mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
9c7d3a5483
8334 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Josef Bacik
|
9c7d3a5483 |
btrfs: move extent_io_tree defs to their own header
extent_io.c/h are huge, encompassing a bunch of different things. The extent_io_tree code can live on its own, so separate this out. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
6f0d04f8e7 |
btrfs: separate out the extent io init function
We are moving extent_io_tree into it's on file, so separate out the extent_state init stuff from extent_io_tree_init(). Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
33ca832fef |
btrfs: separate out the extent leak code
We check both extent buffer and extent state leaks in the same function, separate these two functions out so we can move them around. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
34ffafdba1 |
btrfs: ctree: Remove stray comment of setting up path lock
The following comment shows up in btrfs_search_slot() with out much
sense:
/*
* setup the path here so we can release it under lock
* contention with the cow code
*/
if (cow) {
/* code touching path->lock[] is far away from here */
}
This comment hasn't been cleaned up after the relevant code has been
removed.
The original code is introduced in commit
|
||
Qu Wenruo
|
abe9339d69 |
btrfs: ctree: Reduce one indent level for btrfs_search_old_slot()
Similar to btrfs_search_slot() done in previous patch, make a shortcut for the level 0 case and allow to reduce indentation for the remaining case. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
f624d97608 |
btrfs: ctree: Reduce one indent level for btrfs_search_slot()
In btrfs_search_slot(), we something like: if (level != 0) { /* Do search inside tree nodes*/ } else { /* Do search inside tree leaves */ goto done; } This caused extra indent for tree node search code. Change it to something like: if (level == 0) { /* Do search inside tree leaves */ goto done' } /* Do search inside tree nodes */ So we have more space to maneuver our code, this is especially useful as the tree nodes search code is more complex than the leaves search code. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
71bf92a9b8 |
btrfs: tree-checker: Add check for INODE_REF
For INODE_REF we will check: - Objectid (ino) against previous key To detect missing INODE_ITEM. - No overflow/padding in the data payload Much like DIR_ITEM, but with less members to check. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
c18679ebd8 |
btrfs: tree-checker: Try to detect missing INODE_ITEM
For the following items, key->objectid is inode number: - DIR_ITEM - DIR_INDEX - XATTR_ITEM - EXTENT_DATA - INODE_REF So in the subvolume tree, such items must have its previous item share the same objectid, e.g.: (257 INODE_ITEM 0) (257 DIR_INDEX xxx) (257 DIR_ITEM xxx) (258 INODE_ITEM 0) (258 INODE_REF 0) (258 XATTR_ITEM 0) (258 EXTENT_DATA 0) But if we have the following sequence, then there is definitely something wrong, normally some INODE_ITEM is missing, like: (257 INODE_ITEM 0) (257 DIR_INDEX xxx) (257 DIR_ITEM xxx) (258 XATTR_ITEM 0) <<< objecitd suddenly changed to 258 (258 EXTENT_DATA 0) So just by checking the previous key for above inode based key types, we can detect a missing inode item. For INODE_REF key type, the check will be added along with INODE_REF checker. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
b9fae2ebee |
Btrfs: make btrfs_wait_extents() static
It's not used ouside of transaction.c Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
35b814f3c5 |
btrfs: Add assert to catch nested transaction commit
A recent patch to btrfs showed that there was at least 1 case where a nested transaction was committed. Nested transaction in this case means a code which has a transaction handle calls some function which in turn obtains a copy of the same transaction handle. In such cases the correct thing to do is for the lower callee to call btrfs_end_transaction which contains appropriate checks so as to not commit the transaction which will result in stale trans handler for the caller. To catch such cases add an assert in btrfs_commit_transaction ensuring btrfs_trans_handle::use_count is always 1. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Goldwyn Rodrigues
|
9cf35f6735 |
btrfs: simplify inode locking for RWF_NOWAIT
This is similar to |
||
Linus Torvalds
|
afd7a71872 |
for-5.4-rc7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl3MUkoACgkQxWXV+ddt WDvAEQ//fEHZ51NbIMwJNltqF4mr6Oao0M5u0wejEgiXzmR9E1IuHUgVK+KDQmSu wZl/y+RTlQC0TiURyStaVFBreXEqiuB79my9u4iDeNv/4UJQB42qpmYB4EuviDgB mxb9bFpWTLkO6Oc+vMrGF3BOmVsQKlq2nOua25g8VFtApQ6uiEfbwBOslCcC8kQB ZpNBl6x74xz/VWNWZnRStBfwYjRitKNDVU6dyIyRuLj8cktqfGBxGtx7/w0wDiZT kPR1bNtdpy3Ndke6H/0G6plRWi9kENqcN43hvrz54IKh2l+Jd2/as51j4Qq2tJU9 KaAnJzRaSePxc2m0SqtgZTvc2BYSOg7dqaCyHxBB0CUBdTdJdz2TVZ2KM9MiLns4 1haHBLo4l8o8zeYZpW05ac6OXKY4f8qsjWPEGshn4FDbq0TrHQzYxAF3c0X3hPag SnuvilgYUuYal+n87qinePg/ZmVrrBXPRycpQnn7FxqezJbf/2WUEojUVQnreU05 mdp8mulxQxyFhgEvO7K1uDtlP8bqW69IO9M//6IWzGNKTDK2SRI08ULplghqgyna 8SG0+y9w26r8UIWDhuvPbdfUMSG3kEH8yLFK84AFDMVJJxOnfznE3sC8sGOiP5q9 OUkl8l7bhDkyAdWZY57gGUobebdPfnLxRV9A+LZQ2El1kSOEK18= =xzXs -----END PGP SIGNATURE----- Merge tag 'for-5.4-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "A fix for an older bug that has started to show up during testing (because of an updated test for rename exchange). It's an in-memory corruption caused by local variable leaking out of the function scope" * tag 'for-5.4-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix log context list corruption after rename exchange operation |
||
Filipe Manana
|
e6c617102c |
Btrfs: fix log context list corruption after rename exchange operation
During rename exchange we might have successfully log the new name in the
source root's log tree, in which case we leave our log context (allocated
on stack) in the root's list of log contextes. However we might fail to
log the new name in the destination root, in which case we fallback to
a transaction commit later and never sync the log of the source root,
which causes the source root log context to remain in the list of log
contextes. This later causes invalid memory accesses because the context
was allocated on stack and after rename exchange finishes the stack gets
reused and overwritten for other purposes.
The kernel's linked list corruption detector (CONFIG_DEBUG_LIST=y) can
detect this and report something like the following:
[ 691.489929] ------------[ cut here ]------------
[ 691.489947] list_add corruption. prev->next should be next (ffff88819c944530), but was ffff8881c23f7be4. (prev=ffff8881c23f7a38).
[ 691.489967] WARNING: CPU: 2 PID: 28933 at lib/list_debug.c:28 __list_add_valid+0x95/0xe0
(...)
[ 691.489998] CPU: 2 PID: 28933 Comm: fsstress Not tainted 5.4.0-rc6-btrfs-next-62 #1
[ 691.490001] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 691.490003] RIP: 0010:__list_add_valid+0x95/0xe0
(...)
[ 691.490007] RSP: 0018:ffff8881f0b3faf8 EFLAGS: 00010282
[ 691.490010] RAX: 0000000000000000 RBX: ffff88819c944530 RCX: 0000000000000000
[ 691.490011] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffa2c497e0
[ 691.490013] RBP: ffff8881f0b3fe68 R08: ffffed103eaa4115 R09: ffffed103eaa4114
[ 691.490015] R10: ffff88819c944000 R11: ffffed103eaa4115 R12: 7fffffffffffffff
[ 691.490016] R13: ffff8881b4035610 R14: ffff8881e7b84728 R15: 1ffff1103e167f7b
[ 691.490019] FS: 00007f4b25ea2e80(0000) GS:ffff8881f5500000(0000) knlGS:0000000000000000
[ 691.490021] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 691.490022] CR2: 00007fffbb2d4eec CR3: 00000001f2a4a004 CR4: 00000000003606e0
[ 691.490025] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 691.490027] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 691.490029] Call Trace:
[ 691.490058] btrfs_log_inode_parent+0x667/0x2730 [btrfs]
[ 691.490083] ? join_transaction+0x24a/0xce0 [btrfs]
[ 691.490107] ? btrfs_end_log_trans+0x80/0x80 [btrfs]
[ 691.490111] ? dget_parent+0xb8/0x460
[ 691.490116] ? lock_downgrade+0x6b0/0x6b0
[ 691.490121] ? rwlock_bug.part.0+0x90/0x90
[ 691.490127] ? do_raw_spin_unlock+0x142/0x220
[ 691.490151] btrfs_log_dentry_safe+0x65/0x90 [btrfs]
[ 691.490172] btrfs_sync_file+0x9f1/0xc00 [btrfs]
[ 691.490195] ? btrfs_file_write_iter+0x1800/0x1800 [btrfs]
[ 691.490198] ? rcu_read_lock_any_held.part.11+0x20/0x20
[ 691.490204] ? __do_sys_newstat+0x88/0xd0
[ 691.490207] ? cp_new_stat+0x5d0/0x5d0
[ 691.490218] ? do_fsync+0x38/0x60
[ 691.490220] do_fsync+0x38/0x60
[ 691.490224] __x64_sys_fdatasync+0x32/0x40
[ 691.490228] do_syscall_64+0x9f/0x540
[ 691.490233] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 691.490235] RIP: 0033:0x7f4b253ad5f0
(...)
[ 691.490239] RSP: 002b:00007fffbb2d6078 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
[ 691.490242] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f4b253ad5f0
[ 691.490244] RDX: 00007fffbb2d5fe0 RSI: 00007fffbb2d5fe0 RDI: 0000000000000003
[ 691.490245] RBP: 000000000000000d R08: 0000000000000001 R09: 00007fffbb2d608c
[ 691.490247] R10: 00000000000002e8 R11: 0000000000000246 R12: 00000000000001f4
[ 691.490248] R13: 0000000051eb851f R14: 00007fffbb2d6120 R15: 00005635a498bda0
This started happening recently when running some test cases from fstests
like btrfs/004 for example, because support for rename exchange was added
last week to fsstress from fstests.
So fix this by deleting the log context for the source root from the list
if we have logged the new name in the source root.
Reported-by: Su Yue <Damenly_Su@gmx.com>
Fixes:
|
||
Linus Torvalds
|
00aff68362 |
for-5.4-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl3GwvEACgkQxWXV+ddt WDvsfQ//UQ/TND1roMW3EmN+PLTRTUQS75Hb737r5Q66j0j94gFnBxB03R+tU8lP bH5XVpateb1wDmmdscqVQ1WM9O82bQdDNiYeLDr86+kzpLgy61rZHswZfNlDtl5M wDwyaxsrd7HndDeUZnIuaakYI9MXz9WIaNXkt0o8hSHctt0N18y23DSBFTVSh/4q T3cn4odkoBKtQ4mIn2OSmQvkl69nWRBVpjPJZIvsNszKjOo9aZTuGHrOWUV5RPiE Ho9UBkr+IjEDo8OH88vXAsHeYFIoYhEeUltjLHyF6Agwk1/Ajwp5sxXSubbfHUMQ l1YdmrTZf+l1Dxdj0sCdyK1npcgGI5IuZmIICpNUEAny9AbTtpSE3GNwtnIHAEAr cpki+1Z3lfaVSwNMYUz9Esbsb72C+f08WJHGHBMaOhjrBIwQUeWeYzTx6N7uDwNg GjaDRxjqFV2o7373isQaz7WOTatUMNtL1xvhkeceONI9NBXQRjW5rq5zECmr1ix7 lSTKDzn7yAd6eGBW0T6iYdRl4Bta/zxPiDEF5KDNPugvv23yx17LAOdS4qAiHzbx oglra/kz9D4xmKVqH7hpFaaHrzL38G4mz6aMdwBu0M7dkn9AwsXiXWSDb0n7jnK0 o96gkUBZjUSFBseUFD2s34MikFtrDynEJzPq96JHuWLguaByMcc= =CZxY -----END PGP SIGNATURE----- Merge tag 'for-5.4-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few regressions and fixes for stable. Regressions: - fix a race leading to metadata space leak after task received a signal - un-deprecate 2 ioctls, marked as deprecated by mistake Fixes: - fix limit check for number of devices during chunk allocation - fix a race due to double evaluation of i_size_read inside max() macro, can cause a crash - remove wrong device id check in tree-checker" * tag 'for-5.4-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: un-deprecate ioctls START_SYNC and WAIT_SYNC btrfs: save i_size to avoid double evaluation of i_size_read in compress_file_range Btrfs: fix race leading to metadata space leak after task received signal btrfs: tree-checker: Fix wrong check on max devid btrfs: Consider system chunk array size for new SYSTEM chunks |
||
David Sterba
|
a5009d3a31 |
btrfs: un-deprecate ioctls START_SYNC and WAIT_SYNC
The two ioctls START_SYNC and WAIT_SYNC were mistakenly marked as deprecated and scheduled for removal but we actualy do use them for 'btrfs subvolume delete -C/-c'. The deprecated thing in |
||
Josef Bacik
|
d98da49977 |
btrfs: save i_size to avoid double evaluation of i_size_read in compress_file_range
We hit a regression while rolling out 5.2 internally where we were hitting the following panic kernel BUG at mm/page-writeback.c:2659! RIP: 0010:clear_page_dirty_for_io+0xe6/0x1f0 Call Trace: __process_pages_contig+0x25a/0x350 ? extent_clear_unlock_delalloc+0x43/0x70 submit_compressed_extents+0x359/0x4d0 normal_work_helper+0x15a/0x330 process_one_work+0x1f5/0x3f0 worker_thread+0x2d/0x3d0 ? rescuer_thread+0x340/0x340 kthread+0x111/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x1f/0x30 This is happening because the page is not locked when doing clear_page_dirty_for_io. Looking at the core dump it was because our async_extent had a ram_size of 24576 but our async_chunk range only spanned 20480, so we had a whole extra page in our ram_size for our async_extent. This happened because we try not to compress pages outside of our i_size, however a cleanup patch changed us to do actual_end = min_t(u64, i_size_read(inode), end + 1); which is problematic because i_size_read() can evaluate to different values in between checking and assigning. So either an expanding truncate or a fallocate could increase our i_size while we're doing writeout and actual_end would end up being past the range we have locked. I confirmed this was what was happening by installing a debug kernel that had actual_end = min_t(u64, i_size_read(inode), end + 1); if (actual_end > end + 1) { printk(KERN_ERR "KABOOM\n"); actual_end = end + 1; } and installing it onto 500 boxes of the tier that had been seeing the problem regularly. Last night I got my debug message and no panic, confirming what I expected. [ dsterba: the assembly confirms a tiny race window: mov 0x20(%rsp),%rax cmp %rax,0x48(%r15) # read movl $0x0,0x18(%rsp) mov %rax,%r12 mov %r14,%rax cmovbe 0x48(%r15),%r12 # eval Where r15 is inode and 0x48 is offset of i_size. The original fix was to revert |
||
Filipe Manana
|
0cab7acc4a |
Btrfs: fix race leading to metadata space leak after task received signal
When a task that is allocating metadata needs to wait for the async
reclaim job to process its ticket and gets a signal (because it was killed
for example) before doing the wait, the task ends up erroring out but
with space reserved for its ticket, which never gets released, resulting
in a metadata space leak (more specifically a leak in the bytes_may_use
counter of the metadata space_info object).
Here's the sequence of steps leading to the space leak:
1) A task tries to create a file for example, so it ends up trying to
start a transaction at btrfs_create();
2) The filesystem is currently in a state where there is not enough
metadata free space to satisfy the transaction's needs. So at
space-info.c:__reserve_metadata_bytes() we create a ticket and
add it to the list of tickets of the space info object. Also,
because the metadata async reclaim job is not running, we queue
a job ro run metadata reclaim;
3) In the meanwhile the task receives a signal (like SIGTERM from
a kill command for example);
4) After queing the async reclaim job, at __reserve_metadata_bytes(),
we unlock the metadata space info and call handle_reserve_ticket();
5) That last function calls wait_reserve_ticket(), which acquires the
lock from the metadata space info. Then in the first iteration of
its while loop, it calls prepare_to_wait_event(), which returns
-ERESTARTSYS because the task has a pending signal. As a result,
we set the error field of the ticket to -EINTR and exit the while
loop without deleting the ticket from the list of tickets (in the
space info object). After exiting the loop we unlock the space info;
6) The async reclaim job is able to release enough metadata, acquires
the metadata space info's lock and then reserves space for the ticket,
since the ticket is still in the list of (non-priority) tickets. The
space reservation happens at btrfs_try_granting_tickets(), called from
maybe_fail_all_tickets(). This increments the bytes_may_use counter
from the metadata space info object, sets the ticket's bytes field to
zero (meaning success, that space was reserved) and removes it from
the list of tickets;
7) wait_reserve_ticket() returns, with the error field of the ticket
set to -EINTR. Then handle_reserve_ticket() just propagates that error
to the caller. Because an error was returned, the caller does not
release the reserved space, since the expectation is that any error
means no space was reserved.
Fix this by removing the ticket from the list, while holding the space
info lock, at wait_reserve_ticket() when prepare_to_wait_event() returns
an error.
Also add some comments and an assertion to guarantee we never end up with
a ticket that has an error set and a bytes counter field set to zero, to
more easily detect regressions in the future.
This issue could be triggered sporadically by some test cases from fstests
such as generic/269 for example, which tries to fill a filesystem and then
kills fsstress processes running in the background.
When this issue happens, we get a warning in syslog/dmesg when unmounting
the filesystem, like the following:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 13240 at fs/btrfs/block-group.c:3186 btrfs_free_block_groups+0x314/0x470 [btrfs]
(...)
CPU: 0 PID: 13240 Comm: umount Tainted: G W L 5.3.0-rc8-btrfs-next-48+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_free_block_groups+0x314/0x470 [btrfs]
(...)
RSP: 0018:ffff9910c14cfdb8 EFLAGS: 00010286
RAX: 0000000000000024 RBX: ffff89cd8a4d55f0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff89cdf6a178a8 RDI: ffff89cdf6a178a8
RBP: ffff9910c14cfde8 R08: 0000000000000000 R09: 0000000000000001
R10: ffff89cd4d618040 R11: 0000000000000000 R12: ffff89cd8a4d5508
R13: ffff89cde7c4a600 R14: dead000000000122 R15: dead000000000100
FS: 00007f42754432c0(0000) GS:ffff89cdf6a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd25a47f730 CR3: 000000021f8d6006 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
close_ctree+0x1ad/0x390 [btrfs]
generic_shutdown_super+0x6c/0x110
kill_anon_super+0xe/0x30
btrfs_kill_super+0x12/0xa0 [btrfs]
deactivate_locked_super+0x3a/0x70
cleanup_mnt+0xb4/0x160
task_work_run+0x7e/0xc0
exit_to_usermode_loop+0xfa/0x100
do_syscall_64+0x1cb/0x220
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f4274d2cb37
(...)
RSP: 002b:00007ffcff701d38 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 0000557ebde2f060 RCX: 00007f4274d2cb37
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000557ebde2f240
RBP: 0000557ebde2f240 R08: 0000557ebde2f270 R09: 0000000000000015
R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f427522ee64
R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffcff701fc0
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb12b561e>] copy_process+0x75e/0x1fd0
softirqs last enabled at (0): [<ffffffffb12b561e>] copy_process+0x75e/0x1fd0
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace bcf4b235461b26f6 ]---
BTRFS info (device sdb): space_info 4 has 19116032 free, is full
BTRFS info (device sdb): space_info total=33554432, used=14176256, pinned=0, reserved=0, may_use=196608, readonly=65536
BTRFS info (device sdb): global_block_rsv: size 0 reserved 0
BTRFS info (device sdb): trans_block_rsv: size 0 reserved 0
BTRFS info (device sdb): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sdb): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sdb): delayed_refs_rsv: size 0 reserved 0
Fixes:
|
||
Qu Wenruo
|
8bb177d18f |
btrfs: tree-checker: Fix wrong check on max devid
[BUG]
The following script will cause false alert on devid check.
#!/bin/bash
dev1=/dev/test/test
dev2=/dev/test/scratch1
mnt=/mnt/btrfs
umount $dev1 &> /dev/null
umount $dev2 &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev1
mount $dev1 $mnt
_fail()
{
echo "!!! FAILED !!!"
exit 1
}
for ((i = 0; i < 4096; i++)); do
btrfs dev add -f $dev2 $mnt || _fail
btrfs dev del $dev1 $mnt || _fail
dev_tmp=$dev1
dev1=$dev2
dev2=$dev_tmp
done
[CAUSE]
Tree-checker uses BTRFS_MAX_DEVS() and BTRFS_MAX_DEVS_SYS_CHUNK() as
upper limit for devid. But we can have devid holes just like above
script.
So the check for devid is incorrect and could cause false alert.
[FIX]
Just remove the whole devid check. We don't have any hard requirement
for devid assignment.
Furthermore, even devid could get corrupted by a bitflip, we still have
dev extents verification at mount time, so corrupted data won't sneak
in.
This fixes fstests btrfs/194.
Reported-by: Anand Jain <anand.jain@oracle.com>
Fixes:
|
||
Qu Wenruo
|
c17add7a1c |
btrfs: Consider system chunk array size for new SYSTEM chunks
For SYSTEM chunks, despite the regular chunk item size limit, there is
another limit due to system chunk array size.
The extra limit was removed in a refactoring, so add it back.
Fixes:
|
||
Linus Torvalds
|
54955e3bfd |
for-5.4-rc4-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl2vBPgACgkQxWXV+ddt WDvaGQ/+JbV05ML7QjufNFKjzojNPg8dOwvLqF58askMEAqzyqOrzu1YsIOjchqv eZPP+wxh6j6i8LFnbaMYRhSVMlgpK9XOR3tNStp73QlSox6/6VKu7XR4wFXAoip3 l4XI8UqO5XqDG55UTtjKyo2VNq8vgq1gRUWD6hPtfzDP6WYj4JZuXOd+dT6PbP32 VHd91RoB8Z8qmypLF9Sju6IBWNhKl91TjlRqVdfLywaK8azqaxE1UttPf5DVbE6+ MlTuXhuxkNc4ddzj//oJ1s3ZP/nXtFmIZ75+Sd6P5DfqRNeIfjkKqXvffsjqoYVI 1Wv9sDiezxRB1RZjfInhtqvdvsqcsrXrM7x6BRVqI7IZDUaH5em8IoozQT62ze/4 MJBrRIbVodx2I7EVDMNGkx2TaIDAfnW4Z3UC+YSHLoy6jht1+SA5KLQDR1G/4NeR dWht5wOXwhp8P3DoaczTUpk0DLtAtygj04fH8CG277EILLCpuWwW8iRkPttkrIM2 HrtRKrKFJNyEpq9vHSFVvpQJkzgzqBFs1UnqnEuYh6qNgWCrS4PJDu9geQ8aPGr2 pA5aEqg5b+jjWzIYDP93PF0u7kF4mFVAozn6xMf95FKmM1OupYYQg5BRe7n/DfDu yh3Ms0Mmd9+snpNJ9lDr40cobHC5CDvfvO2SRERyBeXxARainN0= =Ft+G -----END PGP SIGNATURE----- Merge tag 'for-5.4-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fixes of error handling cleanup of metadata accounting with qgroups enabled - fix swapped values for qgroup tracepoints - fix race when handling full sync flag - don't start unused worker thread, functionality removed already * tag 'for-5.4-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: check for the full sync flag while holding the inode lock during fsync Btrfs: fix qgroup double free after failure to reserve metadata for delalloc btrfs: tracepoints: Fix bad entry members of qgroup events btrfs: tracepoints: Fix wrong parameter order for qgroup events btrfs: qgroup: Always free PREALLOC META reserve in btrfs_delalloc_release_extents() btrfs: don't needlessly create extent-refs kernel thread btrfs: block-group: Fix a memory leak due to missing btrfs_put_block_group() Btrfs: add missing extents release on file extent cluster relocation error |
||
Filipe Manana
|
ba0b084ac3 |
Btrfs: check for the full sync flag while holding the inode lock during fsync
We were checking for the full fsync flag in the inode before locking the inode, which is racy, since at that that time it might not be set but after we acquire the inode lock some other task set it. One case where this can happen is on a system low on memory and some concurrent task failed to allocate an extent map and therefore set the full sync flag on the inode, to force the next fsync to work in full mode. A consequence of missing the full fsync flag set is hitting the problems fixed by commit |
||
Filipe Manana
|
c7967fc149 |
Btrfs: fix qgroup double free after failure to reserve metadata for delalloc
If we fail to reserve metadata for delalloc operations we end up releasing
the previously reserved qgroup amount twice, once explicitly under the
'out_qgroup' label by calling btrfs_qgroup_free_meta_prealloc() and once
again, under label 'out_fail', by calling btrfs_inode_rsv_release() with a
value of 'true' for its 'qgroup_free' argument, which results in
btrfs_qgroup_free_meta_prealloc() being called again, so we end up having
a double free.
Also if we fail to reserve the necessary qgroup amount, we jump to the
label 'out_fail', which calls btrfs_inode_rsv_release() and that in turns
calls btrfs_qgroup_free_meta_prealloc(), even though we weren't able to
reserve any qgroup amount. So we freed some amount we never reserved.
So fix this by removing the call to btrfs_inode_rsv_release() in the
failure path, since it's not necessary at all as we haven't changed the
inode's block reserve in any way at this point.
Fixes:
|
||
Qu Wenruo
|
fd2b007eae |
btrfs: tracepoints: Fix wrong parameter order for qgroup events
[BUG]
For btrfs:qgroup_meta_reserve event, the trace event can output garbage:
qgroup_meta_reserve: 9c7f6acc-b342-4037-bc47-7f6e4d2232d7: refroot=5(FS_TREE) type=DATA diff=2
The diff should always be alinged to sector size (4k), so there is
definitely something wrong.
[CAUSE]
For the wrong @diff, it's caused by wrong parameter order.
The correct parameters are:
struct btrfs_root, s64 diff, int type.
However the parameters used are:
struct btrfs_root, int type, s64 diff.
Fixes:
|
||
Qu Wenruo
|
8702ba9396 |
btrfs: qgroup: Always free PREALLOC META reserve in btrfs_delalloc_release_extents()
[Background] Btrfs qgroup uses two types of reserved space for METADATA space, PERTRANS and PREALLOC. PERTRANS is metadata space reserved for each transaction started by btrfs_start_transaction(). While PREALLOC is for delalloc, where we reserve space before joining a transaction, and finally it will be converted to PERTRANS after the writeback is done. [Inconsistency] However there is inconsistency in how we handle PREALLOC metadata space. The most obvious one is: In btrfs_buffered_write(): btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true); We always free qgroup PREALLOC meta space. While in btrfs_truncate_block(): btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); We only free qgroup PREALLOC meta space when something went wrong. [The Correct Behavior] The correct behavior should be the one in btrfs_buffered_write(), we should always free PREALLOC metadata space. The reason is, the btrfs_delalloc_* mechanism works by: - Reserve metadata first, even it's not necessary In btrfs_delalloc_reserve_metadata() - Free the unused metadata space Normally in: btrfs_delalloc_release_extents() |- btrfs_inode_rsv_release() Here we do calculation on whether we should release or not. E.g. for 64K buffered write, the metadata rsv works like: /* The first page */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=0 total: num_bytes=calc_inode_reservations() /* The first page caused one outstanding extent, thus needs metadata rsv */ /* The 2nd page */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=calc_inode_reservations() total: not changed /* The 2nd page doesn't cause new outstanding extent, needs no new meta rsv, so we free what we have reserved */ /* The 3rd~16th pages */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=calc_inode_reservations() total: not changed (still space for one outstanding extent) This means, if btrfs_delalloc_release_extents() determines to free some space, then those space should be freed NOW. So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other than btrfs_qgroup_convert_reserved_meta(). The good news is: - The callers are not that hot The hottest caller is in btrfs_buffered_write(), which is already fixed by commit |
||
David Sterba
|
80ed4548d0 |
btrfs: don't needlessly create extent-refs kernel thread
The patch |
||
Qu Wenruo
|
4b654acdae |
btrfs: block-group: Fix a memory leak due to missing btrfs_put_block_group()
In btrfs_read_block_groups(), if we have an invalid block group which
has mixed type (DATA|METADATA) while the fs doesn't have MIXED_GROUPS
feature, we error out without freeing the block group cache.
This patch will add the missing btrfs_put_block_group() to prevent
memory leak.
Note for stable backports: the file to patch in versions <= 5.3 is
fs/btrfs/extent-tree.c
Fixes:
|
||
Filipe Manana
|
44db1216ef |
Btrfs: add missing extents release on file extent cluster relocation error
If we error out when finding a page at relocate_file_extent_cluster(), we
need to release the outstanding extents counter on the relocation inode,
set by the previous call to btrfs_delalloc_reserve_metadata(), otherwise
the inode's block reserve size can never decrease to zero and metadata
space is leaked. Therefore add a call to btrfs_delalloc_release_extents()
in case we can't find the target page.
Fixes:
|
||
Linus Torvalds
|
f8779876d4 |
for-5.4-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl2fQkoACgkQxWXV+ddt WDsXgA/+OpORcroqswa5V/AB5NgSMv08QfBtL7en7cUA2cGbrTt0lAoixIesCeGA 7y4umlx7zWDhrG0NFv8E21xxkMzK72/YQnN0C6ZwRCi+ZbPSDlpMCwSNV9b6oVt4 t9mJQ2kNZ80wj9W7jtoyiiWZ2OBccWywKBYr+BXybha5BliSd1XbpWMv90lODQHc 1oH1FOphPAf+nSEtW4g0BV8UHy1n1+7TqjEHDilj0TuHlO0MHsR2FQcsRnMBv5H/ CcEH3+870pUOjvm/l1OAdIrzrnH6UsXKHnOmJpYZIAQdG4xtHq/d6O9sfQMZK/Af VMXuju558kGOvrYdgffYa0HuW3P6c8q5BeEtGAZwjGsQS5GxmW63et/x+HIEl4RU 4SWMfD592GK1/yQn31NWGav7Olkr4L0Eh9iqfKk2nWayTV+pqs8NgkGumkoNB66n WJs2m2WwKvZzj1Ys9ilRzo17qt2U/m4eLQtbut3m5eYCpzvo38PDrqOVqKTZG/dc nG1JBJNk+yjV+RkOO0gnQ8/zzooEGvMhVIx5iq52tWjvxnvOGSVv9QAAkKrbMoOX kn/b3heL57Z+kilUU3Zd0GvVif+awIgOj+PmAevR+w3MLoJ2gLfWb7qcONdHyFPk jK7rsuP737fyHpZ1tvJyfTt4Lk/u1UbApKrO4QIku1r9IJmmu20= =zpDj -----END PGP SIGNATURE----- Merge tag 'for-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more stabitly fixes, one build warning fix. - fix inode allocation under NOFS context - fix leak in fiemap due to concurrent append writes - fix log-root tree updates - fix balance convert of single profile on 32bit architectures - silence false positive warning on old GCCs (code moved in rc1)" * tag 'for-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: silence maybe-uninitialized warning in clone_range btrfs: fix uninitialized ret in ref-verify btrfs: allocate new inode in NOFS context btrfs: fix balance convert to single on 32-bit host CPUs btrfs: fix incorrect updating of log root tree Btrfs: fix memory leak due to concurrent append writes with fiemap |
||
Austin Kim
|
431d39887d |
btrfs: silence maybe-uninitialized warning in clone_range
GCC throws warning message as below: ‘clone_src_i_size’ may be used uninitialized in this function [-Wmaybe-uninitialized] #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) ^ fs/btrfs/send.c:5088:6: note: ‘clone_src_i_size’ was declared here u64 clone_src_i_size; ^ The clone_src_i_size is only used as call-by-reference in a call to get_inode_info(). Silence the warning by initializing clone_src_i_size to 0. Note that the warning is a false positive and reported by older versions of GCC (eg. 7.x) but not eg 9.x. As there have been numerous people, the patch is applied. Setting clone_src_i_size to 0 does not otherwise make sense and would not do any action in case the code changes in the future. Signed-off-by: Austin Kim <austindh.kim@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
c5f4987e86 |
btrfs: fix uninitialized ret in ref-verify
Coverity caught a case where we could return with a uninitialized value
in ret in process_leaf. This is actually pretty likely because we could
very easily run into a block group item key and have a garbage value in
ret and think there was an errror. Fix this by initializing ret to 0.
Reported-by: Colin Ian King <colin.king@canonical.com>
Fixes:
|
||
Josef Bacik
|
11a19a9087 |
btrfs: allocate new inode in NOFS context
A user reported a lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.2.11-gentoo #2 Not tainted
------------------------------------------------------
kswapd0/711 is trying to acquire lock:
000000007777a663 (sb_internal){.+.+}, at: start_transaction+0x3a8/0x500
but task is already holding lock:
000000000ba86300 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x0/0x30
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (fs_reclaim){+.+.}:
kmem_cache_alloc+0x1f/0x1c0
btrfs_alloc_inode+0x1f/0x260
alloc_inode+0x16/0xa0
new_inode+0xe/0xb0
btrfs_new_inode+0x70/0x610
btrfs_symlink+0xd0/0x420
vfs_symlink+0x9c/0x100
do_symlinkat+0x66/0xe0
do_syscall_64+0x55/0x1c0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (sb_internal){.+.+}:
__sb_start_write+0xf6/0x150
start_transaction+0x3a8/0x500
btrfs_commit_inode_delayed_inode+0x59/0x110
btrfs_evict_inode+0x19e/0x4c0
evict+0xbc/0x1f0
inode_lru_isolate+0x113/0x190
__list_lru_walk_one.isra.4+0x5c/0x100
list_lru_walk_one+0x32/0x50
prune_icache_sb+0x36/0x80
super_cache_scan+0x14a/0x1d0
do_shrink_slab+0x131/0x320
shrink_node+0xf7/0x380
balance_pgdat+0x2d5/0x640
kswapd+0x2ba/0x5e0
kthread+0x147/0x160
ret_from_fork+0x24/0x30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
lock(sb_internal);
lock(fs_reclaim);
lock(sb_internal);
*** DEADLOCK ***
3 locks held by kswapd0/711:
#0: 000000000ba86300 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x0/0x30
#1: 000000004a5100f8 (shrinker_rwsem){++++}, at: shrink_node+0x9a/0x380
#2: 00000000f956fa46 (&type->s_umount_key#30){++++}, at: super_cache_scan+0x35/0x1d0
stack backtrace:
CPU: 7 PID: 711 Comm: kswapd0 Not tainted 5.2.11-gentoo #2
Hardware name: Dell Inc. Precision Tower 3620/0MWYPT, BIOS 2.4.2 09/29/2017
Call Trace:
dump_stack+0x85/0xc7
print_circular_bug.cold.40+0x1d9/0x235
__lock_acquire+0x18b1/0x1f00
lock_acquire+0xa6/0x170
? start_transaction+0x3a8/0x500
__sb_start_write+0xf6/0x150
? start_transaction+0x3a8/0x500
start_transaction+0x3a8/0x500
btrfs_commit_inode_delayed_inode+0x59/0x110
btrfs_evict_inode+0x19e/0x4c0
? var_wake_function+0x20/0x20
evict+0xbc/0x1f0
inode_lru_isolate+0x113/0x190
? discard_new_inode+0xc0/0xc0
__list_lru_walk_one.isra.4+0x5c/0x100
? discard_new_inode+0xc0/0xc0
list_lru_walk_one+0x32/0x50
prune_icache_sb+0x36/0x80
super_cache_scan+0x14a/0x1d0
do_shrink_slab+0x131/0x320
shrink_node+0xf7/0x380
balance_pgdat+0x2d5/0x640
kswapd+0x2ba/0x5e0
? __wake_up_common_lock+0x90/0x90
kthread+0x147/0x160
? balance_pgdat+0x640/0x640
? __kthread_create_on_node+0x160/0x160
ret_from_fork+0x24/0x30
This is because btrfs_new_inode() calls new_inode() under the
transaction. We could probably move the new_inode() outside of this but
for now just wrap it in memalloc_nofs_save().
Reported-by: Zdenek Sojka <zsojka@seznam.cz>
Fixes:
|
||
Zygo Blaxell
|
7a54789074 |
btrfs: fix balance convert to single on 32-bit host CPUs
Currently, the command:
btrfs balance start -dconvert=single,soft .
on a Raspberry Pi produces the following kernel message:
BTRFS error (device mmcblk0p2): balance: invalid convert data profile single
This fails because we use is_power_of_2(unsigned long) to validate
the new data profile, the constant for 'single' profile uses bit 48,
and there are only 32 bits in a long on ARM.
Fix by open-coding the check using u64 variables.
Tested by completing the original balance command on several Raspberry
Pis.
Fixes:
|
||
Josef Bacik
|
4203e96894 |
btrfs: fix incorrect updating of log root tree
We've historically had reports of being unable to mount file systems because the tree log root couldn't be read. Usually this is the "parent transid failure", but could be any of the related errors, including "fsid mismatch" or "bad tree block", depending on which block got allocated. The modification of the individual log root items are serialized on the per-log root root_mutex. This means that any modification to the per-subvol log root_item is completely protected. However we update the root item in the log root tree outside of the log root tree log_mutex. We do this in order to allow multiple subvolumes to be updated in each log transaction. This is problematic however because when we are writing the log root tree out we update the super block with the _current_ log root node information. Since these two operations happen independently of each other, you can end up updating the log root tree in between writing out the dirty blocks and setting the super block to point at the current root. This means we'll point at the new root node that hasn't been written out, instead of the one we should be pointing at. Thus whatever garbage or old block we end up pointing at complains when we mount the file system later and try to replay the log. Fix this by copying the log's root item into a local root item copy. Then once we're safely under the log_root_tree->log_mutex we update the root item in the log_root_tree. This way we do not modify the log_root_tree while we're committing it, fixing the problem. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
c67d970f0e |
Btrfs: fix memory leak due to concurrent append writes with fiemap
When we have a buffered write that starts at an offset greater than or equals to the file's size happening concurrently with a full ranged fiemap, we can end up leaking an extent state structure. Suppose we have a file with a size of 1Mb, and before the buffered write and fiemap are performed, it has a single extent state in its io tree representing the range from 0 to 1Mb, with the EXTENT_DELALLOC bit set. The following sequence diagram shows how the memory leak happens if a fiemap a buffered write, starting at offset 1Mb and with a length of 4Kb, are performed concurrently. CPU 1 CPU 2 extent_fiemap() --> it's a full ranged fiemap range from 0 to LLONG_MAX - 1 (9223372036854775807) --> locks range in the inode's io tree --> after this we have 2 extent states in the io tree: --> 1 for range [0, 1Mb[ with the bits EXTENT_LOCKED and EXTENT_DELALLOC_BITS set --> 1 for the range [1Mb, LLONG_MAX[ with the EXTENT_LOCKED bit set --> start buffered write at offset 1Mb with a length of 4Kb btrfs_file_write_iter() btrfs_buffered_write() --> cached_state is NULL lock_and_cleanup_extent_if_need() --> returns 0 and does not lock range because it starts at current i_size / eof --> cached_state remains NULL btrfs_dirty_pages() btrfs_set_extent_delalloc() (...) __set_extent_bit() --> splits extent state for range [1Mb, LLONG_MAX[ and now we have 2 extent states: --> one for the range [1Mb, 1Mb + 4Kb[ with EXTENT_LOCKED set --> another one for the range [1Mb + 4Kb, LLONG_MAX[ with EXTENT_LOCKED set as well --> sets EXTENT_DELALLOC on the extent state for the range [1Mb, 1Mb + 4Kb[ --> caches extent state [1Mb, 1Mb + 4Kb[ into @cached_state because it has the bit EXTENT_LOCKED set --> btrfs_buffered_write() ends up with a non-NULL cached_state and never calls anything to release its reference on it, resulting in a memory leak Fix this by calling free_extent_state() on cached_state if the range was not locked by lock_and_cleanup_extent_if_need(). The same issue can happen if anything else other than fiemap locks a range that covers eof and beyond. This could be triggered, sporadically, by test case generic/561 from the fstests suite, which makes duperemove run concurrently with fsstress, and duperemove does plenty of calls to fiemap. When CONFIG_BTRFS_DEBUG is set the leak is reported in dmesg/syslog when removing the btrfs module with a message like the following: [77100.039461] BTRFS: state leak: start 6574080 end 6582271 state 16402 in tree 0 refs 1 Otherwise (CONFIG_BTRFS_DEBUG not set) detectable with kmemleak. CC: stable@vger.kernel.org # 4.16+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
bb48a59135 |
for-5.4-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl2SDbMACgkQxWXV+ddt WDsUhw/9HcRsT6SlrwA2R5leHxCR5UMwT2Zmbxpfft37ANF0SC1UINHBfnmquM97 xX6fdRSR9RUjF9DrdLPfLBnJDQ/MnHl1ruIVBFhJm6cJ9TJwf9E0TiJBQt+08JWg vy5hZBWvsPWWRBJ94XPMe4LtakK/isW4Cz5W9AdrC2Siqw69j6eZzms2AnIjyBjA BoKg4se2Ay2rMxLZWXIOj9374PU+N1cnRnqgh77ZxLku5WdCzrDfB5safE7UmoTG /MWJuuIgzOk0iQpQORRtEZDS1dNe5KT9m4xXkUbrZbQROwqnXrT1SVIsuqNAvlPk uaymR1W8nshepzpMlSxVydLv/mKWZNUGnDxOJ23ooow8Yd7ndppXEtFuGwCYqIFc xQqxuTLREvJ9+jpSv11bmDpk/ULRqpV+2PjUqGaWlGwFArJ+qFRLVGYx31eXmDPj t2mrPOcXGzY0pKtIpbkuUGleY/jeI+BNsvD4+QPs+jnp0nmfvH0/Rmp7grGqx2FI rQM8Gn4a5i3nuEDWLp8nN2wcKC3ePwy96Vp2tqfsl6TVTPx4EFzGLkWogHR2yiqI 0LAj8YWFmWuChSv71wYOjX79CppjcbNwOakSwtDjV30jkwoh2f/0D3OwOpua2xe8 75KQMaSB0kesGZz7ZkL1kMqA5m5w7MGZom6XZoBJ+bq2HPLB2jo= =2UM7 -----END PGP SIGNATURE----- Merge tag 'for-5.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A bunch of fixes that accumulated in recent weeks, mostly material for stable. Summary: - fix for regression from 5.3 that prevents to use balance convert with single profile - qgroup fixes: rescan race, accounting leak with multiple writers, potential leak after io failure recovery - fix for use after free in relocation (reported by KASAN) - other error handling fixups" * tag 'for-5.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: qgroup: Fix reserved data space leak if we have multiple reserve calls btrfs: qgroup: Fix the wrong target io_tree when freeing reserved data space btrfs: Fix a regression which we can't convert to SINGLE profile btrfs: relocation: fix use-after-free on dead relocation roots Btrfs: fix race setting up and completing qgroup rescan workers Btrfs: fix missing error return if writeback for extent buffer never started btrfs: adjust dirty_metadata_bytes after writeback failure of extent buffer Btrfs: fix selftests failure due to uninitialized i_mode in test inodes |
||
Qu Wenruo
|
d4e204948f |
btrfs: qgroup: Fix reserved data space leak if we have multiple reserve calls
[BUG]
The following script can cause btrfs qgroup data space leak:
mkfs.btrfs -f $dev
mount $dev -o nospace_cache $mnt
btrfs subv create $mnt/subv
btrfs quota en $mnt
btrfs quota rescan -w $mnt
btrfs qgroup limit 128m $mnt/subv
for (( i = 0; i < 3; i++)); do
# Create 3 64M holes for latter fallocate to fail
truncate -s 192m $mnt/subv/file
xfs_io -c "pwrite 64m 4k" $mnt/subv/file > /dev/null
xfs_io -c "pwrite 128m 4k" $mnt/subv/file > /dev/null
sync
# it's supposed to fail, and each failure will leak at least 64M
# data space
xfs_io -f -c "falloc 0 192m" $mnt/subv/file &> /dev/null
rm $mnt/subv/file
sync
done
# Shouldn't fail after we removed the file
xfs_io -f -c "falloc 0 64m" $mnt/subv/file
[CAUSE]
Btrfs qgroup data reserve code allow multiple reservations to happen on
a single extent_changeset:
E.g:
btrfs_qgroup_reserve_data(inode, &data_reserved, 0, SZ_1M);
btrfs_qgroup_reserve_data(inode, &data_reserved, SZ_1M, SZ_2M);
btrfs_qgroup_reserve_data(inode, &data_reserved, 0, SZ_4M);
Btrfs qgroup code has its internal tracking to make sure we don't
double-reserve in above example.
The only pattern utilizing this feature is in the main while loop of
btrfs_fallocate() function.
However btrfs_qgroup_reserve_data()'s error handling has a bug in that
on error it clears all ranges in the io_tree with EXTENT_QGROUP_RESERVED
flag but doesn't free previously reserved bytes.
This bug has a two fold effect:
- Clearing EXTENT_QGROUP_RESERVED ranges
This is the correct behavior, but it prevents
btrfs_qgroup_check_reserved_leak() to catch the leakage as the
detector is purely EXTENT_QGROUP_RESERVED flag based.
- Leak the previously reserved data bytes.
The bug manifests when N calls to btrfs_qgroup_reserve_data are made and
the last one fails, leaking space reserved in the previous ones.
[FIX]
Also free previously reserved data bytes when btrfs_qgroup_reserve_data
fails.
Fixes:
|
||
Qu Wenruo
|
bab32fc069 |
btrfs: qgroup: Fix the wrong target io_tree when freeing reserved data space
[BUG]
Under the following case with qgroup enabled, if some error happened
after we have reserved delalloc space, then in error handling path, we
could cause qgroup data space leakage:
From btrfs_truncate_block() in inode.c:
ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
block_start, blocksize);
if (ret)
goto out;
again:
page = find_or_create_page(mapping, index, mask);
if (!page) {
btrfs_delalloc_release_space(inode, data_reserved,
block_start, blocksize, true);
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ret = -ENOMEM;
goto out;
}
[CAUSE]
In the above case, btrfs_delalloc_reserve_space() will call
btrfs_qgroup_reserve_data() and mark the io_tree range with
EXTENT_QGROUP_RESERVED flag.
In the error handling path, we have the following call stack:
btrfs_delalloc_release_space()
|- btrfs_free_reserved_data_space()
|- btrsf_qgroup_free_data()
|- __btrfs_qgroup_release_data(reserved=@reserved, free=1)
|- qgroup_free_reserved_data(reserved=@reserved)
|- clear_record_extent_bits();
|- freed += changeset.bytes_changed;
However due to a completion bug, qgroup_free_reserved_data() will clear
EXTENT_QGROUP_RESERVED flag in BTRFS_I(inode)->io_failure_tree, other
than the correct BTRFS_I(inode)->io_tree.
Since io_failure_tree is never marked with that flag,
btrfs_qgroup_free_data() will not free any data reserved space at all,
causing a leakage.
This type of error handling can only be triggered by errors outside of
qgroup code. So EDQUOT error from qgroup can't trigger it.
[FIX]
Fix the wrong target io_tree.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Fixes:
|
||
Qu Wenruo
|
fab2735955 |
btrfs: Fix a regression which we can't convert to SINGLE profile
[BUG] With v5.3 kernel, we can't convert to SINGLE profile: # btrfs balance start -f -dconvert=single $mnt ERROR: error during balancing '/mnt/btrfs': Invalid argument # dmesg -t | tail validate_convert_profile: data profile=0x1000000000000 allowed=0x20 is_valid=1 final=0x1000000000000 ret=1 BTRFS error (device dm-3): balance: invalid convert data profile single [CAUSE] With the extra debug output added, it shows that the @allowed bit is lacking the special in-memory only SINGLE profile bit. Thus we fail at that (profile & ~allowed) check. This regression is caused by commit |
||
Qu Wenruo
|
1fac4a5437 |
btrfs: relocation: fix use-after-free on dead relocation roots
[BUG]
One user reported a reproducible KASAN report about use-after-free:
BTRFS info (device sdi1): balance: start -dvrange=1256811659264..1256811659265
BTRFS info (device sdi1): relocating block group 1256811659264 flags data|raid0
==================================================================
BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x2cd/0x340 [btrfs]
Write of size 8 at addr ffff88856f671710 by task kworker/u24:10/261579
CPU: 2 PID: 261579 Comm: kworker/u24:10 Tainted: P OE 5.2.11-arch1-1-kasan #4
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./X99 Extreme4, BIOS P3.80 04/06/2018
Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
Call Trace:
dump_stack+0x7b/0xba
print_address_description+0x6c/0x22e
? btrfs_init_reloc_root+0x2cd/0x340 [btrfs]
__kasan_report.cold+0x1b/0x3b
? btrfs_init_reloc_root+0x2cd/0x340 [btrfs]
kasan_report+0x12/0x17
__asan_report_store8_noabort+0x17/0x20
btrfs_init_reloc_root+0x2cd/0x340 [btrfs]
record_root_in_trans+0x2a0/0x370 [btrfs]
btrfs_record_root_in_trans+0xf4/0x140 [btrfs]
start_transaction+0x1ab/0xe90 [btrfs]
btrfs_join_transaction+0x1d/0x20 [btrfs]
btrfs_finish_ordered_io+0x7bf/0x18a0 [btrfs]
? lock_repin_lock+0x400/0x400
? __kmem_cache_shutdown.cold+0x140/0x1ad
? btrfs_unlink_subvol+0x9b0/0x9b0 [btrfs]
finish_ordered_fn+0x15/0x20 [btrfs]
normal_work_helper+0x1bd/0xca0 [btrfs]
? process_one_work+0x819/0x1720
? kasan_check_read+0x11/0x20
btrfs_endio_write_helper+0x12/0x20 [btrfs]
process_one_work+0x8c9/0x1720
? pwq_dec_nr_in_flight+0x2f0/0x2f0
? worker_thread+0x1d9/0x1030
worker_thread+0x98/0x1030
kthread+0x2bb/0x3b0
? process_one_work+0x1720/0x1720
? kthread_park+0x120/0x120
ret_from_fork+0x35/0x40
Allocated by task 369692:
__kasan_kmalloc.part.0+0x44/0xc0
__kasan_kmalloc.constprop.0+0xba/0xc0
kasan_kmalloc+0x9/0x10
kmem_cache_alloc_trace+0x138/0x260
btrfs_read_tree_root+0x92/0x360 [btrfs]
btrfs_read_fs_root+0x10/0xb0 [btrfs]
create_reloc_root+0x47d/0xa10 [btrfs]
btrfs_init_reloc_root+0x1e2/0x340 [btrfs]
record_root_in_trans+0x2a0/0x370 [btrfs]
btrfs_record_root_in_trans+0xf4/0x140 [btrfs]
start_transaction+0x1ab/0xe90 [btrfs]
btrfs_start_transaction+0x1e/0x20 [btrfs]
__btrfs_prealloc_file_range+0x1c2/0xa00 [btrfs]
btrfs_prealloc_file_range+0x13/0x20 [btrfs]
prealloc_file_extent_cluster+0x29f/0x570 [btrfs]
relocate_file_extent_cluster+0x193/0xc30 [btrfs]
relocate_data_extent+0x1f8/0x490 [btrfs]
relocate_block_group+0x600/0x1060 [btrfs]
btrfs_relocate_block_group+0x3a0/0xa00 [btrfs]
btrfs_relocate_chunk+0x9e/0x180 [btrfs]
btrfs_balance+0x14e4/0x2fc0 [btrfs]
btrfs_ioctl_balance+0x47f/0x640 [btrfs]
btrfs_ioctl+0x119d/0x8380 [btrfs]
do_vfs_ioctl+0x9f5/0x1060
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x73/0xb0
do_syscall_64+0xa5/0x370
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 369692:
__kasan_slab_free+0x14f/0x210
kasan_slab_free+0xe/0x10
kfree+0xd8/0x270
btrfs_drop_snapshot+0x154c/0x1eb0 [btrfs]
clean_dirty_subvols+0x227/0x340 [btrfs]
relocate_block_group+0x972/0x1060 [btrfs]
btrfs_relocate_block_group+0x3a0/0xa00 [btrfs]
btrfs_relocate_chunk+0x9e/0x180 [btrfs]
btrfs_balance+0x14e4/0x2fc0 [btrfs]
btrfs_ioctl_balance+0x47f/0x640 [btrfs]
btrfs_ioctl+0x119d/0x8380 [btrfs]
do_vfs_ioctl+0x9f5/0x1060
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x73/0xb0
do_syscall_64+0xa5/0x370
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The buggy address belongs to the object at ffff88856f671100
which belongs to the cache kmalloc-4k of size 4096
The buggy address is located 1552 bytes inside of
4096-byte region [ffff88856f671100, ffff88856f672100)
The buggy address belongs to the page:
page:ffffea0015bd9c00 refcount:1 mapcount:0 mapping:ffff88864400e600 index:0x0 compound_mapcount: 0
flags: 0x2ffff0000010200(slab|head)
raw: 02ffff0000010200 dead000000000100 dead000000000200 ffff88864400e600
raw: 0000000000000000 0000000000070007 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88856f671600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88856f671680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff88856f671700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88856f671780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88856f671800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
BTRFS info (device sdi1): 1 enospc errors during balance
BTRFS info (device sdi1): balance: ended with status: -28
[CAUSE]
The problem happens when finish_ordered_io() get called with balance
still running, while the reloc root of that subvolume is already dead.
(Tree is swap already done, but tree not yet deleted for possible qgroup
usage.)
That means root->reloc_root still exists, but that reloc_root can be
under btrfs_drop_snapshot(), thus we shouldn't access it.
The following race could cause the use-after-free problem:
CPU1 | CPU2
--------------------------------------------------------------------------
| relocate_block_group()
| |- unset_reloc_control(rc)
| |- btrfs_commit_transaction()
btrfs_finish_ordered_io() | |- clean_dirty_subvols()
|- btrfs_join_transaction() | |
|- record_root_in_trans() | |
|- btrfs_init_reloc_root() | |
|- if (root->reloc_root) | |
| | |- root->reloc_root = NULL
| | |- btrfs_drop_snapshot(reloc_root);
|- reloc_root->last_trans|
= trans->transid |
^^^^^^^^^^^^^^^^^^^^^^
Use after free
[FIX]
Fix it by the following modifications:
- Test if the root has dead reloc tree before accessing root->reloc_root
If the root has BTRFS_ROOT_DEAD_RELOC_TREE, then we don't need to
create or update root->reloc_tree
- Clear the BTRFS_ROOT_DEAD_RELOC_TREE flag until we have fully dropped
reloc tree
To co-operate with above modification, so as long as
BTRFS_ROOT_DEAD_RELOC_TREE is still set, we won't try to re-create
reloc tree at record_root_in_trans().
Reported-by: Cebtenzzre <cebtenzzre@gmail.com>
Fixes:
|
||
Filipe Manana
|
13fc1d271a |
Btrfs: fix race setting up and completing qgroup rescan workers
There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: |
||
Filipe Manana
|
0607eb1d45 |
Btrfs: fix missing error return if writeback for extent buffer never started
If lock_extent_buffer_for_io() fails, it returns a negative value, but its caller btree_write_cache_pages() ignores such error. This means that a call to flush_write_bio(), from lock_extent_buffer_for_io(), might have failed. We should make btree_write_cache_pages() notice such error values and stop immediatelly, making sure filemap_fdatawrite_range() returns an error to the transaction commit path. A failure from flush_write_bio() should also result in the endio callback end_bio_extent_buffer_writepage() being invoked, which sets the BTRFS_FS_*_ERR bits appropriately, so that there's no risk a transaction or log commit doesn't catch a writeback failure. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Dennis Zhou
|
eb5b64f142 |
btrfs: adjust dirty_metadata_bytes after writeback failure of extent buffer
Before, if a eb failed to write out, we would end up triggering a BUG_ON(). As of |
||
Filipe Manana
|
9f7fec0ba8 |
Btrfs: fix selftests failure due to uninitialized i_mode in test inodes
Some of the self tests create a test inode, setup some extents and then do
calls to btrfs_get_extent() to test that the corresponding extent maps
exist and are correct. However btrfs_get_extent(), since the 5.2 merge
window, now errors out when it finds a regular or prealloc extent for an
inode that does not correspond to a regular file (its ->i_mode is not
S_IFREG). This causes the self tests to fail sometimes, specially when
KASAN, slub_debug and page poisoning are enabled:
$ modprobe btrfs
modprobe: ERROR: could not insert 'btrfs': Invalid argument
$ dmesg
[ 9414.691648] Btrfs loaded, crc32c=crc32c-intel, debug=on, assert=on, integrity-checker=on, ref-verify=on
[ 9414.692655] BTRFS: selftest: sectorsize: 4096 nodesize: 4096
[ 9414.692658] BTRFS: selftest: running btrfs free space cache tests
[ 9414.692918] BTRFS: selftest: running extent only tests
[ 9414.693061] BTRFS: selftest: running bitmap only tests
[ 9414.693366] BTRFS: selftest: running bitmap and extent tests
[ 9414.696455] BTRFS: selftest: running space stealing from bitmap to extent tests
[ 9414.697131] BTRFS: selftest: running extent buffer operation tests
[ 9414.697133] BTRFS: selftest: running btrfs_split_item tests
[ 9414.697564] BTRFS: selftest: running extent I/O tests
[ 9414.697583] BTRFS: selftest: running find delalloc tests
[ 9415.081125] BTRFS: selftest: running find_first_clear_extent_bit test
[ 9415.081278] BTRFS: selftest: running extent buffer bitmap tests
[ 9415.124192] BTRFS: selftest: running inode tests
[ 9415.124195] BTRFS: selftest: running btrfs_get_extent tests
[ 9415.127909] BTRFS: selftest: running hole first btrfs_get_extent test
[ 9415.128343] BTRFS critical (device (efault)): regular/prealloc extent found for non-regular inode 256
[ 9415.131428] BTRFS: selftest: fs/btrfs/tests/inode-tests.c:904 expected a real extent, got 0
This happens because the test inodes are created without ever initializing
the i_mode field of the inode, and neither VFS's new_inode() nor the btrfs
callback btrfs_alloc_inode() initialize the i_mode. Initialization of the
i_mode is done through the various callbacks used by the VFS to create
new inodes (regular files, directories, symlinks, tmpfiles, etc), which
all call btrfs_new_inode() which in turn calls inode_init_owner(), which
sets the inode's i_mode. Since the tests only uses new_inode() to create
the test inodes, the i_mode was never initialized.
This always happens on a VM I used with kasan, slub_debug and many other
debug facilities enabled. It also happened to someone who reported this
on bugzilla (on a 5.3-rc).
Fix this by setting i_mode to S_IFREG at btrfs_new_test_inode().
Fixes:
|
||
Linus Torvalds
|
7d14df2d28 |
for-5.4-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl1/hCoACgkQxWXV+ddt WDs0lQ//flGLX4fvaY2vuWA26t1elITnIatyX8S+xP4pUsT1Tyy1egeGpR8Jku/7 sCOgUlEM2MNXqveOdkQqPJuFPp3B6tInz4S/fowtLlz4enp7uTXw2SFuS3bhOJ+b rpxK9VTc6QV3aipBCG31m8fnDiMaj2Hcspp0oej3V2mBhLUvzn69+P4eo7WN+46w r2F605+lfURauHE6WjM09HINx3NGSfPqdSA5rJvHSm0jlxhb9l3DJOX8cYkbf8lo MAbLDZmtiDiQAqRcsQPi6LZ1LKBkOYaeSnVvnXnH23FI04LBra3duk03qpvWCW2R c1tFnKF5vACCyBQp1z8WYP9GjjoW5WT33R2iXufgwXP6pkLpS/12qLLeXqO2K4p5 zINKrIkF3P+GHxiDsQZE3G9A4UpKWFHCxKdxyWIV8LQDEBrgE2Mo3NThEyRBbP+8 1dia4j+qFHvPTMNBvBCjCZMqDwbCe9H70WOXKGE36JITW2le91mn4qHl4SuWReUP IoHYDVcC/eBGRegc9X+bLJNjJYqo+XFo6u32/fUC5YVhngycQEi2vg1vv8fWQ7dB g/Ruo3Inrk8h5kPmrHvbOzGazgANIt5ELHrYMRMA5WSgaq29jtGt9oTnsrd+I88G aPJtwAZfLwdSjl/pwJw8atEPrf04DA2w+gO7rZ/AmeLshnGfOTc= =bY+a -----END PGP SIGNATURE----- Merge tag 'for-5.4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "This continues with work on code refactoring, sanity checks and space handling. There are some less user visible changes, nothing that would particularly stand out. User visible changes: - tree checker, more sanity checks of: - ROOT_ITEM (key, size, generation, level, alignment, flags) - EXTENT_ITEM and METADATA_ITEM checks (key, size, offset, alignment, refs) - tree block reference items - EXTENT_DATA_REF (key, hash, offset) - deprecate flag BTRFS_SUBVOL_CREATE_ASYNC for subvolume creation ioctl, scheduled removal in 5.7 - delete stale and unused UAPI definitions BTRFS_DEV_REPLACE_ITEM_STATE_* - improved export of debugging information available via existing sysfs directory structure - try harder to delete relations between qgroups and allow to delete orphan entries - remove unreliable space checks before relocation starts Core: - space handling: - improved ticket reservations and other high level logic in order to remove special cases - factor flushing infrastructure and use it for different contexts, allows to remove some special case handling - reduce metadata reservation when only updating inodes - reduce global block reserve minimum size (affects small filesystems) - improved overcommit logic wrt global block reserve - tests: - fix memory leaks in extent IO tree - catch all TRIM range Fixes: - fix ENOSPC errors, leading to transaction aborts, when cloning extents - several fixes for inode number cache (mount option inode_cache) - fix potential soft lockups during send when traversing large trees - fix unaligned access to space cache pages with SLUB debug on (PowerPC) Other: - refactoring public/private functions, moving to new or more appropriate files - defines converted to enums - error handling improvements - more assertions and comments - old code deletion" * tag 'for-5.4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (138 commits) btrfs: Relinquish CPUs in btrfs_compare_trees btrfs: Don't assign retval of btrfs_try_tree_write_lock/btrfs_tree_read_lock_atomic btrfs: create structure to encode checksum type and length btrfs: turn checksum type define into an enum btrfs: add enospc debug messages for ticket failure btrfs: do not account global reserve in can_overcommit btrfs: use btrfs_try_granting_tickets in update_global_rsv btrfs: always reserve our entire size for the global reserve btrfs: change the minimum global reserve size btrfs: rename btrfs_space_info_add_old_bytes btrfs: remove orig_bytes from reserve_ticket btrfs: fix may_commit_transaction to deal with no partial filling btrfs: rework wake_all_tickets btrfs: refactor the ticket wakeup code btrfs: stop partially refilling tickets when releasing space btrfs: add space reservation tracepoint for reserved bytes btrfs: roll tracepoint into btrfs_space_info_update helper btrfs: do not allow reservations if we have pending tickets btrfs: stop clearing EXTENT_DIRTY in inode I/O tree btrfs: treat RWF_{,D}SYNC writes as sync for CRCs ... |
||
Linus Torvalds
|
1b304a1ae4 |
for-5.3-rc8-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl16aTEACgkQxWXV+ddt WDvICg//cSn5w+g6EnxbrAZ6IYQJ4GA7lZSk2i6Dc/lI3BTfs7Wj0SPRKd01pBjT N+wbqoOgubsS1jkNfJsGCN80XzSa0tvyQdbezj5ncgSPXp4FRlT0K24EUQNPaqbg SsvvxAOCerVN3Yj2qrHNWIS5qZ5/8/NjLXca1DJ/OYmrkKfhe+Z6/b9EuKffPnco erMnaeSvQ27hYkkcdM0DGcWDoHHAQrefGNjQzp5vncJNN1F7+EGLbcH31UwApk1K /hvOQ6Q6SoR/NKbQu3AitrR9u7v9uhWP9jHJZT46q1m89CzI4S5FjK2wKZFjPE6r 0PGRqnpdaGAERaTo3s6jIqv/X2gzJkhhhzGMiPgPJCQbAH39f/fFGEX22TjG33Yq 2CiGSIPnmKQ7HE494YLuSyHD/89SutMMCkbF0sFBoKuTnu2HQMn9r5Pk6bEKtvIY iTk75/WTXR02qWCVhTyNDa9QnxewQGJC1d1KNQ6MwbzBiYyG9S/DDZnjLJPNx7DF KAAANCDdyPpraLcmw2sD/qd1o10HfQmn9z1L2v3YvJBfjMe76SQFCP5WwaJRcjOm c3ScAX9bXeXJgH+E98kWc7T6p49IPdMDGAtArQmtjO4V8pFRuqG+2Ibg6Za/y5XZ fkaS5UY+XIk3TUpEqkWKMPMigM9a3jgHskyMgdRLQfVnoOc6Z+k= =KXB8 -----END PGP SIGNATURE----- Merge tag 'for-5.3-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Here are two fixes, one of them urgent fixing a bug introduced in 5.2 and reported by many users. It took time to identify the root cause, catching the 5.3 release is higly desired also to push the fix to 5.2 stable tree. The bug is a mess up of return values after adding proper error handling and honestly the kind of bug that can cause sleeping disorders until it's caught. My appologies to everybody who was affected. Summary of what could happen: 1) either a hang when committing a transaction, if this happens there's no risk of corruption, still the hang is very inconvenient and can't be resolved without a reboot 2) writeback for some btree nodes may never be started and we end up committing a transaction without noticing that, this is really serious and that will lead to the "parent transid verify failed" messages" * tag 'for-5.3-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix unwritten extent buffers and hangs on future writeback attempts Btrfs: fix assertion failure during fsync and use of stale transaction |
||
Filipe Manana
|
18dfa7117a |
Btrfs: fix unwritten extent buffers and hangs on future writeback attempts
The lock_extent_buffer_io() returns 1 to the caller to tell it everything went fine and the callers needs to start writeback for the extent buffer (submit a bio, etc), 0 to tell the caller everything went fine but it does not need to start writeback for the extent buffer, and a negative value if some error happened. When it's about to return 1 it tries to lock all pages, and if a try lock on a page fails, and we didn't flush any existing bio in our "epd", it calls flush_write_bio(epd) and overwrites the return value of 1 to 0 or an error. The page might have been locked elsewhere, not with the goal of starting writeback of the extent buffer, and even by some code other than btrfs, like page migration for example, so it does not mean the writeback of the extent buffer was already started by some other task, so returning a 0 tells the caller (btree_write_cache_pages()) to not start writeback for the extent buffer. Note that epd might currently have either no bio, so flush_write_bio() returns 0 (success) or it might have a bio for another extent buffer with a lower index (logical address). Since we return 0 with the EXTENT_BUFFER_WRITEBACK bit set on the extent buffer and writeback is never started for the extent buffer, future attempts to writeback the extent buffer will hang forever waiting on that bit to be cleared, since it can only be cleared after writeback completes. Such hang is reported with a trace like the following: [49887.347053] INFO: task btrfs-transacti:1752 blocked for more than 122 seconds. [49887.347059] Not tainted 5.2.13-gentoo #2 [49887.347060] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [49887.347062] btrfs-transacti D 0 1752 2 0x80004000 [49887.347064] Call Trace: [49887.347069] ? __schedule+0x265/0x830 [49887.347071] ? bit_wait+0x50/0x50 [49887.347072] ? bit_wait+0x50/0x50 [49887.347074] schedule+0x24/0x90 [49887.347075] io_schedule+0x3c/0x60 [49887.347077] bit_wait_io+0x8/0x50 [49887.347079] __wait_on_bit+0x6c/0x80 [49887.347081] ? __lock_release.isra.29+0x155/0x2d0 [49887.347083] out_of_line_wait_on_bit+0x7b/0x80 [49887.347084] ? var_wake_function+0x20/0x20 [49887.347087] lock_extent_buffer_for_io+0x28c/0x390 [49887.347089] btree_write_cache_pages+0x18e/0x340 [49887.347091] do_writepages+0x29/0xb0 [49887.347093] ? kmem_cache_free+0x132/0x160 [49887.347095] ? convert_extent_bit+0x544/0x680 [49887.347097] filemap_fdatawrite_range+0x70/0x90 [49887.347099] btrfs_write_marked_extents+0x53/0x120 [49887.347100] btrfs_write_and_wait_transaction.isra.4+0x38/0xa0 [49887.347102] btrfs_commit_transaction+0x6bb/0x990 [49887.347103] ? start_transaction+0x33e/0x500 [49887.347105] transaction_kthread+0x139/0x15c So fix this by not overwriting the return value (ret) with the result from flush_write_bio(). We also need to clear the EXTENT_BUFFER_WRITEBACK bit in case flush_write_bio() returns an error, otherwise it will hang any future attempts to writeback the extent buffer, and undo all work done before (set back EXTENT_BUFFER_DIRTY, etc). This is a regression introduced in the 5.2 kernel. Fixes: |
||
Filipe Manana
|
410f954cb1 |
Btrfs: fix assertion failure during fsync and use of stale transaction
Sometimes when fsync'ing a file we need to log that other inodes exist and when we need to do that we acquire a reference on the inodes and then drop that reference using iput() after logging them. That generally is not a problem except if we end up doing the final iput() (dropping the last reference) on the inode and that inode has a link count of 0, which can happen in a very short time window if the logging path gets a reference on the inode while it's being unlinked. In that case we end up getting the eviction callback, btrfs_evict_inode(), invoked through the iput() call chain which needs to drop all of the inode's items from its subvolume btree, and in order to do that, it needs to join a transaction at the helper function evict_refill_and_join(). However because the task previously started a transaction at the fsync handler, btrfs_sync_file(), it has current->journal_info already pointing to a transaction handle and therefore evict_refill_and_join() will get that transaction handle from btrfs_join_transaction(). From this point on, two different problems can happen: 1) evict_refill_and_join() will often change the transaction handle's block reserve (->block_rsv) and set its ->bytes_reserved field to a value greater than 0. If evict_refill_and_join() never commits the transaction, the eviction handler ends up decreasing the reference count (->use_count) of the transaction handle through the call to btrfs_end_transaction(), and after that point we have a transaction handle with a NULL ->block_rsv (which is the value prior to the transaction join from evict_refill_and_join()) and a ->bytes_reserved value greater than 0. If after the eviction/iput completes the inode logging path hits an error or it decides that it must fallback to a transaction commit, the btrfs fsync handle, btrfs_sync_file(), gets a non-zero value from btrfs_log_dentry_safe(), and because of that non-zero value it tries to commit the transaction using a handle with a NULL ->block_rsv and a non-zero ->bytes_reserved value. This makes the transaction commit hit an assertion failure at btrfs_trans_release_metadata() because ->bytes_reserved is not zero but the ->block_rsv is NULL. The produced stack trace for that is like the following: [192922.917158] assertion failed: !trans->bytes_reserved, file: fs/btrfs/transaction.c, line: 816 [192922.917553] ------------[ cut here ]------------ [192922.917922] kernel BUG at fs/btrfs/ctree.h:3532! [192922.918310] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI [192922.918666] CPU: 2 PID: 883 Comm: fsstress Tainted: G W 5.1.4-btrfs-next-47 #1 [192922.919035] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [192922.919801] RIP: 0010:assfail.constprop.25+0x18/0x1a [btrfs] (...) [192922.920925] RSP: 0018:ffffaebdc8a27da8 EFLAGS: 00010286 [192922.921315] RAX: 0000000000000051 RBX: ffff95c9c16a41c0 RCX: 0000000000000000 [192922.921692] RDX: 0000000000000000 RSI: ffff95cab6b16838 RDI: ffff95cab6b16838 [192922.922066] RBP: ffff95c9c16a41c0 R08: 0000000000000000 R09: 0000000000000000 [192922.922442] R10: ffffaebdc8a27e70 R11: 0000000000000000 R12: ffff95ca731a0980 [192922.922820] R13: 0000000000000000 R14: ffff95ca84c73338 R15: ffff95ca731a0ea8 [192922.923200] FS: 00007f337eda4e80(0000) GS:ffff95cab6b00000(0000) knlGS:0000000000000000 [192922.923579] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [192922.923948] CR2: 00007f337edad000 CR3: 00000001e00f6002 CR4: 00000000003606e0 [192922.924329] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [192922.924711] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [192922.925105] Call Trace: [192922.925505] btrfs_trans_release_metadata+0x10c/0x170 [btrfs] [192922.925911] btrfs_commit_transaction+0x3e/0xaf0 [btrfs] [192922.926324] btrfs_sync_file+0x44c/0x490 [btrfs] [192922.926731] do_fsync+0x38/0x60 [192922.927138] __x64_sys_fdatasync+0x13/0x20 [192922.927543] do_syscall_64+0x60/0x1c0 [192922.927939] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) [192922.934077] ---[ end trace f00808b12068168f ]--- 2) If evict_refill_and_join() decides to commit the transaction, it will be able to do it, since the nested transaction join only increments the transaction handle's ->use_count reference counter and it does not prevent the transaction from getting committed. This means that after eviction completes, the fsync logging path will be using a transaction handle that refers to an already committed transaction. What happens when using such a stale transaction can be unpredictable, we are at least having a use-after-free on the transaction handle itself, since the transaction commit will call kmem_cache_free() against the handle regardless of its ->use_count value, or we can end up silently losing all the updates to the log tree after that iput() in the logging path, or using a transaction handle that in the meanwhile was allocated to another task for a new transaction, etc, pretty much unpredictable what can happen. In order to fix both of them, instead of using iput() during logging, use btrfs_add_delayed_iput(), so that the logging path of fsync never drops the last reference on an inode, that step is offloaded to a safe context (usually the cleaner kthread). The assertion failure issue was sporadically triggered by the test case generic/475 from fstests, which loads the dm error target while fsstress is running, which lead to fsync failing while logging inodes with -EIO errors and then trying later to commit the transaction, triggering the assertion failure. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
6af112b11a |
btrfs: Relinquish CPUs in btrfs_compare_trees
When doing any form of incremental send the parent and the child trees
need to be compared via btrfs_compare_trees. This can result in long
loop chains without ever relinquishing the CPU. This causes softlockup
detector to trigger when comparing trees with a lot of items. Example
report:
watchdog: BUG: soft lockup - CPU#0 stuck for 24s! [snapperd:16153]
CPU: 0 PID: 16153 Comm: snapperd Not tainted 5.2.9-1-default #1 openSUSE Tumbleweed (unreleased)
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : __ll_sc_arch_atomic_sub_return+0x14/0x20
lr : btrfs_release_extent_buffer_pages+0xe0/0x1e8 [btrfs]
sp : ffff00001273b7e0
Call trace:
__ll_sc_arch_atomic_sub_return+0x14/0x20
release_extent_buffer+0xdc/0x120 [btrfs]
free_extent_buffer.part.0+0xb0/0x118 [btrfs]
free_extent_buffer+0x24/0x30 [btrfs]
btrfs_release_path+0x4c/0xa0 [btrfs]
btrfs_free_path.part.0+0x20/0x40 [btrfs]
btrfs_free_path+0x24/0x30 [btrfs]
get_inode_info+0xa8/0xf8 [btrfs]
finish_inode_if_needed+0xe0/0x6d8 [btrfs]
changed_cb+0x9c/0x410 [btrfs]
btrfs_compare_trees+0x284/0x648 [btrfs]
send_subvol+0x33c/0x520 [btrfs]
btrfs_ioctl_send+0x8a0/0xaf0 [btrfs]
btrfs_ioctl+0x199c/0x2288 [btrfs]
do_vfs_ioctl+0x4b0/0x820
ksys_ioctl+0x84/0xb8
__arm64_sys_ioctl+0x28/0x38
el0_svc_common.constprop.0+0x7c/0x188
el0_svc_handler+0x34/0x90
el0_svc+0x8/0xc
Fix this by adding a call to cond_resched at the beginning of the main
loop in btrfs_compare_trees.
Fixes:
|
||
Nikolay Borisov
|
65e99c43e9 |
btrfs: Don't assign retval of btrfs_try_tree_write_lock/btrfs_tree_read_lock_atomic
Those function are simple boolean predicates there is no need to assign their return values to interim variables. Use them directly as predicates. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Johannes Thumshirn
|
af024ed2e0 |
btrfs: create structure to encode checksum type and length
Create a structure to encode the type and length for the known on-disk checksums. This makes it easier to add new checksums later. The structure and helpers are moved from ctree.h so they don't occupy space in all headers including ctree.h. This save some space in the final object. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |