Commit Graph

30 Commits

Author SHA1 Message Date
Darrick J. Wong
d5c88131db xfs: allow queued AG intents to drain before scrubbing
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain.  Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.

When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.

Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.

One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter.  A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata.  In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.

Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started.  As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count.  The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.

A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction.  When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it.  The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.

In the next patches we'll improve on this facility, but this patch
provides the basic functionality.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:58 -07:00
Darrick J. Wong
9b2e5a234c xfs: create traced helper to get extra perag references
There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code.  Btree cursor creation
and inode walks are good examples of this.  Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information.  This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:55 -07:00
Dave Chinner
3432ef6111 xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker
Now that the AG iteration code in the core allocation code has been
cleaned up, we can easily convert it to use a for_each_perag..()
variant to use active references and skip AGs that it can't get
active references on.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
76257a1587 xfs: introduce xfs_for_each_perag_wrap()
In several places we iterate every AG from a specific start agno and
wrap back to the first AG when we reach the end of the filesystem to
continue searching. We don't have a primitive for this iteration
yet, so add one for conversion of these algorithms to per-ag based
iteration.

The filestream AG select code is a mess, and this initially makes it
worse. The per-ag selection needs to be driven completely into the
filestream code to clean this up and it will be done in a future
patch that makes the filestream allocator use active per-ag
references correctly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
7ac2ff8bb3 xfs: perags need atomic operational state
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.

For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
c4d5660afb xfs: active perag reference counting
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.

To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.

Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
  and shrink transactions where high level active references to the
  AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
  memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
  started.

Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.

This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.

Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:42 +11:00
Darrick J. Wong
b65e08f83b xfs: create a predicate to verify per-AG extents
Create a predicate function to verify that a given agbno/blockcount pair
fit entirely within a single allocation group and don't suffer
mathematical overflows.  Refactor the existng open-coded logic; we're
going to add more calls to this function in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Dave Chinner
2fd26cc07e xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.

The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.

This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:46:43 +10:00
Dave Chinner
36029dee38 xfs: make is_log_ag() a first class helper
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:21 +10:00
Dave Chinner
2d6ca8321c xfs: Pre-calculate per-AG agino geometry
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

xfs_verify_agino_or_null() gets the same perag treatment.

xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.

Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1482185	 329588	    572	1812345	 1ba779	(TOTALS)
after	1481937	 329588	    572	1812097	 1ba681	(TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:10 +10:00
Dave Chinner
0800169e3e xfs: Pre-calculate per-AG agbno geometry
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).

Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.

Future commits will make similar changes for other per-ag geometry
validation functions.

Further:

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1483006	 329588	    572	1813166	 1baaae	(TOTALS)
after	1482185	 329588	    572	1812345	 1ba779	(TOTALS)

This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:02 +10:00
Dave Chinner
c6aee24814 xfs: make last AG grow/shrink perag centric
Because the perag must exist for these operations, look it up as
part of the common shrink operations and pass it instead of the
mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:09 +10:00
Eric Sandeen
29f11fce21 xfs: #ifdef out perag code for userspace
The xfs_perag structure and initialization is unused in userspace,
so #ifdef it out with __KERNEL__ to facilitate the xfsprogs sync
and build.

Signed-off-by: Eric Sandeen <esandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-11-10 09:37:38 -08:00
Brian Foster
892a666faf xfs: fix perag reference leak on iteration race with growfs
The for_each_perag*() set of macros are hacky in that some (i.e.
those based on sb_agcount) rely on the assumption that perag
iteration terminates naturally with a NULL perag at the specified
end_agno. Others allow for the final AG to have a valid perag and
require the calling function to clean up any potential leftover
xfs_perag reference on termination of the loop.

Aside from providing a subtly inconsistent interface, the former
variant is racy with growfs because growfs can create discoverable
post-eofs perags before the final superblock update that completes
the grow operation and increases sb_agcount. This leads to the
following assert failure (reproduced by xfs/104) in the perag free
path during unmount:

 XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/libxfs/xfs_ag.c, line: 195

This occurs because one of the many for_each_perag() loops in the
code that is expected to terminate with a NULL pag (and thus has no
post-loop xfs_perag_put() check) raced with a growfs and found a
non-NULL post-EOFS perag, but terminated naturally based on the
end_agno check without releasing the post-EOFS perag.

Rework the iteration logic to lift the agno check from the main for
loop conditional to the iteration helper function. The for loop now
purely terminates on a NULL pag and xfs_perag_next() avoids taking a
reference to any perag beyond end_agno in the first place.

Fixes: f250eedcf7 ("xfs: make for_each_perag... a first class citizen")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
8ed004eb9d xfs: terminate perag iteration reliably on agcount
The for_each_perag_from() iteration macro relies on sb_agcount to
process every perag currently within EOFS from a given starting
point. It's perfectly valid to have perag structures beyond
sb_agcount, however, such as if a growfs is in progress. If a perag
loop happens to race with growfs in this manner, it will actually
attempt to process the post-EOFS perag where ->pag_agno ==
sb_agcount. This is reproduced by xfs/104 and manifests as the
following assert failure in superblock write verifier context:

 XFS: Assertion failed: agno < mp->m_sb.sb_agcount, file: fs/xfs/libxfs/xfs_types.c, line: 22

Update the corresponding macro to only process perags that are
within the current sb_agcount.

Fixes: 58d43a7e32 ("xfs: pass perags around in fsmap data dev functions")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
f1788b5e5e xfs: rename the next_agno perag iteration variable
Rename the next_agno variable to be consistent across the several
iteration macros and shorten line length.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
bf2307b195 xfs: fold perag loop iteration logic into helper function
Fold the loop iteration logic into a helper in preparation for
further fixups. No functional change in this patch.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:12 -07:00
Darrick J. Wong
ffc18582ed xfs: clean up incore inode walk functions
This ambitious series aims to cleans up redundant inode walk code in
 xfs_icache.c, hide implementation details of the quotaoff dquot release
 code, and eliminates indirect function calls from incore inode walks.
 
 The first thing it does is to move all the code that quotaoff calls to
 release dquots from all incore inodes into xfs_icache.c.  Next, it
 separates the goal of an inode walk from the actual radix tree tags that
 may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
 Finally, we split the speculative preallocation (blockgc) and quotaoff
 dquot release code paths into separate functions so that we can keep the
 implementations cohesive.
 
 Christoph suggested last cycle that we 'simply' change quotaoff not to
 allow deactivating quota entirely, but as these cleanups are to enable
 one major change in behavior (deferred inode inactivation) I do not want
 to add a second behavior change (quotaoff) as a dependency.
 
 To be blunt: Additional cleanups are not in scope for this series.
 
 Next, I made two observations about incore inode radix tree walks --
 since there's a 1:1 mapping between the walk goal and the per-inode
 processing function passed in, we can use the goal to make a direct call
 to the processing function.  Furthermore, the only caller to supply a
 nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
 
 From that observation, I concluded that it's quite possible to remove
 two parameters from the xfs_inode_walk* function signatures -- the
 iter_flags, and the execute function pointer.  The middle of the series
 moves the INEW functionality into the one piece (quotaoff) that wants
 it, and removes the indirect calls.
 
 The final observation is that the inode reclaim walk loop is now almost
 the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
 the reclaim loop code into xfs_inode_walk.
 
 Lastly, refactor the per-ag radix tagging functions since there's
 duplicated code that can be consolidated.
 
 This series is a prerequisite for the next two patchsets, since deferred
 inode inactivation will add another inode radix tree tag and iterator
 function to xfs_inode_walk.
 
 v2: walk the vfs inode list when running quotaoff instead of the radix
     tree, then rework the (now completely internal) inode walk function
     to take the tag as the main parameter.
 v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
     radix tree tagging functions
 v4: rebase to 5.13-rc4
 v5: combine with the quotaoff patchset, reorder functions to minimize
     forward declarations, split inode walk goals from radix tree tags
     to reduce conceptual confusion
 v6: start moving the inode cache code towards the xfs_icwalk prefix
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK
 tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X
 wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7
 xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ
 Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j
 eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi
 9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA
 mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56
 XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM
 AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h
 GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8
 FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4=
 =Rxdn
 -----END PGP SIGNATURE-----

Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2

xfs: clean up incore inode walk functions

This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.

The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c.  Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.

Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.

To be blunt: Additional cleanups are not in scope for this series.

Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function.  Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.

From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer.  The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.

The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
the reclaim loop code into xfs_inode_walk.

Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.

This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.

v2: walk the vfs inode list when running quotaoff instead of the radix
    tree, then rework the (now completely internal) inode walk function
    to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
    radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
    forward declarations, split inode walk goals from radix tree tags
    to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix

* tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: refactor per-AG inode tagging functions
  xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag
  xfs: pass struct xfs_eofblocks to the inode scan callback
  xfs: fix radix tree tag signs
  xfs: make the icwalk processing functions clean up the grab state
  xfs: clean up inode state flag tests in xfs_blockgc_igrab
  xfs: remove indirect calls from xfs_inode_walk{,_ag}
  xfs: remove iter_flags parameter from xfs_inode_walk_*
  xfs: move xfs_inew_wait call into xfs_dqrele_inode
  xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab
  xfs: pass the goal of the incore inode walk to xfs_inode_walk()
  xfs: rename xfs_inode_walk functions to xfs_icwalk
  xfs: move the inode walk functions further down
  xfs: detach inode dquots at the end of inactivation
  xfs: move the quotaoff dqrele inode walk into xfs_icache.c

[djwong: added variable names to function declarations while fixing
merge conflicts]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-08 09:26:44 -07:00
Dave Chinner
509201163f xfs: remove xfs_perag_t
Almost unused, gets rid of another typedef.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:51 +10:00
Dave Chinner
58d43a7e32 xfs: pass perags around in fsmap data dev functions
Needs a [from, to] ranged AG walk, and the perag to be stuffed into
the info structure for callouts to use.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
6f4118fc64 xfs: convert xfs_iwalk to use perag references
Rather than manually walking the ags and passing agnunbers around,
pass the perag for the AG we are currently working on around in the
iwalk structure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
f250eedcf7 xfs: make for_each_perag... a first class citizen
for_each_perag_tag() is defined in xfs_icache.c for local use.
Promote this to xfs_ag.h and define equivalent iteration functions
so that we can use them to iterate AGs instead to replace open coded
perag walks and perag lookups.

We also convert as many of the straight forward open coded AG walks
to use these iterators as possible. Anything that is not a direct
conversion to an iterator is ignored and will be updated in future
commits.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
07b6403a68 xfs: move perag structure and setup to libxfs/xfs_ag.[ch]
Move the xfs_perag infrastructure to the libxfs files that contain
all the per AG infrastructure. This helps set up for passing perags
around all the code instead of bare agnos with minimal extra
includes for existing files.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
9bbafc7191 xfs: move xfs_perag_get/put to xfs_ag.[ch]
They are AG functions, not superblock functions, so move them to the
appropriate location.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Gao Xiang
46141dc891 xfs: introduce xfs_ag_shrink_space()
This patch introduces a helper to shrink unused space in the last AG
by fixing up the freespace btree.

Also make sure that the per-AG reservation works under the new AG
size. If such per-AG reservation or extent allocation fails, roll
the transaction so the new transaction could cancel without any side
effects.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-03-25 16:47:52 -07:00
Darrick J. Wong
7cd5006bdb xfs: add a new ioctl to describe allocation group geometry
Add a new ioctl to describe an allocation group's geometry.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-04-14 18:15:57 -07:00
Dave Chinner
49dd56f26e xfs: factor the ag length extension code into libxfs
Growfs currently manually codes the extension of the last AG in a
filesytem during the growfs process. Factor that out of the growfs
code and move it into libxfs along with teh rest of the AG header
modification code.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-15 18:12:51 -07:00
Dave Chinner
b16817b66b xfs: move growfs core to libxfs
So it can be shared with userspace (e.g. mkfs) easily.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-15 18:12:51 -07:00
Christoph Hellwig
4fb6e8ade2 xfs: merge xfs_ag.h into xfs_format.h
More on-disk format consolidation.  A few declarations that weren't on-disk
format related move into better suitable spots.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:25:04 +11:00
Dave Chinner
84be0ffc90 libxfs: move header files
Move all the header files that are shared with userspace into
libxfs. This is done as one big chunk simpy to get it done quickly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25 14:57:36 +10:00