Adapt the generic btree cursor code to be able to create a btree whose
buffers come from a (presumably in-memory) buftarg with a header block
that's specific to in-memory btrees. We'll connect this to other parts
of online scrub in the next patches.
Note that in-memory btrees always have a block size matching the system
memory page size for efficiency reasons. There are also a few things we
need to do to finalize a btree update; that's covered in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Despite its name, xfs_btree_read_bufl doesn't contain any btree-related
functionaliy and isn't used by the btree code. Move it to xfs_bmap.c,
hard code the refval and ops arguments and rename it to
xfs_bmap_read_buf.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_btree_reada_bufl just wraps xfs_btree_readahead and a agblock
to daddr conversion. Just open code it's three callsites in the
two callers (One of which isn't even btree related).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_btree_reada_bufl just wraps xfs_btree_readahead and a fsblock
to daddr conversion. Just open code it's two callsites in the only
caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
All these helpers hardcode fsblocks or agblocks and not just the pointer
size. Rename them so that the names are still fitting when we add the
long format in-memory blocks and adjust the checks when calling them to
check the btree types and not just pointer length.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a __xfs_btree_check_block helper that can be called by the scrub code
to validate a btree block of any form, and move the duplicate error
handling code from xfs_btree_check_sblock and xfs_btree_check_lblock into
xfs_btree_check_block and thus remove these two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Merge xfs_btree_check_sptr and xfs_btree_check_lptr into a single
__xfs_btree_check_ptr that can be shared between xfs_btree_check_ptr
and the scrub code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The last checks for bc_btnum can be replaced with helpers that check
the btree ops. This allows adding new btrees to XFS without having
to update a global enum.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: complete the ops predicates]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Clean up xfs_btree_mark_sick by adding a sick_mask to the btree-ops
for all AG-root btrees.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The btnum in struct xfs_btree_ops is often used for printing a symbolic
name for the btree. Add a name field to the ops structure and use that
directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Inode-rooted btrees don't need to initialize the root pointer in the
->init_ptr_from_cur method as the root is found by the
xfs_btree_get_iroot method later. Make ->init_ptr_from_cur option
for inode rooted btrees by providing a helper that does the right
thing for the given btree type and also documents the semantics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Create a predicate to decide if the given cursor and level point to the
root block in the inode immediate area instead of a disk block, and get
rid of the open-coded logic everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Split up the union that encodes btree-specific fields in struct
xfs_btree_cur. Most fields in there are specific to the btree type
encoded in xfs_btree_ops.type, and we can use the obviously named union
for that. But one field is specific to the bmapbt and two are shared by
the refcount and rtrefcountbt. Move those to a separate union to make
the usage clear and not need a separate struct for the refcount-related
fields.
This will also make unnecessary some very awkward btree cursor
refc/rtrefc switching logic in the rtrefcount patchset.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Two of the btree cursor flags are always used together and encode
the fundamental btree type. There currently are two such types:
1) an on-disk AG-rooted btree with 32-bit pointers
2) an on-disk inode-rooted btree with 64-bit pointers
and we're about to add:
3) an in-memory btree with 64-bit pointers
Introduce a new enum and a new type field in struct xfs_btree_geom
to encode this type directly instead of using flags and change most
code to switch on this enum.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: make the pointer lengths explicit]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the pointer length an explicit field in the btree operations
structure so that the next patch (which introduces an explicit btree
type enum) doesn't have to play a bunch of awkward games with inferring
the pointer length from the enumeration.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The statistics offset is completely static, move it into the btree_ops
structure instead of the cursor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move the btree buffer LRU refcount to the btree ops structure so that we
can eliminate the last bc_btnum switch in the generic btree code. We're
about to create repair-specific btree types, and we don't want that
stuff cluttering up libxfs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that all of the callers pass XFS_BUF_DADDR_NULL as the daddr
parameter, we can elide that too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rename xfs_btree_init_block_int to xfs_btree_init_block, and
xfs_btree_init_block to xfs_btree_init_buf so that the name suggests the
type that caller are supposed to pass in.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Notice now that the btree ops structure encodes btree geometry flags and
the magic number through the buffer ops. Refactor the btree block
initialization functions to use the btree ops so that we no longer have
to open code all that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a new XFS_BTREE_ALLOCBT_ACTIVE flag to replace the active field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just move the two flags into bc_flags where there is plenty of space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Certain btree flags never change for the life of a btree cursor because
they describe the geometry of the btree itself. Encode these in the
btree ops structure and reduce the amount of code required in each btree
type's init_cursor functions. This also frees up most of the bits in
bc_flags.
A previous version of this patch also converted the open-coded flags
logic to helpers. This was removed due to the pending refactoring (that
follows this patch) to eliminate most of the state flags.
Conversion script:
sed \
-e 's/XFS_BTREE_LONG_PTRS/XFS_BTGEO_LONG_PTRS/g' \
-e 's/XFS_BTREE_ROOT_IN_INODE/XFS_BTGEO_ROOT_IN_INODE/g' \
-e 's/XFS_BTREE_LASTREC_UPDATE/XFS_BTGEO_LASTREC_UPDATE/g' \
-e 's/XFS_BTREE_OVERLAPPING/XFS_BTGEO_OVERLAPPING/g' \
-e 's/cur->bc_flags & XFS_BTGEO_/cur->bc_ops->geom_flags \& XFS_BTGEO_/g' \
-i $(git ls-files fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] fs/xfs/scrub/*.[ch])
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
All existing btree types set XFS_BTREE_CRC_BLOCKS when running against a
V5 filesystem. All currently proposed btree types are V5 only and use
the richer XFS_BTREE_CRC_BLOCKS format. Therefore, we can drop this
flag and change the conditional to xfs_has_crc.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This is a precursor to putting more static data in the btree ops structure.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In the past we've had problems with lockdep false positives stemming
from inode locking occurring in memory reclaim contexts (e.g. from
superblock shrinkers). Lockdep doesn't know that inodes access from
above memory reclaim cannot be accessed from below memory reclaim
(and vice versa) but there has never been a good solution to solving
this problem with lockdep annotations.
This situation isn't unique to inode locks - buffers are also locked
above and below memory reclaim, and we have to maintain lock
ordering for them - and against inodes - appropriately. IOWs, the
same code paths and locks are taken both above and below memory
reclaim and so we always need to make sure the lock orders are
consistent. We are spared the lockdep problems this might cause
by the fact that semaphores and bit locks aren't covered by lockdep.
In general, this sort of lockdep false positive detection is cause
by code that runs GFP_KERNEL memory allocation with an actively
referenced inode locked. When it is run from a transaction, memory
allocation is automatically GFP_NOFS, so we don't have reclaim
recursion issues. So in the places where we do memory allocation
with inodes locked outside of a transaction, we have explicitly set
them to use GFP_NOFS allocations to prevent lockdep false positives
from being reported if the allocation dips into direct memory
reclaim.
More recently, __GFP_NOLOCKDEP was added to the memory allocation
flags to tell lockdep not to track that particular allocation for
the purposes of reclaim recursion detection. This is a much better
way of preventing false positives - it allows us to use GFP_KERNEL
context outside of transactions, and allows direct memory reclaim to
proceed normally without throwing out false positive deadlock
warnings.
The obvious places that lock inodes and do memory allocation are the
lookup paths and inode extent list initialisation. These occur in
non-transactional GFP_KERNEL contexts, and so can run direct reclaim
and lock inodes.
This patch makes a first path through all the explicit GFP_NOFS
allocations in XFS and converts the obvious ones to GFP_KERNEL |
__GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS
allocations from the XFS code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
When constructing a new btree, xfs_btree_bload_node needs to read the
btree blocks for level N to compute the keyptrs for the blocks that will
be loaded into level N+1. The level N blocks must be formatted at that
point.
A subsequent patch will change the btree bulkloader to write new btree
blocks in 256K chunks to moderate memory consumption if the new btree is
very large. As a consequence of that, it's possible that the buffers
for lower level blocks might have been reclaimed by the time the node
builder comes back to the block.
Therefore, change xfs_btree_bload_node to read the lower level blocks
to handle the reclaimed buffer case. As a side effect, the read will
increase the LRU refs, which will bias towards keeping new btree buffers
in memory after the new btree commits.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.
Instances were found with this Coccinelle script:
@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@
- struct_size((struct STRUCT *)\(0\|NULL\),
+ struct_size_t(struct STRUCT,
MEMBER, COUNT)
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).
Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create wrapper functions around ->diff_two_keys so that we don't have to
remember what the return values mean, and adjust some of the code
comments to reflect the longtime code behavior. We're going to
introduce more uses of ->diff_two_keys in the next patch, so reduce the
cognitive load for readers by doing this refactoring now.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
xfs_btree_check_block contains debugging knobs. With XFS_DEBUG setting up,
turn on the debugging knob can trigger the assert of xfs_btree_islastblock,
test script as follows:
while true
do
mount $disk $mountpoint
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null
echo 1 > /sys/fs/xfs/sda/errortag/btree_chk_sblk
sleep 10
umount $mountpoint
done
Kick off fsstress and only *then* turn on the debugging knob. If it
happens that the knob gets turned on after the cntbt lookup succeeds
but before the call to xfs_btree_islastblock, then we *can* end up in
the situation where a previously checked btree block suddenly starts
returning EFSCORRUPTED from xfs_btree_check_block. Kaboom.
Darrick give a very detailed explanation as follows:
Looking back at commit 27d9ee577d, I think the point of all this was
to make sure that the cursor has actually performed a lookup, and that
the btree block at whatever level we're asking about is ok.
If the caller hasn't ever done a lookup, the bc_levels array will be
empty, so cur->bc_levels[level].bp pointer will be NULL. The call to
xfs_btree_get_block will crash anyway, so the "ASSERT(block);" part is
pointless.
If the caller did a lookup but the lookup failed due to block
corruption, the corresponding cur->bc_levels[level].bp pointer will also
be NULL, and we'll still crash. The "ASSERT(xfs_btree_check_block);"
logic is also unnecessary.
If the cursor level points to an inode root, the block buffer will be
incore, so it had better always be consistent.
If the caller ignores a failed lookup after a successful one and calls
this function, the cursor state is garbage and the assert wouldn't have
tripped anyway. So get rid of the assert.
Fixes: 27d9ee577d ("xfs: actually check xfs_btree_check_block return in xfs_btree_islastblock")
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.
We also pass the fields to log to xfs_btree_offsets() as a uint32_t
all cases now. I have no idea why we made that parameter a int64_t
in the first place, but while we are fixing this up change it to
a uint32_t field, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove these typedefs by referencing kmem_cache directly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we have the infrastructure to track the max possible height of
each btree type, we can create a separate slab cache for cursors of each
type of btree. For smaller indices like the free space btrees, this
means that we can pack more cursors into a slab page, improving slab
utilization.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Nobody uses this symbol anymore, so kill it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of assuming that the hardcoded XFS_BTREE_MAXLEVELS value is big
enough to handle the maximally tall rmap btree when all blocks are in
use and maximally shared, let's compute the maximum height assuming the
rmapbt consumes as many blocks as possible.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
During review of the next patch, Dave remarked that he found these two
btree geometry calculation functions lacking in documentation and that
they performed more work than was really necessary.
These functions take the same parameters and have nearly the same logic;
the only real difference is in the return values. Reword the function
comment to make it clearer what each function does, and move them to be
adjacent to reinforce their relation.
Clean up both of them to stop opencoding the howmany functions, stop
using the uint typedefs, and make them both support computations for
more than 2^32 leaf records, since we're going to need all of the above
for files with large data forks and large rmap btrees.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
To support future btree code, we need to be able to size btree cursors
dynamically for very large btrees. Switch the maxlevels computation to
use the precomputed values in the superblock, and create cursors that
can handle a certain height. For now, we retain the btree cursor cache
that can handle up to 9-level btrees, though a subsequent patch
introduces separate caches for each btree type, where each cache's
objects will be exactly tall enough to handle the specific btree type.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Encode the maximum btree height in the cursor, since we're soon going to
allow smaller cursors for AG btrees and larger cursors for file btrees.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor btree allocation to a common helper.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reduce the size of the btree cursor structure some more by rearranging
fields to eliminate unused space. While we're at it, fix the ragged
indentation and a spelling error.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA. Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.
Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We're never going to run more than 4 billion btree operations on a
refcount cursor, so shrink the field to an unsigned int to reduce the
structure size. Fix whitespace alignment too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Get rid of this old typedef before we start changing other things.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Constify the rest of the btree functions that take structure and union
pointers and are not supposed to modify them.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This btree function is called when updating a record in the rightmost
block of a btree so that we can update the AGF's longest free extent
length field. Neither parameter is supposed to be updated, so mark them
both const.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The @start pointer passed to each per-AG btree type's ->alloc_block
function isn't supposed to be modified, since it's a hint about the
location of the btree block being split that is to be fed to the
allocator, so mark the parameter const.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>