Make the necessary alterations to the extended attribute log intent item
ondisk format so that we can log parent pointer operations. This
requires the creation of new opcodes specific to parent pointers, and a
new four-argument replace operation to handle renames. At this point
this part of the patchset has changed so much from what Allison original
wrote that I no longer think her SoB applies.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
A few notes about struct xfs_da_args:
The XFS_ATTR_* flags only go up as far as XFS_ATTR_INCOMPLETE, which
means that attr_filter could be a u8 field.
I've reduced the number of XFS_DA_OP_* flags down to the point where
op_flags would also fit into a u8.
filetype has 7 bytes of slack after it, which is wasteful.
namelen will never be greater than MAXNAMELEN, which is 256. This field
could be reduced to a short.
Rearrange the fields in xfs_da_args to waste less space. This reduces
the structure size from 136 bytes to 128. Later when we add extra
fields to support parent pointer replacement, this will only bloat the
structure to 144 bytes, instead of 168.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This field only ever contains XATTR_{CREATE,REPLACE}, and it only goes
as deep as xfs_attr_set. Remove the field from the structure and
replace it with an enum specifying exactly what kind of change we want
to make to the xattr structure. Upsert is the name that we'll give to
the flags==0 operation, because we're either updating an existing value
or inserting it, and the caller doesn't care.
Note: The "UPSERTR" name created here is to make userspace porting
easier. It will be removed in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The only user of this flag sets it prior to an xfs_attr_get_ilocked
call, which doesn't update anything. Get rid of the flag.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a leaf block header checking function to validate the owner field
of xattr leaf blocks.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add an explicit owner field to xfs_da_args, which will make it easier
for online fsck to set the owner field of the temporary directory and
xattr structures that it builds to repair damaged metadata.
Note: I hopefully found all the xfs_da_args definitions by looking for
automatic stack variable declarations and xfs_da_args.dp assignments:
git grep -E '(args.*dp =|struct xfs_da_args[[:space:]]*[a-z0-9][a-z0-9]*)'
Note that callers of xfs_attr_{get,set,change} can set the owner to zero
(or leave it unset) to have the default set to args->dp.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This patch does not modify logic.
xfs_da_buf_copy() will copy one block from src xfs_buf to
dst xfs_buf, and update the block metadata in dst directly.
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
I found a race involving the larp control knob, aka the debugging knob
that lets developers enable logging of extended attribute updates:
Thread 1 Thread 2
echo 0 > /sys/fs/xfs/debug/larp
setxattr(REPLACE)
xfs_has_larp (returns false)
xfs_attr_set
echo 1 > /sys/fs/xfs/debug/larp
xfs_attr_defer_replace
xfs_attr_init_replace_state
xfs_has_larp (returns true)
xfs_attr_init_remove_state
<oops, wrong DAS state!>
This isn't a particularly severe problem right now because xattr logging
is only enabled when CONFIG_XFS_DEBUG=y, and developers *should* know
what they're doing.
However, the eventual intent is that callers should be able to ask for
the assistance of the log in persisting xattr updates. This capability
might not be required for /all/ callers, which means that dynamic
control must work correctly. Once an xattr update has decided whether
or not to use logged xattrs, it needs to stay in that mode until the end
of the operation regardless of what subsequent parallel operations might
do.
Therefore, it is an error to continue sampling xfs_globals.larp once
xfs_attr_change has made a decision about larp, and it was not correct
for me to have told Allison that ->create_intent functions can sample
the global log incompat feature bitfield to decide to elide a log item.
Instead, create a new op flag for the xfs_da_args structure, and convert
all other callers of xfs_has_larp and xfs_sb_version_haslogxattrs within
the attr update state machine to look for the operations flag.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
The calling conventions of this function are a mess -- callers /can/
provide a pointer to a pointer to a state structure, but it's not
required, and as evidenced by the last two patches, the callers that do
weren't be careful enough about how to deal with an existing da state.
Push the allocation and freeing responsibilty to the callers, which
means that callers from the xattr node state machine steps now have the
visibility to allocate or free the da state structure as they please.
As a bonus, the node remove/add paths for larp-mode replaces can reset
the da state structure instead of freeing and immediately reallocating
it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can't use the same algorithm for replacing an existing attribute
when logging attributes. The existing algorithm is essentially:
1. create new attr w/ INCOMPLETE
2. atomically flip INCOMPLETE flags between old + new attribute
3. remove old attr which is marked w/ INCOMPLETE
This algorithm guarantees that we see either the old or new
attribute, and if we fail after the atomic flag flip, we don't have
to recover the removal of the old attr because we never see
INCOMPLETE attributes in lookups.
For logged attributes, however, this does not work. The logged
attribute intents do not track the work that has been done as the
transaction rolls, and hence the only recovery mechanism we have is
"run the replace operation from scratch".
This is further exacerbated by the attempt to avoid needing the
INCOMPLETE flag to create an atomic swap. This means we can create
a second active attribute of the same name before we remove the
original. If we fail at any point after the create but before the
removal has completed, we end up with duplicate attributes in
the attr btree and recovery only tries to replace one of them.
There are several other failure modes where we can leave partially
allocated remote attributes that expose stale data, partially free
remote attributes that enable UAF based stale data exposure, etc.
TO fix this, we need a different algorithm for replace operations
when LARP is enabled. Luckily, it's not that complex if we take the
right first step. That is, the first thing we log is the attri
intent with the new name/value pair and mark the old attr as
INCOMPLETE in the same transaction.
From there, we then remove the old attr and keep relogging the
new name/value in the intent, such that we always know that we have
to create the new attr in recovery. Once the old attr is removed,
we then run a normal ATTR_CREATE operation relogging the intent as
we go. If the new attr is local, then it gets created in a single
atomic transaction that also logs the final intent done. If the new
attr is remote, the we set INCOMPLETE on the new attr while we
allocate and set the remote value, and then we clear the INCOMPLETE
flag at in the last transaction taht logs the final intent done.
If we fail at any point in this algorithm, log recovery will always
see the same state on disk: the new name/value in the intent, and
either an INCOMPLETE attr or no attr in the attr btree. If we find
an INCOMPLETE attr, we run the full replace starting with removing
the INCOMPLETE attr. If we don't find it, then we simply create the
new attr.
Notably, recovery of a failed create that has an INCOMPLETE flag set
is now the same - we start with the lookup of the INCOMPLETE attr,
and if that exists then we do the full replace recovery process,
otherwise we just create the new attr.
Hence changing the way we do the replace operation when LARP is
enabled allows us to use the same log recovery algorithm for both
the ATTR_CREATE and ATTR_REPLACE operations. This is also the same
algorithm we use for runtime ATTR_REPLACE operations (except for the
step setting up the initial conditions).
The result is that:
- ATTR_CREATE uses the same algorithm regardless of whether LARP is
enabled or not
- ATTR_REPLACE with larp=0 is identical to the old algorithm
- ATTR_REPLACE with larp=1 runs an unmodified attr removal algorithm
from the larp=0 code and then runs the unmodified ATTR_CREATE
code.
- log recovery when larp=1 runs the same ATTR_REPLACE algorithm as
it uses at runtime.
Because the state machine is now quite clean, changing the algorithm
is really just a case of changing the initial state and how the
states link together for the ATTR_REPLACE case. Hence it's not a
huge amount of code for what is a fairly substantial rework
of the attr logging and recovery algorithm....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently store the high level attr operation in
args->attr_flags. This field contains what the VFS is telling us to
do, but don't necessarily match what we are doing in the low level
modification state machine. e.g. XATTR_REPLACE implies both
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME because it is doing both a
remove and adding a new attr.
However, deep in the individual state machine operations, we check
errors against this high level VFS op flags, not the low level
XFS_DA_OP flags. Indeed, we don't even have a low level flag for
a REMOVE operation, so the only way we know we are doing a remove
is the complete absence of XATTR_REPLACE, XATTR_CREATE,
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME. And because there are other
flags in these fields, this is a pain to check if we need to.
As the XFS_DA_OP flags are only needed once the deferred operations
are set up, set these flags appropriately when we set the initial
operation state. We also introduce a XFS_DA_OP_REMOVE flag to make
it easy to know that we are doing a remove operation.
With these, we can remove the use of XATTR_REPLACE and XATTR_CREATE
in low level lookup operations, and manipulate the low level flags
according to the low level context that is operating. e.g. log
recovery does not have a VFS xattr operation state to copy into
args->attr_flags, and the low level state machine ops we do for
recovery do not match the high level VFS operations that were in
progress when the system failed...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs: Large extent counters
The commit xfs: fix inode fork extent count overflow
(3f8a4f1d87) mentions that 10 billion
data fork extents should be possible to create. However the
corresponding on-disk field has a signed 32-bit type. Hence this
patchset extends the per-inode data fork extent counter to 64 bits
(out of which 48 bits are used to store the extent count).
Also, XFS has an attribute fork extent counter which is 16 bits
wide. A workload that,
1. Creates 1 million 255-byte sized xattrs,
2. Deletes 50% of these xattrs in an alternating manner,
3. Tries to insert 400,000 new 255-byte sized xattrs
causes the xattr extent counter to overflow.
Dave tells me that there are instances where a single file has more
than 100 million hardlinks. With parent pointers being stored in
xattrs, we will overflow the signed 16-bits wide attribute extent
counter when large number of hardlinks are created. Hence this
patchset extends the on-disk field to 32-bits.
The following changes are made to accomplish this,
1. A 64-bit inode field is carved out of existing di_pad and
di_flushiter fields to hold the 64-bit data fork extent counter.
2. The existing 32-bit inode data fork extent counter will be used to
hold the attribute fork extent counter.
3. A new incompat superblock flag to prevent older kernels from mounting
the filesystem.
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The maximum file size that can be represented by the data fork extent counter
in the worst case occurs when all extents are 1 block in length and each block
is 1KB in size.
With XFS_MAX_EXTCNT_DATA_FORK_SMALL representing maximum extent count and with
1KB sized blocks, a file can reach upto,
(2^31) * 1KB = 2TB
This is much larger than the theoretical maximum size of a directory
i.e. XFS_DIR2_SPACE_SIZE * 3 = ~96GB.
Since a directory's inode can never overflow its data fork extent counter,
this commit removes all the overflow checks associated with
it. xfs_dinode_verify() now performs a rough check to verify if a diretory's
data fork is larger than 96GB.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove these typedefs by referencing kmem_cache directly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Every call to xfs_da_state_alloc() also requires setting up state->args
and state->mp
Change xfs_da_state_alloc() to receive an xfs_da_args_t as argument and
return a xfs_da_state_t with both args and mp already set.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: reduce struct typedef usage]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
This patch corrects the SPDX License Identifier style in header files
related to XFS File System support. For C header files
Documentation/process/license-rules.rst mandates C-like comments.
(opposed to C source files where C++ style should be used).
Changes made by using a script provided by Joe Perches here:
https://lkml.org/lkml/2019/2/7/46.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we use the on-disk flags field also for the interface to the
lower level attr routines we can use the XFS_ATTR_INCOMPLETE definition
from the on-disk format directly instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ATTR_* flags have a long IRIX history, where they a userspace
interface, the on-disk format and an internal interface. We've split
out the on-disk interface to the XFS_ATTR_* values, but despite (or
because?) of that the flag have still been a mess. Switch the
internal interface to pass the on-disk XFS_ATTR_* flags for the
namespace and the Linux XATTR_* flags for the actual flags instead.
The ATTR_* values that are actually used are move to xfs_fs.h with a
new XFS_IOC_* prefix to not conflict with the userspace version that
has the same name and must have the same value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
op_flags with the XFS_DA_OP_* flags is the usual place for in-kernel
only flags, so move the notime flag there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use a NULL args->value as the indicator to lazily allocate a buffer
instead, and let the caller always free args->value instead of
duplicating the cleanup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xattr values are blobs and should not be typed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS_ATTR_INCOMPLETE is a flag in the on-disk attribute format, and thus
in a different namespace as the ATTR_* flags in xfs_da_args.flags.
Switch to using a XFS_DA_OP_INCOMPLETE flag in op_flags instead. Without
this users might be able to inject this flag into operations using the
attr by handle ioctl.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the xfs_da_get_buf_daddr function directly for the two callers
that pass a mapped disk address, and then remove the mappedbno argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the code for reading an already mapped block into
xfs_da3_node_read_mapped, which is the only caller ever passing a block
number in the mappedbno argument and replace the mappedbno argument with
the simple xfs_dabuf_get flags.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Split xfs_da3_node_read into one variant that always looks up the daddr
and doesn't accept holes, and one that already has a daddr at hand.
This is in preparation of splitting up xfs_da_read_buf in a similar way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the mappedbno argument with the simple flags for xfs_da_reada_buf
and xfs_dir3_data_readahead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use a flags argument with the XFS_DABUF_MAP_HOLE_OK flag to signal that
a hole is okay and not corruption, and return 0 with *nmap set to 0 to
signal that case in the return value instead of a nameless -1 return
code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of causing a relatively expensive indirect call for each
hashing and comparism of a file name in a directory just use an
inline function and a simple branch on the ASCII CI bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix unused variable warning]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the data block fixed offsets towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the max free bests count towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the free header size towards our structure for dir/attr geometry
parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the max leaf entries count towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the leaf header size towards our structure for dir/attr geometry
parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the node header size field to struct xfs_da_geometry, and remove
the now unused non-directory dir ops infrastructure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All but two callers of the ->node_tree_p dir operation already have a
xfs_da3_icnode_hdr from a previous call to xfs_da3_node_hdr_from_disk at
hand. Add a pointer to the btree entries to struct xfs_da3_icnode_hdr
to clean up this pattern. The two remaining callers now expand the
whole header as well, but that isn't very expensive and not in a super
hot path anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->node_hdr_to_disk dir ops method with a directly called
xfs_da_node_hdr_to_disk helper that takes care of the v4 vs v5
difference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->node_hdr_from_disk dir ops method with a directly called
xfs_da_node_hdr_from_disk helper that takes care of the v4 vs v5
difference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
None of these can ever be negative, so use unsigned types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the abstract in-memory version of various btree block headers
out of xfs_da_format.h as they aren't on-disk formats.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When doing file lookups and checking for permissions, we end up in
xfs_get_acl() to see if there are any ACLs on the inode. This
requires and xattr lookup, and to do that we have to supply a buffer
large enough to hold an maximum sized xattr.
On workloads were we are accessing a wide range of cache cold files
under memory pressure (e.g. NFS fileservers) we end up spending a
lot of time allocating the buffer. The buffer is 64k in length, so
is a contiguous multi-page allocation, and if that then fails we
fall back to vmalloc(). Hence the allocation here is /expensive/
when we are looking up hundreds of thousands of files a second.
Initial numbers from a bpf trace show average time in xfs_get_acl()
is ~32us, with ~19us of that in the memory allocation. Note these
are average times, so there are going to be affected by the worst
case allocations more than the common fast case...
To avoid this, we could just do a "null" lookup to see if the ACL
xattr exists and then only do the allocation if it exists. This,
however, optimises the path for the "no ACL present" case at the
expense of the "acl present" case. i.e. we can halve the time in
xfs_get_acl() for the no acl case (i.e down to ~10-15us), but that
then increases the ACL case by 30% (i.e. up to 40-45us).
To solve this and speed up both cases, drive the xattr buffer
allocation into the attribute code once we know what the actual
xattr length is. For the no-xattr case, we avoid the allocation
completely, speeding up that case. For the common ACL case, we'll
end up with a fast heap allocation (because it'll be smaller than a
page), and only for the rarer "we have a remote xattr" will we have
a multi-page allocation occur. Hence the common ACL case will be
much faster, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
struct xfs_defer_ops has now been reduced to a single list_head. The
external dfops mechanism is unused and thus everywhere a (permanent)
transaction is accessible the associated dfops structure is as well.
Remove the xfs_defer_ops structure and fold the list_head into the
transaction. Also remove the last remnant of external dfops in
xfs_trans_dup().
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Similar to the dirops code, the xattr code uses an on-stack
firstblock variable for the various operations. This code rolls the
underlying transaction in various places, however, which means we
cannot simply replace the local firstblock vars with ->t_firstblock.
Doing so (without further changes) would invalidate the memory
pointed to by xfs_da_args.firstblock as soon as the first
transaction rolls.
To avoid this problem, remove xfs_da_args.firstblock and replace all
such accesses with ->t_firstblock at the same time. This ensures
that accesses to the current firstblock always occur through the
current transaction rather than a potentially invalid xfs_da_args
pointer.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that xfs_da_args->dfops is always assigned from a ->t_dfops
pointer (or one that is immediately attached), replace all
downstream accesses of the former with the latter and remove the
field from struct xfs_da_args.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>