mirror of
https://github.com/torvalds/linux.git
synced 2024-12-11 21:52:04 +00:00
a1732d6898
224 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Arnaldo Carvalho de Melo
|
0869331fba |
Merge remote-tracking branch 'torvalds/master' into perf/core
To get the rest of 5.18. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Thomas Richter
|
f8ac1c4784 |
perf bench numa: Address compiler error on s390
The compilation on s390 results in this error:
# make DEBUG=y bench/numa.o
...
bench/numa.c: In function ‘__bench_numa’:
bench/numa.c:1749:81: error: ‘%d’ directive output may be truncated
writing between 1 and 11 bytes into a region of size between
10 and 20 [-Werror=format-truncation=]
1749 | snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
^~
...
bench/numa.c:1749:64: note: directive argument in the range
[-2147483647, 2147483646]
...
#
The maximum length of the %d replacement is 11 characters because of the
negative sign. Therefore extend the array by two more characters.
Output after:
# make DEBUG=y bench/numa.o > /dev/null 2>&1; ll bench/numa.o
-rw-r--r-- 1 root root 418320 May 19 09:11 bench/numa.o
#
Fixes:
|
||
Arnaldo Carvalho de Melo
|
df36d2572e |
perf bench breakpoint: Fix build on 32-bit arches
Cast pointers to unsigned long instead of to uint64_t to avoid this
problem on 32-bit arches:
31 6.89 debian:experimental-x-mips : FAIL gcc version 11.2.0 (Debian 11.2.0-18)
bench/breakpoint.c: In function 'breakpoint_setup':
bench/breakpoint.c:56:24: error: cast from pointer to integer of different size [-Werror=pointer-to-int-cast]
56 | attr.bp_addr = (uint64_t)addr;
| ^
cc1: all warnings being treated as errors
make[3]: *** [/git/perf-5.18.0-rc7/tools/build/Makefile.build:139: bench] Error 2
Fixes:
|
||
Arnaldo Carvalho de Melo
|
c5468a28ef |
Merge remote-tracking branch 'torvalds/master' into perf/core
To pick up fixes from perf/urgent. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Dmitry Vyukov
|
68a6772f11 |
perf bench: Add breakpoint benchmarks
Add 2 benchmarks: 1. Performance of thread creation/exiting in presence of breakpoints. 2. Performance of breakpoint modification in presence of threads. The benchmarks capture use cases that we are interested in: using inheritable breakpoints in large highly-threaded applications. The benchmarks show significant slowdown imposed by breakpoints (even when they don't fire). Testing on Intel 8173M with 112 HW threads show: perf bench --repeat=56 breakpoint thread --breakpoints=0 --parallelism=56 --threads=20 78.675000 usecs/op perf bench --repeat=56 breakpoint thread --breakpoints=4 --parallelism=56 --threads=20 12967.135714 usecs/op That's 165x slowdown due to presence of the breakpoints. perf bench --repeat=20000 breakpoint enable --passive=0 --active=0 1.433250 usecs/op perf bench --repeat=20000 breakpoint enable --passive=224 --active=0 585.318400 usecs/op perf bench --repeat=20000 breakpoint enable --passive=0 --active=111 635.953000 usecs/op That's 408x and 444x slowdown due to presence of threads. Profiles show some overhead in toggle_bp_slot, but also very high contention: 90.83% breakpoint-thre [kernel.kallsyms] [k] osq_lock 4.69% breakpoint-thre [kernel.kallsyms] [k] mutex_spin_on_owner 2.06% breakpoint-thre [kernel.kallsyms] [k] __reserve_bp_slot 2.04% breakpoint-thre [kernel.kallsyms] [k] toggle_bp_slot 79.01% breakpoint-enab [kernel.kallsyms] [k] smp_call_function_single 9.94% breakpoint-enab [kernel.kallsyms] [k] llist_add_batch 5.70% breakpoint-enab [kernel.kallsyms] [k] _raw_spin_lock_irq 1.84% breakpoint-enab [kernel.kallsyms] [k] event_function_call 1.12% breakpoint-enab [kernel.kallsyms] [k] send_call_function_single_ipi 0.37% breakpoint-enab [kernel.kallsyms] [k] generic_exec_single 0.24% breakpoint-enab [kernel.kallsyms] [k] __perf_event_disable 0.20% breakpoint-enab [kernel.kallsyms] [k] _perf_event_enable 0.18% breakpoint-enab [kernel.kallsyms] [k] toggle_bp_slot Committer notes: Fixup struct init for older compilers: 3 32.90 alpine:3.5 : FAIL clang version 3.8.1 (tags/RELEASE_381/final) bench/breakpoint.c:49:34: error: missing field 'size' initializer [-Werror,-Wmissing-field-initializers] struct perf_event_attr attr = {0}; ^ 1 error generated. 7 37.31 alpine:3.9 : FAIL gcc version 8.3.0 (Alpine 8.3.0) bench/breakpoint.c:49:34: error: missing field 'size' initializer [-Werror,-Wmissing-field-initializers] struct perf_event_attr attr = {0}; ^ 1 error generated. Signed-off-by: Dmitriy Vyukov <dvyukov@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20220505155745.1690906-1-dvyukov@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
183d4f2d23 |
perf bench: Fix two numa NDEBUG warnings
BUG_ON is a no-op if NDEBUG is defined, otherwise it is an assert. Compiling with NDEBUG yields: bench/numa.c: In function ‘bind_to_cpu’: bench/numa.c:314:1: error: control reaches end of non-void function [-Werror=return-type] 314 | } | ^ bench/numa.c: In function ‘bind_to_node’: bench/numa.c:367:1: error: control reaches end of non-void function [-Werror=return-type] 367 | } | ^ Add return statements to cover this case. Reviewed-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Signed-off-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com> Link: https://lore.kernel.org/r/20220428202912.1056444-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Athira Rajeev
|
f58faed7fb |
perf bench: Fix numa bench to fix usage of affinity for machines with #CPUs > 1K
The 'perf bench numa' testcase fails on systems with more than 1K CPUs. Testcase: perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp 1 Snippet of code: <<>> perf: bench/numa.c:302: bind_to_node: Assertion `!(ret)' failed. Aborted (core dumped) <<>> bind_to_node() uses "sched_getaffinity" to save the original cpumask and this call is returning EINVAL ((invalid argument). This happens because the default mask size in glibc is 1024. To overcome this 1024 CPUs mask size limitation of cpu_set_t, change the mask size using the CPU_*_S macros ie, use CPU_ALLOC to allocate cpumask, CPU_ALLOC_SIZE for size. Apart from fixing this for "orig_mask", apply same logic to "mask" as well which is used to setaffinity so that mask size is large enough to represent number of possible CPU's in the system. sched_getaffinity is used in one more place in perf numa bench. It is in "bind_to_cpu" function. Apply the same logic there also. Though currently no failure is reported from there, it is ideal to change getaffinity to work with such system configurations having CPU's more than default mask size supported by glibc. Also fix "sched_setaffinity" to use mask size which is large enough to represent number of possible CPU's in the system. Fixed all places where "bind_cpumask" which is part of "struct thread_data" is used such that bind_cpumask works in all configuration. Reported-by: Disha Goel <disgoel@linux.vnet.ibm.com> Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nageswara R Sastry <rnsastry@linux.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: https://lore.kernel.org/r/20220412164059.42654-3-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Athira Rajeev
|
8cb7a188ac |
perf bench: Fix numa testcase to check if CPU used to bind task is online
Perf numa bench test fails with error: Testcase: ./perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk Failure snippet: <<>> Running 'numa/mem' benchmark: # Running main, "perf bench numa numa-mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk" perf: bench/numa.c:333: bind_to_cpumask: Assertion `!(ret)' failed. <<>> The Testcases uses CPU's 0 and 8. In function "parse_setup_cpu_list", There is check to see if cpu number is greater than max cpu's possible in the system ie via "if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {". But it could happen that system has say 48 CPU's, but only number of online CPU's is 0-7. Other CPU's are offlined. Since "g->p.nr_cpus" is 48, so function will go ahead and set bit for CPU 8 also in cpumask ( td->bind_cpumask). bind_to_cpumask function is called to set affinity using sched_setaffinity and the cpumask. Since the CPU8 is not present, set affinity will fail here with EINVAL. Fix this issue by adding a check to make sure that, CPU's provided in the input argument values are online before proceeding further and skip the test. For this, include new helper function "is_cpu_online" in "tools/perf/util/header.c". Since "BIT(x)" definition will get included from header.h, remove that from bench/numa.c Reported-by: Disha Goel <disgoel@linux.vnet.ibm.com> Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Tested-by: Disha Goel <disgoel@linux.vnet.ibm.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nageswara R Sastry <rnsastry@linux.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: https://lore.kernel.org/r/20220412164059.42654-2-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Athira Rajeev
|
299687e18a |
perf bench: Fix epoll bench to correct usage of affinity for machines with #CPUs > 1K
The 'perf bench epoll' testcase fails on systems with more than 1K CPUs. Testcase: perf bench epoll all Result snippet: <<>> Run summary [PID 106497]: 1399 threads monitoring on 64 file-descriptors for 8 secs. perf: pthread_create: No such file or directory <<>> In epoll benchmarks (ctl, wait) pthread_create is invoked in do_threads from respective bench_epoll_* function. Though the logs shows direct failure from pthread_create, the actual failure is from "sched_setaffinity" returning EINVAL (invalid argument). This happens because the default mask size in glibc is 1024. To overcome this 1024 CPUs mask size limitation of cpu_set_t, change the mask size using the CPU_*_S macros. Patch addresses this by fixing all the epoll benchmarks to use CPU_ALLOC to allocate cpumask, CPU_ALLOC_SIZE for size, and CPU_SET_S to set the mask. Reported-by: Disha Goel <disgoel@linux.vnet.ibm.com> Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Tested-by: Disha Goel <disgoel@linux.vnet.ibm.com> Acked-by: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nageswara R Sastry <rnsastry@linux.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: https://lore.kernel.org/r/20220406175113.87881-3-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Athira Rajeev
|
c9c2a427dd |
perf bench: Fix futex bench to correct usage of affinity for machines with #CPUs > 1K
The 'perf bench futex' testcase fails on systems with more than 1K CPUs. Testcase: perf bench futex all Failure snippet: <<>>Running futex/hash benchmark... perf: pthread_create: No such file or directory <<>> All the futex benchmarks (ie hash, lock-api, requeue, wake, wake-parallel), pthread_create is invoked in respective bench_futex_* function. Though the logs shows direct failure from pthread_create, strace logs showed that actual failure is from "sched_setaffinity" returning EINVAL (invalid argument). This happens because the default mask size in glibc is 1024. To overcome this 1024 CPUs mask size limitation of cpu_set_t, change the mask size using the CPU_*_S macros. Patch addresses this by fixing all the futex benchmarks to use CPU_ALLOC to allocate cpumask, CPU_ALLOC_SIZE for size, and CPU_SET_S to set the mask. Reported-by: Disha Goel <disgoel@linux.vnet.ibm.com> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Tested-by: Disha Goel <disgoel@linux.vnet.ibm.com> Acked-by: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nageswara R Sastry <rnsastry@linux.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: https://lore.kernel.org/r/20220406175113.87881-2-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
0df6ade711 |
perf evlist: Rename cpus to user_requested_cpus
evlist contains cpus and all_cpus. all_cpus is the union of the cpu maps of all evsels. For non-task targets, cpus is set to be cpus requested from the command line, defaulting to all online cpus if no cpus are specified. For an uncore event, all_cpus may be just CPU 0 or every online CPU. This causes all_cpus to have fewer values than the cpus variable which is confusing given the 'all' in the name. To try to make the behavior clearer, rename cpus to user_requested_cpus and add comments on the two struct variables. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Alexey Bayduraev <alexey.v.bayduraev@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: German Gomez <german.gomez@arm.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20220328232648.2127340-3-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Weiguo Li
|
073a15c351 |
perf bench: Fix NULL check against wrong variable
We did a NULL check after "epollfdp = calloc(...)", but we checked "epollfd" instead of "epollfdp". Signed-off-by: Weiguo Li <liwg06@foxmail.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/tencent_B5D64530EB9C7DBB8D2C88A0C790F1489D0A@qq.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
4402869939 |
perf cpumap: Migrate to libperf cpumap api
Switch from directly accessing the perf_cpu_map to using the appropriate libperf API when possible. Using the API simplifies the job of refactoring use of perf_cpu_map. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Bayduraev <alexey.v.bayduraev@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: André Almeida <andrealmeid@collabora.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Dmitriy Vyukov <dvyukov@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: German Gomez <german.gomez@arm.com> Cc: James Clark <james.clark@arm.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Miaoqian Lin <linmq006@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Shunsuke Nakamura <nakamura.shun@fujitsu.com> Cc: Song Liu <song@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Brennan <stephen.s.brennan@oracle.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Yury Norov <yury.norov@gmail.com> Link: http://lore.kernel.org/lkml/20220122045811.3402706-3-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
6d18804b96 |
perf cpumap: Give CPUs their own type
A common problem is confusing CPU map indices with the CPU, by wrapping the CPU with a struct then this is avoided. This approach is similar to atomic_t. Committer notes: To make it build with BUILD_BPF_SKEL=1 these files needed the conversions to 'struct perf_cpu' usage: tools/perf/util/bpf_counter.c tools/perf/util/bpf_counter_cgroup.c tools/perf/util/bpf_ftrace.c Also perf_env__get_cpu() was removed back in "perf cpumap: Switch cpu_map__build_map to cpu function". Additionally these needed to be fixed for the ARM builds to complete: tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/pmu.c Suggested-by: John Garry <john.garry@huawei.com> Signed-off-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Stephane Eranian <eranian@google.com> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Vineet Singh <vineet.singh@intel.com> Cc: coresight@lists.linaro.org Cc: linux-arm-kernel@lists.infradead.org Cc: zhengjun.xing@intel.com Link: https://lore.kernel.org/r/20220105061351.120843-49-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Jiri Olsa
|
3f8d657716 |
Revert "perf bench: Fix two memory leaks detected with ASan"
This: This reverts commit |
||
Sohaib Mohamed
|
92723ea0f1 |
perf bench: Fix two memory leaks detected with ASan
ASan reports memory leaks while running:
$ perf bench sched all
Fixes:
|
||
Sohaib Mohamed
|
88e48238d5 |
perf bench futex: Fix memory leak of perf_cpu_map__new()
ASan reports memory leaks while running:
$ sudo ./perf bench futex all
The leaks are caused by perf_cpu_map__new not being freed.
This patch adds the missing perf_cpu_map__put since it calls
cpu_map_delete implicitly.
Fixes:
|
||
Ian Rogers
|
07eafd4e05 |
perf parse-event: Add init and exit to parse_event_error
parse_events() may succeed but leave string memory allocations reachable in the error. Add an init/exit that must be called to initialize and clean up the error. This fixes a leak in metricgroup parse_ids. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20211107090002.3784612-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
6c1912898e |
perf parse-events: Rename parse_events_error functions
Group error functions and name after the data type they manipulate. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20211107090002.3784612-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
ba4026b09d |
Revert "perf bench futex: Add support for 32-bit systems with 64-bit time_t"
This reverts commit
|
||
Alistair Francis
|
c1ff12dac4 |
perf bench futex: Add support for 32-bit systems with 64-bit time_t
Some 32-bit architectures (such are 32-bit RISC-V) only have a 64-bit time_t and as such don't have the SYS_futex syscall. This patch will allow us to use the SYS_futex_time64 syscall on those platforms. This also converts the futex calls to be y2038 safe (when built for a 5.1+ kernel). Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alistair Francis <alistair23@gmail.com> Cc: Atish Patra <atish.patra@wdc.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-riscv@lists.infradead.org Link: http://lore.kernel.org/lkml/20211022013343.2262938-2-alistair.francis@opensource.wdc.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Alistair Francis
|
fec5c3a515 |
perf bench futex: Call the futex syscall from a function
In preparation for a more complex futex() function let's convert the current macro into two functions. We need two functions to avoid compiler failures as the macro is overloaded. This will allow us to include pre-processor conditionals in the futex syscall functions. Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alistair Francis <alistair23@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Atish Patra <atish.patra@wdc.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-riscv@lists.infradead.org Link: http://lore.kernel.org/lkml/20211022013343.2262938-1-alistair.francis@opensource.wdc.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Riccardo Mancini
|
c2d4fab01f |
perf test evlist-open-close: Use inline func to convert timeval to usec
This patch introduces a new inline function to convert a timeval to usec. This function will be used also in the next patch. Signed-off-by: Riccardo Mancini <rickyman7@gmail.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/b95035ec4a125355be8ea843f7275c4580da6398.1629490974.git.rickyman7@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Namhyung Kim
|
84111b9c95 |
perf tools: Allow controlling synthesizing PERF_RECORD_ metadata events during record
Depending on the use case, it might require some kind of synthesizing and some not. Make it controllable to turn off heavy operations like MMAP for all tasks. Currently all users are converted to enable all the synthesis by default. It'll be updated in the later patch. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: https //lore.kernel.org/r/20210811044658.1313391-1-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Linus Torvalds
|
2d338201d5 |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
"147 patches, based on
|
||
Andy Shevchenko
|
7fc5b57132 |
tools: rename bitmap_alloc() to bitmap_zalloc()
Rename bitmap_alloc() to bitmap_zalloc() in tools to follow the bitmap API in the kernel. No functional changes intended. Link: https://lkml.kernel.org/r/20210814211713.180533-14-yury.norov@gmail.com Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Yury Norov <yury.norov@gmail.com> Suggested-by: Yury Norov <yury.norov@gmail.com> Acked-by: Yury Norov <yury.norov@gmail.com> Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Lobakin <alobakin@pm.me> Cc: Alexey Klimov <aklimov@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Arnaldo Carvalho de Melo
|
a32762b864 |
perf bench evlist-open-close: Use PRIu64 with u64 to fix build on 32-bit architectures
73 9.00 ubuntu:18.04-x-powerpc : FAIL gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)
bench/evlist-open-close.c: In function 'bench_evlist_open_close__run':
bench/evlist-open-close.c:173:12: error: format '%ld' expects argument of type 'long int', but argument 5 has type 'u64 {aka long long unsigned int}' [-Werror=format=]
pr_debug("Iteration %d took:\t%ldus\n", i, runtime_us);
^
bench/../util/debug.h:18:21: note: in definition of macro 'pr_fmt'
#define pr_fmt(fmt) fmt
^~~
bench/evlist-open-close.c:173:3: note: in expansion of macro 'pr_debug'
pr_debug("Iteration %d took:\t%ldus\n", i, runtime_us);
^~~~~~~~
cc1: all warnings being treated as errors
/git/perf-5.14.0/tools/build/Makefile.build:139: recipe for target 'bench' failed
Cc: Riccardo Mancini <rickyman7@gmail.com>
Fixes:
|
||
Arnaldo Carvalho de Melo
|
edf7b4a2d8 |
perf bench inject-buildid: Handle writen() errors
The build on fedora:35 and fedora:rawhide with clang is failing with:
49 41.00 fedora:35 : FAIL clang version 13.0.0 (Fedora 13.0.0~rc1-1.fc35)
bench/inject-buildid.c:351:6: error: variable 'len' set but not used [-Werror,-Wunused-but-set-variable]
u64 len = 0;
^
1 error generated.
make[3]: *** [/git/perf-5.14.0-rc7/tools/build/Makefile.build:139: bench] Error 2
50 41.11 fedora:rawhide : FAIL clang version 13.0.0 (Fedora 13.0.0~rc1-1.fc35)
bench/inject-buildid.c:351:6: error: variable 'len' set but not used [-Werror,-Wunused-but-set-variable]
u64 len = 0;
^
1 error generated.
make[3]: *** [/git/perf-5.14.0-rc7/tools/build/Makefile.build:139: bench] Error 2
That 'len' variable is not used at all, so just make sure all the
synthesize_RECORD() routines return ssize_t to propagate the writen()
return, as it may fail, ditch the 'ret' var and bail out if those
routines fail.
Fixes:
|
||
Riccardo Mancini
|
4241eabf59 |
perf bench: Add benchmark for evlist open/close operations
This new benchmark finds the total time that is taken to open, mmap, enable, disable, munmap, close an evlist (time taken for new, create_maps, config, delete is not counted in). The evlist can be configured as in perf-record using the -a,-C,-e,-u,--per-thread,-t,-p options. The events can be duplicated in the evlist to quickly test performance with many events using the -n options. Furthermore, also the number of iterations used to calculate the statistics is customizable. Examples: - Open one dummy event system-wide: $ sudo ./perf bench internals evlist-open-close Number of cpus: 4 Number of threads: 1 Number of events: 1 (4 fds) Number of iterations: 100 Average open-close took: 613.870 usec (+- 32.852 usec) - Open the group '{cs,cycles}' on CPU 0 $ sudo ./perf bench internals evlist-open-close -e '{cs,cycles}' -C 0 Number of cpus: 1 Number of threads: 1 Number of events: 2 (2 fds) Number of iterations: 100 Average open-close took: 8503.220 usec (+- 252.652 usec) - Open 10 'cycles' events for user 0, calculate average over 100 runs $ sudo ./perf bench internals evlist-open-close -e cycles -n 10 -u 0 -i 100 Number of cpus: 4 Number of threads: 328 Number of events: 10 (13120 fds) Number of iterations: 100 Average open-close took: 180043.140 usec (+- 2295.889 usec) Committer notes: Replaced a deprecated bzero() call with designated initialized zeroing. Added some missing evlist allocation checks, one noted by Riccardo on the mailing list. Minor cosmetic changes (sent in private). Signed-off-by: Riccardo Mancini <rickyman7@gmail.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210809201101.277594-1-rickyman7@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
46f815323b |
perf bench futex, requeue: Add --pi parameter
This extends the program to measure WAIT_REQUEUE_PI+CMP_REQUEUE_PI pairs, which are the underlying machinery behind priority-inheritance aware condition variables. The defaults are the same as with the regular non-pi version, requeueing one task at a time, with the exception that PI will always wakeup the first waiter. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-8-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
6f9661b25b |
perf bench futex, requeue: Robustify futex_wait() handling
Do not assume success and account for EAGAIN or any other return value, however unlikely. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-7-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
d262e6a93b |
perf bench futex, requeue: Add --broadcast option
Such that all threads are requeued to uaddr2 in a single futex_cmp_requeue(), unlike the default, which is 1. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-6-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
9f9a3ffe94 |
perf bench futex: Add --mlockall parameter
This adds, across all futex benchmarks, the -m/--mlockall option which is a common operation for realtime workloads by not incurring in page faults in paths that want determinism. As such, threads started after a call to mlockall(2) will generate page faults immediately since the new stack is immediately forced to memory, due to the MCL_FUTURE flag. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-5-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
b2105a7570 |
perf bench futex: Remove bogus backslash from comment
It obviously doesn't belong there. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-3-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
0959046303 |
perf bench futex: Group test parameters cleanup
Do this across all futex-bench tests such that all program parameters neatly share a common structure, which is nicer than how we have them now. No changes in program behavior are expected. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20210809043301.66002-2-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Namhyung Kim
|
2681bd85a4 |
perf tools: Remove repipe argument from perf_session__new()
The repipe argument is only used by perf inject and the all others passes 'false'. Let's remove it from the function signature and add __perf_session__new() to be called from perf inject directly. This is a preparation of the change the pipe input/output. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210719223153.1618812-2-namhyung@kernel.org [ Fixed up some trivial conflicts as this patchset fell thru the cracks ;-( ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
4d39c89f0b |
perf tools: Fix various typos in comments
Fix ~124 single-word typos and a few spelling errors in the perf tooling code, accumulated over the years. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20210321113734.GA248990@gmail.com Link: http://lore.kernel.org/lkml/20210323160915.GA61903@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
009ef05f98 |
Merge remote-tracking branch 'torvalds/master' into perf/core
To pick up the fixes sent for v5.12 and continue development based on v5.12-rc2, i.e. without the swap on file bug. This also gets a slightly newer and better tools/perf/arch/arm/util/cs-etm.c patch version, using the BIT() macro, that had already been slated to v5.13 but ended up going to v5.12-rc1 on an older version. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Athira Rajeev
|
394e4306b0 |
perf bench numa: Fix the condition checks for max number of NUMA nodes
In systems having higher node numbers available like node 255, perf numa bench will fail with SIGABORT. <<>> perf: bench/numa.c:1416: init: Assertion `!(g->p.nr_nodes > 64 || g->p.nr_nodes < 0)' failed. Aborted (core dumped) <<>> Snippet from 'numactl -H' below on a powerpc system where the highest node number available is 255: available: 6 nodes (0,8,252-255) node 0 cpus: <cpu-list> node 0 size: 519587 MB node 0 free: 516659 MB node 8 cpus: <cpu-list> node 8 size: 523607 MB node 8 free: 486757 MB node 252 cpus: node 252 size: 0 MB node 252 free: 0 MB node 253 cpus: node 253 size: 0 MB node 253 free: 0 MB node 254 cpus: node 254 size: 0 MB node 254 free: 0 MB node 255 cpus: node 255 size: 0 MB node 255 free: 0 MB node distances: node 0 8 252 253 254 255 Note: <cpu-list> expands to actual cpu list in the original output. These nodes 252-255 are to represent the memory on GPUs and are valid nodes. The perf numa bench init code has a condition check to see if the number of NUMA nodes (nr_nodes) exceeds MAX_NR_NODES. The value of MAX_NR_NODES defined in perf code is 64. And the 'nr_nodes' is the value from numa_max_node() which represents the highest node number available in the system. In some systems where we could have NUMA node 255, this condition check fails and results in SIGABORT. The numa benchmark uses static value of MAX_NR_NODES in the code to represent size of two NUMA node arrays and node bitmask used for setting memory policy. Patch adds a fix to dynamically allocate size for the two arrays and bitmask value based on the node numbers available in the system. With the fix, perf numa benchmark will work with node configuration on any system and thus removes the static MAX_NR_NODES value. Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lore.kernel.org/lkml/1614271802-1503-1-git-send-email-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Pierre Gondois
|
ded2e511a8 |
perf tools: Cast (struct timeval).tv_sec when printing
The musl-libc [1] defines (struct timeval).tv_sec as a 'long long' for arm and other architectures. The default build having a '-Wformat' flag, not casting the field when printing prevents from building perf. This patch casts the (struct timeval).tv_sec fields to the expected format. [1] git://git.musl-libc.org/musl Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Douglas.raillard@arm.com Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210224182410.5366-1-Pierre.Gondois@arm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Xiong Zhenwu
|
a78e724f4e |
perf bench: Fix misspellings using codespell
$ codespell ./tool/perf/bench tools/perf/bench/inject-buildid.c:375: tihs ==> this Fix a typo found by codespell. Signed-off-by: Xiong Zhenwu <xiong.zhenwu@zte.com.cn> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210305092212.204923-1-xiong.zhenwu@zte.com.cn Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
e73b0d586e |
perf env: Remove unneeded internal/cpumap inclusions
Minor cleanup. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210211183914.4093187-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
db1a8b97a0 |
tools arch: Update arch/x86/lib/mem{cpy,set}_64.S copies used in 'perf bench mem memcpy'
To bring in the change made in this cset: |
||
Linus Torvalds
|
9d9af1007b |
perf tools changes for v5.10: 1st batch
- cgroup improvements for 'perf stat', allowing for compact specification of events and cgroups in the command line. - Support per thread topdown metrics in 'perf stat'. - Support sample-read topdown metric group in 'perf record' - Show start of latency in addition to its start in 'perf sched latency'. - Add min, max to 'perf script' futex-contention output, in addition to avg. - Allow usage of 'perf_event_attr->exclusive' attribute via the new ':e' event modifier. - Add 'snapshot' command to 'perf record --control', using it with Intel PT. - Support FIFO file names as alternative options to 'perf record --control'. - Introduce branch history "streams", to compare 'perf record' runs with 'perf diff' based on branch records and report hot streams. - Support PE executable symbol tables using libbfd, to profile, for instance, wine binaries. - Add filter support for option 'perf ftrace -F/--funcs'. - Allow configuring the 'disassembler_style' 'perf annotate' knob via 'perf config' - Update CascadelakeX and SkylakeX JSON vendor events files. - Add support for parsing perchip/percore JSON vendor events. - Add power9 hv_24x7 core level metric events. - Add L2 prefetch, ITLB instruction fetch hits JSON events for AMD zen1. - Enable Family 19h users by matching Zen2 AMD vendor events. - Use debuginfod in 'perf probe' when required debug files not found locally. - Display negative tid in non-sample events in 'perf script'. - Make GTK2 support opt-in - Add build test with GTK+ - Add missing -lzstd to the fast path feature detection - Add scripts to auto generate 'mmap', 'mremap' string<->id tables for use in 'perf trace'. - Show python test script in verbose mode. - Fix uncore metric expressions - Msan uninitialized use fixes. - Use condition variables in 'perf bench numa' - Autodetect python3 binary in systems without python2. - Support md5 build ids in addition to sha1. - Add build id 'perf test' regression test. - Fix printable strings in python3 scripts. - Fix off by ones in 'perf trace' in arches using libaudit. - Fix JSON event code for events referencing std arch events. - Introduce 'perf test' shell script for Arm CoreSight testing. - Add rdtsc() for Arm64 for used in the PERF_RECORD_TIME_CONV metadata event and in 'perf test tsc'. - 'perf c2c' improvements: Add "RMT Load Hit" metric, "Total Stores", fixes and documentation update. - Fix usage of reloc_sym in 'perf probe' when using both kallsyms and debuginfo files. - Do not print 'Metric Groups:' unnecessarily in 'perf list' - Refcounting fixes in the event parsing code. - Add expand cgroup event 'perf test' entry. - Fix out of bounds CPU map access when handling armv8_pmu events in 'perf stat'. - Add build-id injection 'perf bench' benchmark. - Enter namespace when reading build-id in 'perf inject'. - Do not load map/dso when injecting build-id speeding up the 'perf inject' process. - Add --buildid-all option to avoid processing all samples, just the mmap metadata events. - Add feature test to check if libbfd has buildid support - Add 'perf test' entry for PE binary format support. - Fix typos in power8 PMU vendor events JSON files. - Hide libtraceevent non API functions. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Test results: The first ones are container based builds of tools/perf with and without libelf support. Where clang is available, it is also used to build perf with/without libelf, and building with LIBCLANGLLVM=1 (built-in clang) with gcc and clang when clang and its devel libraries are installed. The objtool and samples/bpf/ builds are disabled now that I'm switching from using the sources in a local volume to fetching them from a http server to build it inside the container, to make it easier to build in a container cluster. Those will come back later. Several are cross builds, the ones with -x-ARCH and the android one, and those may not have all the features built, due to lack of multi-arch devel packages, available and being used so far on just a few, like debian:experimental-x-{arm64,mipsel}. The 'perf test' one will perform a variety of tests exercising tools/perf/util/, tools/lib/{bpf,traceevent,etc}, as well as run perf commands with a variety of command line event specifications to then intercept the sys_perf_event syscall to check that the perf_event_attr fields are set up as expected, among a variety of other unit tests. Then there is the 'make -C tools/perf build-test' ones, that build tools/perf/ with a variety of feature sets, exercising the build with an incomplete set of features as well as with a complete one. It is planned to have it run on each of the containers mentioned above, using some container orchestration infrastructure. Get in contact if interested in helping having this in place. $ grep "model name" -m1 /proc/cpuinfo model name: AMD Ryzen 9 3900X 12-Core Processor $ export PERF_TARBALL=http://192.168.122.1/perf/perf-5.9.0-rc7.tar.xz $ dm Thu 15 Oct 2020 01:10:56 PM -03 1 67.40 alpine:3.4 : Ok gcc (Alpine 5.3.0) 5.3.0, clang version 3.8.0 (tags/RELEASE_380/final) 2 69.01 alpine:3.5 : Ok gcc (Alpine 6.2.1) 6.2.1 20160822, clang version 3.8.1 (tags/RELEASE_381/final) 3 70.79 alpine:3.6 : Ok gcc (Alpine 6.3.0) 6.3.0, clang version 4.0.0 (tags/RELEASE_400/final) 4 79.89 alpine:3.7 : Ok gcc (Alpine 6.4.0) 6.4.0, Alpine clang version 5.0.0 (tags/RELEASE_500/final) (based on LLVM 5.0.0) 5 80.88 alpine:3.8 : Ok gcc (Alpine 6.4.0) 6.4.0, Alpine clang version 5.0.1 (tags/RELEASE_501/final) (based on LLVM 5.0.1) 6 83.88 alpine:3.9 : Ok gcc (Alpine 8.3.0) 8.3.0, Alpine clang version 5.0.1 (tags/RELEASE_502/final) (based on LLVM 5.0.1) 7 107.87 alpine:3.10 : Ok gcc (Alpine 8.3.0) 8.3.0, Alpine clang version 8.0.0 (tags/RELEASE_800/final) (based on LLVM 8.0.0) 8 115.43 alpine:3.11 : Ok gcc (Alpine 9.3.0) 9.3.0, Alpine clang version 9.0.0 (https://git.alpinelinux.org/aports f7f0d2c2b8bcd6a5843401a9a702029556492689) (based on LLVM 9.0.0) 9 106.80 alpine:3.12 : Ok gcc (Alpine 9.3.0) 9.3.0, Alpine clang version 10.0.0 (https://gitlab.alpinelinux.org/alpine/aports.git 7445adce501f8473efdb93b17b5eaf2f1445ed4c) 10 114.06 alpine:edge : Ok gcc (Alpine 10.2.0) 10.2.0, Alpine clang version 10.0.1 11 70.42 alt:p8 : Ok x86_64-alt-linux-gcc (GCC) 5.3.1 20151207 (ALT p8 5.3.1-alt3.M80P.1), clang version 3.8.0 (tags/RELEASE_380/final) 12 98.70 alt:p9 : Ok x86_64-alt-linux-gcc (GCC) 8.4.1 20200305 (ALT p9 8.4.1-alt0.p9.1), clang version 10.0.0 13 80.37 alt:sisyphus : Ok x86_64-alt-linux-gcc (GCC) 9.3.1 20200518 (ALT Sisyphus 9.3.1-alt1), clang version 10.0.1 14 64.12 amazonlinux:1 : Ok gcc (GCC) 7.2.1 20170915 (Red Hat 7.2.1-2), clang version 3.6.2 (tags/RELEASE_362/final) 15 97.64 amazonlinux:2 : Ok gcc (GCC) 7.3.1 20180712 (Red Hat 7.3.1-9), clang version 7.0.1 (Amazon Linux 2 7.0.1-1.amzn2.0.2) 16 22.70 android-ndk:r12b-arm : Ok arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease) 17 22.72 android-ndk:r15c-arm : Ok arm-linux-androideabi-gcc (GCC) 4.9.x 20150123 (prerelease) 18 26.70 centos:6 : Ok gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-23) 19 31.86 centos:7 : Ok gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39) 20 113.19 centos:8 : Ok gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5), clang version 9.0.1 (Red Hat 9.0.1-2.module_el8.2.0+309+0c7b6b03) 21 57.23 clearlinux:latest : Ok gcc (Clear Linux OS for Intel Architecture) 10.2.1 20200908 releases/gcc-10.2.0-203-g127d693955, clang version 10.0.1 22 64.98 debian:8 : Ok gcc (Debian 4.9.2-10+deb8u2) 4.9.2, Debian clang version 3.5.0-10 (tags/RELEASE_350/final) (based on LLVM 3.5.0) 23 76.08 debian:9 : Ok gcc (Debian 6.3.0-18+deb9u1) 6.3.0 20170516, clang version 3.8.1-24 (tags/RELEASE_381/final) 24 74.49 debian:10 : Ok gcc (Debian 8.3.0-6) 8.3.0, clang version 7.0.1-8+deb10u2 (tags/RELEASE_701/final) 25 78.50 debian:experimental : Ok gcc (Debian 10.2.0-15) 10.2.0, Debian clang version 11.0.0-2 26 33.30 debian:experimental-x-arm64 : Ok aarch64-linux-gnu-gcc (Debian 10.2.0-3) 10.2.0 27 30.96 debian:experimental-x-mips64 : Ok mips64-linux-gnuabi64-gcc (Debian 9.3.0-8) 9.3.0 28 32.63 debian:experimental-x-mipsel : Ok mipsel-linux-gnu-gcc (Debian 9.3.0-8) 9.3.0 29 30.12 fedora:20 : Ok gcc (GCC) 4.8.3 20140911 (Red Hat 4.8.3-7) 30 30.99 fedora:22 : Ok gcc (GCC) 5.3.1 20160406 (Red Hat 5.3.1-6), clang version 3.5.0 (tags/RELEASE_350/final) 31 68.60 fedora:23 : Ok gcc (GCC) 5.3.1 20160406 (Red Hat 5.3.1-6), clang version 3.7.0 (tags/RELEASE_370/final) 32 78.92 fedora:24 : Ok gcc (GCC) 6.3.1 20161221 (Red Hat 6.3.1-1), clang version 3.8.1 (tags/RELEASE_381/final) 33 26.15 fedora:24-x-ARC-uClibc : Ok arc-linux-gcc (ARCompact ISA Linux uClibc toolchain 2017.09-rc2) 7.1.1 20170710 34 80.13 fedora:25 : Ok gcc (GCC) 6.4.1 20170727 (Red Hat 6.4.1-1), clang version 3.9.1 (tags/RELEASE_391/final) 35 90.68 fedora:26 : Ok gcc (GCC) 7.3.1 20180130 (Red Hat 7.3.1-2), clang version 4.0.1 (tags/RELEASE_401/final) 36 90.45 fedora:27 : Ok gcc (GCC) 7.3.1 20180712 (Red Hat 7.3.1-6), clang version 5.0.2 (tags/RELEASE_502/final) 37 100.88 fedora:28 : Ok gcc (GCC) 8.3.1 20190223 (Red Hat 8.3.1-2), clang version 6.0.1 (tags/RELEASE_601/final) 38 105.99 fedora:29 : Ok gcc (GCC) 8.3.1 20190223 (Red Hat 8.3.1-2), clang version 7.0.1 (Fedora 7.0.1-6.fc29) 39 111.05 fedora:30 : Ok gcc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2), clang version 8.0.0 (Fedora 8.0.0-3.fc30) 40 29.96 fedora:30-x-ARC-glibc : Ok arc-linux-gcc (ARC HS GNU/Linux glibc toolchain 2019.03-rc1) 8.3.1 20190225 41 27.02 fedora:30-x-ARC-uClibc : Ok arc-linux-gcc (ARCv2 ISA Linux uClibc toolchain 2019.03-rc1) 8.3.1 20190225 42 110.47 fedora:31 : Ok gcc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2), clang version 9.0.1 (Fedora 9.0.1-2.fc31) 43 88.78 fedora:32 : Ok gcc (GCC) 10.2.1 20200723 (Red Hat 10.2.1-1), clang version 10.0.0 (Fedora 10.0.0-2.fc32) 44 15.92 fedora:rawhide : FAIL gcc (GCC) 10.2.1 20200916 (Red Hat 10.2.1-4), clang version 11.0.0 (Fedora 11.0.0-0.4.rc3.fc34) 45 33.58 gentoo-stage3-amd64:latest : Ok gcc (Gentoo 9.3.0-r1 p3) 9.3.0 46 65.32 mageia:5 : Ok gcc (GCC) 4.9.2, clang version 3.5.2 (tags/RELEASE_352/final) 47 81.35 mageia:6 : Ok gcc (Mageia 5.5.0-1.mga6) 5.5.0, clang version 3.9.1 (tags/RELEASE_391/final) 48 103.94 mageia:7 : Ok gcc (Mageia 8.4.0-1.mga7) 8.4.0, clang version 8.0.0 (Mageia 8.0.0-1.mga7) 49 91.62 manjaro:latest : Ok gcc (GCC) 10.2.0, clang version 10.0.1 50 219.87 openmandriva:cooker : Ok gcc (GCC) 10.2.0 20200723 (OpenMandriva), OpenMandriva 11.0.0-0.20200909.1 clang version 11.0.0 (/builddir/build/BUILD/llvm-project-release-11.x/clang 5cb8ffbab42358a7cdb0a67acfadb84df0779579) 51 111.76 opensuse:15.0 : Ok gcc (SUSE Linux) 7.4.1 20190905 [gcc-7-branch revision 275407], clang version 5.0.1 (tags/RELEASE_501/final 312548) 52 118.03 opensuse:15.1 : Ok gcc (SUSE Linux) 7.5.0, clang version 7.0.1 (tags/RELEASE_701/final 349238) 53 107.91 opensuse:15.2 : Ok gcc (SUSE Linux) 7.5.0, clang version 9.0.1 54 102.34 opensuse:tumbleweed : Ok gcc (SUSE Linux) 10.2.1 20200825 [revision c0746a1beb1ba073c7981eb09f55b3d993b32e5c], clang version 10.0.1 55 25.33 oraclelinux:6 : Ok gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-23.0.1) 56 30.45 oraclelinux:7 : Ok gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44.0.3) 57 104.65 oraclelinux:8 : Ok gcc (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5.0.3), clang version 9.0.1 (Red Hat 9.0.1-2.0.1.module+el8.2.0+5599+9ed9ef6d) 58 26.04 ubuntu:12.04 : Ok gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3, Ubuntu clang version 3.0-6ubuntu3 (tags/RELEASE_30/final) (based on LLVM 3.0) 59 29.49 ubuntu:14.04 : Ok gcc (Ubuntu 4.8.4-2ubuntu1~14.04.4) 4.8.4 60 72.95 ubuntu:16.04 : Ok gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609, clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final) 61 26.03 ubuntu:16.04-x-arm : Ok arm-linux-gnueabihf-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 62 25.15 ubuntu:16.04-x-arm64 : Ok aarch64-linux-gnu-gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 63 24.88 ubuntu:16.04-x-powerpc : Ok powerpc-linux-gnu-gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 64 25.72 ubuntu:16.04-x-powerpc64 : Ok powerpc64-linux-gnu-gcc (Ubuntu/IBM 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 65 25.39 ubuntu:16.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu/IBM 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 66 25.34 ubuntu:16.04-x-s390 : Ok s390x-linux-gnu-gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 67 84.84 ubuntu:18.04 : Ok gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, clang version 6.0.0-1ubuntu2 (tags/RELEASE_600/final) 68 27.15 ubuntu:18.04-x-arm : Ok arm-linux-gnueabihf-gcc (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 7.5.0 69 26.68 ubuntu:18.04-x-arm64 : Ok aarch64-linux-gnu-gcc (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 7.5.0 70 22.38 ubuntu:18.04-x-m68k : Ok m68k-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 71 26.35 ubuntu:18.04-x-powerpc : Ok powerpc-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 72 28.58 ubuntu:18.04-x-powerpc64 : Ok powerpc64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 73 28.18 ubuntu:18.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 74 178.55 ubuntu:18.04-x-riscv64 : Ok riscv64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 75 24.58 ubuntu:18.04-x-s390 : Ok s390x-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 76 26.89 ubuntu:18.04-x-sh4 : Ok sh4-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 77 24.81 ubuntu:18.04-x-sparc64 : Ok sparc64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 78 68.90 ubuntu:19.10 : Ok gcc (Ubuntu 9.2.1-9ubuntu2) 9.2.1 20191008, clang version 8.0.1-3build1 (tags/RELEASE_801/final) 79 69.31 ubuntu:20.04 : Ok gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0, clang version 10.0.0-4ubuntu1 80 30.00 ubuntu:20.04-x-powerpc64el : Ok powerpc64le-linux-gnu-gcc (Ubuntu 10-20200411-0ubuntu1) 10.0.1 20200411 (experimental) [master revision bb87d5cc77d:75961caccb7:f883c46b4877f637e0fa5025b4d6b5c9040ec566] 81 70.34 ubuntu:20.10 : Ok gcc (Ubuntu 10.2.0-5ubuntu2) 10.2.0, Ubuntu clang version 10.0.1-1 $ # uname -a Linux five 5.9.0+ #1 SMP Thu Oct 15 09:06:41 -03 2020 x86_64 x86_64 x86_64 GNU/Linux # git log --oneline -1 |
||
Ian Rogers
|
f92993851f |
perf bench: Use condition variables in numa.
The existing approach to synchronization between threads in the numa benchmark is unbalanced mutexes. This synchronization causes thread sanitizer to warn of locks being taken twice on a thread without an unlock, as well as unlocks with no corresponding locks. This change replaces the synchronization with more regular condition variables. While this fixes one class of thread sanitizer warnings, there still remain warnings of data races due to threads reading and writing shared memory without any atomics. Committer testing: Basic run on a non-NUMA machine. # perf bench numa # List of available benchmarks for collection 'numa': mem: Benchmark for NUMA workloads all: Run all NUMA benchmarks # perf bench numa all # Running numa/mem benchmark... # Running main, "perf bench numa numa-mem" # # Running test on: Linux five 5.8.12-200.fc32.x86_64 #1 SMP Mon Sep 28 12:17:31 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux # # Running RAM-bw-local, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.076 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.073 secs average thread-runtime 0.190 % difference between max/avg runtime 241.828 GB data processed, per thread 241.828 GB data processed, total 0.083 nsecs/byte/thread runtime 12.045 GB/sec/thread speed 12.045 GB/sec total speed # Running RAM-bw-local-NOTHP, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk --thp -1" 20.045 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.014 secs average thread-runtime 0.111 % difference between max/avg runtime 234.304 GB data processed, per thread 234.304 GB data processed, total 0.086 nsecs/byte/thread runtime 11.689 GB/sec/thread speed 11.689 GB/sec total speed # Running RAM-bw-remote, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 1 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-local-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 0x2 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.138 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.121 secs average thread-runtime 0.342 % difference between max/avg runtime 135.961 GB data processed, per thread 271.922 GB data processed, total 0.148 nsecs/byte/thread runtime 6.752 GB/sec/thread speed 13.503 GB/sec total speed # Running RAM-bw-remote-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 1x2 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-cross, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running 1x3-convergence, "perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp 1" 0.747 secs latency to NUMA-converge 0.747 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.714 secs average thread-runtime 50.000 % difference between max/avg runtime 3.228 GB data processed, per thread 9.683 GB data processed, total 0.231 nsecs/byte/thread runtime 4.321 GB/sec/thread speed 12.964 GB/sec total speed # Running 1x4-convergence, "perf bench numa mem -p 1 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.127 secs latency to NUMA-converge 1.127 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.089 secs average thread-runtime 5.624 % difference between max/avg runtime 3.765 GB data processed, per thread 15.062 GB data processed, total 0.299 nsecs/byte/thread runtime 3.342 GB/sec/thread speed 13.368 GB/sec total speed # Running 1x6-convergence, "perf bench numa mem -p 1 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 1.003 secs latency to NUMA-converge 1.003 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.889 secs average thread-runtime 50.000 % difference between max/avg runtime 2.141 GB data processed, per thread 12.847 GB data processed, total 0.469 nsecs/byte/thread runtime 2.134 GB/sec/thread speed 12.805 GB/sec total speed # Running 2x3-convergence, "perf bench numa mem -p 2 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 1.814 secs latency to NUMA-converge 1.814 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.716 secs average thread-runtime 22.440 % difference between max/avg runtime 3.747 GB data processed, per thread 22.483 GB data processed, total 0.484 nsecs/byte/thread runtime 2.065 GB/sec/thread speed 12.393 GB/sec total speed # Running 3x3-convergence, "perf bench numa mem -p 3 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 2.065 secs latency to NUMA-converge 2.065 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.947 secs average thread-runtime 25.788 % difference between max/avg runtime 2.855 GB data processed, per thread 25.694 GB data processed, total 0.723 nsecs/byte/thread runtime 1.382 GB/sec/thread speed 12.442 GB/sec total speed # Running 4x4-convergence, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.912 secs latency to NUMA-converge 1.912 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.775 secs average thread-runtime 23.852 % difference between max/avg runtime 1.479 GB data processed, per thread 23.668 GB data processed, total 1.293 nsecs/byte/thread runtime 0.774 GB/sec/thread speed 12.378 GB/sec total speed # Running 4x4-convergence-NOTHP, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 1.783 secs latency to NUMA-converge 1.783 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.633 secs average thread-runtime 21.960 % difference between max/avg runtime 1.345 GB data processed, per thread 21.517 GB data processed, total 1.326 nsecs/byte/thread runtime 0.754 GB/sec/thread speed 12.067 GB/sec total speed # Running 4x6-convergence, "perf bench numa mem -p 4 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 5.396 secs latency to NUMA-converge 5.396 secs slowest (max) thread-runtime 4.000 secs fastest (min) thread-runtime 4.928 secs average thread-runtime 12.937 % difference between max/avg runtime 2.721 GB data processed, per thread 65.306 GB data processed, total 1.983 nsecs/byte/thread runtime 0.504 GB/sec/thread speed 12.102 GB/sec total speed # Running 4x8-convergence, "perf bench numa mem -p 4 -t 8 -P 512 -s 100 -zZ0qcm --thp 1" 3.121 secs latency to NUMA-converge 3.121 secs slowest (max) thread-runtime 2.000 secs fastest (min) thread-runtime 2.836 secs average thread-runtime 17.962 % difference between max/avg runtime 1.194 GB data processed, per thread 38.192 GB data processed, total 2.615 nsecs/byte/thread runtime 0.382 GB/sec/thread speed 12.236 GB/sec total speed # Running 8x4-convergence, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 4.302 secs latency to NUMA-converge 4.302 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.045 secs average thread-runtime 15.133 % difference between max/avg runtime 1.631 GB data processed, per thread 52.178 GB data processed, total 2.638 nsecs/byte/thread runtime 0.379 GB/sec/thread speed 12.128 GB/sec total speed # Running 8x4-convergence-NOTHP, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 4.418 secs latency to NUMA-converge 4.418 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.104 secs average thread-runtime 16.045 % difference between max/avg runtime 1.664 GB data processed, per thread 53.254 GB data processed, total 2.655 nsecs/byte/thread runtime 0.377 GB/sec/thread speed 12.055 GB/sec total speed # Running 3x1-convergence, "perf bench numa mem -p 3 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.973 secs latency to NUMA-converge 0.973 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.955 secs average thread-runtime 50.000 % difference between max/avg runtime 4.124 GB data processed, per thread 12.372 GB data processed, total 0.236 nsecs/byte/thread runtime 4.238 GB/sec/thread speed 12.715 GB/sec total speed # Running 4x1-convergence, "perf bench numa mem -p 4 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.820 secs latency to NUMA-converge 0.820 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.808 secs average thread-runtime 50.000 % difference between max/avg runtime 2.555 GB data processed, per thread 10.220 GB data processed, total 0.321 nsecs/byte/thread runtime 3.117 GB/sec/thread speed 12.468 GB/sec total speed # Running 8x1-convergence, "perf bench numa mem -p 8 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.667 secs latency to NUMA-converge 0.667 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.607 secs average thread-runtime 50.000 % difference between max/avg runtime 1.009 GB data processed, per thread 8.069 GB data processed, total 0.661 nsecs/byte/thread runtime 1.512 GB/sec/thread speed 12.095 GB/sec total speed # Running 16x1-convergence, "perf bench numa mem -p 16 -t 1 -P 256 -s 100 -zZ0qcm --thp 1" 1.546 secs latency to NUMA-converge 1.546 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.485 secs average thread-runtime 17.664 % difference between max/avg runtime 1.162 GB data processed, per thread 18.594 GB data processed, total 1.331 nsecs/byte/thread runtime 0.752 GB/sec/thread speed 12.025 GB/sec total speed # Running 32x1-convergence, "perf bench numa mem -p 32 -t 1 -P 128 -s 100 -zZ0qcm --thp 1" 0.812 secs latency to NUMA-converge 0.812 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.739 secs average thread-runtime 50.000 % difference between max/avg runtime 0.309 GB data processed, per thread 9.874 GB data processed, total 2.630 nsecs/byte/thread runtime 0.380 GB/sec/thread speed 12.166 GB/sec total speed # Running 2x1-bw-process, "perf bench numa mem -p 2 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.044 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.020 secs average thread-runtime 0.109 % difference between max/avg runtime 125.750 GB data processed, per thread 251.501 GB data processed, total 0.159 nsecs/byte/thread runtime 6.274 GB/sec/thread speed 12.548 GB/sec total speed # Running 3x1-bw-process, "perf bench numa mem -p 3 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.148 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.090 secs average thread-runtime 0.367 % difference between max/avg runtime 85.267 GB data processed, per thread 255.800 GB data processed, total 0.236 nsecs/byte/thread runtime 4.232 GB/sec/thread speed 12.696 GB/sec total speed # Running 4x1-bw-process, "perf bench numa mem -p 4 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.169 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.100 secs average thread-runtime 0.419 % difference between max/avg runtime 63.144 GB data processed, per thread 252.576 GB data processed, total 0.319 nsecs/byte/thread runtime 3.131 GB/sec/thread speed 12.523 GB/sec total speed # Running 8x1-bw-process, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1" 20.175 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.107 secs average thread-runtime 0.433 % difference between max/avg runtime 31.267 GB data processed, per thread 250.133 GB data processed, total 0.645 nsecs/byte/thread runtime 1.550 GB/sec/thread speed 12.398 GB/sec total speed # Running 8x1-bw-process-NOTHP, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.216 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.113 secs average thread-runtime 0.535 % difference between max/avg runtime 30.998 GB data processed, per thread 247.981 GB data processed, total 0.652 nsecs/byte/thread runtime 1.533 GB/sec/thread speed 12.266 GB/sec total speed # Running 16x1-bw-process, "perf bench numa mem -p 16 -t 1 -P 256 -s 20 -zZ0q --thp 1" 20.234 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.174 secs average thread-runtime 0.577 % difference between max/avg runtime 15.377 GB data processed, per thread 246.039 GB data processed, total 1.316 nsecs/byte/thread runtime 0.760 GB/sec/thread speed 12.160 GB/sec total speed # Running 1x4-bw-thread, "perf bench numa mem -p 1 -t 4 -T 256 -s 20 -zZ0q --thp 1" 20.040 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.028 secs average thread-runtime 0.099 % difference between max/avg runtime 66.832 GB data processed, per thread 267.328 GB data processed, total 0.300 nsecs/byte/thread runtime 3.335 GB/sec/thread speed 13.340 GB/sec total speed # Running 1x8-bw-thread, "perf bench numa mem -p 1 -t 8 -T 256 -s 20 -zZ0q --thp 1" 20.064 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.034 secs average thread-runtime 0.160 % difference between max/avg runtime 32.911 GB data processed, per thread 263.286 GB data processed, total 0.610 nsecs/byte/thread runtime 1.640 GB/sec/thread speed 13.122 GB/sec total speed # Running 1x16-bw-thread, "perf bench numa mem -p 1 -t 16 -T 128 -s 20 -zZ0q --thp 1" 20.092 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.052 secs average thread-runtime 0.230 % difference between max/avg runtime 16.131 GB data processed, per thread 258.088 GB data processed, total 1.246 nsecs/byte/thread runtime 0.803 GB/sec/thread speed 12.845 GB/sec total speed # Running 1x32-bw-thread, "perf bench numa mem -p 1 -t 32 -T 64 -s 20 -zZ0q --thp 1" 20.099 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.063 secs average thread-runtime 0.247 % difference between max/avg runtime 7.962 GB data processed, per thread 254.773 GB data processed, total 2.525 nsecs/byte/thread runtime 0.396 GB/sec/thread speed 12.676 GB/sec total speed # Running 2x3-bw-process, "perf bench numa mem -p 2 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.150 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.120 secs average thread-runtime 0.372 % difference between max/avg runtime 44.827 GB data processed, per thread 268.960 GB data processed, total 0.450 nsecs/byte/thread runtime 2.225 GB/sec/thread speed 13.348 GB/sec total speed # Running 4x4-bw-process, "perf bench numa mem -p 4 -t 4 -P 512 -s 20 -zZ0q --thp 1" 20.258 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.168 secs average thread-runtime 0.636 % difference between max/avg runtime 17.079 GB data processed, per thread 273.263 GB data processed, total 1.186 nsecs/byte/thread runtime 0.843 GB/sec/thread speed 13.489 GB/sec total speed # Running 4x6-bw-process, "perf bench numa mem -p 4 -t 6 -P 512 -s 20 -zZ0q --thp 1" 20.559 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.382 secs average thread-runtime 1.359 % difference between max/avg runtime 10.758 GB data processed, per thread 258.201 GB data processed, total 1.911 nsecs/byte/thread runtime 0.523 GB/sec/thread speed 12.559 GB/sec total speed # Running 4x8-bw-process, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1" 20.744 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.516 secs average thread-runtime 1.792 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.571 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.447 GB/sec total speed # Running 4x8-bw-process-NOTHP, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.855 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.561 secs average thread-runtime 2.050 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.585 nsecs/byte/thread runtime 0.387 GB/sec/thread speed 12.381 GB/sec total speed # Running 3x3-bw-process, "perf bench numa mem -p 3 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.134 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.077 secs average thread-runtime 0.333 % difference between max/avg runtime 28.091 GB data processed, per thread 252.822 GB data processed, total 0.717 nsecs/byte/thread runtime 1.395 GB/sec/thread speed 12.557 GB/sec total speed # Running 5x5-bw-process, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1" 20.588 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.375 secs average thread-runtime 1.427 % difference between max/avg runtime 10.177 GB data processed, per thread 254.436 GB data processed, total 2.023 nsecs/byte/thread runtime 0.494 GB/sec/thread speed 12.359 GB/sec total speed # Running 2x16-bw-process, "perf bench numa mem -p 2 -t 16 -P 512 -s 20 -zZ0q --thp 1" 20.657 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.429 secs average thread-runtime 1.589 % difference between max/avg runtime 8.170 GB data processed, per thread 261.429 GB data processed, total 2.528 nsecs/byte/thread runtime 0.395 GB/sec/thread speed 12.656 GB/sec total speed # Running 1x32-bw-process, "perf bench numa mem -p 1 -t 32 -P 2048 -s 20 -zZ0q --thp 1" 22.981 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 21.996 secs average thread-runtime 6.486 % difference between max/avg runtime 8.863 GB data processed, per thread 283.606 GB data processed, total 2.593 nsecs/byte/thread runtime 0.386 GB/sec/thread speed 12.341 GB/sec total speed # Running numa02-bw, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1" 20.047 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.026 secs average thread-runtime 2.611 % difference between max/avg runtime 8.441 GB data processed, per thread 270.111 GB data processed, total 2.375 nsecs/byte/thread runtime 0.421 GB/sec/thread speed 13.474 GB/sec total speed # Running numa02-bw-NOTHP, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1 --thp -1" 20.088 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.025 secs average thread-runtime 2.709 % difference between max/avg runtime 8.411 GB data processed, per thread 269.142 GB data processed, total 2.388 nsecs/byte/thread runtime 0.419 GB/sec/thread speed 13.398 GB/sec total speed # Running numa01-bw-thread, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1" 20.293 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.175 secs average thread-runtime 0.721 % difference between max/avg runtime 7.918 GB data processed, per thread 253.374 GB data processed, total 2.563 nsecs/byte/thread runtime 0.390 GB/sec/thread speed 12.486 GB/sec total speed # Running numa01-bw-thread-NOTHP, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1 --thp -1" 20.411 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.226 secs average thread-runtime 1.006 % difference between max/avg runtime 7.931 GB data processed, per thread 253.778 GB data processed, total 2.574 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.434 GB/sec total speed # Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20201012161611.366482-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Jiri Olsa
|
f766819cd5 |
perf tools: Pass build_id object to filename__read_build_id()
Pass a build_id object to filename__read_build_id function, so it can populate the size of the build_id object. Changing filename__read_build_id() code for both ELF/non-ELF code. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-3-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Jiri Olsa
|
0aba7f036a |
perf tools: Use build_id object in dso
Replace build_id byte array with struct build_id object and all the code that references it. The objective is to carry size together with build id array, so it's better to keep both together. This is preparatory change for following patches, and there's no functional change. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-2-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Namhyung Kim
|
bf7ef5ddb0 |
perf bench: Run inject-build-id with --buildid-all option too
For comparison, it now runs the benchmark twice - one if regular -b and another for --buildid-all. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 21.002 msec (+- 0.172 msec) Average time per event: 2.059 usec (+- 0.017 usec) Average memory usage: 8169 KB (+- 0 KB) Average build-id-all injection took: 19.543 msec (+- 0.124 msec) Average time per event: 1.916 usec (+- 0.012 usec) Average memory usage: 7348 KB (+- 0 KB) Signed-off-by: Namhyung Kim <namhyung@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201012070214.2074921-7-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Namhyung Kim
|
0bf02a0d80 |
perf bench: Add build-id injection benchmark
Sometimes I can see that 'perf record' piped with 'perf inject' take a long time processing build-ids. So introduce a inject-build-id benchmark to the internals benchmark suite to measure its overhead regularly. It runs the 'perf inject' command internally and feeds the given number of synthesized events (MMAP2 + SAMPLE basically). Usage: perf bench internals inject-build-id <options> -i, --iterations <n> Number of iterations used to compute average (default: 100) -m, --nr-mmaps <n> Number of mmap events for each iteration (default: 100) -n, --nr-samples <n> Number of sample events per mmap event (default: 100) -v, --verbose be more verbose (show iteration count, DSO name, etc) By default, it measures average processing time of 100 MMAP2 events and 10000 SAMPLE events. Below is a result on my laptop. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 25.789 msec (+- 0.202 msec) Average time per event: 2.528 usec (+- 0.020 usec) Average memory usage: 8411 KB (+- 7 KB) Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ perf bench internals # List of available benchmarks for collection 'internals': synthesize: Benchmark perf event synthesis kallsyms-parse: Benchmark kallsyms parsing inject-build-id: Benchmark build-id injection $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.202 msec (+- 0.059 msec) Average time per event: 1.392 usec (+- 0.006 usec) Average memory usage: 12650 KB (+- 10 KB) Average build-id-all injection took: 12.831 msec (+- 0.071 msec) Average time per event: 1.258 usec (+- 0.007 usec) Average memory usage: 11895 KB (+- 10 KB) $ $ perf stat -r5 perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.380 msec (+- 0.056 msec) Average time per event: 1.410 usec (+- 0.006 usec) Average memory usage: 12608 KB (+- 11 KB) Average build-id-all injection took: 11.889 msec (+- 0.064 msec) Average time per event: 1.166 usec (+- 0.006 usec) Average memory usage: 11838 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.246 msec (+- 0.065 msec) Average time per event: 1.397 usec (+- 0.006 usec) Average memory usage: 12744 KB (+- 10 KB) Average build-id-all injection took: 12.019 msec (+- 0.066 msec) Average time per event: 1.178 usec (+- 0.006 usec) Average memory usage: 11963 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.321 msec (+- 0.067 msec) Average time per event: 1.404 usec (+- 0.007 usec) Average memory usage: 12690 KB (+- 10 KB) Average build-id-all injection took: 11.909 msec (+- 0.041 msec) Average time per event: 1.168 usec (+- 0.004 usec) Average memory usage: 11938 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.287 msec (+- 0.059 msec) Average time per event: 1.401 usec (+- 0.006 usec) Average memory usage: 12864 KB (+- 10 KB) Average build-id-all injection took: 11.862 msec (+- 0.058 msec) Average time per event: 1.163 usec (+- 0.006 usec) Average memory usage: 12103 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.402 msec (+- 0.053 msec) Average time per event: 1.412 usec (+- 0.005 usec) Average memory usage: 12876 KB (+- 10 KB) Average build-id-all injection took: 11.826 msec (+- 0.061 msec) Average time per event: 1.159 usec (+- 0.006 usec) Average memory usage: 12111 KB (+- 10 KB) Performance counter stats for 'perf bench internals inject-build-id' (5 runs): 4,267.48 msec task-clock:u # 1.502 CPUs utilized ( +- 0.14% ) 0 context-switches:u # 0.000 K/sec 0 cpu-migrations:u # 0.000 K/sec 102,092 page-faults:u # 0.024 M/sec ( +- 0.08% ) 3,894,589,578 cycles:u # 0.913 GHz ( +- 0.19% ) (83.49%) 140,078,421 stalled-cycles-frontend:u # 3.60% frontend cycles idle ( +- 0.77% ) (83.34%) 948,581,189 stalled-cycles-backend:u # 24.36% backend cycles idle ( +- 0.46% ) (83.25%) 5,835,587,719 instructions:u # 1.50 insn per cycle # 0.16 stalled cycles per insn ( +- 0.21% ) (83.24%) 1,267,423,636 branches:u # 296.996 M/sec ( +- 0.22% ) (83.12%) 17,484,290 branch-misses:u # 1.38% of all branches ( +- 0.12% ) (83.55%) 2.84176 +- 0.00222 seconds time elapsed ( +- 0.08% ) $ Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20201012070214.2074921-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Linus Torvalds
|
ca1b66922a |
* Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory by sending them a SIGBUS on return to user space and umapping the faulty memory, by Tony Luck and Youquan Song. * memcpy_mcsafe() rework by splitting the functionality into copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables support for new hardware which can recover from a machine check encountered during a fast string copy and makes that the default and lets the older hardware which does not support that advance recovery, opt in to use the old, fragile, slow variant, by Dan Williams. * New AMD hw enablement, by Yazen Ghannam and Akshay Gupta. * Do not use MSR-tracing accessors in #MC context and flag any fault while accessing MCA architectural MSRs as an architectural violation with the hope that such hw/fw misdesigns are caught early during the hw eval phase and they don't make it into production. * Misc fixes, improvements and cleanups, as always. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+EIpUACgkQEsHwGGHe VUouoBAAgwb+NkWZtIqGImV4f+LOyFjhTR/r/7ZyiijXdbhOIuAdc/jQM31mQxug sX2jxaRYnf1n6SLA0ggX99gwr2deRQ/hsNf5Abw55GC+Z1dOxpGL0k59A3ELl1IR H9KYmCAFQIHvzfk38qcdND73XHcgthQoXFBOG9wAPAdgDWnaiWt6lcLAq8OiJTmp D8pInAYhcnL8YXwMGyQQ1KkFn9HwydoWDsK5Ff2shaw2/+dMQqd1zetenbVtjhLb iNYGvV7Bi/RQ8PyMbzmtTWa4kwQJAHC2gptkGxty//2ADGVBbqUQdqF9TjIWCNy5 V6Ldv5zo0/1s7DOzji3htzqkSs/K1Ea6d2LtZjejkJipHKV5x068UC6Fu+PlfS2D VZfcICeapU4G2F3Zvks2DlZ7dVTbHCvoI78Qi7bBgczPUVmk6iqah4xuQaiHyBJc kTFDA4Nnf/026GpoWRiFry9vqdnHBZyLet5A6Y+SoWF0FbhYnCVPpq4MnussYoav lUIi9ZZav6X2RZp9DDM1f9d5xubtKq0DKt93wvzqAhjK0T2DikckJ+riOYkI6N8t fHCBNUkdfgyMzJUTBPAzYQ7RmjbjKWJi7xWP0oz6+GqOJkQfSTVC5/2yEffbb3ya whYRS6iklbl7yshzaOeecXsZcAeK2oGPfoHg34WkHFgXdF5mNgA= =u1Wg -----END PGP SIGNATURE----- Merge tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS updates from Borislav Petkov: - Extend the recovery from MCE in kernel space also to processes which encounter an MCE in kernel space but while copying from user memory by sending them a SIGBUS on return to user space and umapping the faulty memory, by Tony Luck and Youquan Song. - memcpy_mcsafe() rework by splitting the functionality into copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables support for new hardware which can recover from a machine check encountered during a fast string copy and makes that the default and lets the older hardware which does not support that advance recovery, opt in to use the old, fragile, slow variant, by Dan Williams. - New AMD hw enablement, by Yazen Ghannam and Akshay Gupta. - Do not use MSR-tracing accessors in #MC context and flag any fault while accessing MCA architectural MSRs as an architectural violation with the hope that such hw/fw misdesigns are caught early during the hw eval phase and they don't make it into production. - Misc fixes, improvements and cleanups, as always. * tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce: Allow for copy_mc_fragile symbol checksum to be generated x86/mce: Decode a kernel instruction to determine if it is copying from user x86/mce: Recover from poison found while copying from user space x86/mce: Avoid tail copy when machine check terminated a copy from user x86/mce: Add _ASM_EXTABLE_CPY for copy user access x86/mce: Provide method to find out the type of an exception handler x86/mce: Pass pointer to saved pt_regs to severity calculation routines x86/copy_mc: Introduce copy_mc_enhanced_fast_string() x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}() x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list x86/mce: Add Skylake quirk for patrol scrub reported errors RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE() x86/mce: Annotate mce_rd/wrmsrl() with noinstr x86/mce/dev-mcelog: Do not update kflags on AMD systems x86/mce: Stop mce_reign() from re-computing severity for every CPU x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR x86/mce: Increase maximum number of banks to 64 x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check() x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap RAS/CEC: Fix cec_init() prototype |