This patch addresses bugs found while testing punch hole
with the fsx test. The patch corrects the number of blocks
that are zeroed out while splitting an extent, and also corrects
the return value to return the number of blocks split out, instead
of the number of blocks zeroed out.
This patch has been tested in addition to the following patches:
[Ext4 punch hole v7]
[XFS Tests Punch Hole 1/1 v2] Add Punch Hole Testing to FSX
The test ran successfully for 24 hours.
Signed-off-by: Allison Henderson <achender@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If quota is not enabled when ext4_quota_off() is called, we must not
dereference quota file inode since it is NULL. Check properly for
this.
This fixes a bug in commit 21f976975c (ext4: remove unnecessary
[cm]time update of quota file), which was merged for 2.6.39-rc3.
Reported-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fix for a null pointer bug found while running punch hole tests
Signed-off-by: Allison Henderson <achender@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After taking care of all group init races, all that remains is to
remove alloc_semp from ext4_allocation_context and ext4_buddy structs.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After online resize which adds new groups, some of the groups
in a buddy page may be initialized and uptodate, while other
(new ones) may be uninitialized.
The indication for init of new block groups is when ext4_mb_init_cache()
is called with an uptodate buddy page. In this case, initialized groups
on that buddy page must be skipped when initializing the buddy cache.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The old routines ext4_mb_[get|put]_buddy_cache_lock(), which used
to take grp->alloc_sem for all groups on the buddy page have been
replaced with the routines ext4_mb_[get|put]_buddy_page_lock().
The new routines take both buddy and bitmap page locks to protect
against concurrent init of groups on the same buddy page.
The GROUP_NEED_INIT flag is tested again under page lock to check
if the group was initialized by another caller.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The old imlementation used to take grp->alloc_sem and set the
GROUP_NEED_INIT flag, so that the buddy cache would be reloaded.
The new implementation updates the buddy cache by freeing the added
blocks and making them available for use, so there is no need to
reload the buddy cache and there is no need to take grp->alloc_sem.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The block allocation code used to use jbd2_journal_get_undo_access as
a way to make changes that wouldn't show up until the commit took
place. The new multi-block allocation code has a its own way of
preventing newly freed blocks from getting reused until the commit
takes place (it avoids updating the buddy bitmaps until the commit is
done), so we don't need to use jbd2_journal_get_undo_access(), which
has extra overhead compared to jbd2_journal_get_write_access().
There was one last vestigal use of ext4_journal_get_undo_access() in
ext4_add_groupblocks(); change it to use ext4_journal_get_write_access()
and then remove the ext4_journal_get_undo_access() support.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In preparation for the next patch, the function ext4_add_groupblocks()
is moved to mballoc.c, where it could use some static functions.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There is already an #ifdef CONFIG_QUOTA some lines above,
so this one is totally useless.
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We have checked first_not_zeroed == ngroups already above, so remove
this redundant check.
sbi->s_li_request = NULL above is also removed since it is NULL
already.
Cc: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In __ext4_get_inode_loc, we calculate inodes_per_block every time by
EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb). AFAICS, this function is a
hot path for ext4, so we'd better use s_inodes_per_block directly
instead of calculating every time.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We have EXT4FS_DEBUG for some old debug and CONFIG_EXT4_DEBUG
for the new mballoc debug, but there isn't any EXT4_DEBUG.
As CONFIG_EXT4_DEBUG seems to be only used in mballoc, use
EXT4FS_DEBUG in fsync.c.
[ It doesn't really matter; although I'm including this commit for
consistency's sake. The whole point of the #ifdef's is to disable
the debugging code. In general you're not going to want to enable
all of the code protected by EXT4FS_DEBUG at the same time. -- Ted ]
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In do_get_write_access() we wait on BH_Unshadow bit for buffer to get
from shadow state. The waking code in journal_commit_transaction() has
a bug because it does not issue a memory barrier after the buffer is
moved from the shadow state and before wake_up_bit() is called. Thus a
waitqueue check can happen before the buffer is actually moved from
the shadow state and waiting process may never be woken. Fix the
problem by issuing proper barrier.
Reported-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Add two functions: ext4_split_extent_at(), which splits an extent into
two extents at given logical block, and ext4_split_extent() which
splits an extent into three extents.
Signed-off-by: Yongqiang Yang <xiaoqiangnk@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Tested-by: Allison Henderson <achender@linux.vnet.ibm.com>
1) Rename ext4_ext_try_to_merge() to ext4_ext_try_to_merge_right().
2) Add a new function ext4_ext_try_to_merge() which tries to merge
an extent both left and right.
3) Use the new function in ext4_ext_convert_unwritten_endio() and
ext4_ext_insert_extent().
Signed-off-by: Yongqiang Yang <xiaoqiangnk@gmail.com>
Tested-by: Allison Henderson <achender@linux.vnet.ibm.com>
ext4_symlink() cannot call __page_symlink() with transaction open.
__page_symlink() calls ext4_write_begin() which can wait for
transaction commit if we are running out of space thus causing a
deadlock. Also error recovery in ext4_truncate_failed_write() does not
count with the transaction being already started (although I'm not
aware of any particular deadlock here).
Fix the problem by stopping a transaction before calling
__page_symlink() (we have to be careful and put inode to orphan list
so that it gets deleted in case of crash) and starting another one
after __page_symlink() returns for addition of symlink into a
directory.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When make_indexed_dir() fails (e.g. because of ENOSPC) after it has
allocated block for index tree root, we did not properly mark all
changed buffers dirty. This lead to only some of these buffers being
written out and thus effectively corrupting the directory.
Fix the issue by marking all changed data dirty even in the error
failure case.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fix a typo that was introduced in commit 07a038245b (in 2.6.36) which
caused the extents flag not to be set at the conclusion of converting
an inode to use extents.
Reported-by: Peter Uchno <peter.uchno@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If an application program does not make any changes to the indirect
blocks or extent tree, i_datasync_tid will not get updated. If there
are enough commits (i.e., 2**31) such that tid_geq()'s calculations
wrap, and there isn't a currently active transaction at the time of
the fdatasync() call, this can end up triggering a BUG_ON in
fs/jbd2/commit.c:
J_ASSERT(journal->j_running_transaction != NULL);
It's pretty rare that this can happen, since it requires the use of
fdatasync() plus *very* frequent and excessive use of fsync(). But
with the right workload, it can.
We fix this by replacing the use of tid_geq() with an equality test,
since there's only one valid transaction id that we is valid for us to
wait until it is commited: namely, the currently running transaction
(if it exists).
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
percpu_counter_sum_positive() never returns a negative value.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This is an effective revert of commit a30eec2a8: "ext4: stop issuing
discards if not supported by device". The problem is that there are
some devices that may return errors in response to a discard request
some times but not others. (One example would be a hybrid dm device
which concatenates an SSD and an HDD device).
By this logic, I also removed the error checking from ext4's FITRIM
code; so that an error from a discard will not stop the FITRIM from
trying to trim the rest of the file system.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In the bio completion routine, we should not be setting
PageUptodate at all -- it's set at sys_write() time, and is
unaffected by success/failure of the write to disk.
This can cause a page corruption bug when the file system's
block size is less than the architecture's VM page size.
if we have only written a single block -- we might end up
setting the page's PageUptodate flag, indicating that page
is completely read into memory, which may not be true.
This could cause subsequent reads to get bad data.
This commit also takes the opportunity to clean up error
handling in ext4_end_bio(), and remove some extraneous code:
- fixes ext4_end_bio() to set AS_EIO in the
page->mapping->flags on error, which was left out by
mistake. This is needed so that fsync() will
return an error if there was an I/O error.
- remove the clear_buffer_dirty() call on unmapped
buffers for each page.
- consolidate page/buffer error handling in a single
section.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Jim Meyering <jim@meyering.net>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Mingming Cao <cmm@us.ibm.com>
Provide better emulation for ext[23] mode by enforcing that the file
system does not have any unsupported file system features as defined
by ext[23] when emulating the ext[23] file system driver when
CONFIG_EXT4_USE_FOR_EXT23 is defined.
This causes the file system type information in /proc/mounts to be
correct for the automatically mounted root file system. This also
means that "mount -t ext2 /dev/sda /mnt" will fail if /dev/sda
contains an ext3 or ext4 file system, just as one would expect if the
original ext2 file system driver were in use.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Add missing page_cache_release in the error path of ext4_mb_load_buddy
Signed-off-by: Yang Ruirui <ruirui.r.yang@tieto.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: use proper interfaces for on-stack plugging
xfs: fix xfs_debug warnings
xfs: fix variable set but not used warnings
xfs: convert log tail checking to a warning
xfs: catch bad block numbers freeing extents.
xfs: push the AIL from memory reclaim and periodic sync
xfs: clean up code layout in xfs_trans_ail.c
xfs: convert the xfsaild threads to a workqueue
xfs: introduce background inode reclaim work
xfs: convert ENOSPC inode flushing to use new syncd workqueue
xfs: introduce a xfssyncd workqueue
xfs: fix extent format buffer allocation size
xfs: fix unreferenced var error in xfs_buf.c
Also, applied patch from Tony Luck that fixes ia64:
xfs_destroy_workqueues() should not be tagged with__exit
in the branch before merging.
ia64 throws away .exit sections for the built-in CONFIG case, so routines
that are used in other circumstances should not be tagged as __exit.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: fix data corruption regression by reverting commit 6de9843dab
ext4: Allow indirect-block file to grow the file size to max file size
ext4: allow an active handle to be started when freezing
ext4: sync the directory inode in ext4_sync_parent()
ext4: init timer earlier to avoid a kernel panic in __save_error_info
jbd2: fix potential memory leak on transaction commit
ext4: fix a double free in ext4_register_li_request
ext4: fix credits computing for indirect mapped files
ext4: remove unnecessary [cm]time update of quota file
jbd2: move bdget out of critical section
Revert commit 6de9843dab, since it
caused a data corruption regression with BitTorrent downloads. Thanks
to Damien for discovering and bisecting to find the problem commit.
https://bugzilla.kernel.org/show_bug.cgi?id=32972
Reported-by: Damien Grassart <damien@grassart.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We can create 4402345721856 byte file with indirect block mapping.
However, if we grow an indirect-block file to the size with ftruncate(),
we can see an ext4 warning. The following patch fixes this problem.
How to reproduce:
# dd if=/dev/zero of=/mnt/mp1/hoge bs=1 count=0 seek=4402345721856
0+0 records in
0+0 records out
0 bytes (0 B) copied, 0.000221428 s, 0.0 kB/s
# tail -n 1 /var/log/messages
Nov 25 15:10:27 test kernel: EXT4-fs warning (device sda8): ext4_block_to_path:345: block 1074791436 > max in inode 12
Signed-off-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_journal_start_sb() should not prevent an active handle from being
started due to s_frozen. Otherwise, deadlock is easy to happen, below
is a situation.
================================================
freeze | truncate
================================================
| ext4_ext_truncate()
freeze_super() | starts a handle
sets s_frozen |
| ext4_ext_truncate()
| holds i_data_sem
ext4_freeze() |
waits for updates |
| ext4_free_blocks()
| calls dquot_free_block()
|
| dquot_free_blocks()
| calls ext4_dirty_inode()
|
| ext4_dirty_inode()
| trys to start an active
| handle
|
| block due to s_frozen
================================================
Signed-off-by: Yongqiang Yang <xiaoqiangnk@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Amir Goldstein <amir73il@users.sf.net>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
ext4 has taken the stance that, in the absence of a journal,
when an fsync/fdatasync of an inode is done, the parent
directory should be sync'ed if this inode entry is new.
ext4_sync_parent(), which implements this, does indeed sync
the dirent pages for parent directories, but it does not
sync the directory *inode*. This patch fixes this.
Also now return error status from ext4_sync_parent().
I tested this using a power fail test, which panics a
machine running a file server getting requests from a
client. Without this patch, on about every other test run,
the server is missing many, many files that had been synced.
With this patch, on > 6 runs, I see zero files being lost.
Google-Bug-Id: 4179519
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6:
NFS: Change initial mount authflavor only when server returns NFS4ERR_WRONGSEC
NFS: Fix a signed vs. unsigned secinfo bug
Revert "net/sunrpc: Use static const char arrays"
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6:
quota: Don't write quota info in dquot_commit()
ext3: Fix writepage credits computation for ordered mode
Add proper blk_start_plug/blk_finish_plug pairs for the two places where
we issue buffer I/O, and remove the blk_flush_plug in xfs_buf_lock and
xfs_buf_iowait, given that context switches already flush the per-process
plugging lists.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
For a CONFIG_XFS_DEBUG=n build gcc complains about statements with no
effect in xfs_debug:
fs/xfs/quota/xfs_qm_syscalls.c: In function 'xfs_qm_scall_trunc_qfiles':
fs/xfs/quota/xfs_qm_syscalls.c:291:3: warning: statement with no effect
The reason for that is that the various new xfs message functions have a
return value which is never used, and in case of the non-debug build
xfs_debug the macro evaluates to a plain 0 which produces the above
warnings. This can be fixed by turning xfs_debug into an inline function
instead of a macro, but in addition to that I've also changed all the
message helpers to return void as we never use their return values.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
GCC 4.6 now warnings about variables set but not used. Fix the trivially
fixable warnings of this sort.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
On the Power platform, the log tail debug checks fire excessively
causing the system to panic early in testing. The debug checks are
known to be racy, though on x86_64 there is no evidence that they
trigger at all.
We want to keep the checks active on debug systems to alert us to
problems with log space accounting, but we need to reduce the impact
of a racy check on testing on the Power platform.
As a result, convert the ASSERT conditions to warnings, and
allow them to fire only once per filesystem mount. This will prevent
false positives from interfering with testing, whilst still
providing us with the indication that they may be a problem with log
space accounting should that occur.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
A fuzzed filesystem crashed a kernel when freeing an extent with a
block number beyond the end of the filesystem. Convert all the debug
asserts in xfs_free_extent() to active checks so that we catch bad
extents and return that the filesytsem is corrupted rather than
crashing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
When we are short on memory, we want to expedite the cleaning of
dirty objects. Hence when we run short on memory, we need to kick
the AIL flushing into action to clean as many dirty objects as
quickly as possible. To implement this, sample the lsn of the log
item at the head of the AIL and use that as the push target for the
AIL flush.
Further, we keep items in the AIL that are dirty that are not
tracked any other way, so we can get objects sitting in the AIL that
don't get written back until the AIL is pushed. Hence to get the
filesystem to the idle state, we might need to push the AIL to flush
out any remaining dirty objects sitting in the AIL. This requires
the same push mechanism as the reclaim push.
This patch also renames xfs_trans_ail_tail() to xfs_ail_min_lsn() to
match the new xfs_ail_max_lsn() function introduced in this patch.
Similarly for xfs_trans_ail_push -> xfs_ail_push.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
This patch rearranges the location of functions in xfs_trans_ail.c
to remove the need for forward declarations of those functions in
preparation for adding new functions without the need for forward
declarations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Similar to the xfssyncd, the per-filesystem xfsaild threads can be
converted to a global workqueue and run periodically by delayed
works. This makes sense for the AIL pushing because it uses
variable timeouts depending on the work that needs to be done.
By removing the xfsaild, we simplify the AIL pushing code and
remove the need to spread the code to implement the threading
and pushing across multiple files.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Background inode reclaim needs to run more frequently that the XFS
syncd work is run as 30s is too long between optimal reclaim runs.
Add a new periodic work item to the xfs syncd workqueue to run a
fast, non-blocking inode reclaim scan.
Background inode reclaim is kicked by the act of marking inodes for
reclaim. When an AG is first marked as having reclaimable inodes,
the background reclaim work is kicked. It will continue to run
periodically untill it detects that there are no more reclaimable
inodes. It will be kicked again when the first inode is queued for
reclaim.
To ensure shrinker based inode reclaim throttles to the inode
cleaning and reclaim rate but still reclaim inodes efficiently, make it kick the
background inode reclaim so that when we are low on memory we are
trying to reclaim inodes as efficiently as possible. This kick shoul
d not be necessary, but it will protect against failures to kick the
background reclaim when inodes are first dirtied.
To provide the rate throttling, make the shrinker pass do
synchronous inode reclaim so that it blocks on inodes under IO. This
means that the shrinker will reclaim inodes rather than just
skipping over them, but it does not adversely affect the rate of
reclaim because most dirty inodes are already under IO due to the
background reclaim work the shrinker kicked.
These two modifications solve one of the two OOM killer invocations
Chris Mason reported recently when running a stress testing script.
The particular workload trigger for the OOM killer invocation is
where there are more threads than CPUs all unlinking files in an
extremely memory constrained environment. Unlike other solutions,
this one does not have a performance impact on performance when
memory is not constrained or the number of concurrent threads
operating is <= to the number of CPUs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
On of the problems with the current inode flush at ENOSPC is that we
queue a flush per ENOSPC event, regardless of how many are already
queued. Thi can result in hundreds of queued flushes, most of
which simply burn CPU scanned and do no real work. This simply slows
down allocation at ENOSPC.
We really only need one active flush at a time, and we can easily
implement that via the new xfs_syncd_wq. All we need to do is queue
a flush if one is not already active, then block waiting for the
currently active flush to complete. The result is that we only ever
have a single ENOSPC inode flush active at a time and this greatly
reduces the overhead of ENOSPC processing.
On my 2p test machine, this results in tests exercising ENOSPC
conditions running significantly faster - 042 halves execution time,
083 drops from 60s to 5s, etc - while not introducing test
regressions.
This allows us to remove the old xfssyncd threads and infrastructure
as they are no longer used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
All of the work xfssyncd does is background functionality. There is
no need for a thread per filesystem to do this work - it can al be
managed by a global workqueue now they manage concurrency
effectively.
Introduce a new gglobal xfssyncd workqueue, and convert the periodic
work to use this new functionality. To do this, use a delayed work
construct to schedule the next running of the periodic sync work
for the filesystem. When the sync work is complete, queue a new
delayed work for the next running of the sync work.
For laptop mode, we wait on completion for the sync works, so ensure
that the sync work queuing interface can flush and wait for work to
complete to enable the work queue infrastructure to replace the
current sequence number and wakeup that is used.
Because the sync work does non-trivial amounts of work, mark the
new work queue as CPU intensive.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
When formatting an inode item, we have to allocate a separate buffer
to hold extents when there are delayed allocation extents on the
inode and it is in extent format. The allocation size is derived
from the in-core data fork representation, which accounts for
delayed allocation extents, while the on-disk representation does
not contain any delalloc extents.
As a result of this mismatch, the allocated buffer can be far larger
than needed to hold the real extent list which, due to the fact the
inode is in extent format, is limited to the size of the literal
area of the inode. However, we can have thousands of delalloc
extents, resulting in an allocation size orders of magnitude larger
than is needed to hold all the real extents.
Fix this by limiting the size of the buffer being allocated to the
size of the literal area of the inodes in the filesystem (i.e. the
maximum size an inode fork can grow to).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>