Commit Graph

69 Commits

Author SHA1 Message Date
Dave Chinner
75bcffbb9e xfs: shrink failure needs to hold AGI buffer
Chandan reported a AGI/AGF lock order hang on xfs/168 during recent
testing. The cause of the problem was the task running xfs_growfs
to shrink the filesystem. A failure occurred trying to remove the
free space from the btrees that the shrink would make disappear,
and that meant it ran the error handling for a partial failure.

This error path involves restoring the per-ag block reservations,
and that requires calculating the amount of space needed to be
reserved for the free inode btree. The growfs operation hung here:

[18679.536829]  down+0x71/0xa0
[18679.537657]  xfs_buf_lock+0xa4/0x290 [xfs]
[18679.538731]  xfs_buf_find_lock+0xf7/0x4d0 [xfs]
[18679.539920]  xfs_buf_lookup.constprop.0+0x289/0x500 [xfs]
[18679.542628]  xfs_buf_get_map+0x2b3/0xe40 [xfs]
[18679.547076]  xfs_buf_read_map+0xbb/0x900 [xfs]
[18679.562616]  xfs_trans_read_buf_map+0x449/0xb10 [xfs]
[18679.569778]  xfs_read_agi+0x1cd/0x500 [xfs]
[18679.573126]  xfs_ialloc_read_agi+0xc2/0x5b0 [xfs]
[18679.578708]  xfs_finobt_calc_reserves+0xe7/0x4d0 [xfs]
[18679.582480]  xfs_ag_resv_init+0x2c5/0x490 [xfs]
[18679.586023]  xfs_ag_shrink_space+0x736/0xd30 [xfs]
[18679.590730]  xfs_growfs_data_private.isra.0+0x55e/0x990 [xfs]
[18679.599764]  xfs_growfs_data+0x2f1/0x410 [xfs]
[18679.602212]  xfs_file_ioctl+0xd1e/0x1370 [xfs]

trying to get the AGI lock. The AGI lock was held by a fstress task
trying to do an inode allocation, and it was waiting on the AGF
lock to allocate a new inode chunk on disk. Hence deadlock.

The fix for this is for the growfs code to hold the AGI over the
transaction roll it does in the error path. It already holds the AGF
locked across this, and that is what causes the lock order inversion
in the xfs_ag_resv_init() call.

Reported-by: Chandan Babu R <chandanbabu@kernel.org>
Fixes: 46141dc891 ("xfs: introduce xfs_ag_shrink_space()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-03-07 14:59:05 +05:30
Darrick J. Wong
7e1b84b24d xfs: hook live rmap operations during a repair operation
Hook the regular rmap code when an rmapbt repair operation is running so
that we can unlock the AGF buffer to scan the filesystem and keep the
in-memory btree up to date during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:43:40 -08:00
Darrick J. Wong
e7b58f7c1b xfs: teach buftargs to maintain their own buffer hashtable
Currently, cached buffers are indexed by per-AG hashtables.  This works
great for the data device, but won't work for in-memory btrees.  To
handle that use case, buftargs will need to be able to index buffers
independently of other data structures.

We accomplish this by hoisting the rhashtable and its lock into a
separate xfs_buf_cache structure, make the buftarg point to the
_buf_cache structure, and rework various functions to use it.  This
will enable the in-memory buftarg to come up with its own _buf_cache.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:42:58 -08:00
Christoph Hellwig
e45ea36451 xfs: split the agf_roots and agf_levels arrays
Using arrays of largely unrelated fields that use the btree number
as index is not very robust.  Split the arrays into three separate
fields instead.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-02-22 12:39:46 -08:00
Darrick J. Wong
3c68858b26 xfs: rename btree block/buffer init functions
Rename xfs_btree_init_block_int to xfs_btree_init_block, and
xfs_btree_init_block to xfs_btree_init_buf so that the name suggests the
type that caller are supposed to pass in.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:35:17 -08:00
Darrick J. Wong
c87e3bf780 xfs: initialize btree blocks using btree_ops structure
Notice now that the btree ops structure encodes btree geometry flags and
the magic number through the buffer ops.  Refactor the btree block
initialization functions to use the btree ops so that we no longer have
to open code all that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:35:16 -08:00
Darrick J. Wong
989d5ec317 xfs: report XFS_IS_CORRUPT errors to the health system
Whenever we encounter XFS_IS_CORRUPT failures, we should report that to
the health monitoring system for later reporting.

I started with this semantic patch and massaged everything until it
built:

@@
expression mp, test;
@@

- if (XFS_IS_CORRUPT(mp, test)) return -EFSCORRUPTED;
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; }

@@
expression mp, test;
identifier label, error;
@@

- if (XFS_IS_CORRUPT(mp, test)) { error = -EFSCORRUPTED; goto label; }
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto label; }

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:32:55 -08:00
Darrick J. Wong
50645ce882 xfs: report fs corruption errors to the health tracking system
Whenever we encounter corrupt fs metadata, we should report that to the
health monitoring system for later reporting.  A convenient program for
identifying places to insert xfs_*_mark_sick calls is as follows:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -B3 EFSCORRUPTED fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] fs/xfs/scrub/*.[ch] | awk '
BEGIN {
	ignore = 0;
	lineno = 0;
	delete lines;
}
{
	if ($0 == "--") {
		if (!ignore) {
			for (i = 0; i < lineno; i++) {
				print(lines[i]);
			}
			printf("--\n");
		}
		delete lines;
		lineno = 0;
		ignore = 0;
	} else if ($0 ~ /mark_sick/) {
		ignore = 1;
	} else if ($0 ~ /if .fa/) {
		ignore = 1;
	} else if ($0 ~ /failaddr/) {
		ignore = 1;
	} else if ($0 ~ /_verifier_error/) {
		ignore = 1;
	} else if ($0 ~ /^ \* .*EFSCORRUPTED/) {
		ignore = 1;
	} else if ($0 ~ /== -EFSCORRUPTED/) {
		ignore = 1;
	} else if ($0 ~ /!= -EFSCORRUPTED/) {
		ignore = 1;
	} else {
		lines[lineno++] = $0;
	}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:31:02 -08:00
Dave Chinner
94a69db236 xfs: use __GFP_NOLOCKDEP instead of GFP_NOFS
In the past we've had problems with lockdep false positives stemming
from inode locking occurring in memory reclaim contexts (e.g. from
superblock shrinkers). Lockdep doesn't know that inodes access from
above memory reclaim cannot be accessed from below memory reclaim
(and vice versa) but there has never been a good solution to solving
this problem with lockdep annotations.

This situation isn't unique to inode locks - buffers are also locked
above and below memory reclaim, and we have to maintain lock
ordering for them - and against inodes - appropriately. IOWs, the
same code paths and locks are taken both above and below memory
reclaim and so we always need to make sure the lock orders are
consistent. We are spared the lockdep problems this might cause
by the fact that semaphores and bit locks aren't covered by lockdep.

In general, this sort of lockdep false positive detection is cause
by code that runs GFP_KERNEL memory allocation with an actively
referenced inode locked. When it is run from a transaction, memory
allocation is automatically GFP_NOFS, so we don't have reclaim
recursion issues. So in the places where we do memory allocation
with inodes locked outside of a transaction, we have explicitly set
them to use GFP_NOFS allocations to prevent lockdep false positives
from being reported if the allocation dips into direct memory
reclaim.

More recently, __GFP_NOLOCKDEP was added to the memory allocation
flags to tell lockdep not to track that particular allocation for
the purposes of reclaim recursion detection. This is a much better
way of preventing false positives - it allows us to use GFP_KERNEL
context outside of transactions, and allows direct memory reclaim to
proceed normally without throwing out false positive deadlock
warnings.

The obvious places that lock inodes and do memory allocation are the
lookup paths and inode extent list initialisation. These occur in
non-transactional GFP_KERNEL contexts, and so can run direct reclaim
and lock inodes.

This patch makes a first path through all the explicit GFP_NOFS
allocations in XFS and converts the obvious ones to GFP_KERNEL |
__GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS
allocations from the XFS code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:34 +05:30
Dave Chinner
d4c75a1b40 xfs: convert remaining kmem_free() to kfree()
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.

This conversion was done with:

$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:34 +05:30
Dave Chinner
10634530f7 xfs: convert kmem_zalloc() to kzalloc()
There's no reason to keep the kmem_zalloc() around anymore, it's
just a thin wrapper around kmalloc(), so lets get rid of it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:33 +05:30
Long Li
7823921887 xfs: fix perag leak when growfs fails
During growfs, if new ag in memory has been initialized, however
sb_agcount has not been updated, if an error occurs at this time it
will cause perag leaks as follows, these new AGs will not been freed
during umount , because of these new AGs are not visible(that is
included in mp->m_sb.sb_agcount).

unreferenced object 0xffff88810be40200 (size 512):
  comm "xfs_growfs", pid 857, jiffies 4294909093
  hex dump (first 32 bytes):
    00 c0 c1 05 81 88 ff ff 04 00 00 00 00 00 00 00  ................
    01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace (crc 381741e2):
    [<ffffffff8191aef6>] __kmalloc+0x386/0x4f0
    [<ffffffff82553e65>] kmem_alloc+0xb5/0x2f0
    [<ffffffff8238dac5>] xfs_initialize_perag+0xc5/0x810
    [<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
    [<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
    [<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
    [<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
    [<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
unreferenced object 0xffff88810be40800 (size 512):
  comm "xfs_growfs", pid 857, jiffies 4294909093
  hex dump (first 32 bytes):
    20 00 00 00 00 00 00 00 57 ef be dc 00 00 00 00   .......W.......
    10 08 e4 0b 81 88 ff ff 10 08 e4 0b 81 88 ff ff  ................
  backtrace (crc bde50e2d):
    [<ffffffff8191b43a>] __kmalloc_node+0x3da/0x540
    [<ffffffff81814489>] kvmalloc_node+0x99/0x160
    [<ffffffff8286acff>] bucket_table_alloc.isra.0+0x5f/0x400
    [<ffffffff8286bdc5>] rhashtable_init+0x405/0x760
    [<ffffffff8238dda3>] xfs_initialize_perag+0x3a3/0x810
    [<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
    [<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
    [<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
    [<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
    [<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a

Factor out xfs_free_unused_perag_range() from xfs_initialize_perag(),
used for freeing unused perag within a specified range in error handling,
included in the error path of the growfs failure.

Fixes: 1c1c6ebcf5 ("xfs: Replace per-ag array with a radix tree")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 10:52:42 +05:30
Long Li
07afd3173d xfs: add lock protection when remove perag from radix tree
Take mp->m_perag_lock for deletions from the perag radix tree in
xfs_initialize_perag to prevent racing with tagging operations.
Lookups are fine - they are RCU protected so already deal with the
tree changing shape underneath the lookup - but tagging operations
require the tree to be stable while the tags are propagated back up
to the root.

Right now there's nothing stopping radix tree tagging from operating
while a growfs operation is progress and adding/removing new entries
into the radix tree.

Hence we can have traversals that require a stable tree occurring at
the same time we are removing unused entries from the radix tree which
causes the shape of the tree to change.

Likely this hasn't caused a problem in the past because we are only
doing append addition and removal so the active AG part of the tree
is not changing shape, but that doesn't mean it is safe. Just making
the radix tree modifications serialise against each other is obviously
correct.

Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 10:52:42 +05:30
Darrick J. Wong
4c88fef3af xfs: remove __xfs_free_extent_later
xfs_free_extent_later is a trivial helper, so remove it to reduce the
amount of thinking required to understand the deferred freeing
interface.  This will make it easier to introduce automatic reaping of
speculative allocations in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
6868b8505c xfs: adjust the incore perag block_count when shrinking
If we reduce the number of blocks in an AG, we must update the incore
geometry values as well.

Fixes: 0800169e3e ("xfs: Pre-calculate per-AG agbno geometry")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-11 12:35:20 -07:00
Dave Chinner
b742d7b4f0 xfs: use deferred frees for btree block freeing
Btrees that aren't freespace management trees use the normal extent
allocation and freeing routines for their blocks. Hence when a btree
block is freed, a direct call to xfs_free_extent() is made and the
extent is immediately freed. This puts the entire free space
management btrees under this path, so we are stacking btrees on
btrees in the call stack. The inobt, finobt and refcount btrees
all do this.

However, the bmap btree does not do this - it calls
xfs_free_extent_later() to defer the extent free operation via an
XEFI and hence it gets processed in deferred operation processing
during the commit of the primary transaction (i.e. via intent
chaining).

We need to change xfs_free_extent() to behave in a non-blocking
manner so that we can avoid deadlocks with busy extents near ENOSPC
in transactions that free multiple extents. Inserting or removing a
record from a btree can cause a multi-level tree merge operation and
that will free multiple blocks from the btree in a single
transaction. i.e. we can call xfs_free_extent() multiple times, and
hence the btree manipulation transaction is vulnerable to this busy
extent deadlock vector.

To fix this, convert all the remaining callers of xfs_free_extent()
to use xfs_free_extent_later() to queue XEFIs and hence defer
processing of the extent frees to a context that can be safely
restarted if a deadlock condition is detected.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2023-06-29 09:28:23 -07:00
Dave Chinner
7dfee17b13 xfs: validate block number being freed before adding to xefi
Bad things happen in defered extent freeing operations if it is
passed a bad block number in the xefi. This can come from a bogus
agno/agbno pair from deferred agfl freeing, or just a bad fsbno
being passed to __xfs_free_extent_later(). Either way, it's very
difficult to diagnose where a null perag oops in EFI creation
is coming from when the operation that queued the xefi has already
been completed and there's no longer any trace of it around....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 14:48:15 +10:00
Darrick J. Wong
8e698ee72c xfs: set bnobt/cntbt numrecs correctly when formatting new AGs
Through generic/300, I discovered that mkfs.xfs creates corrupt
filesystems when given these parameters:

# mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported
Filesystems formatted with --unsupported are not supported!!
meta-data=/dev/sda               isize=512    agcount=8, agsize=16352 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=1, sparse=1, rmapbt=1
         =                       reflink=1    bigtime=1 inobtcount=1 nrext64=1
data     =                       bsize=4096   blocks=130816, imaxpct=25
         =                       sunit=32     swidth=128 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=8192, version=2
         =                       sectsz=512   sunit=32 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
         =                       rgcount=0    rgsize=0 blks
Discarding blocks...Done.
# xfs_repair -n /dev/sda
Phase 1 - find and verify superblock...
        - reporting progress in intervals of 15 minutes
Phase 2 - using internal log
        - zero log...
        - 16:30:50: zeroing log - 16320 of 16320 blocks done
        - scan filesystem freespace and inode maps...
agf_freeblks 25, counted 0 in ag 4
sb_fdblocks 8823, counted 8798

The root cause of this problem is the numrecs handling in
xfs_freesp_init_recs, which is used to initialize a new AG.  Prior to
calling the function, we set up the new bnobt block with numrecs == 1
and rely on _freesp_init_recs to format that new record.  If the last
record created has a blockcount of zero, then it sets numrecs = 0.

That last bit isn't correct if the AG contains the log, the start of the
log is not immediately after the initial blocks due to stripe alignment,
and the end of the log is perfectly aligned with the end of the AG.  For
this case, we actually formatted a single bnobt record to handle the
free space before the start of the (stripe aligned) log, and incremented
arec to try to format a second record.  That second record turned out to
be unnecessary, so what we really want is to leave numrecs at 1.

The numrecs handling itself is overly complicated because a different
function sets numrecs == 1.  Change the bnobt creation code to start
with numrecs set to zero and only increment it after successfully
formatting a free space extent into the btree block.

Fixes: f327a00745 ("xfs: account for log space when formatting new AGs")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 09:14:36 +10:00
Darrick J. Wong
d5c88131db xfs: allow queued AG intents to drain before scrubbing
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain.  Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.

When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.

Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.

One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter.  A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata.  In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.

Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started.  As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count.  The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.

A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction.  When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it.  The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.

In the next patches we'll improve on this facility, but this patch
provides the basic functionality.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:58 -07:00
Darrick J. Wong
9b2e5a234c xfs: create traced helper to get extra perag references
There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code.  Btree cursor creation
and inode walks are good examples of this.  Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information.  This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:55 -07:00
Darrick J. Wong
b2ccab3199 xfs: pass per-ag references to xfs_free_extent
Pass a reference to the per-AG structure to xfs_free_extent.  Most
callers already have one, so we can eliminate unnecessary lookups.  The
one exception to this is the EFI code, which the next patch will fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:53 -07:00
Dave Chinner
5f36b2ce79 xfs: introduce xfs_alloc_vextent_exact_bno()
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
74c36a8689 xfs: use xfs_alloc_vextent_this_ag() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.

The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
dedab3e437 xfs: use active perag references for inode allocation
Convert the inode allocation routines to use active perag references
or references held by callers rather than grab their own. Also drive
the perag further inwards to replace xfs_mounts when doing
operations on a specific AG.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
368e2d09b4 xfs: rework the perag trace points to be perag centric
So that they all output the same information in the traces to make
debugging refcount issues easier.

This means that all the lookup/drop functions no longer need to use
the full memory barrier atomic operations (atomic*_return()) so
will have less overhead when tracing is off. The set/clear tag
tracepoints no longer abuse the reference count to pass the tag -
the tag being cleared is obvious from the _RET_IP_ that is recorded
in the trace point.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
c4d5660afb xfs: active perag reference counting
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.

To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.

Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
  and shrink transactions where high level active references to the
  AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
  memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
  started.

Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.

This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.

Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:42 +11:00
Dave Chinner
2fd26cc07e xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.

The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.

This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:46:43 +10:00
Dave Chinner
36029dee38 xfs: make is_log_ag() a first class helper
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:21 +10:00
Dave Chinner
2d6ca8321c xfs: Pre-calculate per-AG agino geometry
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

xfs_verify_agino_or_null() gets the same perag treatment.

xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.

Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1482185	 329588	    572	1812345	 1ba779	(TOTALS)
after	1481937	 329588	    572	1812097	 1ba681	(TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:10 +10:00
Dave Chinner
0800169e3e xfs: Pre-calculate per-AG agbno geometry
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).

Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.

Future commits will make similar changes for other per-ag geometry
validation functions.

Further:

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1483006	 329588	    572	1813166	 1baaae	(TOTALS)
after	1482185	 329588	    572	1812345	 1ba779	(TOTALS)

This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:02 +10:00
Dave Chinner
08d3e84fee xfs: pass perag to xfs_alloc_read_agf()
xfs_alloc_read_agf() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Whilst modifying the xfs_reflink_find_shared() function definition,
declare it static and remove the extern declaration as it is an
internal function only these days.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:40 +10:00
Dave Chinner
76b47e528e xfs: kill xfs_alloc_pagf_init()
Trivial wrapper around xfs_alloc_read_agf(), can be easily replaced
by passing a NULL agfbp to xfs_alloc_read_agf().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:32 +10:00
Dave Chinner
99b13c7f0b xfs: pass perag to xfs_ialloc_read_agi()
xfs_ialloc_read_agi() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:24 +10:00
Dave Chinner
a95fee40e3 xfs: kill xfs_ialloc_pagi_init()
This is just a basic wrapper around xfs_ialloc_read_agi(), which can
be entirely handled by xfs_ialloc_read_agi() by passing a NULL
agibpp....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:16 +10:00
Dave Chinner
c6aee24814 xfs: make last AG grow/shrink perag centric
Because the perag must exist for these operations, look it up as
part of the common shrink operations and pass it instead of the
mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:09 +10:00
Dave Chinner
5b55cbc2d7 xfs: don't assert fail on perag references on teardown
Not fatal, the assert is there to catch developer attention. I'm
seeing this occasionally during recoveryloop testing after a
shutdown, and I don't want this to stop an overnight recoveryloop
run as it is currently doing.

Convert the ASSERT to a XFS_IS_CORRUPT() check so it will dump a
corruption report into the log and cause a test failure that way,
but it won't stop the machine dead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:21:04 +10:00
Eric Sandeen
29f11fce21 xfs: #ifdef out perag code for userspace
The xfs_perag structure and initialization is unused in userspace,
so #ifdef it out with __KERNEL__ to facilitate the xfsprogs sync
and build.

Signed-off-by: Eric Sandeen <esandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-11-10 09:37:38 -08:00
Darrick J. Wong
c201d9ca53 xfs: rename xfs_bmap_add_free to xfs_free_extent_later
xfs_bmap_add_free isn't a block mapping function; it schedules deferred
freeing operations for a later point in a compound transaction chain.
While it's primarily used by bunmapi, its use has expanded beyond that.
Move it to xfs_alloc.c and rename the function since it's now general
freeing functionality.  Bring the slab cache bits in line with the
way we handle the other intent items.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Dave Chinner
9343ee7690 xfs: convert bp->b_bn references to xfs_buf_daddr()
Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:15 -07:00
Dave Chinner
ebd9027d08 xfs: convert xfs_sb_version_has checks to use mount features
This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.

This was largely done with a vim replacement macro that did:

:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>

A couple of other variants were also used, and the rest touched up
by hand.

$ size -t fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1127533  311352     484 1439369  15f689 (TOTALS)
after	1125360  311352     484 1437196  15ee0c (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
38c26bfd90 xfs: replace xfs_sb_version checks with feature flag checks
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.

Large parts of this conversion were done with sed with commands like
this:

for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
	sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done

With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.

The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:

$ size -t fs/xfs/built-in.a
	text	   data	    bss	    dec	    hex	filenam
before	1130866  311352     484 1442702  16038e (TOTALS)
after	1127727  311352     484 1439563  15f74b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Darrick J. Wong
da062d16a8 xfs: check for sparse inode clusters that cross new EOAG when shrinking
While running xfs/168, I noticed occasional write verifier shutdowns
involving inodes at the very end of the filesystem.  Existing inode
btree validation code checks that all inode clusters are fully contained
within the filesystem.

However, due to inadequate checking in the fs shrink code, it's possible
that there could be a sparse inode cluster at the end of the filesystem
where the upper inodes of the cluster are marked as holes and the
corresponding blocks are free.  In this case, the last blocks in the AG
are listed in the bnobt.  This enables the shrink to proceed but results
in a filesystem that trips the inode verifiers.  Fix this by disallowing
the shrink.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
2021-07-15 09:58:41 -07:00
Darrick J. Wong
a8f3522c9a xfs: fix endianness issue in xfs_ag_shrink_space
The AGI buffer is in big-endian format, so we must convert the
endianness to CPU format to do any comparisons.

Fixes: 46141dc891 ("xfs: introduce xfs_ag_shrink_space()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
2021-06-21 17:39:09 -07:00
Darrick J. Wong
ffc18582ed xfs: clean up incore inode walk functions
This ambitious series aims to cleans up redundant inode walk code in
 xfs_icache.c, hide implementation details of the quotaoff dquot release
 code, and eliminates indirect function calls from incore inode walks.
 
 The first thing it does is to move all the code that quotaoff calls to
 release dquots from all incore inodes into xfs_icache.c.  Next, it
 separates the goal of an inode walk from the actual radix tree tags that
 may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
 Finally, we split the speculative preallocation (blockgc) and quotaoff
 dquot release code paths into separate functions so that we can keep the
 implementations cohesive.
 
 Christoph suggested last cycle that we 'simply' change quotaoff not to
 allow deactivating quota entirely, but as these cleanups are to enable
 one major change in behavior (deferred inode inactivation) I do not want
 to add a second behavior change (quotaoff) as a dependency.
 
 To be blunt: Additional cleanups are not in scope for this series.
 
 Next, I made two observations about incore inode radix tree walks --
 since there's a 1:1 mapping between the walk goal and the per-inode
 processing function passed in, we can use the goal to make a direct call
 to the processing function.  Furthermore, the only caller to supply a
 nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
 
 From that observation, I concluded that it's quite possible to remove
 two parameters from the xfs_inode_walk* function signatures -- the
 iter_flags, and the execute function pointer.  The middle of the series
 moves the INEW functionality into the one piece (quotaoff) that wants
 it, and removes the indirect calls.
 
 The final observation is that the inode reclaim walk loop is now almost
 the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
 the reclaim loop code into xfs_inode_walk.
 
 Lastly, refactor the per-ag radix tagging functions since there's
 duplicated code that can be consolidated.
 
 This series is a prerequisite for the next two patchsets, since deferred
 inode inactivation will add another inode radix tree tag and iterator
 function to xfs_inode_walk.
 
 v2: walk the vfs inode list when running quotaoff instead of the radix
     tree, then rework the (now completely internal) inode walk function
     to take the tag as the main parameter.
 v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
     radix tree tagging functions
 v4: rebase to 5.13-rc4
 v5: combine with the quotaoff patchset, reorder functions to minimize
     forward declarations, split inode walk goals from radix tree tags
     to reduce conceptual confusion
 v6: start moving the inode cache code towards the xfs_icwalk prefix
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK
 tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X
 wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7
 xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ
 Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j
 eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi
 9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA
 mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56
 XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM
 AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h
 GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8
 FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4=
 =Rxdn
 -----END PGP SIGNATURE-----

Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2

xfs: clean up incore inode walk functions

This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.

The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c.  Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.

Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.

To be blunt: Additional cleanups are not in scope for this series.

Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function.  Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.

From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer.  The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.

The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
the reclaim loop code into xfs_inode_walk.

Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.

This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.

v2: walk the vfs inode list when running quotaoff instead of the radix
    tree, then rework the (now completely internal) inode walk function
    to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
    radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
    forward declarations, split inode walk goals from radix tree tags
    to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix

* tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: refactor per-AG inode tagging functions
  xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag
  xfs: pass struct xfs_eofblocks to the inode scan callback
  xfs: fix radix tree tag signs
  xfs: make the icwalk processing functions clean up the grab state
  xfs: clean up inode state flag tests in xfs_blockgc_igrab
  xfs: remove indirect calls from xfs_inode_walk{,_ag}
  xfs: remove iter_flags parameter from xfs_inode_walk_*
  xfs: move xfs_inew_wait call into xfs_dqrele_inode
  xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab
  xfs: pass the goal of the incore inode walk to xfs_inode_walk()
  xfs: rename xfs_inode_walk functions to xfs_icwalk
  xfs: move the inode walk functions further down
  xfs: detach inode dquots at the end of inactivation
  xfs: move the quotaoff dqrele inode walk into xfs_icache.c

[djwong: added variable names to function declarations while fixing
merge conflicts]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-08 09:26:44 -07:00
Darrick J. Wong
c3eabd3650 xfs: initial agnumber -> perag conversions for shrink
If we want to use active references to the perag to be able to gate
 shrink removing AGs and hence perags safely, we've got a fair bit of
 work to do actually use perags in all the places we need to.
 
 There's a lot of code that iterates ag numbers and then
 looks up perags from that, often multiple times for the same perag
 in the one operation. If we want to use reference counted perags for
 access control, then we need to convert all these uses to perag
 iterators, not agno iterators.
 
 [Patches 1-4]
 
 The first step of this is consolidating all the perag management -
 init, free, get, put, etc into a common location. THis is spread all
 over the place right now, so move it all into libxfs/xfs_ag.[ch].
 This does expose kernel only bits of the perag to libxfs and hence
 userspace, so the structures and code is rearranged to minimise the
 number of ifdefs that need to be added to the userspace codebase.
 The perag iterator in xfs_icache.c is promoted to a first class API
 and expanded to the needs of the code as required.
 
 [Patches 5-10]
 
 These are the first basic perag iterator conversions and changes to
 pass the perag down the stack from those iterators where
 appropriate. A lot of this is obvious, simple changes, though in
 some places we stop passing the perag down the stack because the
 code enters into an as yet unconverted subsystem that still uses raw
 AGs.
 
 [Patches 11-16]
 
 These replace the agno passed in the btree cursor for per-ag btree
 operations with a perag that is passed to the cursor init function.
 The cursor takes it's own reference to the perag, and the reference
 is dropped when the cursor is deleted. Hence we get reference
 coverage for the entire time the cursor is active, even if the code
 that initialised the cursor drops it's reference before the cursor
 or any of it's children (duplicates) have been deleted.
 
 The first patch adds the perag infrastructure for the cursor, the
 next four patches convert a btree cursor at a time, and the last
 removes the agno from the cursor once it is unused.
 
 [Patches 17-21]
 
 These patches are a demonstration of the simplifications and
 cleanups that come from plumbing the perag through interfaces that
 select and then operate on a specific AG. In this case the inode
 allocation algorithm does up to three walks across all AGs before it
 either allocates an inode or fails. Two of these walks are purely
 just to select the AG, and even then it doesn't guarantee inode
 allocation success so there's a third walk if the selected AG
 allocation fails.
 
 These patches collapse the selection and allocation into a single
 loop, simplifies the error handling because xfs_dir_ialloc() always
 returns ENOSPC if no AG was selected for inode allocation or we fail
 to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
 wrapper, converts inode allocation to run entirely from a single
 perag instance, and then factors xfs_dialloc() into a much, much
 simpler loop which is easy to understand.
 
 Hence we end up with the same inode allocation logic, but it only
 needs two complete iterations at worst, makes AG selection and
 allocation atomic w.r.t. shrink and chops out out over 100 lines of
 code from this hot code path.
 
 [Patch 22]
 
 Converts the unlink path to pass perags through it.
 
 There's more conversion work to be done, but this patchset gets
 through a large chunk of it in one hit. Most of the iterators are
 converted, so once this is solidified we can move on to converting
 these to active references for being able to free perags while the
 fs is still active.
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmC3HUgUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h2yaw/+P0JzpI+6n06Ei00mjgE/Du/WhMLi
 0JQ93Grlj+miuGGT9DgGCiRpoZnefhEk+BH6JqoEw1DQ3T5ilmAzrHLUUHSQC3+S
 dv85sJduheQ6yHuoO+4MzkaSq6JWKe7E9gZwAsVyBul5aSjdmaJaQdPwYMTXSXo0
 5Uqq8ECFkMcaHVNjcBfasgR/fdyWy2Qe4PFTHTHdQpd+DNZ9UXgFKHW2og+1iry/
 zDIvdIppJULA09TvVcZuFjd/1NzHQ/fLj5PAzz8GwagB4nz2x3s78Zevmo5yW/jK
 3/+50vXa8ldhiHDYGTS3QXvS0xJRyqUyD47eyWOOiojZw735jEvAlCgjX6+0X1HC
 k3gCkQLv8l96fRkvUpgnLf/fjrUnlCuNBkm9d1Eq2Tied8dvLDtiEzoC6L05Nqob
 yd/nIUb1zwJFa9tsoheHhn0bblTGX1+zP0lbRJBje0LotpNO9DjGX5JoIK4GR7F8
 y1VojcdgRI14HlxUnbF3p8wmQByN+M2tnp6GSdv9BA65bjqi05Rj/steFdZHBV6x
 wiRs8Yh6BTvMwKgufHhRQHfRahjNHQ/T/vOE+zNbWqemS9wtEUDop+KvPhC36R/k
 o/cmr23cF8ESX2eChk7XM4On3VEYpcvp2zSFgrFqZYl6RWOwEis3Htvce3KuSTPp
 8Xq70te0gr2DVUU=
 =YNzW
 -----END PGP SIGNATURE-----

Merge tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.14-merge2

xfs: initial agnumber -> perag conversions for shrink

If we want to use active references to the perag to be able to gate
shrink removing AGs and hence perags safely, we've got a fair bit of
work to do actually use perags in all the places we need to.

There's a lot of code that iterates ag numbers and then
looks up perags from that, often multiple times for the same perag
in the one operation. If we want to use reference counted perags for
access control, then we need to convert all these uses to perag
iterators, not agno iterators.

[Patches 1-4]

The first step of this is consolidating all the perag management -
init, free, get, put, etc into a common location. THis is spread all
over the place right now, so move it all into libxfs/xfs_ag.[ch].
This does expose kernel only bits of the perag to libxfs and hence
userspace, so the structures and code is rearranged to minimise the
number of ifdefs that need to be added to the userspace codebase.
The perag iterator in xfs_icache.c is promoted to a first class API
and expanded to the needs of the code as required.

[Patches 5-10]

These are the first basic perag iterator conversions and changes to
pass the perag down the stack from those iterators where
appropriate. A lot of this is obvious, simple changes, though in
some places we stop passing the perag down the stack because the
code enters into an as yet unconverted subsystem that still uses raw
AGs.

[Patches 11-16]

These replace the agno passed in the btree cursor for per-ag btree
operations with a perag that is passed to the cursor init function.
The cursor takes it's own reference to the perag, and the reference
is dropped when the cursor is deleted. Hence we get reference
coverage for the entire time the cursor is active, even if the code
that initialised the cursor drops it's reference before the cursor
or any of it's children (duplicates) have been deleted.

The first patch adds the perag infrastructure for the cursor, the
next four patches convert a btree cursor at a time, and the last
removes the agno from the cursor once it is unused.

[Patches 17-21]

These patches are a demonstration of the simplifications and
cleanups that come from plumbing the perag through interfaces that
select and then operate on a specific AG. In this case the inode
allocation algorithm does up to three walks across all AGs before it
either allocates an inode or fails. Two of these walks are purely
just to select the AG, and even then it doesn't guarantee inode
allocation success so there's a third walk if the selected AG
allocation fails.

These patches collapse the selection and allocation into a single
loop, simplifies the error handling because xfs_dir_ialloc() always
returns ENOSPC if no AG was selected for inode allocation or we fail
to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
wrapper, converts inode allocation to run entirely from a single
perag instance, and then factors xfs_dialloc() into a much, much
simpler loop which is easy to understand.

Hence we end up with the same inode allocation logic, but it only
needs two complete iterations at worst, makes AG selection and
allocation atomic w.r.t. shrink and chops out out over 100 lines of
code from this hot code path.

[Patch 22]

Converts the unlink path to pass perags through it.

There's more conversion work to be done, but this patchset gets
through a large chunk of it in one hit. Most of the iterators are
converted, so once this is solidified we can move on to converting
these to active references for being able to free perags while the
fs is still active.

* tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (23 commits)
  xfs: remove xfs_perag_t
  xfs: use perag through unlink processing
  xfs: clean up and simplify xfs_dialloc()
  xfs: inode allocation can use a single perag instance
  xfs: get rid of xfs_dir_ialloc()
  xfs: collapse AG selection for inode allocation
  xfs: simplify xfs_dialloc_select_ag() return values
  xfs: remove agno from btree cursor
  xfs: use perag for ialloc btree cursors
  xfs: convert allocbt cursors to use perags
  xfs: convert refcount btree cursor to use perags
  xfs: convert rmap btree cursor to using a perag
  xfs: add a perag to the btree cursor
  xfs: pass perags around in fsmap data dev functions
  xfs: push perags through the ag reservation callouts
  xfs: pass perags through to the busy extent code
  xfs: convert secondary superblock walk to use perags
  xfs: convert xfs_iwalk to use perag references
  xfs: convert raw ag walks to use for_each_perag
  xfs: make for_each_perag... a first class citizen
  ...
2021-06-08 09:13:13 -07:00
Dave Chinner
509201163f xfs: remove xfs_perag_t
Almost unused, gets rid of another typedef.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:51 +10:00
Dave Chinner
fa9c3c1973 xfs: convert rmap btree cursor to using a perag
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
07b6403a68 xfs: move perag structure and setup to libxfs/xfs_ag.[ch]
Move the xfs_perag infrastructure to the libxfs files that contain
all the per AG infrastructure. This helps set up for passing perags
around all the code instead of bare agnos with minimal extra
includes for existing files.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
9bbafc7191 xfs: move xfs_perag_get/put to xfs_ag.[ch]
They are AG functions, not superblock functions, so move them to the
appropriate location.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
07b5c5add4 xfs: use xfs_buf_alloc_pages for uncached buffers
Use the newly factored out page allocation code. This adds
automatic buffer zeroing for non-read uncached buffers.

This also allows us to greatly simply the error handling in
xfs_buf_get_uncached(). Because xfs_buf_alloc_pages() cleans up
partial allocation failure, we can just call xfs_buf_free() in all
error cases now to clean up after failures.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-01 13:40:35 +10:00