MD: Remember the last sync operation that was performed
This patch adds a field to the mddev structure to track the last
sync operation that was performed. This is especially useful when
it comes to what is recorded in mismatch_cnt in sysfs. If the
last operation was "data-check", then it reports the number of
descrepancies found by the user-initiated check. If it was a
"repair" operation, then it is reporting the number of
descrepancies repaired. etc.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
DM RAID: Add ability to restore transiently failed devices on resume
This patch adds code to the resume function to check over the devices
in the RAID array. If any are found to be marked as failed and their
superblocks can be read, an attempt is made to reintegrate them into
the array. This allows the user to refresh the array with a simple
suspend and resume of the array - rather than having to load a
completely new table, allocate and initialize all the structures and
throw away the old instantiation.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
DM RAID: Add message/status support for changing sync action
This patch adds a message interface to dm-raid to allow the user to more
finely control the sync actions being performed by the MD driver. This
gives the user the ability to initiate "check" and "repair" (i.e. scrubbing).
Two additional fields have been appended to the status output to provide more
information about the type of sync action occurring and the results of those
actions, specifically: <sync_action> and <mismatch_cnt>. These new fields
will always be populated. This is essentially the device-mapper way of doing
what MD controls through the 'sync_action' sysfs file and shows through the
'mismatch_cnt' sysfs file.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
DM RAID: Add support for MD's RAID10 "far" and "offset" algorithms
Until now, dm-raid.c only supported the "near" algorthm of MD's RAID10
implementation. This patch adds support for the "far" and "offset"
algorithms, but only with the improved redundancy that is brought with
the introduction of the 'use_far_sets' bit, which shifts copied stripes
according to smaller sets vs the entire array. That is, the 17th bit
of the 'layout' variable that defines the RAID10 implementation will
always be set. (More information on how the 'layout' variable selects
the RAID10 algorithm can be found in the opening comments of
drivers/md/raid10.c.)
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Before attempting to activate a RAID array, it is checked for sufficient
redundancy. That is, we make sure that there are not too many failed
devices - or devices specified for rebuild - to undermine our ability to
activate the array. The current code performs this check twice - once to
ensure there were not too many devices specified for rebuild by the user
('validate_rebuild_devices') and again after possibly experiencing a failure
to read the superblock ('analyse_superblocks'). Neither of these checks are
sufficient. The first check is done properly but with insufficient
information about the possible failure state of the devices to make a good
determination if the array can be activated. The second check is simply
done wrong in the case of RAID10 because it doesn't account for the
independence of the stripes (i.e. mirror sets). The solution is to use the
properly written check ('validate_rebuild_devices'), but perform the check
after the superblocks have been read and we know which devices have failed.
This gives us one check instead of two and performs it in a location where
it can be done right.
Only RAID10 was affected and it was affected in the following ways:
- the code did not properly catch the condition where a user specified
a device for rebuild that already had a failed device in the same mirror
set. (This condition would, however, be caught at a deeper level in MD.)
- the code triggers a false positive and denies activation when devices in
independent mirror sets have failed - counting the failures as though they
were all in the same set.
The most likely place this error was introduced (or this patch should have
been included) is in commit 4ec1e369 - first introduced in v3.7-rc1.
Consequently this fix should also go in v3.7.y, however there is a
small conflict on the .version in raid_target, so I'll submit a
separate patch to -stable.
Cc: stable@vger.kernel.org
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
DM RAID: Add code to validate replacement slots for RAID10 arrays
RAID10 can handle 'copies - 1' failures for each mirror group. This code
ensures the user has provided a valid array - one whose devices specified for
rebuild do not exceed the amount of redundancy available.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Add the ability to parse and use metadata devices to dm-raid. Although
not strictly required, without the metadata devices, many features of
RAID are unavailable. They are used to store a superblock and bitmap.
The role, or position in the array, of each device must be recorded in
its superblock. This is to help with fault handling, array reshaping,
and sanity checks. RAID 4/5/6 devices must be loaded in a specific order:
in this way, the 'array_position' field helps validate the correctness
of the mapping when it is loaded. It can be used during reshaping to
identify which devices are added/removed. Fault handling is impossible
without this field. For example, when a device fails it is recorded in
the superblock. If this is a RAID1 device and the offending device is
removed from the array, there must be a way during subsequent array
assembly to determine that the failed device was the one removed. This
is done by correlating the 'array_position' field and the bit-field
variable 'failed_devices'.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add the write_mostly parameter to RAID1 dm-raid tables.
This allows the user to set the WriteMostly flag on a RAID1 device that
should normally be avoided for read I/O.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Allow the user to specify the region_size.
Ensures that the supplied value meets md's constraints, viz. the number of
regions does not exceed 2^21.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add more information about some dm-raid table parameters and clarify how
parameters are printed when 'dmsetup table' is issued.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch is the skeleton for the DM target that will be
the bridge from DM to MD (initially RAID456 and later RAID1). It
provides a way to use device-mapper interfaces to the MD RAID456
drivers.
As with all device-mapper targets, the nominal public interfaces are the
constructor (CTR) tables and the status outputs (both STATUSTYPE_INFO
and STATUSTYPE_TABLE). The CTR table looks like the following:
1: <s> <l> raid \
2: <raid_type> <#raid_params> <raid_params> \
3: <#raid_devs> <meta_dev1> <dev1> .. <meta_devN> <devN>
Line 1 contains the standard first three arguments to any device-mapper
target - the start, length, and target type fields. The target type in
this case is "raid".
Line 2 contains the arguments that define the particular raid
type/personality/level, the required arguments for that raid type, and
any optional arguments. Possible raid types include: raid4, raid5_la,
raid5_ls, raid5_rs, raid6_zr, raid6_nr, and raid6_nc. (again, raid1 is
planned for the future.) The list of required and optional parameters
is the same for all the current raid types. The required parameters are
positional, while the optional parameters are given as key/value pairs.
The possible parameters are as follows:
<chunk_size> Chunk size in sectors.
[[no]sync] Force/Prevent RAID initialization
[rebuild <idx>] Rebuild the drive indicated by the index
[daemon_sleep <ms>] Time between bitmap daemon work to clear bits
[min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_write_behind <value>] See '-write-behind=' (man mdadm)
[stripe_cache <sectors>] Stripe cache size for higher RAIDs
Line 3 contains the list of devices that compose the array in
metadata/data device pairs. If the metadata is stored separately, a '-'
is given for the metadata device position. If a drive has failed or is
missing at creation time, a '-' can be given for both the metadata and
data drives for a given position.
Examples:
# RAID4 - 4 data drives, 1 parity
# No metadata devices specified to hold superblock/bitmap info
# Chunk size of 1MiB
# (Lines separated for easy reading)
0 1960893648 raid \
raid4 1 2048 \
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
# RAID4 - 4 data drives, 1 parity (no metadata devices)
# Chunk size of 1MiB, force RAID initialization,
# min recovery rate at 20 kiB/sec/disk
0 1960893648 raid \
raid4 4 2048 min_recovery_rate 20 sync\
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
Performing a 'dmsetup table' should display the CTR table used to
construct the mapping (with possible reordering of optional
parameters).
Performing a 'dmsetup status' will yield information on the state and
health of the array. The output is as follows:
1: <s> <l> raid \
2: <raid_type> <#devices> <1 health char for each dev> <resync_ratio>
Line 1 is standard DM output. Line 2 is best shown by example:
0 1960893648 raid raid4 5 AAAAA 2/490221568
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with recovery.
Cc: linux-raid@vger.kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>