Currently we're taking power_lock at each card component for assuring
the power-up sequence, but it doesn't help anything in the
implementation at the moment: it just serializes unnecessarily the
callers, but it doesn't protect about the power state change itself.
It used to have some usefulness in the early days where we managed the
PM manually. But now the suspend/resume core procedure is beyond our
hands, and power_lock lost its meaning.
This patch drops the power_lock from allover the places.
There shouldn't be any issues by this change, as it's no helper
regarding the power state change. Rather we'll get better performance
by removing the serialization; which is the only slight concern of any
behavior change, but it can't be a showstopper, after all.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
For user-defined element set, in its initial state, TLV data is not
registered. It's firstly available when any application register it by
an additional operation. However, in current implementation, it's available
in its initial state. As a result, applications get -ENXIO to read it.
This commit controls its readability to manage info flags properly. In an
initial state, elements don't have SND_CTL_ELEM_ACCESS_TLV_READ flag. Once
TLV write operation is executed, they get the flag.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In a design of user-defined element set, applications allow to change TLV
data on the set. This operation doesn't only affects to a target element,
but also to elements in the set.
This commit generates TLV event for all of elements in the set when the TLV
data is changed.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In a design of ALSA control core, a set of elements is represented by
'struct snd_kcontrol' to share common attributes. The set of elements
shares TLV (Type-Length-Value) data, too.
On the other hand, in ALSA control interface/protocol for applications,
a TLV operation is committed to an element. Totally, the operation can
have sub-effect to the other elements in the set. For example, TLV_WRITE
operation is expected to change TLV data, which returns to applications.
Applications attempt to change the TLV data per element, but in the above
design, they can effect to elements in the same set.
As a default, ALSA control core has no implementation except for TLV_READ
operation. Thus, the above design looks to have no issue. However, in
kernel APIs of ALSA control component, developers can program a handler
for any request of the TLV operation. Therefore, for elements in a set
which has the handler, applications can commit TLV_WRITE and TLV_COMMAND
requests.
For the above scenario, ALSA control core assist notification. When the
handler returns positive value, the core queueing an event for a requested
element. However, this includes design defects that the event is not
queued for the other element in a set. Actually, developers can program
the handlers to keep per-element TLV data, but it depends on each driver.
As of v4.13-rc6, there's no driver in tree to utilize the notification,
except for user-defined element set. This commit delegates the notification
into each driver to prevent developers from the design defects.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
When user tries to replace the user-defined control TLV, the kernel
checks the change of its content via memcmp(). The problem is that
the kernel passes the return value from memcmp() as is. memcmp()
gives a non-zero negative value depending on the comparison result,
and this shall be recognized as an error code.
The patch covers that corner-case, return 1 properly for the changed
TLV.
Fixes: 8aa9b586e4 ("[ALSA] Control API - more robust TLV implementation")
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In ALSA control interface, applications can execute two types of request
for value of members on each element; ELEM_READ and ELEM_WRITE. In ALSA
control core, these two requests are handled within read lock of a
counting semaphore, therefore several processes can run to execute these
two requests at the same time. This has an issue because ELEM_WRITE
requests have an effect to change state of the target element. Concurrent
access should be controlled for each of ELEM_READ/ELEM_WRITE case.
This commit uses the counting semaphore as write lock for ELEM_WRITE
requests, while use it as read lock for ELEM_READ requests. The state of
a target element is maintained exclusively between ELEM_WRITE/ELEM_READ
operations.
There's a concern. If the counting semaphore is acquired for read lock
in implementations of 'struct snd_kcontrol.put()' in each driver, this
commit shall cause dead lock. As of v4.13-rc5, 'snd-mixer-oss.ko',
'snd-emu10k1.ko' and 'snd-soc-sst-atom-hifi2-platform.ko' includes codes
for read locks, but these are not in a call graph from
'struct snd_kcontrol.put(). Therefore, this commit is safe.
In current implementation, the same solution is applied for the other
operations to element; e.g. ELEM_LOCK and ELEM_UNLOCK. There's another
discussion about an overhead to maintain concurrent access to an element
during operating the other elements on the same card instance, because the
lock primitive is originally implemented to maintain a list of elements on
the card instance. There's a substantial difference between
per-element-list lock and per-element lock.
Here, let me investigate another idea to add per-element lock to maintain
the concurrent accesses with inquiry/change requests to an element. It's
not so frequent for applications to operate members on elements, while
adding a new lock primitive to structure increases memory footprint for
all of element sets somehow. Experimentally, inquiry operation is more
frequent than change operation and usage of counting semaphore for the
inquiry operation brings no blocking to the other inquiry operations. Thus
the overhead is not so critical for usual applications. For the above
reasons, in this commit, the per-element lock is not introduced.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
ALSA control core handles ELEM_READ/ELEM_WRITE requests within lock
acquisition of a counting semaphore. The lock is acquired in helper
functions in the end of call path before calling implementations of each
driver.
ioctl(2) with SNDRV_CTL_ELEM_READ
...
->snd_ctl_ioctl()
->snd_ctl_elem_read_user()
->snd_ctl_elem_read()
->down_read(controls_rwsem)
->snd_ctl_find_id()
->struct snd_kcontrol.get()
->up_read(controls_rwsem)
ioctl(2) with SNDRV_CTL_ELEM_WRITE
...
->snd_ctl_ioctl()
->snd_ctl_elem_write_user()
->snd_ctl_elem_write()
->down_read(controls_rwsem)
->snd_ctl_find_id()
->struct snd_kcontrol.put()
->up_read(controls_rwsem)
This commit moves the lock acquisition to middle of the call graph to
simplify the helper functions. As a result:
ioctl(2) with SNDRV_CTL_ELEM_READ
...
->snd_ctl_ioctl()
->snd_ctl_elem_read_user()
->down_read(controls_rwsem)
->snd_ctl_elem_read()
->snd_ctl_find_id()
->struct snd_kcontrol.get()
->up_read(controls_rwsem)
ioctl(2) with SNDRV_CTL_ELEM_WRITE
...
->snd_ctl_ioctl()
->snd_ctl_elem_write_user()
->down_read(controls_rwsem)
->snd_ctl_elem_write()
->snd_ctl_find_id()
->struct snd_kcontrol.put()
->up_read(controls_rwsem)
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Any control event is queued by a call of snd_ctl_notify(). This function
adds the event to each queue of opened file data corresponding to ALSA
control character devices. This function acquired two types of lock; a
counting semaphore for a list of the opened file data and a spinlock for
card data opened by the file. Typically, this function is called after
acquiring a counting semaphore for a list of elements in the card data.
In current implementation of a handler for ELEM_WRITE request, the
function is called after releasing the semaphore for a list of elements
in the card data. This release is not necessarily needed.
This commit removes the release to call the function within the critical
section so that later commits are simple.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
User-defined element set registers own handler to get callbacks from TLV
ioctl handler. In the handler, execution path bifurcates depending on
requests from user space. At write request, container in given buffer is
registered to the element set, or replaced old TLV data. At the read
request, the registered data is copied to user space. The command request
is not allowed. In current implementation, function of the handler
includes codes for the two cases.
This commit adds two helper functions for these cases so that readers can
easily get the above design.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In a design of ALSA control core, execution path bifurcates depending on
target element. When a set with the target element has a handler, it's
called. Else, registered buffer is copied to user space. These two
operations are apparently different. In current implementation, they're
on the same function with a condition statement. This makes it a bit hard
to understand conditions of each case.
This commit splits codes for these two cases.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
At a previous commit, concurrent requests for TLV data are maintained
exclusively between read requests and write/command requests. TLV
callback handlers in each driver has no risk from concurrent access for
reference/change.
In current implementation, 'struct snd_card' has a mutex to control
concurrent accesses to user-defined element sets. This commit obsoletes it.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In ALSA control interface, applications can execute three types of request
for Type-Length-Value (TLV) data to a set of elements; read, write and
command. In ALSA control core, all of the requests are handled within read
lock to a counting semaphore, therefore several processes can run to access
to the data at the same time for any purposes. This has an issue because
write and command requests have side effect to change state of a set of
elements for the TLV data. Concurrent access should be controlled for each
of reference/change case.
This commit uses the counting semaphore as read lock for TLV read requests,
while use it as write lock for TLV write/command requests. The state of a
set of elements for the TLV data is maintained exclusively between read
requests and write/command requests, or between write and command requests.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Any control event is queued by a call of snd_ctl_notify(). This function
adds the event to each queue of opened file data corresponding to ALSA
control character devices. This function acquired two types of lock; a
counting semaphore for a list of the opened file data and a spinlock for
card data opened by the file. Typically, this function is called after
acquiring a counting semaphore for a list of elements in the card data.
In current implementation of TLV request handler, the function is called
after releasing the semaphore for a list of elements in the card data.
This release is not necessarily needed.
This commit removes the release to call the function within the critical
section so that later commits are simple.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This development cycle resulted in a fair amount of changes in both
core and driver sides. The most significant change in ALSA core is
about PCM. Also the support of of-graph card and the new DAPM widget
for DSP are noteworthy changes in ASoC core. And there're lots of
small changes splat over the tree, as you can see in diffstat.
Below are a few highlights:
ALSA core:
- Removal of set_fs() hackery from PCM core stuff, and the code
reorganization / optimization thereafter
- Improved support of PCM ack ops, and a new ABI for improved
control/status mmap handling
- Lots of constifications in various codes
ASoC core:
- The support of of-graph card, which may work as a better generic
device for a replacement of simple-card
- New widget types intended mainly for use with DSPs
ASoC drivers:
- New drivers for Allwinner V3s SoCs
- Ensonic ES8316 codec support
- More Intel SKL and KBL works
- More device support for Intel SST Atom (mostly for cheap tablets and
2-in-1 devices)
- Support for Rockchip PDM controllers
- Support for STM32 I2S and S/PDIF controllers
- Support for ZTE AUD96P22 codecs
HD-audio:
- Support of new Realtek codecs (ALC215/ALC285/ALC289), more quirks
for HP and Dell machines
- A few more fixes for i915 component binding
Note that of-graph change may bring the conflicts with a later pull
request of devicetree, as currently found in linux-next.
-----BEGIN PGP SIGNATURE-----
iQJCBAABCAAsFiEECxfAB4MH3rD5mfB6bDGAVD0pKaQFAllbtmMOHHRpd2FpQHN1
c2UuZGUACgkQbDGAVD0pKaTMkhAAnqvRvh9nYBI1E2VGtJON/AFcsF4s6xdJd0ow
Bn5Kq/07rGWxAi8Cy69LM930eQrZl+xR69I7LMkC54BxVNhvhXNef7E5GXPbRi+3
l6dkBmkqvwmmHP5iiOxKtYSAnUfJitu1rmtAOVAjRh8rsWNeLuI8N8V/uilQBioi
lRywdBjdylub00H1DL8cmZHbrBb4pYrL/LepTswZL3I/UZ225fMiIGFd8tXpQPwZ
IKRZiuzrc3SykxSsL/aNeyxP+2qTYRtPfl/FGenKBBO2PJmGAb00yAdtQJRcD2eX
Xf1alfvpNgpy/U6+C7dJgNWQvvr+lPCaFXuMukIDno/zg/xD1V1Ev/fnbVEINLve
xMOnuJSGGaY6fu6eZ4Cck0VfZIj7UVA9x8zvBOKntIhq/VLfE7DDu3p9tiAZAVfH
nMOLAhy+0kFyHSrv6zVWQj+cmjPwLvaW7fNWVljL5/MWuF5GJi05DUOfV/vk8BaO
EnyVqe2ynzNLTsFpLHHy6XKgKtSTkPygxYSNuI7kSYAxD5qE6hXXKXTAqJ3LjDkO
tGiFmxp/vHrlNvcyRjXc30th/9PPj/mRBcJ2KyjXPa63L5ZW86PiyIHKxJA4yogv
y4z2ZlhIz90cZvpigFHtFqq1puVlDtKDbAaJ6AKrP8HEHUlMiPNApsSjWWBUcfzV
DXzrlg0=
=PUEh
-----END PGP SIGNATURE-----
Merge tag 'sound-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
Pull sound updates from Takashi Iwai:
"This development cycle resulted in a fair amount of changes in both
core and driver sides. The most significant change in ALSA core is
about PCM. Also the support of of-graph card and the new DAPM widget
for DSP are noteworthy changes in ASoC core. And there're lots of
small changes splat over the tree, as you can see in diffstat.
Below are a few highlights:
ALSA core:
- Removal of set_fs() hackery from PCM core stuff, and the code
reorganization / optimization thereafter
- Improved support of PCM ack ops, and a new ABI for improved
control/status mmap handling
- Lots of constifications in various codes
ASoC core:
- The support of of-graph card, which may work as a better generic
device for a replacement of simple-card
- New widget types intended mainly for use with DSPs
ASoC drivers:
- New drivers for Allwinner V3s SoCs
- Ensonic ES8316 codec support
- More Intel SKL and KBL works
- More device support for Intel SST Atom (mostly for cheap tablets
and 2-in-1 devices)
- Support for Rockchip PDM controllers
- Support for STM32 I2S and S/PDIF controllers
- Support for ZTE AUD96P22 codecs
HD-audio:
- Support of new Realtek codecs (ALC215/ALC285/ALC289), more quirks
for HP and Dell machines
- A few more fixes for i915 component binding"
* tag 'sound-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (418 commits)
ALSA: hda - Fix unbalance of i915 module refcount
ASoC: Intel: Skylake: Remove driver debugfs exit
ASoC: Intel: Skylake: explicitly add the headers sst-dsp.h
ALSA: hda/realtek - Remove GPIO_MASK
ALSA: hda/realtek - Fix typo of pincfg for Dell quirk
ALSA: pcm: add a documentation for tracepoints
ALSA: atmel: ac97c: fix error return code in atmel_ac97c_probe()
ALSA: x86: fix error return code in hdmi_lpe_audio_probe()
ASoC: Intel: Skylake: Add support to read firmware registers
ASoC: Intel: Skylake: Add sram address to sst_addr structure
ASoC: Intel: Skylake: Debugfs facility to dump module config
ASoC: Intel: Skylake: Add debugfs support
ASoC: fix semicolon.cocci warnings
ASoC: rt5645: Add quirk override by module option
ASoC: rsnd: make arrays path and cmd_case static const
ASoC: audio-graph-card: add widgets and routing for external amplifier support
ASoC: audio-graph-card: update bindings for amplifier support
ASoC: rt5665: calibration should be done before jack detection
ASoC: rsnd: constify dev_pm_ops structures.
ASoC: nau8825: change crosstalk-bypass property to bool type
...
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In current implementation of ALSA control core, list operation has
a limitation to handle 16384 entries at once. This seems due to
allocation in kernel space to copy data from user space.
With a commit 53e7bf4525 ("ALSA: control: Simplify snd_ctl_elem_list()
implementation"), for the operation, ALSA control core copies data
into user space directly. No need to care of kernel spaces anymore.
This commit purges the limitation.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This patch simplifies the code of snd_ctl_elem_list() in the following
ways:
- Avoid a vmalloc() temporary buffer but do copy in each iteration;
the vmalloc buffer was introduced at the time we took the spinlock
for the ctl element management.
- Use the standard list_for_each_entry() macro
- Merge two loops into one;
it used to be a loop for skipping until offset becomes zero and
another loop to copy the data. They can be folded into a single
loop easily.
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Tested-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
snd_ctl_remove() has a notification for the removal event. It's
superfluous when done during the device got disconnected. Although
the notification itself is mostly harmless, it may potentially be
harmful, and should be suppressed. Actually some components PCM may
free ctl elements during the disconnect or free callbacks, thus it's
no theoretical issue.
This patch adds the check of card->shutdown flag for avoiding
unnecessary notifications after (or during) the disconnect.
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The 'dimen' field in struct snd_ctl_elem_info is used to compose all of
members in the element as multi-dimensional matrix. The field has four
members. Each member represents the width in each dimension level by
element member unit. For example, if the members consist of typical
two dimensional matrix, the dimen[0] represents the number of rows
and dimen[1] represents the number of columns (or vise-versa).
The total members in the matrix should be exactly the same as the number
of members in the element, while current implementation has no validator
of this information. In a view of userspace applications, the information
must be valid so that it cannot cause any bugs such as buffer-over-run.
This commit adds a validator of dimension information for userspace
applications which add new element sets. When they add the element sets
with wrong dimension information, they receive -EINVAL.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
When a TLV ioctl with numid zero is handled, the driver may spew a
kernel warning with a stack trace at each call. The check was
intended obviously only for a kernel driver, but not for a user
interaction. Let's fix it.
This was spotted by syzkaller fuzzer.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
An element instance can have several elements with the same feature.
Some userspace applications can add such an element instance by add
operation with the number of elements. Then, the element instance
gets a memory object to keep states of these elements.
But the element instance has just one memory object for the elements.
This causes the same result to each read/write operations to the
different elements.
This commit fixes this bug by allocating enough memory objects to the
element instance for each of elements.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The commit [39d118677b: ALSA: ctl: evaluate macro instead of
numerical value] replaced the numbers with constants, but one place
was replaced wrongly with a different type. Fixed now.
Fixes: 39d118677b ('ALSA: ctl: evaluate macro instead of numerical value')
Signed-off-by: Takashi Iwai <tiwai@suse.de>
currently some members related identical information are not fiiled
in returned parameter of SNDRV_CTL_IOCTL_ELEM_ADD. This is not better
for userspace application.
This commit copies information to returned value. When failing to copy
into userspace, the added elements are going to be removed. Then, no
applications can lock these elements between adding and removing because
these are already locked.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In operations of SNDRV_CTL_IOCTL_ELEM_INFO, identical information in
returned value is cleared. This is not better to userspace application.
This commit confirms to return full identical information to the
operations.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
When event originator doesn't set numerical ID in identical information,
the event data includes no numerical ID, thus userspace applications
cannot identify the control just by unique ID in event data.
This commit fix this bug so as the event data includes all of identical
information.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
SNDRV_CTL_TLV_OP_XXX is defined but not used in core code. Instead,
raw numerical value is evaluated.
This commit replaces these values to these macros for better looking.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In the commit [2225e79b9b: 'ALSA: core: reduce stack usage related
to snd_ctl_new()'], the id field of the newly added kctl is untouched,
thus all attribute like name string remain empty. The fix is just to
add the forgotten memcpy of the id field.
Fixes: 2225e79b9b ('ALSA: core: reduce stack usage related to snd_ctl_new()')
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
There was no check about the id string of user control elements, so we
accepted even a control element with an empty string, which is
obviously bogus. This patch adds more sanity checks of id strings.
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The kernel memory allocators already report the errors when the
requested allocation fails, thus we don't need to warn it again in
each caller side.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The callers of snd_ctl_new() need to have 'struct snd_kcontrol' data,
and pass the data as template. Then, the function allocates the structure
data again and copy from the template. This is a waste of resources.
Especially, the callers use large stack for the template.
This commit removes a need of template for the function, thus, changes
the prototype of snd_ctl_new(). Furthermore, this commit changes
the code of callers, snd_ctl_new1() and snd_ctl_elem_add() for better
shape.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The parameters can be decided in compile time.
This commit adds precomputed table to reduce calculating time.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
In 'replace' event data, numerical ID of control is always invalid. This
commit fix this bug so as the event data has renewed numerical ID for
control.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Currently when adding a new control, the assigned numerical ID is not
set for event data, thus userspace applications cannot realize it just
by event data.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Now that all callers have been replaced with
snd_device_register_for_dev(), let's drop the obsolete device
registration code and concentrate only on the code handling struct
device directly. That said,
- remove the old snd_device_register(),
- rename snd_device_register_for_dev() with snd_device_register(),
- drop superfluous arguments from snd_device_register(),
- change snd_unregister_device() to pass the device pointer directly
Reviewed-by: Jaroslav Kysela <perex@perex.cz>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This patch embeds a struct device for the control device into the card
object and avoid the device creation at registration time.
Reviewed-by: Jaroslav Kysela <perex@perex.cz>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Instead of open-coding the search over the control file loop, provide
a helper function for the preferred subdevice assigned to the current
process.
Reviewed-by: Jaroslav Kysela <perex@perex.cz>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
We want to know the offset for the id that was passed to the function, not
the offset of the first id of the control (which is always 0).
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
A few functions have no proper documentation yet, so let's add them.
Along with it, remove superfluous blank line between the closing brace
and EXPORT_SYMBOL() line.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Although this is weird, some drivers want to allow empty control
elements intentionally, e.g. the number of items may change depending
on the firmware status. Let the function simply returning in such a
case.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The ALSA control code expects that the range of assigned indices to a control is
continuous and does not overflow. Currently there are no checks to enforce this.
If a control with a overflowing index range is created that control becomes
effectively inaccessible and unremovable since snd_ctl_find_id() will not be
able to find it. This patch adds a check that makes sure that controls with a
overflowing index range can not be created.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Jaroslav Kysela <perex@perex.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Each control gets automatically assigned its numids when the control is created.
The allocation is done by incrementing the numid by the amount of allocated
numids per allocation. This means that excessive creation and destruction of
controls (e.g. via SNDRV_CTL_IOCTL_ELEM_ADD/REMOVE) can cause the id to
eventually overflow. Currently when this happens for the control that caused the
overflow kctl->id.numid + kctl->count will also over flow causing it to be
smaller than kctl->id.numid. Most of the code assumes that this is something
that can not happen, so we need to make sure that it won't happen
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Jaroslav Kysela <perex@perex.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
A control that is visible on the card->controls list can be freed at any time.
This means we must not access any of its memory while not holding the
controls_rw_lock. Otherwise we risk a use after free access.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Jaroslav Kysela <perex@perex.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
There are two issues with the current implementation for replacing user
controls. The first is that the code does not check if the control is actually a
user control and neither does it check if the control is owned by the process
that tries to remove it. That allows userspace applications to remove arbitrary
controls, which can cause a user after free if a for example a driver does not
expect a control to be removed from under its feed.
The second issue is that on one hand when a control is replaced the
user_ctl_count limit is not checked and on the other hand the user_ctl_count is
increased (even though the number of user controls does not change). This allows
userspace, once the user_ctl_count limit as been reached, to repeatedly replace
a control until user_ctl_count overflows. Once that happens new controls can be
added effectively bypassing the user_ctl_count limit.
Both issues can be fixed by instead of open-coding the removal of the control
that is to be replaced to use snd_ctl_remove_user_ctl(). This function does
proper permission checks as well as decrements user_ctl_count after the control
has been removed.
Note that by using snd_ctl_remove_user_ctl() the check which returns -EBUSY at
beginning of the function if the control already exists is removed. This is not
a problem though since the check is quite useless, because the lock that is
protecting the control list is released between the check and before adding the
new control to the list, which means that it is possible that a different
control with the same settings is added to the list after the check. Luckily
there is another check that is done while holding the lock in snd_ctl_add(), so
we'll rely on that to make sure that the same control is not added twice.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Jaroslav Kysela <perex@perex.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The user-control put and get handlers as well as the tlv do not protect against
concurrent access from multiple threads. Since the state of the control is not
updated atomically it is possible that either two write operations or a write
and a read operation race against each other. Both can lead to arbitrary memory
disclosure. This patch introduces a new lock that protects user-controls from
concurrent access. Since applications typically access controls sequentially
than in parallel a single lock per card should be fine.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Jaroslav Kysela <perex@perex.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>