mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
9a19aeb566
17117 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Marco Elver
|
9a19aeb566 |
kfence: count unexpectedly skipped allocations
Maintain a counter to count allocations that are skipped due to being incompatible (oversized, incompatible gfp flags) or no capacity. This is to compute the fraction of allocations that could not be serviced by KFENCE, which we expect to be rare. Link: https://lkml.kernel.org/r/20210923104803.2620285-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Aleksandr Nogikh <nogikh@google.com> Cc: Jann Horn <jannh@google.com> Cc: Taras Madan <tarasmadan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Stephen Kitt
|
53944f171a |
mm: remove HARDENED_USERCOPY_FALLBACK
This has served its purpose and is no longer used. All usercopy
violations appear to have been handled by now, any remaining instances
(or new bugs) will cause copies to be rejected.
This isn't a direct revert of commit
|
||
Ira Weiny
|
d2c20e51e3 |
mm/highmem: remove deprecated kmap_atomic
kmap_atomic() is being deprecated in favor of kmap_local_page(). Replace the uses of kmap_atomic() within the highmem code. On profiling clear_huge_page() using ftrace an improvement of 62% was observed on the below setup. Setup:- Below data has been collected on Qualcomm's SM7250 SoC THP enabled (kernel v4.19.113) with only CPU-0(Cortex-A55) and CPU-7(Cortex-A76) switched on and set to max frequency, also DDR set to perf governor. FTRACE Data:- Base data:- Number of iterations: 48 Mean of allocation time: 349.5 us std deviation: 74.5 us v4 data:- Number of iterations: 48 Mean of allocation time: 131 us std deviation: 32.7 us The following simple userspace experiment to allocate 100MB(BUF_SZ) of pages and writing to it gave us a good insight, we observed an improvement of 42% in allocation and writing timings. ------------------------------------------------------------- Test code snippet ------------------------------------------------------------- clock_start(); buf = malloc(BUF_SZ); /* Allocate 100 MB of memory */ for(i=0; i < BUF_SZ_PAGES; i++) { *((int *)(buf + (i*PAGE_SIZE))) = 1; } clock_end(); ------------------------------------------------------------- Malloc test timings for 100MB anon allocation:- Base data:- Number of iterations: 100 Mean of allocation time: 31831 us std deviation: 4286 us v4 data:- Number of iterations: 100 Mean of allocation time: 18193 us std deviation: 4915 us [willy@infradead.org: fix zero_user_segments()] Link: https://lkml.kernel.org/r/YYVhHCJcm2DM2G9u@casper.infradead.org Link: https://lkml.kernel.org/r/20210204073255.20769-2-prathu.baronia@oneplus.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Prathu Baronia <prathu.baronia@oneplus.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
afe8605ca4 |
mm/zsmalloc.c: close race window between zs_pool_dec_isolated() and zs_unregister_migration()
There is one possible race window between zs_pool_dec_isolated() and
zs_unregister_migration() because wait_for_isolated_drain() checks the
isolated count without holding class->lock and there is no order inside
zs_pool_dec_isolated(). Thus the below race window could be possible:
zs_pool_dec_isolated zs_unregister_migration
check pool->destroying != 0
pool->destroying = true;
smp_mb();
wait_for_isolated_drain()
wait for pool->isolated_pages == 0
atomic_long_dec(&pool->isolated_pages);
atomic_long_read(&pool->isolated_pages) == 0
Since we observe the pool->destroying (false) before atomic_long_dec()
for pool->isolated_pages, waking pool->migration_wait up is missed.
Fix this by ensure checking pool->destroying happens after the
atomic_long_dec(&pool->isolated_pages).
Link: https://lkml.kernel.org/r/20210708115027.7557-1-linmiaohe@huawei.com
Fixes:
|
||
Alistair Popple
|
3d88705c10 |
mm/rmap.c: avoid double faults migrating device private pages
During migration special page table entries are installed for each page being migrated. These entries store the pfn and associated permissions of ptes mapping the page being migarted. Device-private pages use special swap pte entries to distinguish read-only vs. writeable pages which the migration code checks when creating migration entries. Normally this follows a fast path in migrate_vma_collect_pmd() which correctly copies the permissions of device-private pages over to migration entries when migrating pages back to the CPU. However the slow-path falls back to using try_to_migrate() which unconditionally creates read-only migration entries for device-private pages. This leads to unnecessary double faults on the CPU as the new pages are always mapped read-only even when they could be mapped writeable. Fix this by correctly copying device-private permissions in try_to_migrate_one(). Link: https://lkml.kernel.org/r/20211018045247.3128058-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reported-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
32befe9e27 |
mm/memory_hotplug: indicate MEMBLOCK_DRIVER_MANAGED with IORESOURCE_SYSRAM_DRIVER_MANAGED
Let's communicate driver-managed regions to memblock, to properly teach kexec_file with CONFIG_ARCH_KEEP_MEMBLOCK to not place images on these memory regions. Link: https://lkml.kernel.org/r/20211004093605.5830-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Shahab Vahedi <shahab@synopsys.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
f7892d8e28 |
memblock: add MEMBLOCK_DRIVER_MANAGED to mimic IORESOURCE_SYSRAM_DRIVER_MANAGED
Let's add a flag that corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED, indicating that we're dealing with a memory region that is never indicated in the firmware-provided memory map, but always detected and added by a driver. Similar to MEMBLOCK_HOTPLUG, most infrastructure has to treat such memory regions like ordinary MEMBLOCK_NONE memory regions -- for example, when selecting memory regions to add to the vmcore for dumping in the crashkernel via for_each_mem_range(). However, especially kexec_file is not supposed to select such memblocks via for_each_free_mem_range() / for_each_free_mem_range_reverse() to place kexec images, similar to how we handle IORESOURCE_SYSRAM_DRIVER_MANAGED without CONFIG_ARCH_KEEP_MEMBLOCK. We'll make sure that memory hotplug code sets the flag where applicable (IORESOURCE_SYSRAM_DRIVER_MANAGED) next. This prepares architectures that need CONFIG_ARCH_KEEP_MEMBLOCK, such as arm64, for virtio-mem support. Note that kexec *must not* indicate this memory to the second kernel and *must not* place kexec-images on this memory. Let's add a comment to kexec_walk_memblock(), documenting how we handle MEMBLOCK_DRIVER_MANAGED now just like using IORESOURCE_SYSRAM_DRIVER_MANAGED in locate_mem_hole_callback() for kexec_walk_resources(). Also note that MEMBLOCK_HOTPLUG cannot be reused due to different semantics: MEMBLOCK_HOTPLUG: memory is indicated as "System RAM" in the firmware-provided memory map and added to the system early during boot; kexec *has to* indicate this memory to the second kernel and can place kexec-images on this memory. After memory hotunplug, kexec has to be re-armed. We mostly ignore this flag when "movable_node" is not set on the kernel command line, because then we're told to not care about hotunpluggability of such memory regions. MEMBLOCK_DRIVER_MANAGED: memory is not indicated as "System RAM" in the firmware-provided memory map; this memory is always detected and added to the system by a driver; memory might not actually be physically hotunpluggable. kexec *must not* indicate this memory to the second kernel and *must not* place kexec-images on this memory. Link: https://lkml.kernel.org/r/20211004093605.5830-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Shahab Vahedi <shahab@synopsys.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
952eea9b01 |
memblock: allow to specify flags with memblock_add_node()
We want to specify flags when hotplugging memory. Let's prepare to pass flags to memblock_add_node() by adjusting all existing users. Note that when hotplugging memory the system is already up and running and we might have concurrent memblock users: for example, while we're hotplugging memory, kexec_file code might search for suitable memory regions to place kexec images. It's important to add the memory directly to memblock via a single call with the right flags, instead of adding the memory first and apply flags later: otherwise, concurrent memblock users might temporarily stumble over memblocks with wrong flags, which will be important in a follow-up patch that introduces a new flag to properly handle add_memory_driver_managed(). Link: https://lkml.kernel.org/r/20211004093605.5830-4-david@redhat.com Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Shahab Vahedi <shahab@synopsys.com> [arch/arc] Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
53d38316ab |
mm/memory_hotplug: handle memblock_add_node() failures in add_memory_resource()
Patch series "mm/memory_hotplug: full support for add_memory_driver_managed() with CONFIG_ARCH_KEEP_MEMBLOCK", v2.
Architectures that require CONFIG_ARCH_KEEP_MEMBLOCK=y, such as arm64,
don't cleanly support add_memory_driver_managed() yet. Most
prominently, kexec_file can still end up placing kexec images on such
driver-managed memory, resulting in undesired behavior, for example,
having kexec images located on memory not part of the firmware-provided
memory map.
Teaching kexec to not place images on driver-managed memory is
especially relevant for virtio-mem. Details can be found in commit
|
||
David Hildenbrand
|
6b740c6c3a |
mm/memory_hotplug: remove HIGHMEM leftovers
We don't support CONFIG_MEMORY_HOTPLUG on 32 bit and consequently not HIGHMEM. Let's remove any leftover code -- including the unused "status_change_nid_high" field part of the memory notifier. Link: https://lkml.kernel.org/r/20210929143600.49379-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
7ec58a2b94 |
mm/memory_hotplug: restrict CONFIG_MEMORY_HOTPLUG to 64 bit
32 bit support is broken in various ways: for example, we can online
memory that should actually go to ZONE_HIGHMEM to ZONE_MOVABLE or in
some cases even to one of the other kernel zones.
We marked it BROKEN in commit
|
||
David Hildenbrand
|
50f9481ed9 |
mm/memory_hotplug: remove CONFIG_MEMORY_HOTPLUG_SPARSE
CONFIG_MEMORY_HOTPLUG depends on CONFIG_SPARSEMEM, so there is no need for CONFIG_MEMORY_HOTPLUG_SPARSE anymore; adjust all instances to use CONFIG_MEMORY_HOTPLUG and remove CONFIG_MEMORY_HOTPLUG_SPARSE. Link: https://lkml.kernel.org/r/20210929143600.49379-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Shuah Khan <skhan@linuxfoundation.org> [kselftest] Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
71b6f2dda8 |
mm/memory_hotplug: remove CONFIG_X86_64_ACPI_NUMA dependency from CONFIG_MEMORY_HOTPLUG
Patch series "mm/memory_hotplug: Kconfig and 32 bit cleanups". Some cleanups around CONFIG_MEMORY_HOTPLUG, including removing 32 bit leftovers of memory hotplug support. This patch (of 6): SPARSEMEM is the only possible memory model for x86-64, FLATMEM is not possible: config ARCH_FLATMEM_ENABLE def_bool y depends on X86_32 && !NUMA And X86_64_ACPI_NUMA (obviously) only supports x86-64: config X86_64_ACPI_NUMA def_bool y depends on X86_64 && NUMA && ACPI && PCI Let's just remove the CONFIG_X86_64_ACPI_NUMA dependency, as it does no longer make sense. Link: https://lkml.kernel.org/r/20210929143600.49379-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Alex Shi <alexs@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tang Yizhou
|
ac62554ba7 |
mm/memory_hotplug: add static qualifier for online_policy_to_str()
online_policy_to_str is only used in memory_hotplug.c and should be defined as static. Link: https://lkml.kernel.org/r/20210913024534.26161-1-tangyizhou@huawei.com Signed-off-by: Tang Yizhou <tangyizhou@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Lin Feng
|
a997058679 |
mm: vmstat.c: make extfrag_index show more pretty
fragmentation_index may return -1000 and the corresponding formated value showed by seq_printf will take a negative signatrue, but other positive formated values don't take a positive signatrue, so the output becomes unaligned. before: Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999 after this patch: Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999 Link: https://lkml.kernel.org/r/20211019103241.134797-1-linf@wangsu.com Signed-off-by: Lin Feng <linf@wangsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liu Shixin
|
af1c31acc8 |
mm/vmstat: annotate data race for zone->free_area[order].nr_free
KCSAN reports a data-race on v5.10 which also exists on mainline: BUG: KCSAN: data-race in extfrag_for_order+0x33/0x2d0 race at unknown origin, with read to 0xffff9ee9bfffab48 of 8 bytes by task 34 on cpu 1: extfrag_for_order+0x33/0x2d0 kcompactd+0x5f0/0xce0 kthread+0x1f9/0x220 ret_from_fork+0x22/0x30 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 34 Comm: kcompactd0 Not tainted 5.10.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Access to zone->free_area[order].nr_free in extfrag_for_order() and frag_show_print() is lockless. That's intentional and the stats are a rough estimate anyway. Annotate them with data_race(). [liushixin2@huawei.com: add comments] Link: https://lkml.kernel.org/r/20210918084655.2696522-1-liushixin2@huawei.com Link: https://lkml.kernel.org/r/20210908015606.3999871-1-liushixin2@huawei.com Signed-off-by: Liu Shixin <liushixin2@huawei.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kefeng Wang
|
916caa127c |
mm: nommu: kill arch_get_unmapped_area()
When nommu, the arch_get_unmapped_area() will not be called, just kill it. Link: https://lkml.kernel.org/r/20210910061906.36299-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Lin Feng
|
fb25a77dde |
mm/readahead.c: fix incorrect comments for get_init_ra_size
In fact, formated values returned by get_init_ra_size are not that intuitive. This patch make the comments reflect its truth. Link: https://lkml.kernel.org/r/20211019104812.135602-1-linf@wangsu.com Signed-off-by: Lin Feng <linf@wangsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
20f9ba4f99 |
mm: migrate: make demotion knob depend on migration
The memory demotion needs to call migrate_pages() to do the jobs. And it is controlled by a knob, however, the knob doesn't depend on CONFIG_MIGRATION. The knob could be truned on even though MIGRATION is disabled, this will not cause any crash since migrate_pages() would just return -ENOSYS. But it is definitely not optimal to go through demotion path then retry regular swap every time. And it doesn't make too much sense to have the knob visible to the users when !MIGRATION. Move the related code from mempolicy.[h|c] to migrate.[h|c]. Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
8eb42beac8 |
mm/migrate: de-duplicate migrate_reason strings
In order to remove the need to manually keep three different files in synch, provide a common definition of the mapping between enum migrate_reason, and the associated strings for each enum item. 1. Use the tracing system's mapping of enums to strings, by redefining and reusing the MIGRATE_REASON and supporting macros, and using that to populate the string array in mm/debug.c. 2. Move enum migrate_reason to migrate_mode.h. This is not strictly necessary for this patch, but migrate mode and migrate reason go together, so this will slightly clarify things. Link: https://lkml.kernel.org/r/20210922041755.141817-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Weizhao Ouyang <o451686892@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zhenguo Yao
|
b5389086ad |
hugetlbfs: extend the definition of hugepages parameter to support node allocation
We can specify the number of hugepages to allocate at boot. But the hugepages is balanced in all nodes at present. In some scenarios, we only need hugepages in one node. For example: DPDK needs hugepages which are in the same node as NIC. If DPDK needs four hugepages of 1G size in node1 and system has 16 numa nodes we must reserve 64 hugepages on the kernel cmdline. But only four hugepages are used. The others should be free after boot. If the system memory is low(for example: 64G), it will be an impossible task. So extend the hugepages parameter to support specifying hugepages on a specific node. For example add following parameter: hugepagesz=1G hugepages=0:1,1:3 It will allocate 1 hugepage in node0 and 3 hugepages in node1. Link: https://lkml.kernel.org/r/20211005054729.86457-1-yaozhenguo1@gmail.com Signed-off-by: Zhenguo Yao <yaozhenguo1@gmail.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Zhenguo Yao <yaozhenguo1@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Rapoport <rppt@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sultan Alsawaf
|
3723929eb0 |
mm: mark the OOM reaper thread as freezable
The OOM reaper alters user address space which might theoretically alter
the snapshot if reaping is allowed to happen after the freezer quiescent
state. To this end, the reaper kthread uses wait_event_freezable()
while waiting for any work so that it cannot run while the system
freezes.
However, the current implementation doesn't respect the freezer because
all kernel threads are created with the PF_NOFREEZE flag, so they are
automatically excluded from freezing operations. This means that the
OOM reaper can race with system snapshotting if it has work to do while
the system is being frozen.
Fix this by adding a set_freezable() call which will clear the
PF_NOFREEZE flag and thus make the OOM reaper visible to the freezer.
Please note that the OOM reaper altering the snapshot this way is mostly
a theoretical concern and has not been observed in practice.
Link: https://lkml.kernel.org/r/20210921165758.6154-1-sultan@kerneltoast.com
Link: https://lkml.kernel.org/r/20210918233920.9174-1-sultan@kerneltoast.com
Fixes:
|
||
Mike Rapoport
|
4421cca0a3 |
memblock: use memblock_free for freeing virtual pointers
Rename memblock_free_ptr() to memblock_free() and use memblock_free() when freeing a virtual pointer so that memblock_free() will be a counterpart of memblock_alloc() The callers are updated with the below semantic patch and manual addition of (void *) casting to pointers that are represented by unsigned long variables. @@ identifier vaddr; expression size; @@ ( - memblock_phys_free(__pa(vaddr), size); + memblock_free(vaddr, size); | - memblock_free_ptr(vaddr, size); + memblock_free(vaddr, size); ) [sfr@canb.auug.org.au: fixup] Link: https://lkml.kernel.org/r/20211018192940.3d1d532f@canb.auug.org.au Link: https://lkml.kernel.org/r/20210930185031.18648-7-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
3ecc68349b |
memblock: rename memblock_free to memblock_phys_free
Since memblock_free() operates on a physical range, make its name reflect it and rename it to memblock_phys_free(), so it will be a logical counterpart to memblock_phys_alloc(). The callers are updated with the below semantic patch: @@ expression addr; expression size; @@ - memblock_free(addr, size); + memblock_phys_free(addr, size); Link: https://lkml.kernel.org/r/20210930185031.18648-6-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
621d973901 |
memblock: stop aliasing __memblock_free_late with memblock_free_late
memblock_free_late() is a NOP wrapper for __memblock_free_late(), there is no point to keep this indirection. Drop the wrapper and rename __memblock_free_late() to memblock_free_late(). Link: https://lkml.kernel.org/r/20210930185031.18648-5-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
fa27717110 |
memblock: drop memblock_free_early_nid() and memblock_free_early()
memblock_free_early_nid() is unused and memblock_free_early() is an alias for memblock_free(). Replace calls to memblock_free_early() with calls to memblock_free() and remove memblock_free_early() and memblock_free_early_nid(). Link: https://lkml.kernel.org/r/20210930185031.18648-4-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yuanzheng Song
|
7e6ec49c18 |
mm/vmpressure: fix data-race with memcg->socket_pressure
When reading memcg->socket_pressure in mem_cgroup_under_socket_pressure() and writing memcg->socket_pressure in vmpressure() at the same time, the following data-race occurs: BUG: KCSAN: data-race in __sk_mem_reduce_allocated / vmpressure write to 0xffff8881286f4938 of 8 bytes by task 24550 on cpu 3: vmpressure+0x218/0x230 mm/vmpressure.c:307 shrink_node_memcgs+0x2b9/0x410 mm/vmscan.c:2658 shrink_node+0x9d2/0x11d0 mm/vmscan.c:2769 shrink_zones+0x29f/0x470 mm/vmscan.c:2972 do_try_to_free_pages+0x193/0x6e0 mm/vmscan.c:3027 try_to_free_mem_cgroup_pages+0x1c0/0x3f0 mm/vmscan.c:3345 reclaim_high mm/memcontrol.c:2440 [inline] mem_cgroup_handle_over_high+0x18b/0x4d0 mm/memcontrol.c:2624 tracehook_notify_resume include/linux/tracehook.h:197 [inline] exit_to_user_mode_loop kernel/entry/common.c:164 [inline] exit_to_user_mode_prepare+0x110/0x170 kernel/entry/common.c:191 syscall_exit_to_user_mode+0x16/0x30 kernel/entry/common.c:266 ret_from_fork+0x15/0x30 arch/x86/entry/entry_64.S:289 read to 0xffff8881286f4938 of 8 bytes by interrupt on cpu 1: mem_cgroup_under_socket_pressure include/linux/memcontrol.h:1483 [inline] sk_under_memory_pressure include/net/sock.h:1314 [inline] __sk_mem_reduce_allocated+0x1d2/0x270 net/core/sock.c:2696 __sk_mem_reclaim+0x44/0x50 net/core/sock.c:2711 sk_mem_reclaim include/net/sock.h:1490 [inline] ...... net_rx_action+0x17a/0x480 net/core/dev.c:6864 __do_softirq+0x12c/0x2af kernel/softirq.c:298 run_ksoftirqd+0x13/0x20 kernel/softirq.c:653 smpboot_thread_fn+0x33f/0x510 kernel/smpboot.c:165 kthread+0x1fc/0x220 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296 Fix it by using READ_ONCE() and WRITE_ONCE() to read and write memcg->socket_pressure. Link: https://lkml.kernel.org/r/20211025082843.671690-1-songyuanzheng@huawei.com Signed-off-by: Yuanzheng Song <songyuanzheng@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Alex Shi <alexs@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
66ce520bb7 |
mm/vmscan: delay waking of tasks throttled on NOPROGRESS
Tracing indicates that tasks throttled on NOPROGRESS are woken prematurely resulting in occasional massive spikes in direct reclaim activity. This patch wakes tasks throttled on NOPROGRESS if reclaim efficiency is at least 12%. Link: https://lkml.kernel.org/r/20211022144651.19914-9-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a19594ca4a |
mm/vmscan: increase the timeout if page reclaim is not making progress
Tracing of the stutterp workload showed the following delays 1 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=536000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=544000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=556000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=624000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=716000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usect_delayed=772000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usect_delayed=512000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 53 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 116 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 5907 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 71741 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS All the throttling hit the full timeout and then there was wakeup delays meaning that the wakeups are premature as no other reclaimer such as kswapd has made progress. This patch increases the maximum timeout. Link: https://lkml.kernel.org/r/20211022144651.19914-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c3f4a9a2b0 |
mm/vmscan: centralise timeout values for reclaim_throttle
Neil Brown raised concerns about callers of reclaim_throttle specifying a timeout value. The original timeout values to congestion_wait() were probably pulled out of thin air or copy&pasted from somewhere else. This patch centralises the timeout values and selects a timeout based on the reason for reclaim throttling. These figures are also pulled out of the same thin air but better values may be derived Running a workload that is throttling for inappropriate periods and tracing mm_vmscan_throttled can be used to pick a more appropriate value. Excessive throttling would pick a lower timeout where as excessive CPU usage in reclaim context would select a larger timeout. Ideally a large value would always be used and the wakeups would occur before a timeout but that requires careful testing. Link: https://lkml.kernel.org/r/20211022144651.19914-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
132b0d21d2 |
mm/page_alloc: remove the throttling logic from the page allocator
The page allocator stalls based on the number of pages that are waiting for writeback to start but this should now be redundant. shrink_inactive_list() will wake flusher threads if the LRU tail are unqueued dirty pages so the flusher should be active. If it fails to make progress due to pages under writeback not being completed quickly then it should stall on VMSCAN_THROTTLE_WRITEBACK. Link: https://lkml.kernel.org/r/20211022144651.19914-6-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8d58802fc9 |
mm/writeback: throttle based on page writeback instead of congestion
do_writepages throttles on congestion if the writepages() fails due to a lack of memory but congestion_wait() is partially broken as the congestion state is not updated for all BDIs. This patch stalls waiting for a number of pages to complete writeback that located on the local node. The main weakness is that there is no correlation between the location of the inode's pages and locality but that is still better than congestion_wait. Link: https://lkml.kernel.org/r/20211022144651.19914-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
69392a403f |
mm/vmscan: throttle reclaim when no progress is being made
Memcg reclaim throttles on congestion if no reclaim progress is made. This makes little sense, it might be due to writeback or a host of other factors. For !memcg reclaim, it's messy. Direct reclaim primarily is throttled in the page allocator if it is failing to make progress. Kswapd throttles if too many pages are under writeback and marked for immediate reclaim. This patch explicitly throttles if reclaim is failing to make progress. [vbabka@suse.cz: Remove redundant code] Link: https://lkml.kernel.org/r/20211022144651.19914-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d818fca1ca |
mm/vmscan: throttle reclaim and compaction when too may pages are isolated
Page reclaim throttles on congestion if too many parallel reclaim instances have isolated too many pages. This makes no sense, excessive parallelisation has nothing to do with writeback or congestion. This patch creates an additional workqueue to sleep on when too many pages are isolated. The throttled tasks are woken when the number of isolated pages is reduced or a timeout occurs. There may be some false positive wakeups for GFP_NOIO/GFP_NOFS callers but the tasks will throttle again if necessary. [shy828301@gmail.com: Wake up from compaction context] [vbabka@suse.cz: Account number of throttled tasks only for writeback] Link: https://lkml.kernel.org/r/20211022144651.19914-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8cd7c588de |
mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kai Song
|
cb75463ca7 |
mm/vmscan.c: fix -Wunused-but-set-variable warning
We fix the following warning when building kernel with W=1: mm/vmscan.c:1362:6: warning: variable 'err' set but not used [-Wunused-but-set-variable] Link: https://lkml.kernel.org/r/20210924181218.21165-1-songkai01@inspur.com Signed-off-by: Kai Song <songkai01@inspur.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
a500cb342c |
mm/page_isolation: guard against possible putback unisolated page
Isolating a free page in an isolated pageblock is expected to always
work as watermarks don't apply here.
But if __isolate_free_page() failed, due to condition changes, the page
will be left on the free list. And the page will be put back to free
list again via __putback_isolated_page(). This may trigger
VM_BUG_ON_PAGE() on page->flags checking in __free_one_page() if
PageReported is set. Or we will corrupt the free list because
list_add() will be called for pages already on another list.
Add a VM_WARN_ON() to complain about this change.
Link: https://lkml.kernel.org/r/20210914114508.23725-1-linmiaohe@huawei.com
Fixes:
|
||
Miaohe Lin
|
e1d8c966db |
mm/page_isolation: fix potential missing call to unset_migratetype_isolate()
In start_isolate_page_range() undo path, pfn_to_online_page() just
checks the first pfn in a pageblock while __first_valid_page() will
traverse the pageblock until the first online pfn is found. So we may
miss the call to unset_migratetype_isolate() in undo path and pages will
remain isolated unexpectedly.
Fix this by calling undo_isolate_page_range() and this will also help to
simplify the code further. Note we shouldn't ever trigger it because
MAX_ORDER-1 aligned pfn ranges shouldn't contain memory holes now.
Link: https://lkml.kernel.org/r/20210914114348.15569-1-linmiaohe@huawei.com
Fixes:
|
||
Mike Kravetz
|
2c0078a7d8 |
hugetlb: remove unnecessary set_page_count in prep_compound_gigantic_page
In commit |
||
Baolin Wang
|
76efc67a5e |
hugetlb: remove redundant VM_BUG_ON() in add_reservation_in_range()
When calling hugetlb_resv_map_add(), we've guaranteed that the parameter 'to' is always larger than 'from', so it never returns a negative value from hugetlb_resv_map_add(). Thus remove the redundant VM_BUG_ON(). Link: https://lkml.kernel.org/r/2b565552f3d06753da1e8dda439c0d96d6d9a5a3.1634797639.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baolin Wang
|
0739eb437f |
hugetlb: remove redundant validation in has_same_uncharge_info()
The callers of has_same_uncharge_info() has accessed the original file_region and new file_region, and they are impossible to be NULL now. So we can remove the file_region validation in has_same_uncharge_info() to simplify the code. Link: https://lkml.kernel.org/r/97fc68d3f8d34f63c204645e10d7a718997e50b7.1634797639.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baolin Wang
|
aa6d2e8cba |
hugetlb: replace the obsolete hugetlb_instantiation_mutex in the comments
After commit
|
||
Baolin Wang
|
df8931c89d |
hugetlb_cgroup: remove unused hugetlb_cgroup_from_counter macro
Patch series "Some cleanups and improvements for hugetlb".
This patchset does some cleanups and improvements for hugetlb and
hugetlb_cgroup.
This patch (of 4):
Since commit
|
||
Baolin Wang
|
38e719ab26 |
hugetlb: support node specified when using cma for gigantic hugepages
Now the size of CMA area for gigantic hugepages runtime allocation is balanced for all online nodes, but we also want to specify the size of CMA per-node, or only one node in some cases, which are similar with patch [1]. For example, on some multi-nodes systems, each node's memory can be different, allocating the same size of CMA for each node is not suitable for the low-memory nodes. Meanwhile some workloads like DPDK mentioned by Zhenguo in patch [1] only need hugepages in one node. On the other hand, we have some machines with multiple types of memory, like DRAM and PMEM (persistent memory). On this system, we may want to specify all the hugepages only on DRAM node, or specify the proportion of DRAM node and PMEM node, to tuning the performance of the workloads. Thus this patch adds node format for 'hugetlb_cma' parameter to support specifying the size of CMA per-node. An example is as follows: hugetlb_cma=0:5G,2:5G which means allocating 5G size of CMA area on node 0 and node 2 respectively. And the users should use the node specific sysfs file to allocate the gigantic hugepages if specified the CMA size on that node. Link: https://lkml.kernel.org/r/20211005054729.86457-1-yaozhenguo1@gmail.com [1] Link: https://lkml.kernel.org/r/bb790775ca60bb8f4b26956bb3f6988f74e075c7.1634261144.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
550a7d60bd |
mm, hugepages: add mremap() support for hugepage backed vma
Support mremap() for hugepage backed vma segment by simply repositioning page table entries. The page table entries are repositioned to the new virtual address on mremap(). Hugetlb mremap() support is of course generic; my motivating use case is a library (hugepage_text), which reloads the ELF text of executables in hugepages. This significantly increases the execution performance of said executables. Restrict the mremap operation on hugepages to up to the size of the original mapping as the underlying hugetlb reservation is not yet capable of handling remapping to a larger size. During the mremap() operation we detect pmd_share'd mappings and we unshare those during the mremap(). On access and fault the sharing is established again. Link: https://lkml.kernel.org/r/20211013195825.3058275-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ken Chen <kenchen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liangcai Fan
|
bd3400ea17 |
mm: khugepaged: recalculate min_free_kbytes after stopping khugepaged
When initializing transparent huge pages, min_free_kbytes would be calculated according to what khugepaged expected. So when transparent huge pages get disabled, min_free_kbytes should be recalculated instead of the higher value set by khugepaged. Link: https://lkml.kernel.org/r/1633937809-16558-1-git-send-email-liangcaifan19@gmail.com Signed-off-by: Liangcai Fan <liangcaifan19@gmail.com> Signed-off-by: Chunyan Zhang <zhang.lyra@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
8531fc6f52 |
hugetlb: add hugetlb demote page support
Demote page functionality will split a huge page into a number of huge pages of a smaller size. For example, on x86 a 1GB huge page can be demoted into 512 2M huge pages. Demotion is done 'in place' by simply splitting the huge page. Added '*_for_demote' wrappers for remove_hugetlb_page, destroy_compound_hugetlb_page and prep_compound_gigantic_page for use by demote code. [mike.kravetz@oracle.com: v4] Link: https://lkml.kernel.org/r/6ca29b8e-527c-d6ec-900e-e6a43e4f8b73@oracle.com Link: https://lkml.kernel.org/r/20211007181918.136982-6-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
34d9e35b13 |
hugetlb: add demote bool to gigantic page routines
The routines remove_hugetlb_page and destroy_compound_gigantic_page will remove a gigantic page and make the set of base pages ready to be returned to a lower level allocator. In the process of doing this, they make all base pages reference counted. The routine prep_compound_gigantic_page creates a gigantic page from a set of base pages. It assumes that all these base pages are reference counted. During demotion, a gigantic page will be split into huge pages of a smaller size. This logically involves use of the routines, remove_hugetlb_page, and destroy_compound_gigantic_page followed by prep_compound*_page for each smaller huge page. When pages are reference counted (ref count >= 0), additional speculative ref counts could be taken as described in previous commits [1] and [2]. This could result in errors while demoting a huge page. Quite a bit of code would need to be created to handle all possible issues. Instead of dealing with the possibility of speculative ref counts, avoid the possibility by keeping ref counts at zero during the demote process. Add a boolean 'demote' to the routines remove_hugetlb_page, destroy_compound_gigantic_page and prep_compound_gigantic_page. If the boolean is set, the remove and destroy routines will not reference count pages and the prep routine will not expect reference counted pages. '*_for_demote' wrappers of the routines will be added in a subsequent patch where this functionality is used. [1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@oracle.com/ [2] https://lore.kernel.org/linux-mm/20210809184832.18342-3-mike.kravetz@oracle.com/ Link: https://lkml.kernel.org/r/20211007181918.136982-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
a01f43901c |
hugetlb: be sure to free demoted CMA pages to CMA
When huge page demotion is fully implemented, gigantic pages can be demoted to a smaller huge page size. For example, on x86 a 1G page can be demoted to 512 2M pages. However, gigantic pages can potentially be allocated from CMA. If a gigantic page which was allocated from CMA is demoted, the corresponding demoted pages needs to be returned to CMA. Use the new interface cma_pages_valid() to determine if a non-gigantic hugetlb page should be freed to CMA. Also, clear mapping field of these pages as expected by cma_release. This also requires a change to CMA region creation for gigantic pages. CMA uses a per-region bit map to track allocations. When setting up the region, you specify how many pages each bit represents. Currently, only gigantic pages are allocated/freed from CMA so the region is set up such that one bit represents a gigantic page size allocation. With demote, a gigantic page (allocation) could be split into smaller size pages. And, these smaller size pages will be freed to CMA. So, since the per-region bit map needs to be set up to represent the smallest allocation/free size, it now needs to be set to the smallest huge page size which can be freed to CMA. Unfortunately, we set up the CMA region for huge pages before we set up huge pages sizes (hstates). So, technically we do not know the smallest huge page size as this can change via command line options and architecture specific code. Therefore, at region setup time we use HUGETLB_PAGE_ORDER as the smallest possible huge page size that can be given back to CMA. It is possible that this value is sub-optimal for some architectures/config options. If needed, this can be addressed in follow on work. Link: https://lkml.kernel.org/r/20211007181918.136982-4-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
9871e2ded6 |
mm/cma: add cma_pages_valid to determine if pages are in CMA
Add new interface cma_pages_valid() which indicates if the specified pages are part of a CMA region. This interface will be used in a subsequent patch by hugetlb code. In order to keep the same amount of DEBUG information, a pr_debug() call was added to cma_pages_valid(). In the case where the page passed to cma_release is not in cma region, the debug message will be printed from cma_pages_valid as opposed to cma_release. Link: https://lkml.kernel.org/r/20211007181918.136982-3-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |