In some cases, one side of an alternative sequence is simply a number of
NOPs used to balance the other side. Keeping track of this manually is
tedious, and the presence of large chains of NOPs makes the code more
painful to read than necessary.
To ameliorate matters, this patch adds a new alternative_else_nop_endif,
which automatically balances an alternative sequence with a trivial NOP
sled.
In many cases, we would like a NOP-sled in the default case, and
instructions patched in in the presence of a feature. To enable the NOPs
to be generated automatically for this case, this patch also adds a new
alternative_if, and updates alternative_else and alternative_endif to
work with either alternative_if or alternative_endif.
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[will: use new nops macro to generate nop sequences]
Signed-off-by: Will Deacon <will.deacon@arm.com>
The LSE atomics are implemented using alternative code sequences of
different lengths, and explicit NOP padding is used to ensure the
patching works correctly.
This patch converts the bulk of the LSE code over to using the __nops
macro, which makes it slightly clearer as to what is going on and also
consolidates all of the padding at the end of the various sequences.
Signed-off-by: Will Deacon <will.deacon@arm.com>
NOP sequences tend to get used for padding out alternative sections
and uarch-specific pipeline flushes in errata workarounds.
This patch adds macros for generating these sequences as both inline
asm blocks, but also as strings suitable for embedding in other asm
blocks directly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Similar to our {read,write}_sysreg accessors for architected, named
system registers, this patch introduces {read,write}_sysreg_s variants
that can take arbitrary sys_reg output and therefore access IMPDEF
registers or registers that unsupported by binutils.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We've grown our own versions of bug.h, ftrace.h, pci.h and topology.h,
so generating the generic ones as well is unnecessary and a potential
source of build hiccups. At the very least, having them present has
confused my source-indexing tool, and that simply will not do.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Systems with differing CPU i-cache/d-cache line sizes can cause
problems with the cache management by software when the execution
is migrated from one to another. Usually, the application reads
the cache size on a CPU and then uses that length to perform cache
operations. However, if it gets migrated to another CPU with a smaller
cache line size, things could go completely wrong. To prevent such
cases, always use the smallest cache line size among the CPUs. The
kernel CPU feature infrastructure already keeps track of the safe
value for all CPUID registers including CTR. This patch works around
the problem by :
For kernel, dynamically patch the kernel to read the cache size
from the system wide copy of CTR_EL0.
For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT)
and emulate the mrs instruction to return the system wide safe value
of CTR_EL0.
For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0
via read_system_reg), we keep track of the pointer to table entry for
CTR_EL0 in the CPU feature infrastructure.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we trap some of the user space data cache operations
based on a few Errata (ARM 819472, 826319, 827319 and 824069).
We need to trap userspace access to CTR_EL0, if we detect mismatched
cache line size. Since both these traps share the EC, refactor
the handler a little bit to make it a bit more reader friendly.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On systems with mismatched i/d cache min line sizes, we need to use
the smallest size possible across all CPUs. This will be done by fetching
the system wide safe value from CPU feature infrastructure.
However the some special users(e.g kexec, hibernate) would need the line
size on the CPU (rather than the system wide), when either the system
wide feature may not be accessible or it is guranteed that the caller
executes with a gurantee of no migration.
Provide another helper which will fetch cache line size on the current CPU.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Reviewed-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Adds helpers for decoding/encoding the PC relative addresses for adrp.
This will be used for handling dynamic patching of 'adrp' instructions
in alternative code patching.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we run through the work around checks on a CPU
from __cpuinfo_store_cpu. There are some problems with that:
1) We initialise the system wide CPU feature registers only after the
Boot CPU updates its cpuinfo. Now, if a work around depends on the
variance of a CPU ID feature (e.g, check for Cache Line size mismatch),
we have no way of performing it cleanly for the boot CPU.
2) It is out of place, invoked from __cpuinfo_store_cpu() in cpuinfo.c. It
is not an obvious place for that.
This patch rearranges the CPU specific capability(aka work around) checks.
1) At the moment we use verify_local_cpu_capabilities() to check if a new
CPU has all the system advertised features. Use this for the secondary CPUs
to perform the work around check. For that we rename
verify_local_cpu_capabilities() => check_local_cpu_capabilities()
which:
If the system wide capabilities haven't been initialised (i.e, the CPU
is activated at the boot), update the system wide detected work arounds.
Otherwise (i.e a CPU hotplugged in later) verify that this CPU conforms to the
system wide capabilities.
2) Boot CPU updates the work arounds from smp_prepare_boot_cpu() after we have
initialised the system wide CPU feature values.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is a cosmetic change to rename the functions dealing with
the errata work arounds to be more consistent with their naming.
1) check_local_cpu_errata() => update_cpu_errata_workarounds()
check_local_cpu_errata() actually updates the system's errata work
arounds. So rename it to reflect the same.
2) verify_local_cpu_errata() => verify_local_cpu_errata_workarounds()
Use errata_workarounds instead of _errata.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we use 0 as the safe value for CTR_EL0:L1Ip, which is
not defined at the moment. The safer value for the L1Ip should be
the weakest of the policies, which happens to be AIVIVT. While at it,
fix the comment about safe_val.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When CONFIG_PID_IN_CONTEXTIDR is not selected, we use an empty stub
definition of contextidr_thread_switch(). As everything we rely upon
exists regardless of CONFIG_PID_IN_CONTEXTIDR, we don't strictly require
an empty stub.
By using IS_ENABLED() rather than ifdeffery, we avoid duplication, and
get compiler coverage on all the code even when CONFIG_PID_IN_CONTEXTIDR
is not selected and the code is optimised away.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these across arm64 to make code shorter and
clearer. For sequences with a trailing ISB, the existing isb() macro is
also used so that asm blocks can be removed entirely.
A few uses of inline assembly for msr/mrs are left as-is. Those
manipulating sp_el0 for the current thread_info value have special
clobber requiremends.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these in the arm64 KVM code to make the code
shorter and clearer.
At the same time, a comment style violation next to a system register
access is fixed up in reset_pmcr, and comments describing whether
operations are reads or writes are removed as this is now painfully
obvious.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these in the arm64 DCC accessors to make the
code shorter and clearer.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these in the arm64 arch timer accessors to make
the code shorter and clearer.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently write_sysreg has to allocate a temporary register to write
zero to a system register, which is unfortunate given that the MSR
instruction accepts XZR as an operand.
Allow XZR to be used when appropriate by fiddling with the assembly
constraints.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When zeroing an I/O location, the current accessors are forced to
allocate a temporary register to store the zero for the write. By
tweaking the assembly constraints, we can allow the compiler to use
the zero register directly in such cases, and save some juggling.
Compiling a representative kernel configuration with GCC 6 shows
that 2.3KB worth of code can be wasted just on that!
text data bss dec hex filename
13316776 3248256 18176769 34741801 2121e29 vmlinux.o.new
13319140 3248256 18176769 34744165 2122765 vmlinux.o.old
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds static keys transparently for all the cpu_hwcaps
features by implementing an array of default-false static keys and
enabling them when detected. The cpus_have_cap() check uses the static
keys if the feature being checked is a constant, otherwise the compiler
generates the bitmap test.
Because of the early call to static_branch_enable() via
check_local_cpu_errata() -> update_cpu_capabilities(), the jump labels
are initialised in cpuinfo_store_boot_cpu().
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K. Poulose <Suzuki.Poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The code that provides /dev/mem uses xlate_dev_mem_{k,}ptr() to
avoid making a cachable mapping of a non-cachable area on ia64.
On arm64 we do this via phys_mem_access_prot() instead, but provide
dummy versions of xlate_dev_mem_{k,}ptr().
These are the same as those in asm-generic/io.h, which we include from
asm/io.h
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Expose the arm64_ftr_reg struct covering CTR_EL0 outside of cpufeature.o
so that other code can refer to it directly (i.e., without performing the
binary search)
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Constify the arm64_ftr_regs array, by moving the mutable arm64_ftr_reg
fields out of the array itself. This also streamlines the bsearch, since
the entire array can be covered by fewer cachelines. Moving the payload
out of the array also allows us to have special explicitly defined
struct instance in case other code needs to refer to it directly.
Note that this replaces the runtime sorting of the array with a runtime
BUG() check whether the array is sorted correctly in the code.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64_ftr_bits structures are never modified, so make them read-only.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The UDBG_UNDEFINED/SYSCALL/BADABORT/SEGV are only used to show
verbose user fault messages in arm, not arm64, drop them.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
disable_nonboot_cpus() assumes that the lowest numbered online CPU is
the boot CPU, and that this is the correct CPU to run any power
management code on.
On arm64 CPU0 can be taken offline. For hibernate/resume this means we
may hibernate on a CPU other than CPU0. If the system is rebooted with
kexec 'CPU0' will be assigned to a different CPU. This complicates
hibernate/resume as now we can't trust the CPU numbers.
We currently forbid hibernate if CPU0 has been hotplugged out to avoid
this situation without kexec.
Save the MPIDR of the CPU we hibernated on in the hibernate arch-header,
use hibernate_resume_nonboot_cpu_disable() to direct which CPU we should
resume on based on the MPIDR of the CPU we hibernated on. This allows us to
hibernate/resume on any CPU, even if the logical numbers have been
shuffled by kexec.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Kdump(kexec-tools) parses /proc/iomem to identify all the memory regions
on the system. Since the current kernel names "nomap" regions, like UEFI
runtime services code/data, as "System RAM," kexec-tools sets up elf core
header to include them in a crash dump file (/proc/vmcore).
Then crash dump kernel parses UEFI memory map again, re-marks those regions
as "nomap" and does not create a memory mapping for them unlike the other
areas of System RAM. In this case, copying /proc/vmcore through
copy_oldmem_page() on crash dump kernel will end up with a kernel abort,
as reported in [1].
This patch names all the "nomap" regions explicitly as "reserved" so that
we can exclude them from a crash dump file. acpi_os_ioremap() must also
be modified because those regions have WB attributes [2].
Apart from kdump, this change also matches x86's use of acpi (and
/proc/iomem).
[1] http://lists.infradead.org/pipermail/linux-arm-kernel/2016-August/448186.html
[2] http://lists.infradead.org/pipermail/linux-arm-kernel/2016-August/450089.html
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
DEBUG_PAGEALLOC removes the valid bit of page table entries to prevent
any access to unallocated memory. Hibernate uses this as a hint that those
pages don't need to be saved/restored. This patch adds the
kernel_page_present() function it uses.
hibernate.c copies the resume kernel's linear map for use during restore.
Add _copy_pte() to fill-in the holes made by DEBUG_PAGEALLOC in the resume
kernel, so we can restore data the original kernel had at these addresses.
Finally, DEBUG_PAGEALLOC means the linear-map alias of KERNEL_START to
KERNEL_END may have holes in it, so we can't lazily clean this whole
area to the PoC. Only clean the new mmuoff region, and the kernel/kvm
idmaps.
This reverts commit da24eb1f3f.
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Resume from hibernate needs to clean any text executed by the kernel with
the MMU off to the PoC. Collect these functions together into the
.idmap.text section as all this code is tightly coupled and also needs
the same cleaning after resume.
Data is more complicated, secondary_holding_pen_release is written with
the MMU on, clean and invalidated, then read with the MMU off. In contrast
__boot_cpu_mode is written with the MMU off, the corresponding cache line
is invalidated, so when we read it with the MMU on we don't get stale data.
These cache maintenance operations conflict with each other if the values
are within a Cache Writeback Granule (CWG) of each other.
Collect the data into two sections .mmuoff.data.read and .mmuoff.data.write,
the linker script ensures mmuoff.data.write section is aligned to the
architectural maximum CWG of 2KB.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Each time new section markers are added, kernel/vmlinux.ld.S is updated,
and new extern char __start_foo[] definitions are scattered through the
tree.
Create asm/include/sections.h to collect these definitions (and include
the existing asm-generic version).
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The ARMv8 architecture allows execute-only user permissions by clearing
the PTE_UXN and PTE_USER bits. However, the kernel running on a CPU
implementation without User Access Override (ARMv8.2 onwards) can still
access such page, so execute-only page permission does not protect
against read(2)/write(2) etc. accesses. Systems requiring such
protection must enable features like SECCOMP.
This patch changes the arm64 __P100 and __S100 protection_map[] macros
to the new __PAGE_EXECONLY attributes. A side effect is that
pte_user() no longer triggers for __PAGE_EXECONLY since PTE_USER isn't
set. To work around this, the check is done on the PTE_NG bit via the
pte_ng() macro. VM_READ is also checked now for page faults.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Even though perf_ops_bp was removed/renamed back in commit
b0a873ebbf ("perf: Register PMU implementations"), as part of
v2.6.37, its definition still lives on in some arch headers.
This patch removes the vestigal definition from arm64.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
__dma_* routines have been converted to use start and size instread of
start and end addresses. The patch was origianlly for adding
__clean_dcache_area_poc() which will be used in pmem driver to clean
dcache to the PoC(Point of Coherency) in arch_wb_cache_pmem().
The functionality of __clean_dcache_area_poc() was equivalent to
__dma_clean_range(). The difference was __dma_clean_range() uses the end
address, but __clean_dcache_area_poc() uses the size to clean.
Thus, __clean_dcache_area_poc() has been revised with a fallthrough
function of __dma_clean_range() after the change that __dma_* routines
use start and size instead of using start and end.
As a consequence of using start and size, the name of __dma_* routines
has also been altered following the terminology below:
area: takes a start and size
range: takes a start and end
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Kwangwoo Lee <kwangwoo.lee@sk.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Because the arm64 calling standard allows stacked function arguments to be
anywhere in the stack frame, do not attempt to duplicate the stack frame for
jprobes handler functions.
Documentation changes to describe this issue have been broken out into a
separate patch in order to simultaneously address them in other
architecture(s).
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Fix HugeTLB leak due to CoW and PTE_RDONLY mismatch
- Avoid accessing unmapped FDT fields when checking validity
- Correctly account for vDSO AUX entry in ARCH_DLINFO
- Fix kallsyms with absolute expressions in linker script
- Kill unnecessary symbol-based relocs in vmlinux
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJXpFZ5AAoJELescNyEwWM0PI4IALsTuHRzClOSMDLiqMUj8t+5
WNAcqybxAjCOVxAHckhweju++TeJBxcRH1nvBoNwiHIdHTv4fq1TZ3PeEq9kWMg5
JbKjYjvd9dW8k6LXMya8iXCYtG3kzbNejkNpOTVebC86yvas1IiEjNb/ztPdhJeM
HBSOkhfk8RcskfNxhuscZzGXbbdH9/R+XSTNRHN/RwCZH8PlInmduD9BbMvDhZyP
NLFonD2IgQ4as1kYG/HdIcw0BamHiURjd043+gyoqMvm7JjPksRzlQnr91SMkX17
LykXjHYPi2Me3aTrZ1NtkUNd5FHLHZ6/b9Wg6nA19d5KWkd3ER9uSJqGxkkbnt0=
=dtGK
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
- fix HugeTLB leak due to CoW and PTE_RDONLY mismatch
- avoid accessing unmapped FDT fields when checking validity
- correctly account for vDSO AUX entry in ARCH_DLINFO
- fix kallsyms with absolute expressions in linker script
- kill unnecessary symbol-based relocs in vmlinux
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Fix copy-on-write referencing in HugeTLB
arm64: mm: avoid fdt_check_header() before the FDT is fully mapped
arm64: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
arm64: relocatable: suppress R_AARCH64_ABS64 relocations in vmlinux
arm64: vmlinux.lds: make __rela_offset and __dynsym_offset ABSOLUTE
set_pte_at(.) will set or unset the PTE_RDONLY hardware bit before
writing the entry to the table.
This can cause problems with the copy-on-write logic in hugetlb_cow:
*) hugetlb_cow(.) called to handle a write fault on read only pte,
*) Before the copy-on-write updates the new page table a call is
made to pte_same(huge_ptep_get(ptep), pte)), to check for a race,
*) Because set_pte_at(.) changed the pte, *ptep != pte, and the
hugetlb_cow(.) code erroneously assumes that it lost the race,
*) The new page is subsequently freed without being used.
On arm64 this problem only becomes apparent when we apply:
67961f9 mm/hugetlb: fix huge page reserve accounting for private
mappings
When one runs the libhugetlbfs test suite, there are allocation errors
and hugetlbfs pages become erroneously locked in memory as reserved.
(There is a high HugePages_Rsvd: count).
In this patch we introduce pte_same which ignores the PTE_RDONLY bit,
allowing for the libhugetlbfs test suite to pass as expected and
without leaking any reserved HugeTLB pages.
Reported-by: Huang Shijie <shijie.huang@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
Changes to platform code for 64-bit ARM platforms.
Nearlt all of these are defconfig updates to enable new drivers or old
drivers still used on these 64-bit platforms.
Added platforms for this release are:
- Broadcom BCM2837
- Renesas R8A7796
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXn8CqAAoJEIwa5zzehBx3GRAP/1BxUsof8EAXqsaUAvaCHhcD
rAj2QEPUzV9TYHB/QRQHyoLdll/sND+SOcCOlC3hqUJNEFVNm0DUKjLcKLITqJr4
S9qrWuDRn+mWNXO2AfHCpQILMZloiRtM8xE51wmTIyT0S6APXZ1kvhJDrfFNGM0O
iSlWoulCUztT0AhZiA+TWduzrUiBarvOX6oVx0z7eTV5R0v/bSHDc9x/VhYOKFN6
rhg0164io3XNZ1ItiFODh7deFMztz5mJBegYvGufVNTdP6nLjJ//KGSUI67Ibae1
wNORW96nUVz/N4tJ4iL6z87CodgZIFS/cQlMjnyOe2wCWv0rgaYaeEoDqsUUI2oj
N/VGneCgLtmBcUnDf1Tpi8z4VnkAiXIsJwbAaOCkmsRimJxILm4+7s3ARrKKUmld
Za9ExSpQICwiHj9mm5ak4B6e83/MFRqbeA3v3d+I2xoc1rT+eC7+cyXTCYtnUKng
7oOb7Zjtm1As3ZlzD3qK5mZuTFkEZ7bwZjZAlcPEGbepN9+Nyo5JhCbKH8diLy2j
wXrov9LvvwHfoKepkt7OUz8xb33GNgmaRFURZbmXai8SfV+uqLetCrmZse5fUVMp
4eRVLcgCSUDUb/2Mzw8309tVYoHY45g1NMnaGZY94j2NJhDXDR9ztv8u5WcVLOHa
zjvp3/pwyGZB4h5CW+e6
=vsam
-----END PGP SIGNATURE-----
Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull 64-bit ARM SoC updates from Olof Johansson:
"Changes to platform code for 64-bit ARM platforms.
Nearly all of these are defconfig updates to enable new drivers or old
drivers still used on these 64-bit platforms.
Added platforms for this release are:
- Broadcom BCM2837
- Renesas R8A7796"
* tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (22 commits)
arm64: remove duplicate PWM entry in defconfig
arm64: Update default configuration
arm64: defconfig: Enable more IP blocks for Exynos7 and Exynos5433
arm64: amlogic: select gxbb clk driver
arm64: defconfig: Enable S2MPS11 clock and S3C RTC driver
arm64: marvell: enable Armada 3700 clock drivers
arm64: defconfig: enable msm8996 pinctrl support
arm64: defconfig: Enable qcom msm8996 clk drivers
arm: defconfig: Enable PM8941 pwr key
arm64: defconfig: enable stmmac and realtek PHY as modules
arm64: Kconfig: select PM{,_GENERIC_DOMAINS} for ARCH_VEXPRESS
arm64: defconfig: enable SENSORS_ARM_SCPI
arm64: defconfig: enable Generic on-chip SRAM driver
arm64: configs: enable PCIe driver for Armada 7K/8K
arm64: Add platform selection for BCM2835.
arm64: defconfig: disable plain NEON implementation of AES
arm64: Allow for different DMA and CPU bus offsets
arm64: defconfig: enable Renesas R8A7796 SoC
arm64: defconfig: Enable Cadence MACB/GEM support
ARM64: Kconfig: Select the Amlogic Meson pin controller driver
...
AT_VECTOR_SIZE_ARCH should be defined with the maximum number of
NEW_AUX_ENT entries that ARCH_DLINFO can contain, but it wasn't defined
for arm64 at all even though ARCH_DLINFO will contain one NEW_AUX_ENT
for the VDSO address.
This shouldn't be a problem as AT_VECTOR_SIZE_BASE includes space for
AT_BASE_PLATFORM which arm64 doesn't use, but lets define it now and add
the comment above ARCH_DLINFO as found in several other architectures to
remind future modifiers of ARCH_DLINFO to keep AT_VECTOR_SIZE_ARCH up to
date.
Fixes: f668cd1673 ("arm64: ELF definitions")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXmLlrAAoJEFxbo/MsZsTRvRQH/1wOMF8BmlbZfR7H3qwDfjst
ApNifCiZE08xDtWBlwUaBFAQxyflQS9BBiNZDVK0sysIdXeOdpWV7V0ZjRoLL+xr
czsaaGXDcmXxJxApoMDVuT7FeP6rEk6LVAYRoHpVjJjMZGW3BbX1vZaMW4DXl2WM
9YNaF2Lj+rpc1f8iG31nUxwkpmcXFog6ct4tu7HiyCFT3hDkHt/a4ghuBdQItCkd
vqBa1pTpcGtQBhSmWzlylN/PV2+NKcRd+kGiwd09/O/rNzogTMCTTWeHKAtMpPYb
Cu6oSqJtlK5o0vtr0qyLSWEGIoyjE2gE92s0wN3iCzFY1PldqdsxUO622nIj+6o=
=G6q3
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.8-rc0:
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places"
* tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits)
xen: add static initialization of steal_clock op to xen_time_ops
xen/pvhvm: run xen_vcpu_setup() for the boot CPU
xen/evtchn: use xen_vcpu_id mapping
xen/events: fifo: use xen_vcpu_id mapping
xen/events: use xen_vcpu_id mapping in events_base
x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info
x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op
xen: introduce xen_vcpu_id mapping
x86/acpi: store ACPI ids from MADT for future usage
x86/xen: update cpuid.h from Xen-4.7
xen/evtchn: add IOCTL_EVTCHN_RESTRICT
xen-blkback: really don't leak mode property
xen-blkback: constify instance of "struct attribute_group"
xen-blkfront: prefer xenbus_scanf() over xenbus_gather()
xen-blkback: prefer xenbus_scanf() over xenbus_gather()
xen: support runqueue steal time on xen
arm/xen: add support for vm_assist hypercall
xen: update xen headers
xen-pciback: drop superfluous variables
xen-pciback: short-circuit read path used for merging write values
...
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping, EFI
run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
7++5WHXHAegeJCDNAKY2
=iJOY
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping,
EFI run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
arm64: Only select ARM64_MODULE_PLTS if MODULES=y
arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
arm64: mm: make create_mapping_late() non-allocating
arm64: Honor nosmp kernel command line option
arm64: Fix incorrect per-cpu usage for boot CPU
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
arm64: debug: remove unused local_dbg_{enable, disable} macros
arm64: debug: remove redundant spsr manipulation
arm64: debug: unmask PSTATE.D earlier
arm64: localise Image objcopy flags
arm64: ptrace: remove extra define for CPSR's E bit
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
...
Commit 0a8ea52c3e ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API
feature") inadvertently removed the arch/arm prototype instead of the
arm64 one introduced by the original patch. There should not be any
bisection issues since this function is not called from anywhere else
(it could as well be removed from arch/arm at some point).
Fixes: 0a8ea52c3e ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Support for ACPI SSDT overlays allowing Secondary System
Description Tables (SSDTs) to be loaded at any time from EFI
variables or via configfs (Octavian Purdila, Mika Westerberg).
- Support for the ACPI LPI (Low-Power Idle) feature introduced in
ACPI 6.0 and allowing processor idle states to be represented in
ACPI tables in a hierarchical way (with the help of Processor
Container objects) and support for ACPI idle states management
on ARM64, based on LPI (Sudeep Holla).
- General improvements of ACPI support for NUMA and ARM64 support
for ACPI-based NUMA (Hanjun Guo, David Daney, Robert Richter).
- General improvements of the ACPI table upgrade mechanism and
ARM64 support for that feature (Aleksey Makarov, Jon Masters).
- Support for the Boot Error Record Table (BERT) in APEI and
improvements of kernel messages printed by the error injection
code (Huang Ying, Borislav Petkov).
- New driver for the Intel Broxton WhiskeyCove PMIC operation
region and support for the REGS operation region on Broxton,
PMIC code cleanups (Bin Gao, Felipe Balbi, Paul Gortmaker).
- New driver for the power participant device which is part of the
Dynamic Power and Thermal Framework (DPTF) and DPTF-related code
reorganization (Srinivas Pandruvada).
- Support for the platform-initiated graceful shutdown feature
introduced in ACPI 6.1 (Prashanth Prakash).
- ACPI button driver update related to lid input events generated
automatically on initialization and system resume that have been
problematic for some time (Lv Zheng).
- ACPI EC driver cleanups (Lv Zheng).
- Documentation of the ACPICA release automation process and the
in-kernel ACPI AML debugger (Lv Zheng).
- New blacklist entry and two fixes for the ACPI backlight driver
(Alex Hung, Arvind Yadav, Ralf Gerbig).
- Cleanups of the ACPI pci_slot driver (Joe Perches, Paul Gortmaker).
- ACPI CPPC code changes to make it more robust against possible
defects in ACPI tables and new symbol definitions for PCC (Hoan
Tran).
- System reboot code modification to execute the ACPI _PTS (Prepare
To Sleep) method in addition to _TTS (Ocean He).
- ACPICA-related change to carry out lock ordering checks in ACPICA
if ACPICA debug is enabled in the kernel (Lv Zheng).
- Assorted minor fixes and cleanups (Andy Shevchenko, Baoquan He,
Bhaktipriya Shridhar, Paul Gortmaker, Rafael Wysocki).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXl8A7AAoJEILEb/54YlRxF0kQAI6mH0yan60Osu4598+VNvgv
wxOWl1TEbKd+LaJkofRZ+FPzZkQf5c/h/8Oo8Q3LEpFhjkARhhX7ThDjS5v2Nx6v
I/icQ64ynPUPrw6hGNVrmec9ofZjiAs3j3Rt2bEiae+YN6guvfhWE+kBCHo2G/nN
o4BSaxYjkphUTDSi4/5BfaocV2sl3apvwjtAj8zgGn4RD81bFFLnblynHkqJVcoN
HAfm7QTVjT01Zkv565OSZgK8CFcD8Ky2KKKBQvcIW8zQmD6IXaoTHSYSwL0SH+oK
bxUZUmWVfFWw4kDTAY9mw0QwtWz9ODTWh/WMhs3itWRRN5qHfogs99rCVYFtFufQ
ODVy4wpt4wmpzZVhyUDTTigAhznPAtCam6EpL1YeNbtyrRN4evvZVFHBZJnmhosX
zI9iLF4eqdnJZKvh+L1VFU+py8aAZpz1ZEOatNMI+xdhArbGm7v89cldzaRkJhuW
LZr+JqYQGaOZS5qSnymwJL1KfF66+2QGpzdvzJN5FNIDACoqanATbZ/Iie2ENcM+
WwCEWrGJFDmM30raBNNcvx0yHFtVkcNbOymla4paVg7i29nu88Ynw4Z6seIIP11C
DryzLFhw+3jdTg2zK/te/wkhciJ0F+iZjo6VXywSMnwatf36bpdp4r4JLUVfEo2t
8DOGKyFMLYY1zOPMK9Th
=YwbM
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"The new feaures here are the support for ACPI overlays (allowing ACPI
tables to be loaded at any time from EFI variables or via configfs)
and the LPI (Low-Power Idle) support. Also notable is the ACPI-based
NUMA support for ARM64.
Apart from that we have two new drivers, for the DPTF (Dynamic Power
and Thermal Framework) power participant device and for the Intel
Broxton WhiskeyCove PMIC, some more PMIC-related changes, support for
the Boot Error Record Table (BERT) in APEI and support for
platform-initiated graceful shutdown.
Plus two new pieces of documentation and usual assorted fixes and
cleanups in quite a few places.
Specifics:
- Support for ACPI SSDT overlays allowing Secondary System
Description Tables (SSDTs) to be loaded at any time from EFI
variables or via configfs (Octavian Purdila, Mika Westerberg).
- Support for the ACPI LPI (Low-Power Idle) feature introduced in
ACPI 6.0 and allowing processor idle states to be represented in
ACPI tables in a hierarchical way (with the help of Processor
Container objects) and support for ACPI idle states management on
ARM64, based on LPI (Sudeep Holla).
- General improvements of ACPI support for NUMA and ARM64 support for
ACPI-based NUMA (Hanjun Guo, David Daney, Robert Richter).
- General improvements of the ACPI table upgrade mechanism and ARM64
support for that feature (Aleksey Makarov, Jon Masters).
- Support for the Boot Error Record Table (BERT) in APEI and
improvements of kernel messages printed by the error injection code
(Huang Ying, Borislav Petkov).
- New driver for the Intel Broxton WhiskeyCove PMIC operation region
and support for the REGS operation region on Broxton, PMIC code
cleanups (Bin Gao, Felipe Balbi, Paul Gortmaker).
- New driver for the power participant device which is part of the
Dynamic Power and Thermal Framework (DPTF) and DPTF-related code
reorganization (Srinivas Pandruvada).
- Support for the platform-initiated graceful shutdown feature
introduced in ACPI 6.1 (Prashanth Prakash).
- ACPI button driver update related to lid input events generated
automatically on initialization and system resume that have been
problematic for some time (Lv Zheng).
- ACPI EC driver cleanups (Lv Zheng).
- Documentation of the ACPICA release automation process and the
in-kernel ACPI AML debugger (Lv Zheng).
- New blacklist entry and two fixes for the ACPI backlight driver
(Alex Hung, Arvind Yadav, Ralf Gerbig).
- Cleanups of the ACPI pci_slot driver (Joe Perches, Paul Gortmaker).
- ACPI CPPC code changes to make it more robust against possible
defects in ACPI tables and new symbol definitions for PCC (Hoan
Tran).
- System reboot code modification to execute the ACPI _PTS (Prepare
To Sleep) method in addition to _TTS (Ocean He).
- ACPICA-related change to carry out lock ordering checks in ACPICA
if ACPICA debug is enabled in the kernel (Lv Zheng).
- Assorted minor fixes and cleanups (Andy Shevchenko, Baoquan He,
Bhaktipriya Shridhar, Paul Gortmaker, Rafael Wysocki)"
* tag 'acpi-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (71 commits)
ACPI: enable ACPI_PROCESSOR_IDLE on ARM64
arm64: add support for ACPI Low Power Idle(LPI)
drivers: firmware: psci: initialise idle states using ACPI LPI
cpuidle: introduce CPU_PM_CPU_IDLE_ENTER macro for ARM{32, 64}
arm64: cpuidle: drop __init section marker to arm_cpuidle_init
ACPI / processor_idle: Add support for Low Power Idle(LPI) states
ACPI / processor_idle: introduce ACPI_PROCESSOR_CSTATE
ACPI / DPTF: move int340x_thermal.c to the DPTF folder
ACPI / DPTF: Add DPTF power participant driver
ACPI / lpat: make it explicitly non-modular
ACPI / dock: make dock explicitly non-modular
ACPI / PCI: make pci_slot explicitly non-modular
ACPI / PMIC: remove modular references from non-modular code
ACPICA: Linux: Enable ACPI_MUTEX_DEBUG for Linux kernel
ACPI: Rename configfs.c to acpi_configfs.c to prevent link error
ACPI / debugger: Add AML debugger documentation
ACPI: Add documentation describing ACPICA release automation
ACPI: add support for loading SSDTs via configfs
ACPI: add support for configfs
efi / ACPI: load SSTDs from EFI variables
...
Enables CONFIG_HARDENED_USERCOPY checks on arm64. As done by KASAN in -next,
renames the low-level functions to __arch_copy_*_user() so a static inline
can do additional work before the copy.
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull crypto updates from Herbert Xu:
"Here is the crypto update for 4.8:
API:
- first part of skcipher low-level conversions
- add KPP (Key-agreement Protocol Primitives) interface.
Algorithms:
- fix IPsec/cryptd reordering issues that affects aesni
- RSA no longer does explicit leading zero removal
- add SHA3
- add DH
- add ECDH
- improve DRBG performance by not doing CTR by hand
Drivers:
- add x86 AVX2 multibuffer SHA256/512
- add POWER8 optimised crc32c
- add xts support to vmx
- add DH support to qat
- add RSA support to caam
- add Layerscape support to caam
- add SEC1 AEAD support to talitos
- improve performance by chaining requests in marvell/cesa
- add support for Araneus Alea I USB RNG
- add support for Broadcom BCM5301 RNG
- add support for Amlogic Meson RNG
- add support Broadcom NSP SoC RNG"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (180 commits)
crypto: vmx - Fix aes_p8_xts_decrypt build failure
crypto: vmx - Ignore generated files
crypto: vmx - Adding support for XTS
crypto: vmx - Adding asm subroutines for XTS
crypto: skcipher - add comment for skcipher_alg->base
crypto: testmgr - Print akcipher algorithm name
crypto: marvell - Fix wrong flag used for GFP in mv_cesa_dma_add_iv_op
crypto: nx - off by one bug in nx_of_update_msc()
crypto: rsa-pkcs1pad - fix rsa-pkcs1pad request struct
crypto: scatterwalk - Inline start/map/done
crypto: scatterwalk - Remove unnecessary BUG in scatterwalk_start
crypto: scatterwalk - Remove unnecessary advance in scatterwalk_pagedone
crypto: scatterwalk - Fix test in scatterwalk_done
crypto: api - Optimise away crypto_yield when hard preemption is on
crypto: scatterwalk - add no-copy support to copychunks
crypto: scatterwalk - Remove scatterwalk_bytes_sglen
crypto: omap - Stop using crypto scatterwalk_bytes_sglen
crypto: skcipher - Remove top-level givcipher interface
crypto: user - Remove crypto_lookup_skcipher call
crypto: cts - Convert to skcipher
...
Pull locking updates from Ingo Molnar:
"The locking tree was busier in this cycle than the usual pattern - a
couple of major projects happened to coincide.
The main changes are:
- implement the atomic_fetch_{add,sub,and,or,xor}() API natively
across all SMP architectures (Peter Zijlstra)
- add atomic_fetch_{inc/dec}() as well, using the generic primitives
(Davidlohr Bueso)
- optimize various aspects of rwsems (Jason Low, Davidlohr Bueso,
Waiman Long)
- optimize smp_cond_load_acquire() on arm64 and implement LSE based
atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
on arm64 (Will Deacon)
- introduce smp_acquire__after_ctrl_dep() and fix various barrier
mis-uses and bugs (Peter Zijlstra)
- after discovering ancient spin_unlock_wait() barrier bugs in its
implementation and usage, strengthen its semantics and update/fix
usage sites (Peter Zijlstra)
- optimize mutex_trylock() fastpath (Peter Zijlstra)
- ... misc fixes and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API
locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire()
locking/static_keys: Fix non static symbol Sparse warning
locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec()
locking/atomic, arch/tile: Fix tilepro build
locking/atomic, arch/m68k: Remove comment
locking/atomic, arch/arc: Fix build
locking/Documentation: Clarify limited control-dependency scope
locking/atomic, arch/rwsem: Employ atomic_long_fetch_add()
locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire()
locking/atomic, arch/mips: Convert to _relaxed atomics
locking/atomic, arch/alpha: Convert to _relaxed atomics
locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions
locking/atomic: Remove linux/atomic.h:atomic_fetch_or()
locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
locking/atomic: Fix atomic64_relaxed() bits
locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
...
Pull EFI updates from Ingo Molnar:
"The biggest change in this cycle were SGI/UV related changes that
clean up and fix UV boot quirks and problems.
There's also various smaller cleanups and refinements"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi: Reorganize the GUID table to make it easier to read
x86/efi: Remove the unused efi_get_time() function
x86/efi: Update efi_thunk() to use the the arch_efi_call_virt*() macros
x86/uv: Update uv_bios_call() to use efi_call_virt_pointer()
efi: Convert efi_call_virt() to efi_call_virt_pointer()
x86/efi: Remove unused variable 'efi'
efi: Document #define FOO_PROTOCOL_GUID layout
efibc: Report more information in the error messages