumask.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:45 -04:00
Ben Gardon
4c6654bd16 KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns
To avoid saddling a vCPU thread with the work of tearing down an entire
paging structure, take a reference on each root before they become
obsolete, so that the thread initiating the fast invalidation can tear
down the paging structure and (most likely) release the last reference.
As a bonus, this teardown can happen under the MMU lock in read mode so
as not to block the progress of vCPU threads.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:45 -04:00
Ben Gardon
b7cccd397f KVM: x86/mmu: Fast invalidation for TDP MMU
Provide a real mechanism for fast invalidation by marking roots as
invalid so that their reference count will quickly fall to zero
and they will be torn down.

One negative side affect of this approach is that a vCPU thread will
likely drop the last reference to a root and be saddled with the work of
tearing down an entire paging structure. This issue will be resolved in
a later commit.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-13-bgardon@google.com>
[Move the loop to tdp_mmu.c, otherwise compilation fails on 32-bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:35 -04:00
Ben Gardon
24ae4cfaaa KVM: x86/mmu: Allow enabling/disabling dirty logging under MMU read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU functions which enable and disable dirty logging
to operate under the MMU read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
2db6f772b5 KVM: x86/mmu: Allow zapping collapsible SPTEs to use MMU read lock
To reduce the impact of disabling dirty logging, change the TDP MMU
function which zaps collapsible SPTEs to run under the MMU read lock.
This way, page faults on zapped SPTEs can proceed in parallel with
kvm_mmu_zap_collapsible_sptes.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
6103bc0740 KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU function to zap a GFN range to operate under the MMU
read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
c0e64238ac KVM: x86/mmu: Protect the tdp_mmu_roots list with RCU
Protect the contents of the TDP MMU roots list with RCU in preparation
for a future patch which will allow the iterator macro to be used under
the MMU lock in read mode.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:01 -04:00
Ben Gardon
fb10129335 KVM: x86/mmu: handle cmpxchg failure in kvm_tdp_mmu_get_root
To reduce dependence on the MMU write lock, don't rely on the assumption
that the atomic operation in kvm_tdp_mmu_get_root will always succeed.
By not relying on that assumption, threads do not need to hold the MMU
lock in write mode in order to take a reference on a TDP MMU root.

In the root iterator, this change means that some roots might have to be
skipped if they are found to have a zero refcount. This will still never
happen as of this patch, but a future patch will need that flexibility to
make the root iterator safe under the MMU read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:25 -04:00
Ben Gardon
11cccf5c04 KVM: x86/mmu: Make TDP MMU root refcount atomic
In order to parallelize more operations for the TDP MMU, make the
refcount on TDP MMU roots atomic, so that a future patch can allow
multiple threads to take a reference on the root concurrently, while
holding the MMU lock in read mode.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:25 -04:00
Ben Gardon
cfc109979b KVM: x86/mmu: Refactor yield safe root iterator
Refactor the yield safe TDP MMU root iterator to be more amenable to
changes in future commits which will allow it to be used under the MMU
lock in read mode. Currently the iterator requires a complicated dance
between the helper functions and different parts of the for loop which
makes it hard to reason about. Moving all the logic into a single function
simplifies the iterator substantially.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
2bdb3d84ce KVM: x86/mmu: Merge TDP MMU put and free root
kvm_tdp_mmu_put_root and kvm_tdp_mmu_free_root are always called
together, so merge the functions to simplify TDP MMU root refcounting /
freeing.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
4bba36d72b KVM: x86/mmu: use tdp_mmu_free_sp to free roots
Minor cleanup to deduplicate the code used to free a struct kvm_mmu_page
in the TDP MMU.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
76eb54e7e7 KVM: x86/mmu: Move kvm_mmu_(get|put)_root to TDP MMU
The TDP MMU is almost the only user of kvm_mmu_get_root and
kvm_mmu_put_root. There is only one use of put_root in mmu.c for the
legacy / shadow MMU. Open code that one use and move the get / put
functions to the TDP MMU so they can be extended in future commits.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
8ca6f063b7 KVM: x86/mmu: Re-add const qualifier in kvm_tdp_mmu_zap_collapsible_sptes
kvm_tdp_mmu_zap_collapsible_sptes unnecessarily removes the const
qualifier from its memlsot argument, leading to a compiler warning. Add
the const annotation and pass it to subsequent functions.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:23 -04:00
Sean Christopherson
e1eed5847b KVM: x86/mmu: Allow yielding during MMU notifier unmap/zap, if possible
Let the TDP MMU yield when unmapping a range in response to a MMU
notification, if yielding is allowed by said notification.  There is no
reason to disallow yielding in this case, and in theory the range being
invalidated could be quite large.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:23 -04:00
Sean Christopherson
8931a454ae KVM: Take mmu_lock when handling MMU notifier iff the hva hits a memslot
Defer acquiring mmu_lock in the MMU notifier paths until a "hit" has been
detected in the memslots, i.e. don't take the lock for notifications that
don't affect the guest.

For small VMs, spurious locking is a minor annoyance.  And for "volatile"
setups where the majority of notifications _are_ relevant, this barely
qualifies as an optimization.

But, for large VMs (hundreds of threads) with static setups, e.g. no
page migration, no swapping, etc..., the vast majority of MMU notifier
callbacks will be unrelated to the guest, e.g. will often be in response
to the userspace VMM adjusting its own virtual address space.  In such
large VMs, acquiring mmu_lock can be painful as it blocks vCPUs from
handling page faults.  In some scenarios it can even be "fatal" in the
sense that it causes unacceptable brownouts, e.g. when rebuilding huge
pages after live migration, a significant percentage of vCPUs will be
attempting to handle page faults.

x86's TDP MMU implementation is especially susceptible to spurious
locking due it taking mmu_lock for read when handling page faults.
Because rwlock is fair, a single writer will stall future readers, while
the writer is itself stalled waiting for in-progress readers to complete.
This is exacerbated by the MMU notifiers often firing multiple times in
quick succession, e.g. moving a page will (always?) invoke three separate
notifiers: .invalidate_range_start(), invalidate_range_end(), and
.change_pte().  Unnecessarily taking mmu_lock each time means even a
single spurious sequence can be problematic.

Note, this optimizes only the unpaired callbacks.  Optimizing the
.invalidate_range_{start,end}() pairs is more complex and will be done in
a future patch.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:08 -04:00
Sean Christopherson
f922bd9bf3 KVM: Move MMU notifier's mmu_lock acquisition into common helper
Acquire and release mmu_lock in the __kvm_handle_hva_range() helper
instead of requiring the caller to do the same.  This paves the way for
future patches to take mmu_lock if and only if an overlapping memslot is
found, without also having to introduce the on_lock() shenanigans used
to manipulate the notifier count and sequence.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:08 -04:00
Sean Christopherson
b4c5936c47 KVM: Kill off the old hva-based MMU notifier callbacks
Yank out the hva-based MMU notifier APIs now that all architectures that
use the notifiers have moved to the gfn-based APIs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:08 -04:00
Sean Christopherson
b1c5356e87 KVM: PPC: Convert to the gfn-based MMU notifier callbacks
Move PPC to the gfn-base MMU notifier APIs, and update all 15 bajillion
PPC-internal hooks to work with gfns instead of hvas.

No meaningful functional change intended, though the exact order of
operations is slightly different since the memslot lookups occur before
calling into arch code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:07 -04:00
Sean Christopherson
d923ff2584 KVM: MIPS/MMU: Convert to the gfn-based MMU notifier callbacks
Move MIPS to the gfn-based MMU notifier APIs, which do the hva->gfn
lookup in common code, and whose code is nearly identical to MIPS'
lookup.

No meaningful functional change intended, though the exact order of
operations is slightly different since the memslot lookups occur before
calling into arch code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:07 -04:00
Sean Christopherson
cd4c718352 KVM: arm64: Convert to the gfn-based MMU notifier callbacks
Move arm64 to the gfn-base MMU notifier APIs, which do the hva->gfn
lookup in common code.

No meaningful functional change intended, though the exact order of
operations is slightly different since the memslot lookups occur before
calling into arch code.

Reviewed-by: Marc Zyngier <maz@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:07 -04:00
Sean Christopherson
3039bcc744 KVM: Move x86's MMU notifier memslot walkers to generic code
Move the hva->gfn lookup for MMU notifiers into common code.  Every arch
does a similar lookup, and some arch code is all but identical across
multiple architectures.

In addition to consolidating code, this will allow introducing
optimizations that will benefit all architectures without incurring
multiple walks of the memslots, e.g. by taking mmu_lock if and only if a
relevant range exists in the memslots.

The use of __always_inline to avoid indirect call retpolines, as done by
x86, may also benefit other architectures.

Consolidating the lookups also fixes a wart in x86, where the legacy MMU
and TDP MMU each do their own memslot walks.

Lastly, future enhancements to the memslot implementation, e.g. to add an
interval tree to track host address, will need to touch far less arch
specific code.

MIPS, PPC, and arm64 will be converted one at a time in future patches.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:06 -04:00
Sean Christopherson
c13fda237f KVM: Assert that notifier count is elevated in .change_pte()
In KVM's .change_pte() notification callback, replace the notifier
sequence bump with a WARN_ON assertion that the notifier count is
elevated.  An elevated count provides stricter protections than bumping
the sequence, and the sequence is guarnateed to be bumped before the
count hits zero.

When .change_pte() was added by commit 828502d300 ("ksm: add
mmu_notifier set_pte_at_notify()"), bumping the sequence was necessary
as .change_pte() would be invoked without any surrounding notifications.

However, since commit 6bdb913f0a ("mm: wrap calls to set_pte_at_notify
with invalidate_range_start and invalidate_range_end"), all calls to
.change_pte() are guaranteed to be surrounded by start() and end(), and
so are guaranteed to run with an elevated notifier count.

Note, wrapping .change_pte() with .invalidate_range_{start,end}() is a
bug of sorts, as invalidating the secondary MMU's (KVM's) PTE defeats
the purpose of .change_pte().  Every arch's kvm_set_spte_hva() assumes
.change_pte() is called when the relevant SPTE is present in KVM's MMU,
as the original goal was to accelerate Kernel Samepage Merging (KSM) by
updating KVM's SPTEs without requiring a VM-Exit (due to invalidating
the SPTE).  I.e. it means that .change_pte() is effectively dead code
on _all_ architectures.

x86 and MIPS are clearcut nops if the old SPTE is not-present, and that
is guaranteed due to the prior invalidation.  PPC simply unmaps the SPTE,
which again should be a nop due to the invalidation.  arm64 is a bit
murky, but it's also likely a nop because kvm_pgtable_stage2_map() is
called without a cache pointer, which means it will map an entry if and
only if an existing PTE was found.

For now, take advantage of the bug to simplify future consolidation of
KVMs's MMU notifier code.   Doing so will not greatly complicate fixing
.change_pte(), assuming it's even worth fixing.  .change_pte() has been
broken for 8+ years and no one has complained.  Even if there are
KSM+KVM users that care deeply about its performance, the benefits of
avoiding VM-Exits via .change_pte() need to be reevaluated to justify
the added complexity and testing burden.  Ripping out .change_pte()
entirely would be a lot easier.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:06 -04:00
Paolo Bonzini
fe9a5b0551 KVM: MIPS: defer flush to generic MMU notifier code
Return 1 from kvm_unmap_hva_range and kvm_set_spte_hva if a flush is
needed, so that the generic code can coalesce the flushes.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:05 -04:00
Paolo Bonzini
566a0beef5 KVM: MIPS: let generic code call prepare_flush_shadow
Since all calls to kvm_flush_remote_tlbs must be preceded by
kvm_mips_callbacks->prepare_flush_shadow, repurpose
kvm_arch_flush_remote_tlb to invoke it.  This makes it possible
to use the TLB flushing mechanism provided by the generic MMU
notifier code.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:05 -04:00
Paolo Bonzini
5194552fb1 KVM: MIPS: rework flush_shadow_* callbacks into one that prepares the flush
Both trap-and-emulate and VZ have a single implementation that covers
both .flush_shadow_all and .flush_shadow_memslot, and both of them end
with a call to kvm_flush_remote_tlbs.

Unify the callbacks into one and extract the call to kvm_flush_remote_tlbs.
The next patches will pull it further out of the the architecture-specific
MMU notifier functions kvm_unmap_hva_range and kvm_set_spte_hva.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:05 -04:00
Paolo Bonzini
6c9dd6d262 KVM: constify kvm_arch_flush_remote_tlbs_memslot
memslots are stored in RCU and there should be no need to
change them.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:04 -04:00
Sean Christopherson
85f4793083 KVM: Explicitly use GFP_KERNEL_ACCOUNT for 'struct kvm_vcpu' allocations
Use GFP_KERNEL_ACCOUNT when allocating vCPUs to make it more obvious that
that the allocations are accounted, to make it easier to audit KVM's
allocations in the future, and to be consistent with other cache usage in
KVM.

When using SLAB/SLUB, this is a nop as the cache itself is created with
SLAB_ACCOUNT.

When using SLOB, there are caveats within caveats.  SLOB doesn't honor
SLAB_ACCOUNT, so passing GFP_KERNEL_ACCOUNT will result in vCPU
allocations now being accounted.   But, even that depends on internal
SLOB details as SLOB will only go to the page allocator when its cache is
depleted.  That just happens to be extremely likely for vCPUs because the
size of kvm_vcpu is larger than the a page for almost all combinations of
architecture and page size.  Whether or not the SLOB behavior is by
design is unknown; it's just as likely that no SLOB users care about
accounding and so no one has bothered to implemented support in SLOB.
Regardless, accounting vCPU allocations will not break SLOB+KVM+cgroup
users, if any exist.

Reviewed-by: Wanpeng Li <kernellwp@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406190740.4055679-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:04 -04:00
Paolo Bonzini
dbb6964e4c KVM: MMU: protect TDP MMU pages only down to required level
When using manual protection of dirty pages, it is not necessary
to protect nested page tables down to the 4K level; instead KVM
can protect only hugepages in order to split them lazily, and
delay write protection at 4K-granularity until KVM_CLEAR_DIRTY_LOG.
This was overlooked in the TDP MMU, so do it there as well.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:04 -04:00
Maxim Levitsky
a43b80b782 KVM: s390x: implement KVM_CAP_SET_GUEST_DEBUG2
Define KVM_GUESTDBG_VALID_MASK and use it to implement this capabiity.
Compile tested only.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401135451.1004564-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:03 -04:00