Commit Graph

2364 Commits

Author SHA1 Message Date
Rafael J. Wysocki
fbd78afe34 Merge branches 'intel_pstate' and 'pm-sleep'
* intel_pstate:
  cpufreq: intel_pstate: Avoid division by 0 in min_perf_pct_min()

* pm-sleep:
  Revert "ACPI / sleep: Ignore spurious SCI wakeups from suspend-to-idle"
2017-06-09 01:25:16 +02:00
Rafael J. Wysocki
57caf4ec2b cpufreq: intel_pstate: Avoid division by 0 in min_perf_pct_min()
Commit c5a2ee7dde (cpufreq: intel_pstate: Active mode P-state
limits rework) incorrectly assumed that pstate.turbo_pstate would
always be nonzero for CPU0 in min_perf_pct_min() if
cpufreq_register_driver() had succeeded which may not be the case
in virtualized environments.

If that assumption doesn't hold, it leads to an early crash on boot
in intel_pstate_register_driver(), so add a sanity check to
min_perf_pct_min() to prevent the crash from happening.

Fixes: c5a2ee7dde (cpufreq: intel_pstate: Active mode P-state limits rework)
Reported-and-tested-by: Jongman Heo <jongman.heo@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-05 14:51:18 +02:00
Sudeep Holla
c0f2e21953 cpufreq: scpi: use new scpi_ops functions to remove duplicate code
scpi_ops now provide APIs to get the transition_latency and to add
OPPs to the devices making those logic redundant here.

This patch makes use of those APIs and removes the redundant code in
this driver.

Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
2017-06-05 11:14:35 +01:00
Rafael J. Wysocki
bb5710e72c Merge branch 'pm-cpufreq'
* pm-cpufreq:
  cpufreq: kirkwood-cpufreq:- Handle return value of clk_prepare_enable()
  cpufreq: cpufreq_register_driver() should return -ENODEV if init fails
2017-06-03 00:01:45 +02:00
Arvind Yadav
7575f82572 cpufreq: kirkwood-cpufreq:- Handle return value of clk_prepare_enable()
clk_prepare_enable() can fail here and we must check its return value.

Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-30 00:09:41 +02:00
David Arcari
6c77003677 cpufreq: cpufreq_register_driver() should return -ENODEV if init fails
For a driver that does not set the CPUFREQ_STICKY flag, if all of the
->init() calls fail, cpufreq_register_driver() should return an error.
This will prevent the driver from loading.

Fixes: ce1bcfe94d (cpufreq: check cpufreq_policy_list instead of scanning policies for all CPUs)
Cc: 4.0+ <stable@vger.kernel.org> # 4.0+
Signed-off-by: David Arcari <darcari@redhat.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-30 00:07:20 +02:00
Viresh Kumar
55d8529313 cpufreq: create cpufreq_table_count_valid_entries()
We need such a routine at two places already, lets create one.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2017-05-27 17:32:28 -07:00
Viresh Kumar
4d753aa7b6 thermal: cpu_cooling: use cpufreq_policy to register cooling device
The CPU cooling driver uses the cpufreq policy, to get clip_cpus, the
frequency table, etc. Most of the callers of CPU cooling driver's
registration routines have the cpufreq policy with them, but they only
pass the policy->related_cpus cpumask. The __cpufreq_cooling_register()
routine then gets the policy by itself and uses it.

It would be much better if the callers can pass the policy instead
directly. This also fixes a basic design flaw, where the policy can be
freed while the CPU cooling driver is still active.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2017-05-27 17:32:24 -07:00
Sebastian Andrzej Siewior
a92551e41d cpufreq: Use cpuhp_setup_state_nocalls_cpuslocked()
cpufreq holds get_online_cpus() while invoking cpuhp_setup_state_nocalls()
to make subsys_interface_register() and the registration of hotplug calls
atomic versus cpu hotplug.

cpuhp_setup_state_nocalls() invokes get_online_cpus() as well. This is
correct, but prevents the conversion of the hotplug locking to a percpu
rwsem.

Use cpuhp_setup/remove_state_nocalls_cpuslocked() to avoid the nested
call. Convert *_online_cpus() to the new interfaces while at it.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081547.731628408@linutronix.de
2017-05-26 10:10:38 +02:00
Thomas Gleixner
d04e31a23c cpufreq/pasemi: Adjust system_state check
To enable smp_processor_id() and might_sleep() debug checks earlier, it's
required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING.

Adjust the system_state check in pas_cpufreq_cpu_exit() to handle the extra
states.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20170516184735.620023128@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-23 10:01:36 +02:00
Rafael J. Wysocki
079c1812a2 Merge branches 'intel_pstate', 'pm-cpufreq' and 'pm-cpufreq-sched'
* intel_pstate:
  cpufreq: intel_pstate: Document the current behavior and user interface

* pm-cpufreq:
  cpufreq: dbx500: add a Kconfig symbol

* pm-cpufreq-sched:
  cpufreq: schedutil: use now as reference when aggregating shared policy requests
2017-05-22 20:28:22 +02:00
Rafael J. Wysocki
a32f80b30d Merge branch 'utilities' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
Pull power management utilities updates from Len Brown.

* 'utilities' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux:
  intel_pstate: use updated msr-index.h HWP.EPP values
  tools/power x86_energy_perf_policy: support HWP.EPP
  x86: msr-index.h: fix shifts to ULL results in HWP macros.
  x86: msr-index.h: define HWP.EPP values
  x86: msr-index.h: define EPB mid-points
2017-05-16 03:15:27 +02:00
Arnd Bergmann
be0408d74d cpufreq: dbx500: add a Kconfig symbol
Moving the cooling code into the cpufreq driver caused a possible build failure
when the cpu_thermal helper code is a loadable module or disabled:

drivers/cpufreq/dbx500-cpufreq.o: In function `dbx500_cpufreq_ready':
dbx500-cpufreq.c:(.text.dbx500_cpufreq_ready+0x4): undefined reference to `cpufreq_cooling_register'

This adds the same dependency that we have in other cpufreq drivers,
forcing the driver to be disabled when we can't possibly link it.

Fixes: 19678ffb9f (cpufreq: dbx500: Manage cooling device from cpufreq driver)
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-14 13:40:16 +02:00
Linus Torvalds
ac3c4aa248 Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
Pull MIPS updates from James Hogan:
 "math-emu:
   - Add missing clearing of BLTZALL and BGEZALL emulation counters
   - Fix BC1EQZ and BC1NEZ condition handling
   - Fix BLEZL and BGTZL identification

  BPF:
   - Add JIT support for SKF_AD_HATYPE
   - Use unsigned access for unsigned SKB fields
   - Quit clobbering callee saved registers in JIT code
   - Fix multiple problems in JIT skb access helpers

  Loongson 3:
   - Select MIPS_L1_CACHE_SHIFT_6

  Octeon:
   - Remove vestiges of CONFIG_CAVIUM_OCTEON_2ND_KERNEL
   - Remove unused L2C types and macros.
   - Remove unused SLI types and macros.
   - Fix compile error when USB is not enabled.
   - Octeon: Remove unused PCIERCX types and macros.
   - Octeon: Clean up platform code.

  SNI:
   - Remove recursive include of cpu-feature-overrides.h

  Sibyte:
   - Export symbol periph_rev to sb1250-mac network driver.
   - Fix Kconfig warning.

  Generic platform:
   - Enable Root FS on NFS in generic_defconfig

  SMP-MT:
   - Use CPU interrupt controller IPI IRQ domain support

  UASM:
   - Add support for LHU for uasm.
   - Remove needless ISA abstraction

  mm:
   - Add 48-bit VA space and 4-level page tables for 4K pages.

  PCI:
   - Add controllers before the specified head

  irqchip driver for MIPS CPU:
   - Replace magic 0x100 with IE_SW0
   - Prepare for non-legacy IRQ domains
   - Introduce IPI IRQ domain support

  MAINTAINERS:
   - Update email-id of Rahul Bedarkar

  NET:
   - sb1250-mac: Add missing MODULE_LICENSE()

  CPUFREQ:
   - Loongson2: drop set_cpus_allowed_ptr()

  Misc:
   - Disable Werror when W= is set
   - Opt into HAVE_COPY_THREAD_TLS
   - Enable GENERIC_CPU_AUTOPROBE
   - Use common outgoing-CPU-notification code
   - Remove dead define of ST_OFF
   - Remove CONFIG_ARCH_HAS_ILOG2_U{32,64}
   - Stengthen IPI IRQ domain sanity check
   - Remove confusing else statement in __do_page_fault()
   - Don't unnecessarily include kmalloc.h into <asm/cache.h>.
   - Delete unused definition of SMP_CACHE_SHIFT.
   - Delete redundant definition of SMP_CACHE_BYTES"

* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (39 commits)
  MIPS: Sibyte: Fix Kconfig warning.
  MIPS: Sibyte: Export symbol periph_rev to sb1250-mac network driver.
  NET: sb1250-mac: Add missing MODULE_LICENSE()
  MAINTAINERS: Update email-id of Rahul Bedarkar
  MIPS: Remove confusing else statement in __do_page_fault()
  MIPS: Stengthen IPI IRQ domain sanity check
  MIPS: smp-mt: Use CPU interrupt controller IPI IRQ domain support
  irqchip: mips-cpu: Introduce IPI IRQ domain support
  irqchip: mips-cpu: Prepare for non-legacy IRQ domains
  irqchip: mips-cpu: Replace magic 0x100 with IE_SW0
  MIPS: Remove CONFIG_ARCH_HAS_ILOG2_U{32,64}
  MIPS: generic: Enable Root FS on NFS in generic_defconfig
  MIPS: mach-rm: Remove recursive include of cpu-feature-overrides.h
  MIPS: Opt into HAVE_COPY_THREAD_TLS
  CPUFREQ: Loongson2: drop set_cpus_allowed_ptr()
  MIPS: uasm: Remove needless ISA abstraction
  MIPS: Remove dead define of ST_OFF
  MIPS: Use common outgoing-CPU-notification code
  MIPS: math-emu: Fix BC1EQZ and BC1NEZ condition handling
  MIPS: r2-on-r6-emu: Clear BLTZALL and BGEZALL debugfs counters
  ...
2017-05-12 09:56:30 -07:00
Len Brown
3cedbc5a6d intel_pstate: use updated msr-index.h HWP.EPP values
intel_pstate exports sysfs attributes for setting and observing HWP.EPP.
These attributes use strings to describe 4 operating states, and
inside the driver, these strings are mapped to numerical register
values.

The authorative mapping between the strings and numerical HWP.EPP values
are now globally defined in msr-index.h, replacing the out-dated
mapping that were open-coded into intel_pstate.c

new old string
--- --- ------
  0   0 performance
128  64 balance_performance
192 128 balance_power
255 192 power

Note that the HW and BIOS default value on most system is 128,
which intel_pstate will now call "balance_performance"
while it used to call it "balance_power".

Signed-off-by: Len Brown <len.brown@intel.com>
2017-05-11 21:27:53 -04:00
Linus Torvalds
291b38a756 Annotation of module parameters that specify device settings
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAWPiW6vSw1s6N8H32AQLOrw/+NTqGf7bjq+64YKS6NfR0XDgE+wNJltGO
 ck7zJW3NHIg76RNu8s0I9xg5aVmwizz3Z5DGROZquaolnezux4tQihZ3AFyxIzLc
 +Y3WHYagcML7yFfjl/WznCLRD5EW3yPln4lCvQO0nW/xICRYeRI057JaIbi2Dtek
 BhcXt3c4AjXDLdYJkgtHV3p2R2mt8hcdFdWqqx6s7JaIThZNRGNzxAgtbcB9k5IW
 HVG9ZEIL73VBYWHrYivzjHYF5rBnNCPt87eOwDQeTOSkhv8te+u9k+bH8vxZw1T0
 XUtDrLBndKiuVo2GUfLkkF8LItx3Q9eLCJYy0joaIliyPqTEsPx9KjQ+Af0cxS9s
 ZPCZ5SYf96stKmDeL5xaMfrAmeyVHJ4lc4JTOqdzbIT8blsOSfYO/03p0ALShSDv
 /RQLaKGlf8Bjoy8PwKFcXb4sIDufcd/U1Av/EMFXxOfgN/u2JUkGKq6EaIM5B68L
 fHPje+aR9VNELPmPjwNOWtmN4I79EH3EItQf7zv0KG+UeKhcHLx/EAcSJ3ZRKEkH
 Lathg7pPOEJGArPiVO79TZzBG01ADn1aiwv65XObMzNZ+54xI/mN/Y1DNF/kL5jU
 XzvNzEjFt8mwMIZGVNdAt4+pDyMfIZGZSyUkSRKFnaQZMIvQrfQIU9RLBYLX5eOx
 +/p0VkIwDpg=
 =lbS7
 -----END PGP SIGNATURE-----

Merge tag 'hwparam-20170420' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull hw lockdown support from David Howells:
 "Annotation of module parameters that configure hardware resources
  including ioports, iomem addresses, irq lines and dma channels.

  This allows a future patch to prohibit the use of such module
  parameters to prevent that hardware from being abused to gain access
  to the running kernel image as part of locking the kernel down under
  UEFI secure boot conditions.

  Annotations are made by changing:

        module_param(n, t, p)
        module_param_named(n, v, t, p)
        module_param_array(n, t, m, p)

  to:

        module_param_hw(n, t, hwtype, p)
        module_param_hw_named(n, v, t, hwtype, p)
        module_param_hw_array(n, t, hwtype, m, p)

  where the module parameter refers to a hardware setting

  hwtype specifies the type of the resource being configured. This can
  be one of:

        ioport          Module parameter configures an I/O port
        iomem           Module parameter configures an I/O mem address
        ioport_or_iomem Module parameter could be either (runtime set)
        irq             Module parameter configures an I/O port
        dma             Module parameter configures a DMA channel
        dma_addr        Module parameter configures a DMA buffer address
        other           Module parameter configures some other value

  Note that the hwtype is compile checked, but not currently stored (the
  lockdown code probably won't require it). It is, however, there for
  future use.

  A bonus is that the hwtype can also be used for grepping.

  The intention is for the kernel to ignore or reject attempts to set
  annotated module parameters if lockdown is enabled. This applies to
  options passed on the boot command line, passed to insmod/modprobe or
  direct twiddling in /sys/module/ parameter files.

  The module initialisation then needs to handle the parameter not being
  set, by (1) giving an error, (2) probing for a value or (3) using a
  reasonable default.

  What I can't do is just reject a module out of hand because it may
  take a hardware setting in the module parameters. Some important
  modules, some ipmi stuff for instance, both probe for hardware and
  allow hardware to be manually specified; if the driver is aborts with
  any error, you don't get any ipmi hardware.

  Further, trying to do this entirely in the module initialisation code
  doesn't protect against sysfs twiddling.

  [!] Note that in and of itself, this series of patches should have no
      effect on the the size of the kernel or code execution - that is
      left to a patch in the next series to effect. It does mark
      annotated kernel parameters with a KERNEL_PARAM_FL_HWPARAM flag in
      an already existing field"

* tag 'hwparam-20170420' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (38 commits)
  Annotate hardware config module parameters in sound/pci/
  Annotate hardware config module parameters in sound/oss/
  Annotate hardware config module parameters in sound/isa/
  Annotate hardware config module parameters in sound/drivers/
  Annotate hardware config module parameters in fs/pstore/
  Annotate hardware config module parameters in drivers/watchdog/
  Annotate hardware config module parameters in drivers/video/
  Annotate hardware config module parameters in drivers/tty/
  Annotate hardware config module parameters in drivers/staging/vme/
  Annotate hardware config module parameters in drivers/staging/speakup/
  Annotate hardware config module parameters in drivers/staging/media/
  Annotate hardware config module parameters in drivers/scsi/
  Annotate hardware config module parameters in drivers/pcmcia/
  Annotate hardware config module parameters in drivers/pci/hotplug/
  Annotate hardware config module parameters in drivers/parport/
  Annotate hardware config module parameters in drivers/net/wireless/
  Annotate hardware config module parameters in drivers/net/wan/
  Annotate hardware config module parameters in drivers/net/irda/
  Annotate hardware config module parameters in drivers/net/hamradio/
  Annotate hardware config module parameters in drivers/net/ethernet/
  ...
2017-05-10 19:13:03 -07:00
Kees Cook
063246641d format-security: move static strings to const
While examining output from trial builds with -Wformat-security enabled,
many strings were found that should be defined as "const", or as a char
array instead of char pointer.  This makes some static analysis easier,
by producing fewer false positives.

As these are all trivial changes, it seemed best to put them all in a
single patch rather than chopping them up per maintainer.

Link: http://lkml.kernel.org/r/20170405214711.GA5711@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Jes Sorensen <jes@trained-monkey.org>	[runner.c]
Cc: Tony Lindgren <tony@atomide.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Maciej W. Rozycki" <macro@linux-mips.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Sean Paul <seanpaul@chromium.org>
Cc: David Airlie <airlied@linux.ie>
Cc: Yisen Zhuang <yisen.zhuang@huawei.com>
Cc: Salil Mehta <salil.mehta@huawei.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Patrice Chotard <patrice.chotard@st.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Mugunthan V N <mugunthanvnm@ti.com>
Cc: Felipe Balbi <felipe.balbi@linux.intel.com>
Cc: Jarod Wilson <jarod@redhat.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Antonio Quartulli <a@unstable.cc>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Kejian Yan <yankejian@huawei.com>
Cc: Daode Huang <huangdaode@hisilicon.com>
Cc: Qianqian Xie <xieqianqian@huawei.com>
Cc: Philippe Reynes <tremyfr@gmail.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Christian Gromm <christian.gromm@microchip.com>
Cc: Andrey Shvetsov <andrey.shvetsov@k2l.de>
Cc: Jason Litzinger <jlitzingerdev@gmail.com>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:14 -07:00
Stephen Boyd
ad61dd303a scripts/spelling.txt: add regsiter -> register spelling mistake
This typo is quite common.  Fix it and add it to the spelling file so
that checkpatch catches it earlier.

Link: http://lkml.kernel.org/r/20170317011131.6881-2-sboyd@codeaurora.org
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Linus Torvalds
3527d3e951 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - another round of rq-clock handling debugging, robustization and
     fixes

   - PELT accounting improvements

   - CPU hotplug related ->cpus_allowed affinity handling fixes all
     around the tree

   - ... plus misc fixes, cleanups and updates"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
  sched/x86: Update reschedule warning text
  crypto: N2 - Replace racy task affinity logic
  cpufreq/sparc-us2e: Replace racy task affinity logic
  cpufreq/sparc-us3: Replace racy task affinity logic
  cpufreq/sh: Replace racy task affinity logic
  cpufreq/ia64: Replace racy task affinity logic
  ACPI/processor: Replace racy task affinity logic
  ACPI/processor: Fix error handling in __acpi_processor_start()
  sparc/sysfs: Replace racy task affinity logic
  powerpc/smp: Replace open coded task affinity logic
  ia64/sn/hwperf: Replace racy task affinity logic
  ia64/salinfo: Replace racy task affinity logic
  workqueue: Provide work_on_cpu_safe()
  ia64/topology: Remove cpus_allowed manipulation
  sched/fair: Move the PELT constants into a generated header
  sched/fair: Increase PELT accuracy for small tasks
  sched/fair: Fix comments
  sched/Documentation: Add 'sched-pelt' tool
  sched/fair: Fix corner case in __accumulate_sum()
  sched/core: Remove 'task' parameter and rename tsk_restore_flags() to current_restore_flags()
  ...
2017-05-01 19:12:53 -07:00
Rafael J. Wysocki
2addac72af Merge schedutil governor updates for v4.12. 2017-04-28 23:13:33 +02:00
Rafael J. Wysocki
2dee4b0e0b Merge intel_pstate driver updates for v4.12. 2017-04-28 23:13:04 +02:00
David Howells
40059ec670 Annotate hardware config module parameters in drivers/cpufreq/
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image.  Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.

To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify.  The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.

Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.

This patch annotates drivers in drivers/cpufreq/.

Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
cc: linux-pm@vger.kernel.org
2017-04-20 12:02:32 +01:00
Mikko Perttunen
939dc6f51e cpufreq: Add Tegra186 cpufreq driver
Add a new cpufreq driver for Tegra186 (and likely later).
The CPUs are organized into two clusters, Denver and A57,
with two and four cores respectively. CPU frequency can be
adjusted by writing the desired rate divisor and a voltage
hint to a special per-core register.

The frequency of each core can be set individually; however,
this is just a hint as all CPUs in a cluster will run at
the maximum rate of non-idle CPUs in the cluster.

Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-19 23:23:08 +02:00
Christophe Jaillet
eafca85163 cpufreq: imx6q: Fix error handling code
According to the previous error handling code, it is likely that
'goto out_free_opp' is expected here in order to avoid a memory leak in
error handling path.

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-19 23:22:01 +02:00
Leonard Crestez
5aa1599ff0 cpufreq: imx6q: Set max suspend_freq to avoid changes during suspend
If the cpufreq driver tries to modify voltage/freq during suspend/resume
it might need to control an external PMIC via I2C or SPI but those
devices might be already suspended. This issue is likely to happen
whenever the LDOs have their vin-supply set.

To avoid this scenario we just increase cpufreq to the maximum before
suspend.

Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Reviewed-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-19 23:22:01 +02:00
Irina Tirdea
54cad2fce7 cpufreq: imx6q: Fix handling EPROBE_DEFER from regulator
If there are any errors in getting the cpu0 regulators, the driver returns
-ENOENT. In case the regulators are not yet available, the devm_regulator_get
calls will return -EPROBE_DEFER, so that the driver can be probed later.
If we return -ENOENT, the driver will fail its initialization and will
not try to probe again (when the regulators become available).

Return the actual error received from regulator_get in probe. Print a
differentiated message in case we need to probe the device later and
in case we actually failed. Also add a message to inform when the
driver has been successfully registered.

Signed-off-by: Irina Tirdea <irina.tirdea@nxp.com>
Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Reviewed-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-19 23:22:00 +02:00
Rafael J. Wysocki
1b72e7fd30 cpufreq: schedutil: Use policy-dependent transition delays
Make the schedutil governor take the initial (default) value of the
rate_limit_us sysfs attribute from the (new) transition_delay_us
policy parameter (to be set by the scaling driver).

That will allow scaling drivers to make schedutil use smaller default
values of rate_limit_us and reduce the default average time interval
between consecutive frequency changes.

Make intel_pstate set transition_delay_us to 500.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-04-17 18:37:27 +02:00
Rafael J. Wysocki
5ed8a1c19d Merge branch 'intel_pstate' into pm-cpufreq-sched 2017-04-17 01:13:02 +02:00
Thomas Gleixner
12699ac53a cpufreq/sparc-us2e: Replace racy task affinity logic
The access to the HBIRD_ESTAR_MODE register in the cpu frequency control
functions must happen on the target CPU. This is achieved by temporarily
setting the affinity of the calling user space thread to the requested CPU
and reset it to the original affinity afterwards.

That's racy vs. CPU hotplug and concurrent affinity settings for that
thread resulting in code executing on the wrong CPU and overwriting the
new affinity setting.

Replace it by a straight forward smp function call. 

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: linux-pm@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704131020280.2408@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-15 12:20:56 +02:00
Thomas Gleixner
9fe24c4e92 cpufreq/sparc-us3: Replace racy task affinity logic
The access to the safari config register in the CPU frequency functions
must be executed on the target CPU. This is achieved by temporarily setting
the affinity of the calling user space thread to the requested CPU and
reset it to the original affinity afterwards.

That's racy vs. CPU hotplug and concurrent affinity settings for that
thread resulting in code executing on the wrong CPU and overwriting the
new affinity setting.

Replace it by a straight forward smp function call. 

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: linux-pm@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/20170412201043.047558840@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-15 12:20:55 +02:00
Thomas Gleixner
205dcc1ecb cpufreq/sh: Replace racy task affinity logic
The target() callback must run on the affected cpu. This is achieved by
temporarily setting the affinity of the calling thread to the requested CPU
and reset it to the original affinity afterwards.

That's racy vs. concurrent affinity settings for that thread resulting in
code executing on the wrong CPU.

Replace it by work_on_cpu(). All call pathes which invoke the callbacks are
already protected against CPU hotplug.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: linux-pm@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/20170412201042.958216363@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-15 12:20:55 +02:00
Thomas Gleixner
38f05ed04b cpufreq/ia64: Replace racy task affinity logic
The get() and target() callbacks must run on the affected cpu. This is
achieved by temporarily setting the affinity of the calling thread to the
requested CPU and reset it to the original affinity afterwards.

That's racy vs. concurrent affinity settings for that thread resulting in
code executing on the wrong CPU and overwriting the new affinity setting.

Replace it by work_on_cpu(). All call pathes which invoke the callbacks are
already protected against CPU hotplug.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: linux-pm@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704122231100.2548@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-15 12:20:55 +02:00
Rafael J. Wysocki
c97ad0fc4f Merge back cpufreq core changes for v4.12. 2017-04-15 00:23:36 +02:00
Chen Yu
c4a3fa261b cpufreq: Bring CPUs up even if cpufreq_online() failed
There is a report that after commit 27622b061e ("cpufreq: Convert
to hotplug state machine"), the normal CPU offline/online cycle
fails on some platforms.

According to the ftrace result, this problem was triggered on
platforms using acpi-cpufreq as the default cpufreq driver,
and due to the lack of some ACPI freq method (eg. _PCT),
cpufreq_online() failed and returned a negative value, so the CPU
hotplug state machine rolled back the CPU online process.  Actually,
from the user's perspective, the failure of cpufreq_online() should
not prevent that CPU from being brought up, although cpufreq might
not work on that CPU.

BTW, during system startup cpufreq_online() is not invoked via CPU
online but by the cpufreq device creation process, so the APs can be
brought up even though cpufreq_online() fails in that stage.

This patch ignores the return value of cpufreq_online/offline() and
lets the cpufreq framework deal with the failure.  cpufreq_online()
itself will do a proper rollback in that case and if _PCT is missing,
the ACPI cpufreq driver will print a warning if the corresponding
debug options have been enabled.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=194581
Fixes: 27622b061e ("cpufreq: Convert to hotplug state machine")
Reported-and-tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 4.9+ <stable@vger.kernel.org> # 4.9+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-13 03:38:44 +02:00
Sebastian Andrzej Siewior
759f534e93 CPUFREQ: Loongson2: drop set_cpus_allowed_ptr()
It is pure mystery to me why we need to be on a specific CPU while
looking up a value in an array.
My best shot at this is that before commit d4019f0a92 ("cpufreq: move
freq change notifications to cpufreq core") it was required to invoke
cpufreq_notify_transition() on a special CPU.

Since it looks like a waste, remove it.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: tglx@linutronix.de
Cc: linux-pm@vger.kernel.org
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/15888/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-04-12 13:52:21 +02:00
Rafael J. Wysocki
69a07f1803 Merge back cpufreq changes for v4.12. 2017-04-06 01:27:21 +02:00
Rafael J. Wysocki
46e1d5e972 Merge branches 'pm-cpufreq-fixes' and 'pm-cpuidle-fixes'
* pm-cpufreq-fixes:
  cpufreq: Fix creation of symbolic links to policy directories

* pm-cpuidle-fixes:
  cpuidle: powernv: Pass correct drv->cpumask for registration
2017-03-31 23:00:53 +02:00
Box, David E
630e57573e cpufreq: intel_pstate: Add support for Gemini Lake
Use same parameters as INTEL_FAM6_ATOM_GOLDMONT to enable
Gemini Lake.

Signed-off-by: Box, David E <david.e.box@intel.com>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-29 22:45:32 +02:00
Rafael J. Wysocki
b02aabe8ab cpufreq: intel_pstate: Eliminate intel_pstate_get_min_max()
Some computations in intel_pstate_get_min_max() are not necessary
and one of its two callers doesn't even use the full result.

First off, the fixed-point value of cpu->max_perf represents a
non-negative number between 0 and 1 inclusive and cpu->min_perf
cannot be greater than cpu->max_perf.  It is not necessary to check
those conditions every time the numbers in question are used.

Moreover, since intel_pstate_max_within_limits() only needs the
upper boundary, it doesn't make sense to compute the lower one in
there and returning min and max from intel_pstate_get_min_max()
via pointers doesn't look particularly nice.

For the above reasons, drop intel_pstate_get_min_max(), add a helper
to get the base P-state for min/max computations and carry out them
directly in the previous callers of intel_pstate_get_min_max().

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:17 +02:00
Rafael J. Wysocki
2bfc4cbb5f cpufreq: intel_pstate: Do not walk policy->cpus
intel_pstate_hwp_set() is the only function walking policy->cpus
in intel_pstate.  The rest of the code simply assumes one CPU per
policy, including the initialization code.

Therefore it doesn't make sense for intel_pstate_hwp_set() to
walk policy->cpus as it is guaranteed to have only one bit set
for policy->cpu.

For this reason, rearrange intel_pstate_hwp_set() to take the CPU
number as the argument and drop the loop over policy->cpus from it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:16 +02:00
Rafael J. Wysocki
8ca6ce3701 cpufreq: intel_pstate: Introduce pid_in_use()
Add a new function pid_in_use() to return the information on whether
or not the PID-based P-state selection algorithm is in use.

That allows a couple of complicated conditions in the code to be
reduced to simple checks against the new function's return value.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:16 +02:00
Rafael J. Wysocki
2f49afc2a6 cpufreq: intel_pstate: Drop struct cpu_defaults
The cpu_defaults structure is redundant, because it only contains
one member of type struct pstate_funcs which can be used directly
instead of struct cpu_defaults.

For this reason, drop struct cpu_defaults, use struct pstate_funcs
directly instead of it where applicable and rename all of the
variables of that type accordingly.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:16 +02:00
Rafael J. Wysocki
de4a76cb58 cpufreq: intel_pstate: Move cpu_defaults definitions
Move the definitions of the cpu_defaults structures after the
definitions of utilization update callback routines to avoid
extra declarations of the latter.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:16 +02:00
Rafael J. Wysocki
67dd9bf441 cpufreq: intel_pstate: Add update_util callback to pstate_funcs
Avoid using extra function pointers during P-state selection by
dropping the get_target_pstate member from struct pstate_funcs,
adding a new update_util callback to it (to be registered with
the CPU scheduler as the utilization update callback in the active
mode) and reworking the utilization update callback routines to
invoke specific P-state selection functions directly.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:16 +02:00
Rafael J. Wysocki
eabd22c657 cpufreq: intel_pstate: Use different utilization update callbacks
Notice that some overhead in the utilization update callbacks
registered by intel_pstate in the active mode can be avoided if
those callbacks are tailored to specific configurations of the
driver.  For example, the utilization update callback for the HWP
enabled case only needs to update the average CPU performance
periodically whereas the utilization update callback for the
PID-based algorithm does not need to take IO-wait boosting into
account and so on.

With that in mind, define three utilization update callbacks for
three different use cases: HWP enabled, the CPU load "powersave"
P-state selection algorithm and the PID-based "powersave" P-state
selection algorithm and modify the driver initialization to
choose the callback matching its current configuration.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:15 +02:00
Rafael J. Wysocki
0042b2c069 cpufreq: intel_pstate: Modify check in intel_pstate_update_status()
One of the checks in intel_pstate_update_status() implicitly relies
on the information that there are only two struct cpufreq_driver
objects available, but it is better to do it directly against the
value it really is about (to make the code easier to follow if
nothing else).

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:15 +02:00
Rafael J. Wysocki
ee8df89a68 cpufreq: intel_pstate: Drop driver_registered variable
The driver_registered variable in intel_pstate is used for checking
whether or not the driver has been registered, but intel_pstate_driver
can be used for that too (with the rule that the driver is not
registered as long as it is NULL).

That is a bit more straightforward and the code may be simplified
a bit this way, so modify the driver accordingly.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:15 +02:00
Rafael J. Wysocki
694cb17347 cpufreq: intel_pstate: Skip unnecessary PID resets on init
PID controller parameters only need to be initialized if the
get_target_pstate_use_performance() P-state selection routine
is going to be used.  It is not necessary to initialize them
otherwise, so don't do that.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:14 +02:00
Rafael J. Wysocki
7aec5b50e9 cpufreq: intel_pstate: Set HWP sampling interval once
In the HWP enabled case pid_params.sample_rate_ns only needs to be
updated once, because it is global, so do that when setting hwp_active
instead of doing it during the initialization of every CPU.

Moreover, pid_params.sample_rate_ms is never used if HWP is enabled,
so do not update it at all then.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:14 +02:00
Rafael J. Wysocki
ff35f02ea1 cpufreq: intel_pstate: Clean up intel_pstate_busy_pid_reset()
intel_pstate_busy_pid_reset() is the only caller of pid_reset(),
pid_p_gain_set(), pid_i_gain_set(), and pid_d_gain_set().  Moreover,
it passes constants as two parameters of pid_reset() and all of
the other routines above essentially contain the same code, so
fold all of them into the caller and drop unnecessary computations.

Introduce percent_fp() for converting integer values in percent
to fixed-point fractions and use it in the above code cleanup.

Finally, rename intel_pstate_busy_pid_reset() to
intel_pstate_pid_reset() as it also is used for the
initialization of PID parameters for every CPU and the
meaning of the "busy" part of the name is not particularly
clear.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:11 +02:00
Rafael J. Wysocki
4ddd0146c7 cpufreq: intel_pstate: Fold intel_pstate_reset_all_pid() into the caller
There is only one caller of intel_pstate_reset_all_pid(), which is
pid_param_set() used in the debugfs interface only, and having that
code split does not make it particularly convenient to follow.

For this reason, move the body of intel_pstate_reset_all_pid() into
its caller and drop that function.

Also change the loop from for_each_online_cpu() (which is obviously
racy with respect to CPU offline/online) to for_each_possible_cpu(),
so that all PID parameters are reset for all CPUs regardless of their
online/offline status (to prevent, for example, a previously offline
CPU from going online with a stale set of PID parameters).

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:09 +02:00
Rafael J. Wysocki
5c43905369 cpufreq: intel_pstate: Initialize pid_params statically
Notice that both the existing struct cpu_defaults instances in which
PID parameters are actually initialized use the same values of those
parameters, so it is not really necessary to copy them over to
pid_params dynamically.

Instead, initialize pid_params statically with those values and
drop the unused pid_policy member from struct cpu_defaults along
with copy_pid_params() used for initializing it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:08 +02:00
Rafael J. Wysocki
6404367862 cpufreq: intel_pstate: Drop pointless initialization of PID parameters
The P-state selection algorithm used by intel_pstate for Atom
processors is not based on the PID controller and the initialization
of PID parametrs for those processors is pointless and confusing, so
drop it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:07 +02:00
Rafael J. Wysocki
e14cf8857e cpufreq: intel_pstate: Eliminate struct perf_limits
After recent changes the purpose of struct perf_limits is not
particularly clear any more and the code may be made somewhat
easier to follow by eliminating it, so go for that.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28 23:12:07 +02:00
Rafael J. Wysocki
2f0ba790df cpufreq: Fix creation of symbolic links to policy directories
The cpufreq core only tries to create symbolic links from CPU
directories in sysfs to policy directories in cpufreq_add_dev(),
either when a given CPU is registered or when the cpufreq driver
is registered, whichever happens first.  That is not sufficient,
however, because cpufreq_add_dev() may be called for an offline CPU
whose policy object has not been created yet and, quite obviously,
the symbolic cannot be added in that case.

Fix that by making cpufreq_online() attempt to add symbolic links to
policy objects for the CPUs in the related_cpus mask of every new
policy object created by it.

The cpufreq_driver_lock locking around the for_each_cpu() loop
in cpufreq_online() is dropped, because it is not necessary and the
code is somewhat simpler without it.  Moreover, failures to create
a symbolic link will not be regarded as hard errors any more and
the CPUs without those links will not be taken offline automatically,
but that should not be problematic in practice.

Reported-and-tested-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: 4.9+ <stable@vger.kernel.org> # 4.9+
2017-03-27 19:33:09 +02:00
Rafael J. Wysocki
80b120ca1a cpufreq: intel_pstate: Avoid transient updates of cpuinfo.max_freq
Both intel_pstate_verify_policy() and intel_cpufreq_verify_policy()
set policy->cpuinfo.max_freq depending on the turbo status, but the
updates made by them are discarded by the core, because the policy
object passed to them by the core is temporary and cpuinfo.max_freq
from that object is not copied to the final policy object in
cpufreq_set_policy().

However, cpufreq_set_policy() passes the temporary policy object
to the ->setpolicy callback of the driver, so intel_pstate_set_policy()
actually sees the policy->cpuinfo.max_freq value updated by
intel_pstate_verify_policy() and not the final one.  It also
updates policy->max sometimes which basically has no effect after
it returns, because the core discards that update.

To avoid confusion, eliminate policy->cpuinfo.max_freq updates from
intel_pstate_verify_policy() and intel_cpufreq_verify_policy()
entirely and check the maximum frequency explicitly in
intel_pstate_update_perf_limits() instead of relying on the
transiently updated policy->cpuinfo.max_freq value.

Moreover, move the max->policy adjustment carried out in
intel_pstate_set_policy() to a separate function and call that
function from the ->verify driver callbacks to ensure that it will
actually be effective.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-24 03:04:32 +01:00
Rafael J. Wysocki
c5a2ee7dde cpufreq: intel_pstate: Active mode P-state limits rework
The coordination of P-state limits used by intel_pstate in the active
mode (ie. by default) is problematic, because it synchronizes all of
the limits (ie. the global ones and the per-policy ones) so as to use
one common pair of P-state limits (min and max) across all CPUs in
the system.  The drawbacks of that are as follows:

 - If P-states are coordinated in hardware, it is not necessary
   to coordinate them in software on top of that, so in that case
   all of the above activity is in vain.

 - If P-states are not coordinated in hardware, then the processor
   is actually capable of setting different P-states for different
   CPUs and coordinating them at the software level simply doesn't
   allow that capability to be utilized.

 - The coordination works in such a way that setting a per-policy
   limit (eg. scaling_max_freq) for one CPU causes the common
   effective limit to change (and it will affect all of the other
   CPUs too), but subsequent reads from the corresponding sysfs
   attributes for the other CPUs will return stale values (which
   is confusing).

 - Reads from the global P-state limit attributes, min_perf_pct and
   max_perf_pct, return the effective common values and not the last
   values set through these attributes.  However, the last values
   set through these attributes become hard limits that cannot be
   exceeded by writes to scaling_min_freq and scaling_max_freq,
   respectively, and they are not exposed, so essentially users
   have to remember what they are.

All of that is painful enough to warrant a change of the management
of P-state limits in the active mode.

To that end, redesign the active mode P-state limits management in
intel_pstate in accordance with the following rules:

 (1) All CPUs are affected by the global limits (that is, none of
     them can be requested to run faster than the global max and
     none of them can be requested to run slower than the global
     min).

 (2) Each individual CPU is affected by its own per-policy limits
     (that is, it cannot be requested to run faster than its own
     per-policy max and it cannot be requested to run slower than
     its own per-policy min).

 (3) The global and per-policy limits can be set independently.

Also, the global maximum and minimum P-state limits will be always
expressed as percentages of the maximum supported turbo P-state.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-24 03:04:31 +01:00
Rafael J. Wysocki
553953453b cpufreq: intel_pstate: Use load-based P-state selection more widely
Extend the set of systems for which intel_pstate will use the
"powersave" P-state selection algorithm based on CPU load in the
active mode by systems with ACPI preferred profile set to "tablet",
"appliance PC", "desktop", or "workstation" (ie. everything with a
specified preferred profile that is not a "server").

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-24 03:04:31 +01:00
Rafael J. Wysocki
eb5139d1a2 cpufreq: intel_pstate: Support HWP processors in all operation modes
Currently, some processors supporting HWP are only supported by
intel_pstate if HWP is actually going to be used and not supported
otherwise which is confusing.

Specifically, they are not supported if "intel_pstate=no_hwp" is
passed to the kernel in the command line or if the driver is started
in the passive mode ("intel_pstate=passive").

There is no real reason for that, because everything about those
processor is known anyway and the driver can work with them in all
modes, so make that happen, but use the load-based P-state selection
algorithm for the active mode "powersave" policy with them.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-24 03:04:31 +01:00
Rafael J. Wysocki
f1a91645b7 Merge back intel_pstate updates for 4.12. 2017-03-24 03:04:10 +01:00
Rafael J. Wysocki
6488294e4a Merge branches 'pm-cpufreq-fixes', 'pm-cpufreq-sched-fixes' and 'intel_pstate-fixes'
* pm-cpufreq-fixes:
  cpufreq: Restore policy min/max limits on CPU online

* pm-cpufreq-sched-fixes:
  cpufreq: schedutil: Fix per-CPU structure initialization in sugov_start()

* intel_pstate-fixes:
  cpufreq: intel_pstate: Fix policy data management in passive mode
  cpufreq: intel_pstate: One set of global limits in active mode
2017-03-24 00:43:26 +01:00
Viresh Kumar
ff010472fb cpufreq: Restore policy min/max limits on CPU online
On CPU online the cpufreq core restores the previous governor (or
the previous "policy" setting for ->setpolicy drivers), but it does
not restore the min/max limits at the same time, which is confusing,
inconsistent and real pain for users who set the limits and then
suspend/resume the system (using full suspend), in which case the
limits are reset on all CPUs except for the boot one.

Fix this by making cpufreq_online() restore the limits when an inactive
policy is brought online.

The commit log and patch are inspired from Rafael's earlier work.

Reported-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 4.3+ <stable@vger.kernel.org> # 4.3+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-22 02:38:27 +01:00
Rafael J. Wysocki
64897b20ee cpufreq: intel_pstate: Fix policy data management in passive mode
The policy->cpuinfo.max_freq and policy->max updates in
intel_cpufreq_turbo_update() are excessive as they are done for no
good reason and may lead to problems in principle, so they should be
dropped.  However, after dropping them intel_cpufreq_turbo_update()
becomes almost entirely pointless, because the check made by it is
made again down the road in intel_pstate_prepare_request().  The
only thing in it that still needs to be done is the call to
update_turbo_state(), so drop intel_cpufreq_turbo_update() altogether
and make its callers invoke update_turbo_state() directly instead of
it.

In addition to that, fix intel_cpufreq_verify_policy() so that it
checks global.no_turbo in addition to global.turbo_disabled when
updating policy->cpuinfo.max_freq to make it consistent with
intel_pstate_verify_policy().

Fixes: 001c76f05b (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-21 22:19:07 +01:00
Rafael J. Wysocki
7de32556df cpufreq: intel_pstate: One set of global limits in active mode
In the active mode intel_pstate currently uses two sets of global
limits, each associated with one of the possible scaling_governor
settings in that mode: "powersave" or "performance".

The driver switches over from one of those sets to the other
depending on the scaling_governor setting for the last CPU whose
per-policy cpufreq interface in sysfs was last used to change
parameters exposed in there.  That obviously leads to no end of
issues when the scaling_governor settings differ between CPUs.

The most recent issue was introduced by commit a240c4aa5d (cpufreq:
intel_pstate: Do not reinit performance limits in ->setpolicy)
that eliminated the reinitialization of "performance" limits in
intel_pstate_set_policy() preventing the max limit from being set
to anything below 100, among other things.

Namely, an undesirable side effect of commit a240c4aa5d is that
now, after setting scaling_governor to "performance" in the active
mode, the per-policy limits for the CPU in question go to the highest
level and stay there even when it is switched back to "powersave"
later.

As it turns out, some distributions set scaling_governor to
"performance" temporarily for all CPUs to speed-up system
initialization, so that change causes them to misbehave later.

To fix that, get rid of the performance/powersave global limits
split and use just one set of global limits for everything.

From the user's persepctive, after this modification, when
scaling_governor is switched from "performance" to "powersave"
or the other way around on one CPU, the limits settings (ie. the
global max/min_perf_pct and per-policy scaling_max/min_freq for
any CPUs) will not change.  Still, switching from "performance"
to "powersave" or the other way around changes the way in which
P-states are selected and in particular "performance" causes the
driver to always request the highest P-state it is allowed to ask
for for the given CPU.

Fixes: a240c4aa5d (cpufreq: intel_pstate: Do not reinit performance limits in ->setpolicy)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-18 00:57:39 +01:00
Rafael J. Wysocki
8b766e05d8 Merge branches 'pm-cpufreq-fixes' and 'intel_pstate-fixes'
* pm-cpufreq-fixes:
  cpufreq: Fix and clean up show_cpuinfo_cur_freq()

* intel_pstate-fixes:
  cpufreq: intel_pstate: Avoid percentages in limits-related computations
  cpufreq: intel_pstate: Correct frequency setting in the HWP mode
  cpufreq: intel_pstate: Update pid_params.sample_rate_ns in pid_param_set()
2017-03-18 00:45:09 +01:00
Viresh Kumar
19678ffb9f cpufreq: dbx500: Manage cooling device from cpufreq driver
The best place to register the CPU cooling device is from the cpufreq
driver as we would know if all the resources are already available or
not. That's what is done for the cpufreq-dt.c driver as well.

The cpu-cooling driver for dbx500 platform was just (un)registering
with the thermal framework and that can be handled easily by the cpufreq
driver as well and in proper sequence as well.

Get rid of the cooling driver and its its users and manage everything
from the cpufreq driver instead.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-16 00:14:31 +01:00
Rafael J. Wysocki
9b4f603e7a cpufreq: Fix and clean up show_cpuinfo_cur_freq()
There is a missing newline in show_cpuinfo_cur_freq(), so add it,
but while at it clean that function up somewhat too.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: All applicable <stable@vger.kernel.org>
2017-03-16 00:12:40 +01:00
Rafael J. Wysocki
e4c204ced0 cpufreq: intel_pstate: Avoid percentages in limits-related computations
Currently, intel_pstate_update_perf_limits() first converts the
policy minimum and maximum limits into percentages of the maximum
turbo frequency (rounding up to an integer) and then converts these
percentages to fractions (by using fixed-point arithmetic to divide
them by 100).

That introduces a rounding error unnecessarily, because the fractions
can be obtained by carrying out fixed-point divisions directly on the
input numbers.

Rework the computations in intel_pstate_hwp_set() to use fractions
instead of percentages (and drop redundant local variables from
there) and modify intel_pstate_update_perf_limits() to compute the
fractions directly and percentages out of them.

While at it, introduce percent_ext_fp() for converting percentages
to fractions (with extended number of fraction bits) and use it in
the computations.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-15 16:52:29 +01:00
Srinivas Pandruvada
3f8ed54aee cpufreq: intel_pstate: Correct frequency setting in the HWP mode
In the functions intel_pstate_hwp_set(), min/max range from HWP capability
MSR along with max_perf_pct and min_perf_pct, is used to set the HWP
request MSR. In some cases this doesn't result in the correct HWP max/min
in HWP request.

For example: In the following case:

HWP capabilities from MSR 0x771
0x70a1220

Here cpufreq min/max frequencies from above MSR dump are 700MHz and 3.2GHz
respectively.

This will result in
hwp_min = 0x07
hwp_max = 0x20

To limit max frequency to 2GHz:

perf_limits->max_perf_pct = 63 (2GHz as a percent of 3.2GHz rounded up)

With the current calculation:
adj_range = max_perf_pct * range / 100;
adj_range = 63 * (32 - 7) / 100
adj_range = 15

max = hw_min + adj_range;
max = 7 + 15 = 22

This will result in HWP request of 0x160f, which will result in a
frequency cap of 2.2GHz not 2GHz.

The problem with the above calculation is that hwp_min of 7 is treated
as 0% in the range. But max_perf_pct is calculated with respect to minimum
as 0 and max as 3.2GHz or hwp_max, so adding hwp_min to it will result in
more than the desired.

Since the min_perf_pct and max_perf_pct is already a percent of max
frequency or hwp_max, this min/max HWP request value can be calculated
directly applying these percentage to hwp_max.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-14 03:56:39 +01:00
Rafael J. Wysocki
6e7408acd0 cpufreq: intel_pstate: Update pid_params.sample_rate_ns in pid_param_set()
Fix the debugfs interface for PID tuning to actually update
pid_params.sample_rate_ns on PID parameters updates, as changing
pid_params.sample_rate_ms via debugfs has no effect now.

Fixes: a4675fbc4a (cpufreq: intel_pstate: Replace timers with utilization update callbacks)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-03-13 23:55:12 +01:00
YuanTian Tang
b51d3388e2 cpufreq: qoriq: enhance bus frequency calculation
On some platforms, property device-type may be missed in soc node
in dts which caused the bus-frequency can not be obtained correctly.

This patch enhanced the bus-frequency calculation. When property
device-type is missed in dts, bus-frequency will be obtained by
looking up clock table to get platform clock and hence get its
frequency.

Signed-off-by: Tang Yuantian <andy.tang@nxp.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-12 23:10:53 +01:00
Daniel Kurtz
cf9a243825 cpufreq: mediatek: Add support for MT8176 and MT817x
The Mediatek MT8173 is just one of several SOCs from the same MT817x
family, including the 6-core (4-little/2-big) MT8176.

The mt8173-cpufreq driver supports all of these SOCs, however,
machines using them may use a different machine compatible.

Since this driver checks explicitly for the machine compatible
string, add support for the whole family.

Signed-off-by: Daniel Kurtz <djkurtz@chromium.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-12 23:10:53 +01:00
Daniel Kurtz
08a74cbb1b cpufreq: mt8173: Mark mt8173_cpufreq_driver_init as __init
This function is only called once at boot by device_initcall(), so mark
it as __init.

Signed-off-by: Daniel Kurtz <djkurtz@chromium.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-12 23:10:53 +01:00
Rafael J. Wysocki
5f98ced1c9 cpufreq: intel_pstate: Drop redundant wrapper function
intel_pstate_hwp_set_policy() is a wrapper around
intel_pstate_hwp_set(), but the only value it adds is to check
hwp_active before calling the latter and one of its two callers
has already checked hwp_active before that happens, so in that
code path the additional check is redundant and using the wrapper
is rather pointless.

For this reason, drop intel_pstate_hwp_set_policy() and make its
callers invoke intel_pstate_hwp_set() directly (after checking
hwp_active).

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-03-12 23:07:58 +01:00
Rafael J. Wysocki
fd8e57d5d3 Merge branch 'pm-cpufreq'
* pm-cpufreq:
  cpufreq: intel_pstate: Do not reinit performance limits in ->setpolicy
  cpufreq: intel_pstate: Fix intel_pstate_verify_policy()
  cpufreq: intel_pstate: Fix global settings in active mode
  cpufreq: Add the "cpufreq.off=1" cmdline option
  cpufreq: intel_pstate: Avoid triggering cpu_frequency tracepoint unnecessarily
  cpufreq: intel_pstate: Fix intel_cpufreq_verify_policy()
  cpufreq: intel_pstate: Do not use performance_limits in passive mode
2017-03-09 15:12:27 +01:00
Rafael J. Wysocki
a240c4aa5d cpufreq: intel_pstate: Do not reinit performance limits in ->setpolicy
If the current P-state selection algorithm is set to "performance"
in intel_pstate_set_policy(), the limits may be initialized from
scratch, but only if no_turbo is not set and the maximum frequency
allowed for the given CPU (i.e. the policy object representing it)
is at least equal to the max frequency supported by the CPU.  In all
of the other cases, the limits will not be updated.

For example, the following can happen:

 # cat intel_pstate/status
 active
 # echo performance > cpufreq/policy0/scaling_governor
 # cat intel_pstate/min_perf_pct
 100
 # echo 94 > intel_pstate/min_perf_pct
 # cat intel_pstate/min_perf_pct
 100
 # cat cpufreq/policy0/scaling_max_freq
 3100000
 echo 3000000 > cpufreq/policy0/scaling_max_freq
 # cat intel_pstate/min_perf_pct
 94
 # echo 95 > intel_pstate/min_perf_pct
 # cat intel_pstate/min_perf_pct
 95

That is confusing for two reasons.  First, the initial attempt to
change min_perf_pct to 94 seems to have no effect, even though
setting the global limits should always work.  Second, after
changing scaling_max_freq for policy0 the global min_perf_pct
attribute shows 94, even though it should have not been affected
by that operation in principle.

Moreover, the final attempt to change min_perf_pct to 95 worked
as expected, because scaling_max_freq for the only policy with
scaling_governor equal to "performance" was different from the
maximum at that time.

To make all that confusion go away, modify intel_pstate_set_policy()
so that it doesn't reinitialize the limits at all.

At the same time, change intel_pstate_set_performance_limits() to
set min_sysfs_pct to 100 in the "performance" limits set so that
switching the P-state selection algorithm to "performance" causes
intel_pstate/min_perf_pct in sysfs to go to 100 (or whatever value
min_sysfs_pct in the "performance" limits is set to later).

That requires per-CPU limits to be initialized explicitly rather
than by copying the global limits to avoid setting min_sysfs_pct
in the per-CPU limits to 100.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-06 00:06:05 +01:00
Rafael J. Wysocki
d74b199291 cpufreq: intel_pstate: Fix intel_pstate_verify_policy()
The code added to intel_pstate_verify_policy() by commit 1443ebbacf
(cpufreq: intel_pstate: Fix sysfs limits enforcement for performance
policy) should use perf_limits instead of limits, because otherwise
setting global limits via sysfs may affect policies inconsistently.

For example, in the sequence of shell commands below, the
scaling_min_freq attribute for policy1 and policy2 should be
affected in the same way, because scaling_governor is set in
the same way for both of them:

 # cat cpufreq/policy1/scaling_governor
 powersave
 # cat cpufreq/policy2/scaling_governor
 powersave
 # echo performance > cpufreq/policy0/scaling_governor
 # echo 94 > intel_pstate/min_perf_pct
 # cat cpufreq/policy0/scaling_min_freq
 2914000
 # cat cpufreq/policy1/scaling_min_freq
 2914000
 # cat cpufreq/policy2/scaling_min_freq
 800000

The are affected differently, because intel_pstate_verify_policy()
is invoked with limits set to &performance_limits (left behind by
policy0) for policy1 and with limits set to &powersave_limits (left
behind by policy1) for policy2.  Since perf_limits is set to the
set of limits matching the policy being updated, using it instead
of limits fixes the inconsistency.

Fixes: 1443ebbacf (cpufreq: intel_pstate: Fix sysfs limits enforcement for performance policy)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-06 00:06:05 +01:00
Rafael J. Wysocki
cd59b4bed9 cpufreq: intel_pstate: Fix global settings in active mode
Commit 111b8b3fe4 (cpufreq: intel_pstate: Always keep all
limits settings in sync) changed intel_pstate to invoke
cpufreq_update_policy() for every registered CPU on global sysfs
attributes updates, but that led to undesirable effects in the
active mode if the "performance" P-state selection algorithm is
configufred for one CPU and the "powersave" one is chosen for
all of the other CPUs.

Namely, in that case, the following is possible:

 # cd /sys/devices/system/cpu/
 # cat intel_pstate/max_perf_pct
 100
 # cat intel_pstate/min_perf_pct
 26
 # echo performance > cpufreq/policy0/scaling_governor
 # cat intel_pstate/max_perf_pct
 100
 # cat intel_pstate/min_perf_pct
 100
 # echo 94 > intel_pstate/min_perf_pct
 # cat intel_pstate/min_perf_pct
 26

The reason why this happens is because intel_pstate attempts to
maintain two sets of global limits in the active mode, one for
the "performance" P-state selection algorithm and one for the
"powersave"  P-state selection algorithm, but the P-state selection
algorithms are set per policy, so the global limits cannot reflect
all of them at the same time if they are different for different
policies.

In the particular situation above, the attempt to change
min_perf_pct to 94 caused cpufreq_update_policy() to be run
for a CPU with the "powersave"  P-state selection algorithm
and intel_pstate_set_policy() called by it silently switched the
global limits to the "powersave" set which finally was reflected
by the sysfs interface.

To prevent that from happening, modify intel_pstate_update_policies()
to always switch back to the set of limits that was used right before
it has been invoked.

Fixes: 111b8b3fe4 (cpufreq: intel_pstate: Always keep all limits settings in sync)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-06 00:06:04 +01:00
Len Brown
d82f269255 cpufreq: Add the "cpufreq.off=1" cmdline option
Add the "cpufreq.off=1" cmdline option.

At boot-time, this allows a user to request CONFIG_CPU_FREQ=n
behavior from a kernel built with CONFIG_CPU_FREQ=y.

This is analogous to the existing "cpuidle.off=1" option
and CONFIG_CPU_IDLE=y

This capability is valuable when we need to debug end-user
issues in the BIOS or in Linux.  It is also convenient
for enabling comparisons, which may otherwise require a new kernel,
or help from BIOS SETUP, which may be buggy or unavailable.

Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-06 00:05:31 +01:00
Rafael J. Wysocki
6407829901 cpufreq: intel_pstate: Avoid triggering cpu_frequency tracepoint unnecessarily
In the passive mode the cpu_frequency trace event is already
triggered by the cpufreq core or by scaling governors, so
intel_pstate should not trigger it once again for the same
P-state updates.

In addition to that, the frequency returned by
intel_cpufreq_fast_switch() and passed via freqs.new from
intel_cpufreq_target() to cpufreq_freq_transition_end() should
reflect the P-state actually set, so make that happen.

Fixes: 001c76f05b (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-04 01:38:42 +01:00
Rafael J. Wysocki
7f17326fc0 cpufreq: intel_pstate: Fix intel_cpufreq_verify_policy()
The intel_pstate_update_perf_limits() called from
intel_cpufreq_verify_policy() may cause global P-state limits
to change which is generally confusing and unnecessary.

In the passive mode the global limits are only applied to the
frequency selected by the scaling governor (they are not taken
into account by governors when making decisions anyway), so making
them follow the per-policy limits serves no purpose and may go
against user expectations (as it generally causes the global
attributes in sysfs to change even though they have not been
written to in some cases).

Fix that by dropping the intel_pstate_update_perf_limits()
invocation from intel_cpufreq_verify_policy() (which also
reduces the code size by a few lines).

This change does not affect the per-CPU limits case, because those
limits allow any P-state to be set by default in the passive mode
and it removes the only piece of code updating them in that mode,
so the per-policy settings will be the only ones taken into account
in that case as expected.

Fixes: 001c76f05b (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-04 01:38:41 +01:00
Rafael J. Wysocki
2bc756e7dd cpufreq: intel_pstate: Do not use performance_limits in passive mode
Using performance_limits in the passive mode doesn't make
sense, because in that mode the global limits are applied to the
frequency selected by the scaling governor.

The maximum and minimum P-state limits in performance_limits are both
set to 100 percent which will put all CPUs into the turbo range
regardless of what governor is used and what frequencies are
selected by it (that is particularly undesirable on CPUs with the
generic powersave governor attached).

For this reason, make intel_pstate_register_driver() always point
limits to powersave_limits in the passive mode.

Fixes: 001c76f05b (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-04 01:38:41 +01:00
Linus Torvalds
1827adb11a Merge branch 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull sched.h split-up from Ingo Molnar:
 "The point of these changes is to significantly reduce the
  <linux/sched.h> header footprint, to speed up the kernel build and to
  have a cleaner header structure.

  After these changes the new <linux/sched.h>'s typical preprocessed
  size goes down from a previous ~0.68 MB (~22K lines) to ~0.45 MB (~15K
  lines), which is around 40% faster to build on typical configs.

  Not much changed from the last version (-v2) posted three weeks ago: I
  eliminated quirks, backmerged fixes plus I rebased it to an upstream
  SHA1 from yesterday that includes most changes queued up in -next plus
  all sched.h changes that were pending from Andrew.

  I've re-tested the series both on x86 and on cross-arch defconfigs,
  and did a bisectability test at a number of random points.

  I tried to test as many build configurations as possible, but some
  build breakage is probably still left - but it should be mostly
  limited to architectures that have no cross-compiler binaries
  available on kernel.org, and non-default configurations"

* 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (146 commits)
  sched/headers: Clean up <linux/sched.h>
  sched/headers: Remove #ifdefs from <linux/sched.h>
  sched/headers: Remove the <linux/topology.h> include from <linux/sched.h>
  sched/headers, hrtimer: Remove the <linux/wait.h> include from <linux/hrtimer.h>
  sched/headers, x86/apic: Remove the <linux/pm.h> header inclusion from <asm/apic.h>
  sched/headers, timers: Remove the <linux/sysctl.h> include from <linux/timer.h>
  sched/headers: Remove <linux/magic.h> from <linux/sched/task_stack.h>
  sched/headers: Remove <linux/sched.h> from <linux/sched/init.h>
  sched/core: Remove unused prefetch_stack()
  sched/headers: Remove <linux/rculist.h> from <linux/sched.h>
  sched/headers: Remove the 'init_pid_ns' prototype from <linux/sched.h>
  sched/headers: Remove <linux/signal.h> from <linux/sched.h>
  sched/headers: Remove <linux/rwsem.h> from <linux/sched.h>
  sched/headers: Remove the runqueue_is_locked() prototype
  sched/headers: Remove <linux/sched.h> from <linux/sched/hotplug.h>
  sched/headers: Remove <linux/sched.h> from <linux/sched/debug.h>
  sched/headers: Remove <linux/sched.h> from <linux/sched/nohz.h>
  sched/headers: Remove <linux/sched.h> from <linux/sched/stat.h>
  sched/headers: Remove the <linux/gfp.h> include from <linux/sched.h>
  sched/headers: Remove <linux/rtmutex.h> from <linux/sched.h>
  ...
2017-03-03 10:16:38 -08:00
Linus Torvalds
c82be9d224 Power management turbostat utility updates for v4.11-rc1
These update turbostat significantly and in particular:
 
  - Default output is now verbose, --debug is no longer required to
    get all counters.  As a result, some options have been added to
    specify exactly what output is wanted.
  - Added --quiet to skip system configuration output
  - Added --list, --show and --hide parameters
  - Added --cpu parameter
  - Enhanced Baytrail SoC support
  - Added Gemini Lake SoC support
  - Added sysfs C-state columns
 
 Also the symbol definitions in arch/x86/include/asm/intel-family.h
 and arch/x86/include/asm/msr-index.h are updated and the intel_idle
 and intel_pstate drivers are modified to use the updated symbols.
 
 Credits to Len Brown for all of these changes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYuLyNAAoJEILEb/54YlRxEvkQAJsggzpgGrlhrO6KHSm4yC9M
 CqhBVsdeppX1ZTAVPiMk/pcXQYtL5fZ97ELk2So/CjT5Nh3jwDPMA/ux5n3uiob+
 O2BTdtxnpNLxPQPQM1mW7Dr/uAIRlJug9gSMxKDbFSU9Oe3aET58PUdUTs7xaT59
 nbtLxVSvzrdGk/bX6WO4ic+7F2licJLZPfDGhYidnoika8LxD4M+cIO73gFpgqQi
 yoKrTZyLimvneFT0eAUUvHIyKjkJIxeMfslW57uBpz8rW5my+3UwsdpRG4AIVeWc
 wSBlsNqj+TuR4BBiZ2VR2RoHF3qbH/SceI+k864BqyThfyK/g2q/vV/GvLZQCR/R
 yWcajWD9kvLKvnm1D3XYOIQDBeP4l60j3vVwHytSvmaPYjn5Ms3jq6b+2K6zkXMM
 8y3leW/hgw+rGCacdXPrKIlpBykSV7h+TnD2iMxeeDISNkbefWWDe/WB6HncocAg
 HDtKRvU9ntRq6/MlnTKbCFM5c0oCXWRw4QNjDy3AsjJELgeAIwiqpHWMKO6XltFj
 qU/rdyW/BTCuAlIjWVbjooAIJZ268geupeug3zvE3uGzrxT4DaVIo8W1wtJ+XQrt
 By7sOW/gMQ2EcTJQiuFjS/Gz5gOKQ2F8OLCm6T8Prjh6SxrCUAiuIvP0LmxUCa8i
 KMlx+8c9E2f9j+TTt9AP
 =oMZe
 -----END PGP SIGNATURE-----

Merge tag 'pm-turbostat-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull turbostat utility updates from Rafael Wysocki:
 "Power management turbostat utility updates.

  These update turbostat significantly and in particular:

   - default output is now verbose, --debug is no longer required to get
     all counters. As a result, some options have been added to specify
     exactly what output is wanted.

   - added --quiet to skip system configuration output

   - added --list, --show and --hide parameters

   - added --cpu parameter

   - enhanced Baytrail SoC support

   - added Gemini Lake SoC support

   - added sysfs C-state columns

  Also the symbol definitions in arch/x86/include/asm/intel-family.h and
  arch/x86/include/asm/msr-index.h are updated and the intel_idle and
  intel_pstate drivers are modified to use the updated symbols.

  Credits to Len Brown for all of these changes"

* tag 'pm-turbostat-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (44 commits)
  tools/power turbostat: version 17.02.24
  tools/power turbostat: bugfix: --add u32 was printed as u64
  tools/power turbostat: show error on exec
  tools/power turbostat: dump p-state software config
  tools/power turbostat: show package number, even without --debug
  tools/power turbostat: support "--hide C1" etc.
  tools/power turbostat: move --Package and --processor into the --cpu option
  tools/power turbostat: turbostat.8 update
  tools/power turbostat: update --list feature
  tools/power turbostat: use wide columns to display large numbers
  tools/power turbostat: Add --list option to show available header names
  tools/power turbostat: fix zero IRQ count shown in one-shot command mode
  tools/power turbostat: add --cpu parameter
  tools/power turbostat: print sysfs C-state stats
  tools/power turbostat: extend --add option to accept /sys path
  tools/power turbostat: skip unused counters on BDX
  tools/power turbostat: fix decoding for GLM, DNV, SKX turbo-ratio limits
  tools/power turbostat: skip unused counters on SKX
  tools/power turbostat: Denverton: use HW CC1 counter, skip C3, C7
  tools/power turbostat: initial Gemini Lake SOC support
  ...
2017-03-02 17:41:27 -08:00
Linus Torvalds
080e4168c0 More power management updates for v4.11-rc1
- Fix for a cpuidle menu governor problem that started to take an
    unnecessary spinlock after one of the recent updates and that
    did not play well with the RT patch (Rafael Wysocki).
 
  - Fix for the new intel_pstate operation mode switching feature
    added recently that did not reinitialize P-state limits properly
    when switching operation modes (Rafael Wysocki).
 
  - Removal of unused global notifiers from the PM QoS framework
    (Viresh Kumar).
 
  - Generic power domains framework update to make it handle
    asynchronous invocations of PM callbacks in the "noirq" phases
    of system suspend/hibernation correctly (Ulf Hansson).
 
  - Two hibernation core cleanups (Rafael Wysocki).
 
  - intel_idle cleanup related to the sysfs interface (Len Brown).
 
  - Off-by-one bug fix in the OPP (Operating Performance Points)
    framework (Andrzej Hajda).
 
  - OPP framework's documentation fix (Viresh Kumar).
 
  - cpufreq qoriq driver cleanup (Tang Yuantian).
 
  - Fixes for typos in comments in the device runtime PM framework
    (Christophe Jaillet).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYuLeGAAoJEILEb/54YlRxJvcP/0BRmh8Hn4Itx/NIWNg71X6j
 U+v8Pn8T3MP33gCcleLYlgre2JUIAUDmhdK99+UOx+/abhjMhQSaF3HhTOwYaPtQ
 6njoHVS0NnfqUf+x5kp+EpRxBVNucYVbdRTVd1DsHIeLLz/96DFOzb/R7tko/pKx
 pFMWvNdotHLLgXOG1UvdRimwTDlFMffxFzD8Se53LPjRXS0S73A5VWfqZOye44Re
 j3W1AJ0Idgq5uduA6J8x1MWbaxDq1h+j6CSUm05yvqrINzxXwXt0Hv6stCQTo+Gb
 YMdiBd8MujNyAgcchw3jiDQ8Vp+zmfLPcHrfPe//SSefj26eB8LyVNSYelvbUdOz
 cNjvyErva37MmaegCL9QC7WbLM+A7VE6bU6YzDCi/rR8jYMJ51Fb9jGiYb/oimry
 OLlblEekikUsskWv4hGV1JVt5VhmUMlagWtexxn+lMszATcZro0tfXu/vgQWksYs
 noUnwuWJWxvj2aNMsvbzW3HLlTGSmYl2UxJ7IymQQaTDblwF9Kg61rm3+5coUctd
 ifceynDVp9Gju25faYgZ+Dq9+o8ktlOGOHRRPdLIRNJ/T+4tUDnlGkdbPb+Tfn03
 XUIzYCu74U8/oW8gOk6t0WpmWzvxEXNgdirdEIR6y3loYIC0Jr3v4gyD975Eug74
 Hzfrdg7ignAmWV+nf6UY
 =SeUF
 -----END PGP SIGNATURE-----

Merge tag 'pm-extra-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates deom Rafael Wysocki:
 "These fix two bugs introduced by recent power management updates (in
  the cpuidle menu governor and intel_pstate) and a few other issues,
  clean up things and remove unused code.

  Specifics:

   - Fix for a cpuidle menu governor problem that started to take an
     unnecessary spinlock after one of the recent updates and that did
     not play well with the RT patch (Rafael Wysocki).

   - Fix for the new intel_pstate operation mode switching feature added
     recently that did not reinitialize P-state limits properly when
     switching operation modes (Rafael Wysocki).

   - Removal of unused global notifiers from the PM QoS framework
     (Viresh Kumar).

   - Generic power domains framework update to make it handle
     asynchronous invocations of PM callbacks in the "noirq" phases of
     system suspend/hibernation correctly (Ulf Hansson).

   - Two hibernation core cleanups (Rafael Wysocki).

   - intel_idle cleanup related to the sysfs interface (Len Brown).

   - Off-by-one bug fix in the OPP (Operating Performance Points)
     framework (Andrzej Hajda).

   - OPP framework's documentation fix (Viresh Kumar).

   - cpufreq qoriq driver cleanup (Tang Yuantian).

   - Fixes for typos in comments in the device runtime PM framework
     (Christophe Jaillet)"

* tag 'pm-extra-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  PM / OPP: Documentation: Fix opp-microvolt in examples
  intel_idle: stop exposing platform acronyms in sysfs
  cpufreq: intel_pstate: Fix limits issue with operation mode switching
  PM / hibernate: Define pr_fmt() and use pr_*() instead of printk()
  PM / hibernate: Untangle power_down()
  cpuidle: menu: Avoid taking spinlock for accessing QoS values
  PM / QoS: Remove global notifiers
  PM / runtime: Fix some typos
  cpufreq: qoriq: clean up unused code
  PM / OPP: fix off-by-one bug in dev_pm_opp_get_max_volt_latency loop
  PM / Domains: Power off masters immediately in the power off sequence
  PM / Domains: Rename is_async to one_dev_on for genpd_power_off()
  PM / Domains: Move genpd_power_off() above genpd_power_on()
2017-03-02 17:33:52 -08:00
Rafael J. Wysocki
9b5e9cb164 Merge branches 'pm-cpuidle', 'pm-cpufreq' and 'pm-sleep'
* pm-cpuidle:
  intel_idle: stop exposing platform acronyms in sysfs
  cpuidle: menu: Avoid taking spinlock for accessing QoS values

* pm-cpufreq:
  cpufreq: intel_pstate: Fix limits issue with operation mode switching
  cpufreq: qoriq: clean up unused code

* pm-sleep:
  PM / hibernate: Define pr_fmt() and use pr_*() instead of printk()
  PM / hibernate: Untangle power_down()
2017-03-03 00:43:11 +01:00
Ingo Molnar
55687da166 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/cpufreq.h>
We are going to split <linux/sched/cpufreq.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/cpufreq.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:30 +01:00
Ingo Molnar
0c98d344fe sched/core: Remove the tsk_cpus_allowed() wrapper
So the original intention of tsk_cpus_allowed() was to 'future-proof'
the field - but it's pretty ineffectual at that, because half of
the code uses ->cpus_allowed directly ...

Also, the wrapper makes the code longer than the original expression!

So just get rid of it. This also shrinks <linux/sched.h> a bit.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:24 +01:00
Rafael J. Wysocki
6bff9c609f Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
Pull changes related to turbostat for v4.11 from Len Brown.

* 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: (44 commits)
  tools/power turbostat: version 17.02.24
  tools/power turbostat: bugfix: --add u32 was printed as u64
  tools/power turbostat: show error on exec
  tools/power turbostat: dump p-state software config
  tools/power turbostat: show package number, even without --debug
  tools/power turbostat: support "--hide C1" etc.
  tools/power turbostat: move --Package and --processor into the --cpu option
  tools/power turbostat: turbostat.8 update
  tools/power turbostat: update --list feature
  tools/power turbostat: use wide columns to display large numbers
  tools/power turbostat: Add --list option to show available header names
  tools/power turbostat: fix zero IRQ count shown in one-shot command mode
  tools/power turbostat: add --cpu parameter
  tools/power turbostat: print sysfs C-state stats
  tools/power turbostat: extend --add option to accept /sys path
  tools/power turbostat: skip unused counters on BDX
  tools/power turbostat: fix decoding for GLM, DNV, SKX turbo-ratio limits
  tools/power turbostat: skip unused counters on SKX
  tools/power turbostat: Denverton: use HW CC1 counter, skip C3, C7
  tools/power turbostat: initial Gemini Lake SOC support
  ...
2017-03-01 23:34:38 +01:00
Len Brown
92134bdbc6 intel_pstate: use MSR_ATOM_RATIOS definitions from msr-index.h
Originally, these MSRs were locally defined in this driver.
Now the definitions are in msr-index.h -- use them.

Signed-off-by: Len Brown <len.brown@intel.com>
2017-03-01 00:14:03 -05:00
Rafael J. Wysocki
c3a49c8991 cpufreq: intel_pstate: Fix limits issue with operation mode switching
There is a problem with intel_pstate operation mode switching
introduced by commit fb1fe1041c (cpufreq: intel_pstate: Operation
mode control from sysfs), because the global sysfs limits are
preserved across operation modes while per-policy limits are
reinitialized from scratch on a mode switch and both sets of limits
may get out of sync this way.

Fix that by always reinitializing the global limits upon the
registration of the driver.

Fixes: fb1fe1041c (cpufreq: intel_pstate: Operation mode control from sysfs)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2017-02-28 13:55:52 +01:00
Linus Torvalds
af8999f672 ARM: SoC non-urgent fixes for merge window
We sometimes collect non-critical fixes that come in during the later part
 of the merge window in a branch for the next release instead, and this is
 that contents for v4.11.
 
 Most of these are OMAP fixes, dealing with OMAP36/37 detection, quirks
 and setup. There's also some fixes for Davinci and a Kconfig fix for SCPI
 to only enable on ARM{,64}.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYrMlHAAoJEIwa5zzehBx3oZ4P/3nRgb4dtwEwXwFmJf8Xd4nu
 yetQbcwRreHvh8utsU2Pe+8tffV8jLgsW8TxZ43d6deYFii046HhZAXtvTTVgFpE
 OA0fJpNJ00KYqP1Nx5q/kwZoH3uBz442uMUQ9lyziB3RpimhRsiKyHwnTyuWljyx
 hPmO1XKcF6pQBXk1uwOzO1lSDUeOn4eAmeLonlG1gQ5qtrkU0WbrTPxpmn/CB546
 LH5Nj0qVRzEa7xr8O+2nzeKPVwcXGwsKVKCDbSJmsey2KOEDnEjjxpToAh3WnA4W
 Tm1av5QdyqsLVqAMkNYezrS8EzBjRKa1ma4xUqsNoIhO1XI7xa/LkonU8a0+ZdSX
 p48DCvv7IHX5IqdIHHB0s1eICvTsW8Cp/4YUJzuZDFbS9B2t5b3412+n43tVa8l3
 HYPeTzL5S3VOrMtpQKkGAFrw5OGm+URy4CYQxpX5DxSRSqvXTj12ajBHRbfdbzCO
 r2i2rhKL07PF3DAf8L1coHcBQDS7Vc/k+fhKCQy+W1RDxmjYwYKSI9agOyZi1HQ7
 X+0HuUyKTthCE2kUrj4rye/87MffWwdjNgnOZiHR1X7YtWgnjp1g9K+mLZHh/y5m
 Tq/M55cK9h6dOghx121jYFkkvDclEQDemJuDbKY0sEMDrDXtppcI/T+znZ1LTq7i
 1eaK4lTyAX7dbQJUQCwe
 =NhZq
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC non-urgent fixes from Arnd Bergmann:
 "We sometimes collect non-critical fixes that come in during the later
  part of the merge window in a branch for the next release instead, and
  this is that contents for v4.11.

  Most of these are OMAP fixes, dealing with OMAP36/37 detection, quirks
  and setup. There's also some fixes for Davinci and a Kconfig fix for
  SCPI to only enable on ARM{,64}"

* tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
  firmware: arm_scpi: Add hardware dependencies
  ARM: OMAP3: Fix SoC detection of OMAP36/37 Family
  ARM: OMAP5: Add HWMOD_SWSUP_SIDLE_ACT flag for UART
  ARM: dts: Fix compatible for ti81xx uarts for 8250
  ARM: dts: Fix am335x and dm814x scm syscon to probe children
  ARM: OMAP2+: Fix init for multiple quirks for the same SoC
  ARM: dts: Fix omap3 off mode pull defines
  bus: da850-mstpri: fix my e-mail address
  ARM: davinci: da850: fix da850_set_pll0rate()
  ARM: davinci: da850: coding style fix
2017-02-23 15:28:04 -08:00
Tang Yuantian
17b4eaf475 cpufreq: qoriq: clean up unused code
This snip code is not needed anymore since its user
get_hard_smp_processor_id() has been removed.

Signed-off-by: Tang Yuantian <yuantian.tang@nxp.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-23 23:01:49 +01:00
Linus Torvalds
02c3de1105 Power management updates for v4.11-rc1
- Operating Performance Points (OPP) framework fixes, cleanups and
    switch over from RCU-based synchronization to reference counting
    using krefs (Viresh Kumar, Wei Yongjun, Dave Gerlach).
 
  - cpufreq core cleanups and documentation updates (Viresh Kumar,
    Rafael Wysocki).
 
  - New cpufreq driver for Broadcom BMIPS SoCs (Markus Mayer).
 
  - New cpufreq-dt sub-driver for TI SoCs requiring special handling,
    like in the AM335x, AM437x, DRA7x, and AM57x families, along with
    new DT bindings for it (Dave Gerlach, Paul Gortmaker).
 
  - ARM64 SoCs support for the qoriq cpufreq driver (Tang Yuantian).
 
  - intel_pstate driver updates including a new sysfs knob to control
    the driver's operation mode and fixes related to the no_turbo
    sysfs knob and the hardware-managed P-states feature support
    (Rafael Wysocki, Srinivas Pandruvada).
 
  - New interface to export ultra-turbo frequencies for the powernv
    cpufreq driver (Shilpasri Bhat).
 
  - Assorted fixes for cpufreq drivers (Arnd Bergmann, Dan Carpenter,
    Wei Yongjun).
 
  - devfreq core fixes, mostly related to the sysfs interface exported
    by it (Chanwoo Choi, Chris Diamand).
 
  - Updates of the exynos-bus and exynos-ppmu devfreq drivers (Chanwoo
    Choi).
 
  - Device PM QoS extension to support CPUs and support for per-CPU
    wakeup (device resume) latency constraints in the cpuidle menu
    governor (Alex Shi).
 
  - Wakeup IRQs framework fixes (Grygorii Strashko).
 
  - Generic power domains framework update including a fix to make
    it handle asynchronous invocations of *noirq suspend/resume
    callbacks correctly (Ulf Hansson, Geert Uytterhoeven).
 
  - Assorted fixes and cleanups in the core suspend/hibernate code,
    PM QoS framework and x86 ACPI idle support code (Corentin Labbe,
    Geert Uytterhoeven, Geliang Tang, John Keeping, Nick Desaulniers).
 
  - Update of the analyze_suspend.py script is updated to version 4.5
    offering multiple improvements (Todd Brandt).
 
  - New tool for intel_pstate diagnostics using the pstate_sample
    tracepoint (Doug Smythies).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYq3IjAAoJEILEb/54YlRx/lYP+gNXhfETSzjd4kWSHy3FVEDb
 gc5rMiE2j0OYgVSXwBI7p4EqMPy56lSWBASvbF2o6v9CIxb880KLFEsMDCVHwn46
 6xfEnIRxf1oeRqn7EG9ZPIcTgNsUyvK+gah7zgLXu/0KU7ceXxygvNk47qpeOZ8f
 dKYgIk/TOSGPC8H2nsg8VBKlK/ZOj5hID4F3MmFw6yDuWVCYuh2EokYXS4Nx0JwY
 UQGpWtz+FWWs71vhgVl33GbPXWvPqA7OMe0btZ3RCnhnz4tA/mH+jDWiaspCdS3J
 vKGeZyZptjIMJcufm3X7s7ghYjELheqQusMODDXk4AaWQ5nz8V5/h7NThYfa9J1b
 M93Tb0rMb2MqUhBpv/M6D3qQroZmhq55QKfQrul3QWSOiQUzTWJcbbpyeBQ7nkrI
 F1qNqQfuCnBL/r9y7HpW8P2iFg9kCHkwTtXMdp/lzGXdKzSGtAUSkYg5ohnUzQTp
 2WCPTEk+5DxLVPjW5rDoZOotr5p1kdcdWBk6r3MEWRokZK6PJo7rJBcnTtXSo2mO
 lLRba006q+fTlI5wZtjAI0rOiS3JgtT6cRx7uPjZlze9TGjklJhdsCPJbM5gcOT+
 YiOxvqD+9if5QRSxiEZNj3bQ43wYhXmpctfIanyxziq09BPIPxvgfRR/BkUzc34R
 ps4CIvImim5v5xc8Zsbk
 =57xJ
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "The majority of changes go into the Operating Performance Points (OPP)
  framework and cpufreq this time, followed by devfreq and some
  scattered updates all over.

  The OPP changes are mostly related to switching over from RCU-based
  synchronization, that turned out to be overly complicated and
  problematic, to reference counting using krefs.

  In the cpufreq land there are core cleanups, documentation updates, a
  new driver for Broadcom BMIPS SoCs, a new cpufreq-dt sub-driver for TI
  SoCs that require special handling, ARM64 SoCs support for the qoriq
  driver, intel_pstate updates, powernv driver update and assorted
  fixes.

  The devfreq changes are mostly fixes related to the sysfs interface
  and some Exynos drivers updates.

  Apart from that, the cpuidle menu governor will support per-CPU PM QoS
  constraints for the wakeup latency now, some bugs in the wakeup IRQs
  framework are fixed, the generic power domains framework should handle
  asynchronous invocations of *noirq suspend/resume callbacks from now
  on, the analyze_suspend.py script is updated and there is a new tool
  for intel_pstate diagnostics.

  Specifics:

   - Operating Performance Points (OPP) framework fixes, cleanups and
     switch over from RCU-based synchronization to reference counting
     using krefs (Viresh Kumar, Wei Yongjun, Dave Gerlach)

   - cpufreq core cleanups and documentation updates (Viresh Kumar,
     Rafael Wysocki)

   - New cpufreq driver for Broadcom BMIPS SoCs (Markus Mayer)

   - New cpufreq-dt sub-driver for TI SoCs requiring special handling,
     like in the AM335x, AM437x, DRA7x, and AM57x families, along with
     new DT bindings for it (Dave Gerlach, Paul Gortmaker)

   - ARM64 SoCs support for the qoriq cpufreq driver (Tang Yuantian)

   - intel_pstate driver updates including a new sysfs knob to control
     the driver's operation mode and fixes related to the no_turbo sysfs
     knob and the hardware-managed P-states feature support (Rafael
     Wysocki, Srinivas Pandruvada)

   - New interface to export ultra-turbo frequencies for the powernv
     cpufreq driver (Shilpasri Bhat)

   - Assorted fixes for cpufreq drivers (Arnd Bergmann, Dan Carpenter,
     Wei Yongjun)

   - devfreq core fixes, mostly related to the sysfs interface exported
     by it (Chanwoo Choi, Chris Diamand)

   - Updates of the exynos-bus and exynos-ppmu devfreq drivers (Chanwoo
     Choi)

   - Device PM QoS extension to support CPUs and support for per-CPU
     wakeup (device resume) latency constraints in the cpuidle menu
     governor (Alex Shi)

   - Wakeup IRQs framework fixes (Grygorii Strashko)

   - Generic power domains framework update including a fix to make it
     handle asynchronous invocations of *noirq suspend/resume callbacks
     correctly (Ulf Hansson, Geert Uytterhoeven)

   - Assorted fixes and cleanups in the core suspend/hibernate code, PM
     QoS framework and x86 ACPI idle support code (Corentin Labbe, Geert
     Uytterhoeven, Geliang Tang, John Keeping, Nick Desaulniers)

   - Update of the analyze_suspend.py script is updated to version 4.5
     offering multiple improvements (Todd Brandt)

   - New tool for intel_pstate diagnostics using the pstate_sample
     tracepoint (Doug Smythies)"

* tag 'pm-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (85 commits)
  MAINTAINERS: cpufreq: add bmips-cpufreq.c
  PM / QoS: Fix memory leak on resume_latency.notifiers
  PM / Documentation: Spelling s/wrtie/write/
  PM / sleep: Fix test_suspend after sleep state rework
  cpufreq: CPPC: add ACPI_PROCESSOR dependency
  cpufreq: make ti-cpufreq explicitly non-modular
  cpufreq: Do not clear real_cpus mask on policy init
  tools/power/x86: Debug utility for intel_pstate driver
  AnalyzeSuspend: fix drag and zoom bug in javascript
  PM / wakeirq: report a wakeup_event on dedicated wekup irq
  PM / wakeirq: Fix spurious wake-up events for dedicated wakeirqs
  PM / wakeirq: Enable dedicated wakeirq for suspend
  cpufreq: dt: Don't use generic platdev driver for ti-cpufreq platforms
  cpufreq: ti: Add cpufreq driver to determine available OPPs at runtime
  Documentation: dt: add bindings for ti-cpufreq
  PM / OPP: Expose _of_get_opp_desc_node as dev_pm_opp API
  cpufreq: qoriq: Don't look at clock implementation details
  cpufreq: qoriq: add ARM64 SoCs support
  PM / Domains: Provide dummy governors if CONFIG_PM_GENERIC_DOMAINS=n
  cpufreq: brcmstb-avs-cpufreq: remove unnecessary platform_set_drvdata()
  ...
2017-02-20 17:41:31 -08:00
Linus Torvalds
828cad8ea0 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this (fairly busy) cycle were:

   - There was a class of scheduler bugs related to forgetting to update
     the rq-clock timestamp which can cause weird and hard to debug
     problems, so there's a new debug facility for this: which uncovered
     a whole lot of bugs which convinced us that we want to keep the
     debug facility.

     (Peter Zijlstra, Matt Fleming)

   - Various cputime related updates: eliminate cputime and use u64
     nanoseconds directly, simplify and improve the arch interfaces,
     implement delayed accounting more widely, etc. - (Frederic
     Weisbecker)

   - Move code around for better structure plus cleanups (Ingo Molnar)

   - Move IO schedule accounting deeper into the scheduler plus related
     changes to improve the situation (Tejun Heo)

   - ... plus a round of sched/rt and sched/deadline fixes, plus other
     fixes, updats and cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
  sched/core: Remove unlikely() annotation from sched_move_task()
  sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
  sched/topology: Split out scheduler topology code from core.c into topology.c
  sched/core: Remove unnecessary #include headers
  sched/rq_clock: Consolidate the ordering of the rq_clock methods
  delayacct: Include <uapi/linux/taskstats.h>
  sched/core: Clean up comments
  sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
  sched/clock: Add dummy clear_sched_clock_stable() stub function
  sched/cputime: Remove generic asm headers
  sched/cputime: Remove unused nsec_to_cputime()
  s390, sched/cputime: Remove unused cputime definitions
  powerpc, sched/cputime: Remove unused cputime definitions
  s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
  ia64, sched/cputime: Remove unused cputime definitions
  ia64: Convert vtime to use nsec units directly
  ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
  sched/cputime: Remove jiffies based cputime
  sched/cputime, vtime: Return nsecs instead of cputime_t to account
  sched/cputime: Complete nsec conversion of tick based accounting
  ...
2017-02-20 12:52:55 -08:00
Arnd Bergmann
a578884fa0 cpufreq: CPPC: add ACPI_PROCESSOR dependency
Without the Kconfig dependency, we can get this warning:

warning: ACPI_CPPC_CPUFREQ selects ACPI_CPPC_LIB which has unmet direct dependencies (ACPI && ACPI_PROCESSOR)

Fixes: 5477fb3bd1 (ACPI / CPPC: Add a CPUFreq driver for use with CPPC)
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-16 01:00:03 +01:00
Paul Gortmaker
149ab86496 cpufreq: make ti-cpufreq explicitly non-modular
The Kconfig currently controlling compilation of this code is:

drivers/cpufreq/Kconfig.arm:config ARM_TI_CPUFREQ
drivers/cpufreq/Kconfig.arm:    bool "Texas Instruments CPUFreq support"

...meaning that it currently is not being built as a module by anyone.

Lets remove the couple traces of modular infrastructure use, so that
when reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.

We also delete the MODULE_LICENSE tag etc. since all that information
is already contained at the top of the file in the comments.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-16 00:58:52 +01:00
Rafael J. Wysocki
f451014692 cpufreq: Do not clear real_cpus mask on policy init
If new_policy is set in cpufreq_online(), the policy object has just
been created and its real_cpus mask has been zeroed on allocation,
and the driver's ->init() callback should not touch it.

It doesn't need to be cleared again, so don't do that.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-02-16 00:57:42 +01:00
Dave Gerlach
051bd84bb4 cpufreq: dt: Don't use generic platdev driver for ti-cpufreq platforms
Some TI platforms, specifically those in the am33xx, am43xx, dra7xx, and
am57xx families of SoCs can make use of the ti-cpufreq driver to
selectively enable OPPs based on the exact configuration in use. The
ti-cpufreq is given the responsibility of creating the cpufreq-dt
platform device when the driver is in use so drop am33xx and dra7xx
from the cpufreq-dt-platdev driver so it is not created twice.

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 22:59:00 +01:00
Dave Gerlach
e13cf046cd cpufreq: ti: Add cpufreq driver to determine available OPPs at runtime
Some TI SoCs, like those in the AM335x, AM437x, DRA7x, and AM57x families,
have different OPPs available for the MPU depending on which specific
variant of the SoC is in use. This can be determined through use of the
revision and an eFuse register present in the silicon. Introduce a
ti-cpufreq driver that can read the aformentioned values and provide
them as version matching data to the opp framework. Through this the
opp-supported-hw dt binding that is part of the operating-points-v2
table can be used to indicate availability of OPPs for each device.

This driver also creates the "cpufreq-dt" platform_device after passing
the version matching data to the OPP framework so that the cpufreq-dt
handles the actual cpufreq implementation. Even without the necessary
data to pass the version matching data the driver will still create this
device to maintain backwards compatibility with operating-points v1
tables.

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 22:57:48 +01:00
Rafael J. Wysocki
40e993aa04 Merge OPP material for v4.11 to satisfy dependencies. 2017-02-09 22:52:35 +01:00
Tang Yuantian
b1e9a64972 cpufreq: qoriq: Don't look at clock implementation details
Get the CPU clock's potential parent clocks from the clock interface
itself, rather than manually parsing the clocks property to find a
phandle, looking at the clock-names property of that, and assuming that
those are valid parent clocks for the cpu clock.

This is necessary now that the clocks are generated based on the clock
driver's knowledge of the chip rather than a fragile device-tree
description of the mux options.

We can now rely on the clock driver to ensure that the mux only exposes
options that are valid.  The cpufreq driver was currently being overly
conservative in some cases -- for example, the "min_cpufreq =
get_bus_freq()" restriction only applies to chips with erratum
A-004510, and whether the freq_mask used on p5020 is needed depends on
the actual frequencies of the PLLs (FWIW, p5040 has a similar
limitation but its .freq_mask was zero) -- and the frequency mask
mechanism made assumptions about particular parent clock indices that
are no longer valid.

Signed-off-by: Scott Wood <scottwood@nxp.com>
Signed-off-by: Tang Yuantian <yuantian.tang@nxp.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 14:33:02 +01:00
Tang Yuantian
5026ac2314 cpufreq: qoriq: add ARM64 SoCs support
Add ARM64 config to Kconfig to enable CPU frequency feature on
NXP ARM64 SoCs.

Signed-off-by: Tang Yuantian <yuantian.tang@nxp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 14:33:01 +01:00
Wei Yongjun
113f9017e5 cpufreq: brcmstb-avs-cpufreq: remove unnecessary platform_set_drvdata()
The driver core clears the driver data to NULL after device_release
or on probe failure. Thus, it is not needed to manually clear the
device driver data to NULL.

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 01:22:46 +01:00
Dan Carpenter
a69261e447 cpufreq: s3c2416: double free on driver init error path
The "goto err_armclk;" error path already does a clk_put(s3c_freq->hclk);
so this is a double free.

Fixes: 34ee550752 ([CPUFREQ] Add S3C2416/S3C2450 cpufreq driver)
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 01:22:45 +01:00
Markus Mayer
cdb56cbfd7 cpufreq: bmips-cpufreq: CPUfreq driver for Broadcom's BMIPS SoCs
Add the MIPS CPUfreq driver. This driver currently supports CPUfreq on
BMIPS5xxx-based SoCs.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 01:22:44 +01:00
Rafael J. Wysocki
56c7303e62 Merge back earlier cpufreq changes for v4.11. 2017-02-09 01:18:14 +01:00
Rafael J. Wysocki
cbf304e420 Merge branches 'pm-core-fixes' and 'pm-cpufreq-fixes'
* pm-core-fixes:
  PM / runtime: Avoid false-positive warnings from might_sleep_if()

* pm-cpufreq-fixes:
  cpufreq: intel_pstate: Disable energy efficiency optimization
  cpufreq: brcmstb-avs-cpufreq: properly retrieve P-state upon suspend
  cpufreq: brcmstb-avs-cpufreq: extend sysfs entry brcm_avs_pmap
2017-02-06 14:52:10 +01:00
Srinivas Pandruvada
6e978b22ef cpufreq: intel_pstate: Disable energy efficiency optimization
Some Kabylake desktop processors may not reach max turbo when running in
HWP mode, even if running under sustained 100% utilization.

This occurs when the HWP.EPP (Energy Performance Preference) is set to
"balance_power" (0x80) -- the default on most systems.

It occurs because the platform BIOS may erroneously enable an
energy-efficiency setting -- MSR_IA32_POWER_CTL BIT-EE, which is not
recommended to be enabled on this SKU.

On the failing systems, this BIOS issue was not discovered when the
desktop motherboard was tested with Windows, because the BIOS also
neglects to provide the ACPI/CPPC table, that Windows requires to enable
HWP, and so Windows runs in legacy P-state mode, where this setting has
no effect.

Linux' intel_pstate driver does not require ACPI/CPPC to enable HWP, and
so it runs in HWP mode, exposing this incorrect BIOS configuration.

There are several ways to address this problem.

First, Linux can also run in legacy P-state mode on this system.
As intel_pstate is how Linux enables HWP, booting with
"intel_pstate=disable"
will run in acpi-cpufreq/ondemand legacy p-state mode.

Or second, the "performance" governor can be used with intel_pstate,
which will modify HWP.EPP to 0.

Or third, starting in 4.10, the
/sys/devices/system/cpu/cpufreq/policy*/energy_performance_preference
attribute in can be updated from "balance_power" to "performance".

Or fourth, apply this patch, which fixes the erroneous setting of
MSR_IA32_POWER_CTL BIT_EE on this model, allowing the default
configuration to function as designed.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: 4.6+ <stable@vger.kernel.org> # 4.6+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:11:08 +01:00
Srinivas Pandruvada
8fc7554ae5 cpufreq: intel_pstate: Calculate guaranteed performance for HWP
When HWP is active, turbo activation ratio is not used to calculate max
non turbo ratio. But on these systems the max non turbo ratio is decided
by config TDP settings.

This change removes usage of MSR_TURBO_ACTIVATION_RATIO for HWP systems,
instead directly use TDP ratios, when more than one TDPs are available.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:33 +01:00
Srinivas Pandruvada
4e5d3f713b cpufreq: intel_pstate: Make HWP limits compatible with legacy
Under HWP the performance limits are calculated using max_perf_pct
and min_perf_pct using possible performance, not available performance.
The available performance can be reduced by no_turbo setting. To make
compatible with legacy mode, use max/min performance percentage with
respect to available performance.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:32 +01:00
Srinivas Pandruvada
7d9a8a9f4e cpufreq: intel_pstate: Lower frequency than expected under no_turbo
When turbo is not disabled by BIOS, but user disabled from intel P-State
sysfs and changes max/min using cpufreq sysfs, the resultant frequency
is lower than what user requested.

The reason for this, when the perf limits are calculated in set_policy()
callback, they are with reference to max cpu frequency (turbo frequency
), but when enforced in the intel_pstate_get_min_max() they are with
reference to max available performance as documented in the intel_pstate
documentation (in this case max non turbo P-State).

This needs similar change as done in intel_cpufreq_verify_policy() for
passive mode. Set policy->cpuinfo.max_freq based on the turbo status.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:32 +01:00
Rafael J. Wysocki
fb1fe1041c cpufreq: intel_pstate: Operation mode control from sysfs
Make it possible to change the operation mode of intel_pstate with
the help of a new sysfs attribute called "status".

There are three possible configurations that can be selected using
this attribute:

 "off"     - The driver is not in use at this time.
 "active"  - The driver works as a P-state governor (default).
 "passive" - The driver works as a regular cpufreq one and collaborates
             with the generic cpufreq governors (it sets P-states as
             requested by those governors).  [This is the same mode
             the driver can be started in by passing intel_pstate=passive
             in the kernel command line.]

The current setting is returned by reads from this attribute.  Writing
one of the above strings to it changes the operation mode as indicated
by that string, if possible.

If HW-managed P-states (HWP) feature is enabled, it is not possible
to change the driver's operation mode and attempts to write to this
attribute will fail.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:31 +01:00
Rafael J. Wysocki
0c30b65b3c cpufreq: intel_pstate: Expose global sysfs attributes upfront
Expose the intel_pstate's global sysfs attributes before registering
the driver to prepare for the addition of an attribute that also will
have to work if the driver is not registered.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:30 +01:00
Viresh Kumar
052f573f5c cpufreq: Remove CPUFREQ_START notifier event
Its not used anymore, remove it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-04 00:05:30 +01:00
Shilpasri G Bhat
b12f7a2b01 cpufreq: powernv: Add boost files to export ultra-turbo frequencies
In P8+, Workload Optimized Frequency(WOF) provides the capability to
boost the cpu frequency based on the utilization of the other cpus
running in the chip. The On-Chip-Controller(OCC) firmware will control
the achievability of these frequencies depending on the power headroom
available in the chip. Currently the ultra-turbo frequencies provided
by this feature are exported along with the turbo and sub-turbo
frequencies as scaling_available_frequencies. This patch will export
the ultra-turbo frequencies separately as scaling_boost_frequencies in
WOF enabled systems. This patch will add the boost sysfs file which
can be used to disable/enable ultra-turbo frequencies.

Signed-off-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-03 23:59:41 +01:00
Viresh Kumar
801e0f378f cpufreq: Remove CONFIG_CPU_FREQ_STAT_DETAILS config option
This doesn't have any benefit apart from saving a small amount of memory
when it is disabled. The ifdef hackery in the code makes it dirty
unnecessarily.

Clean it up by removing the Kconfig option completely. Few defconfigs
are also updated and CONFIG_CPU_FREQ_STAT_DETAILS is replaced with
CONFIG_CPU_FREQ_STAT now in them, as users wanted stats to be enabled.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-03 23:59:39 +01:00
Viresh Kumar
f9f41e3ef9 cpufreq: Remove policy create/remove notifiers
Those were added by:

commit fcd7af917a ("cpufreq: stats: handle cpufreq_unregister_driver()
and suspend/resume properly")

but aren't used anymore since:

commit 1aefc75b24 ("cpufreq: stats: Make the stats code non-modular").

Remove them. Also remove the redundant parameter to the respective
routines.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-03 23:59:38 +01:00
Frederic Weisbecker
7fb1327ee9 sched/cputime: Convert kcpustat to nsecs
Kernel CPU stats are stored in cputime_t which is an architecture
defined type, and hence a bit opaque and requiring accessors and mutators
for any operation.

Converting them to nsecs simplifies the code and is one step toward
the removal of cputime_t in the core code.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-01 09:13:47 +01:00
Viresh Kumar
8a31d9d942 PM / OPP: Update OPP users to put reference
This patch updates dev_pm_opp_find_freq_*() routines to get a reference
to the OPPs returned by them.

Also updates the users of dev_pm_opp_find_freq_*() routines to call
dev_pm_opp_put() after they are done using the OPPs.

As it is guaranteed the that OPPs wouldn't get freed while being used,
the RCU read side locking present with the users isn't required anymore.
Drop it as well.

This patch also updates all users of devfreq_recommended_opp() which was
returning an OPP received from the OPP core.

Note that some of the OPP core routines have gained
rcu_read_{lock|unlock}() calls, as those still use RCU specific APIs
within them.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com> [Devfreq]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-30 09:22:21 +01:00
Viresh Kumar
fa30184d19 PM / OPP: Return opp_table from dev_pm_opp_set_*() routines
Now that we have proper kernel reference infrastructure in place for OPP
tables, use it to guarantee that the OPP table isn't freed while being
used by the callers of dev_pm_opp_set_*() APIs.

Make them all return the pointer to the OPP table after taking its
reference and put the reference back with dev_pm_opp_put_*() APIs.

Now that the OPP table wouldn't get freed while these routines are
executing after dev_pm_opp_get_opp_table() is called, there is no need
to take opp_table_lock. Drop them as well.

Remove the rcu specific comments from these routines as they aren't
relevant anymore.

Note that prototypes of dev_pm_opp_{set|put}_regulators() were already
updated by another patch.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-30 09:22:21 +01:00
Viresh Kumar
3aa26a3b2e PM / OPP: Rename dev_pm_opp_get_suspend_opp() and return OPP rate
There is only one user of dev_pm_opp_get_suspend_opp() and that uses it
to get the OPP rate for the suspend_opp.

Rename dev_pm_opp_get_suspend_opp() as dev_pm_opp_get_suspend_opp_freq()
and return the rate directly from it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-27 11:49:09 +01:00
Markus Mayer
3c223c19ae cpufreq: brcmstb-avs-cpufreq: properly retrieve P-state upon suspend
The AVS GET_PMAP command does return a P-state along with the P-map
information. However, that P-state is the initial P-state when the
P-map was first downloaded to AVS. It is *not* the current P-state.

Therefore, we explicitly retrieve the P-state using the GET_PSTATE
command.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-27 11:43:49 +01:00
Markus Mayer
9b02c54bc9 cpufreq: brcmstb-avs-cpufreq: extend sysfs entry brcm_avs_pmap
We extend the brcm_avs_pmap sysfs entry (which issues the GET_PMAP
command to AVS) to include all fields from struct pmap. This means
adding mode (AVS, DVS, DVFS) and state (the P-state) to the output.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-27 11:43:48 +01:00
Rafael J. Wysocki
ff7e593c9c Merge branches 'pm-sleep' and 'pm-cpufreq'
* pm-sleep:
  Revert "PM / sleep / ACPI: Use the ACPI_FADT_LOW_POWER_S0 flag"

* pm-cpufreq:
  cpufreq: intel_pstate: Fix sysfs limits enforcement for performance policy
2017-01-27 00:08:59 +01:00
Srinivas Pandruvada
1443ebbacf cpufreq: intel_pstate: Fix sysfs limits enforcement for performance policy
A side effect of keeping intel_pstate sysfs limits in sync with cpufreq
is that the now sysfs limits can't enforced under performance policy.

For example, if the max_perf_pct is changed from 100 to 80, this will call
intel_pstate_set_policy(), which will change the max_perf to 100 again for
performance policy. Same issue happens, when no_turbo is set.

This change calculates max and min frequency using sysfs performance
limits in intel_pstate_verify_policy() and adjusts policy limits by
calling cpufreq_verify_within_limits().

Also, it causes the setting of performance limits to be skipped if
no_turbo is set.

Fixes: 111b8b3fe4 (cpufreq: intel_pstate: Always keep all limits settings in sync)
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-20 03:35:27 +01:00
Rafael J. Wysocki
3baad65546 Merge branch 'pm-cpufreq'
* pm-cpufreq:
  cpufreq: dt: Add support for APM X-Gene 2
  cpufreq: intel_pstate: Always keep all limits settings in sync
  cpufreq: intel_pstate: Use locking in intel_cpufreq_verify_policy()
  cpufreq: intel_pstate: Use locking in intel_pstate_resume()
  cpufreq: intel_pstate: Do not expose PID parameters in passive mode
2017-01-06 14:34:52 +01:00
Hoan Tran
e11b6293a8 cpufreq: dt: Add support for APM X-Gene 2
Add the compatible string for supporting the generic device tree cpufreq-dt
driver on APM's X-Gene 2 SoC.

Signed-off-by: Hoan Tran <hotran@apm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-01-05 00:27:51 +01:00
Bartosz Golaszewski
b40881738f ARM: davinci: da850: fix da850_set_pll0rate()
This function is confusing - its second argument is an index to the
freq table, not the requested clock rate in Hz, but it's used as the
set_rate callback for the pll0 clock. It leads to an oops when the
caller doesn't know the internals and passes the rate in Hz as
argument instead of the cpufreq index since this argument isn't bounds
checked either.

Fix it by iterating over the array of supported frequencies and
selecting a one that matches or returning -EINVAL for unsupported
rates.

Also: update the davinci cpufreq driver. It's the only user of this
clock and currently it passes the cpufreq table index to
clk_set_rate(), which is confusing. Make it pass the requested clock
rate in Hz.

Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
[nsekhar@ti.com: commit headline update]
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2017-01-02 15:02:51 +05:30
Rafael J. Wysocki
111b8b3fe4 cpufreq: intel_pstate: Always keep all limits settings in sync
Make intel_pstate update per-logical-CPU limits when the global
settings are changed to ensure that they are always in sync and
users will not see confusing values in per-logical-CPU sysfs
attributes.

This also fixes the problem that setting the "no_turbo" global
attribute to 1 in the "passive" mode (ie. when intel_pstate acts
as a regular cpufreq driver) when scaling_governor is set to
"performance" has no effect.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-12-31 21:48:44 +01:00
Rafael J. Wysocki
cad3046796 cpufreq: intel_pstate: Use locking in intel_cpufreq_verify_policy()
Race conditions are possible if intel_cpufreq_verify_policy()
is executed in parallel with global limits updates from sysfs,
so the invocation of intel_pstate_update_perf_limits() in it
should be carried out under intel_pstate_limits_lock.

Make that happen.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-12-31 21:48:43 +01:00
Rafael J. Wysocki
aa439248ab cpufreq: intel_pstate: Use locking in intel_pstate_resume()
Theoretically, intel_pstate_resume() may be executed in parallel
with intel_pstate_set_policy(), if the latter is invoked via
cpufreq_update_policy() as a result of a notification, so use
intel_pstate_limits_lock in there too to avoid race conditions.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-12-31 21:48:42 +01:00
Rafael J. Wysocki
366430b5c2 cpufreq: intel_pstate: Do not expose PID parameters in passive mode
If intel_pstate works in the passive mode in which it acts as
a regular cpufreq driver and collaborates with generic cpufreq
governors, the PID parameters are not used, so do not expose
them via debugfs in that case.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-27 03:30:11 +01:00
Linus Torvalds
7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Rafael J. Wysocki
7b99f1aeed Merge branch 'pm-cpufreq'
* pm-cpufreq:
  cpufreq: s3c64xx: remove incorrect __init annotation
  cpufreq: Remove CPU hotplug callbacks only if they were initialized
  CPU/hotplug: Clarify description of __cpuhp_setup_state() return value
2016-12-22 14:34:55 +01:00
Arnd Bergmann
adec57c61c cpufreq: s3c64xx: remove incorrect __init annotation
s3c64xx_cpufreq_config_regulator is incorrectly annotated
as __init, since the caller is also not init:

WARNING: vmlinux.o(.text+0x92fe1c): Section mismatch in reference from the function s3c64xx_cpufreq_driver_init() to the function .init.text:s3c64xx_cpufreq_config_regulator()

With modern gcc versions, the function gets inline, so we don't
see the warning, this only happens with gcc-4.6 and older.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-21 02:54:18 +01:00
Boris Ostrovsky
2a8fa123d9 cpufreq: Remove CPU hotplug callbacks only if they were initialized
Since CPU hotplug callbacks are requested for CPUHP_AP_ONLINE_DYN state,
successful callback initialization will result in cpuhp_setup_state()
returning a positive value. Therefore acpi_cpufreq_online being zero
indicates that callbacks have not been installed.

This means that acpi_cpufreq_boost_exit() should only remove them if
acpi_cpufreq_online is positive. Trying to call
cpuhp_remove_state_nocalls(0) will cause a BUG().

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-21 02:52:52 +01:00
Linus Torvalds
7b9dc3f75f Power management material for v4.10-rc1
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
    for it (Markus Mayer).
 
  - Support for ARM Integrator/AP and Integrator/CP in the generic
    DT cpufreq driver and elimination of the old Integrator cpufreq
    driver (Linus Walleij).
 
  - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
    and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
    Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
 
  - cpufreq core fix to eliminate races that may lead to using
    inactive policy objects and related cleanups (Rafael Wysocki).
 
  - cpufreq schedutil governor update to make it use SCHED_FIFO
    kernel threads (instead of regular workqueues) for doing delayed
    work (to reduce the response latency in some cases) and related
    cleanups (Viresh Kumar).
 
  - New cpufreq sysfs attribute for resetting statistics (Markus
    Mayer).
 
  - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
    Viresh Kumar).
 
  - Support for using generic cpufreq governors in the intel_pstate
    driver (Rafael Wysocki).
 
  - Support for per-logical-CPU P-state limits and the EPP/EPB
    (Energy Performance Preference/Energy Performance Bias) knobs
    in the intel_pstate driver (Srinivas Pandruvada).
 
  - New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
 
  - intel_pstate driver modification to use the P-state selection
    algorithm based on CPU load on platforms with the system profile
    in the ACPI tables set to "mobile" (Srinivas Pandruvada).
 
  - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
    Srinivas Pandruvada).
 
  - cpufreq powernv driver updates including fast switching support
    (for the schedutil governor), fixes and cleanus (Akshay Adiga,
    Andrew Donnellan, Denis Kirjanov).
 
  - acpi-cpufreq driver rework to switch it over to the new CPU
    offline/online state machine (Sebastian Andrzej Siewior).
 
  - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
    Prakash).
 
  - Idle injection rework (to make it use the regular idle path
    instead of a home-grown custom one) and related powerclamp
    thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
    Sebastian Andrzej Siewior).
 
  - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
    Shevchenko, Piotr Luc).
 
  - intel_idle driver cleanups and switch over to using the new CPU
    offline/online state machine (Anna-Maria Gleixner, Sebastian
    Andrzej Siewior).
 
  - cpuidle DT driver update to support suspend-to-idle properly
    (Sudeep Holla).
 
  - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
    Rafael Wysocki).
 
  - Preliminary support for power domains including CPUs in the
    generic power domains (genpd) framework and related DT bindings
    (Lina Iyer).
 
  - Assorted fixes and cleanups in the generic power domains (genpd)
    framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
 
  - Preliminary support for devices with multiple voltage regulators
    and related fixes and cleanups in the Operating Performance Points
    (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
 
  - System sleep state selection interface rework to make it easier
    to support suspend-to-idle as the default system suspend method
    (Rafael Wysocki).
 
  - PM core fixes and cleanups, mostly related to the interactions
    between the system suspend and runtime PM frameworks (Ulf Hansson,
    Sahitya Tummala, Tony Lindgren).
 
  - Latency tolerance PM QoS framework imorovements (Andrew
    Lutomirski).
 
  - New Knights Mill CPU ID for the Intel RAPL power capping driver
    (Piotr Luc).
 
  - Intel RAPL power capping driver fixes, cleanups and switch over
    to using the new CPU offline/online state machine (Jacob Pan,
    Thomas Gleixner, Sebastian Andrzej Siewior).
 
  - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
    rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
    Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
    Kumar).
 
  - Fix for false-positive KASAN warnings during resume from ACPI S3
    (suspend-to-RAM) on x86 (Josh Poimboeuf).
 
  - Memory map verification during resume from hibernation on x86 to
    ensure a consistent address space layout (Chen Yu).
 
  - Wakeup sources debugging enhancement (Xing Wei).
 
  - rockchip-io AVS driver cleanup (Shawn Lin).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
 UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
 gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
 iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
 brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
 AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
 gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
 RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
 0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
 XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
 sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
 LymHcobCK9rSZ1l208Fe
 =vhxI
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "Again, cpufreq gets more changes than the other parts this time (one
  new driver, one old driver less, a bunch of enhancements of the
  existing code, new CPU IDs, fixes, cleanups)

  There also are some changes in cpuidle (idle injection rework, a
  couple of new CPU IDs, online/offline rework in intel_idle, fixes and
  cleanups), in the generic power domains framework (mostly related to
  supporting power domains containing CPUs), and in the Operating
  Performance Points (OPP) library (mostly related to supporting devices
  with multiple voltage regulators)

  In addition to that, the system sleep state selection interface is
  modified to make it easier for distributions with unchanged user space
  to support suspend-to-idle as the default system suspend method, some
  issues are fixed in the PM core, the latency tolerance PM QoS
  framework is improved a bit, the Intel RAPL power capping driver is
  cleaned up and there are some fixes and cleanups in the devfreq
  subsystem

  Specifics:

   - New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
     for it (Markus Mayer)

   - Support for ARM Integrator/AP and Integrator/CP in the generic DT
     cpufreq driver and elimination of the old Integrator cpufreq driver
     (Linus Walleij)

   - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
     and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
     Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)

   - cpufreq core fix to eliminate races that may lead to using inactive
     policy objects and related cleanups (Rafael Wysocki)

   - cpufreq schedutil governor update to make it use SCHED_FIFO kernel
     threads (instead of regular workqueues) for doing delayed work (to
     reduce the response latency in some cases) and related cleanups
     (Viresh Kumar)

   - New cpufreq sysfs attribute for resetting statistics (Markus Mayer)

   - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
     Viresh Kumar)

   - Support for using generic cpufreq governors in the intel_pstate
     driver (Rafael Wysocki)

   - Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
     Performance Preference/Energy Performance Bias) knobs in the
     intel_pstate driver (Srinivas Pandruvada)

   - New CPU ID for Knights Mill in intel_pstate (Piotr Luc)

   - intel_pstate driver modification to use the P-state selection
     algorithm based on CPU load on platforms with the system profile in
     the ACPI tables set to "mobile" (Srinivas Pandruvada)

   - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
     Srinivas Pandruvada)

   - cpufreq powernv driver updates including fast switching support
     (for the schedutil governor), fixes and cleanus (Akshay Adiga,
     Andrew Donnellan, Denis Kirjanov)

   - acpi-cpufreq driver rework to switch it over to the new CPU
     offline/online state machine (Sebastian Andrzej Siewior)

   - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
     Prakash)

   - Idle injection rework (to make it use the regular idle path instead
     of a home-grown custom one) and related powerclamp thermal driver
     updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
     Siewior)

   - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
     Shevchenko, Piotr Luc)

   - intel_idle driver cleanups and switch over to using the new CPU
     offline/online state machine (Anna-Maria Gleixner, Sebastian
     Andrzej Siewior)

   - cpuidle DT driver update to support suspend-to-idle properly
     (Sudeep Holla)

   - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
     Rafael Wysocki)

   - Preliminary support for power domains including CPUs in the generic
     power domains (genpd) framework and related DT bindings (Lina Iyer)

   - Assorted fixes and cleanups in the generic power domains (genpd)
     framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)

   - Preliminary support for devices with multiple voltage regulators
     and related fixes and cleanups in the Operating Performance Points
     (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)

   - System sleep state selection interface rework to make it easier to
     support suspend-to-idle as the default system suspend method
     (Rafael Wysocki)

   - PM core fixes and cleanups, mostly related to the interactions
     between the system suspend and runtime PM frameworks (Ulf Hansson,
     Sahitya Tummala, Tony Lindgren)

   - Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)

   - New Knights Mill CPU ID for the Intel RAPL power capping driver
     (Piotr Luc)

   - Intel RAPL power capping driver fixes, cleanups and switch over to
     using the new CPU offline/online state machine (Jacob Pan, Thomas
     Gleixner, Sebastian Andrzej Siewior)

   - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
     rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
     Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)

   - Fix for false-positive KASAN warnings during resume from ACPI S3
     (suspend-to-RAM) on x86 (Josh Poimboeuf)

   - Memory map verification during resume from hibernation on x86 to
     ensure a consistent address space layout (Chen Yu)

   - Wakeup sources debugging enhancement (Xing Wei)

   - rockchip-io AVS driver cleanup (Shawn Lin)"

* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
  devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
  devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
  devfreq: exynos: Don't use OPP structures outside of RCU locks
  Documentation: intel_pstate: Document HWP energy/performance hints
  cpufreq: intel_pstate: Support for energy performance hints with HWP
  cpufreq: intel_pstate: Add locking around HWP requests
  PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
  PM / core: Fix bug in the error handling of async suspend
  PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
  PM / Domains: Fix compatible for domain idle state
  PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
  PM / OPP: Allow platform specific custom set_opp() callbacks
  PM / OPP: Separate out _generic_set_opp()
  PM / OPP: Add infrastructure to manage multiple regulators
  PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
  PM / OPP: Manage supply's voltage/current in a separate structure
  PM / OPP: Don't use OPP structure outside of rcu protected section
  PM / OPP: Reword binding supporting multiple regulators per device
  PM / OPP: Fix incorrect cpu-supply property in binding
  cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
  ..
2016-12-13 10:41:53 -08:00
Rafael J. Wysocki
fecc8c0ebd Merge branch 'pm-cpufreq'
* pm-cpufreq: (51 commits)
  Documentation: intel_pstate: Document HWP energy/performance hints
  cpufreq: intel_pstate: Support for energy performance hints with HWP
  cpufreq: intel_pstate: Add locking around HWP requests
  cpufreq: ondemand: Set MIN_FREQUENCY_UP_THRESHOLD to 1
  cpufreq: intel_pstate: Add Knights Mill CPUID
  MAINTAINERS: Add bug tracking system location entry for cpufreq
  cpufreq: dt: Add support for zx296718
  cpufreq: acpi-cpufreq: drop rdmsr_on_cpus() usage
  cpufreq: acpi-cpufreq: Convert to hotplug state machine
  cpufreq: intel_pstate: fix intel_pstate_exit_perf_limits() prototype
  cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode
  cpufreq: schedutil: Rectify comment in sugov_irq_work() function
  cpufreq: intel_pstate: increase precision of performance limits
  cpufreq: intel_pstate: round up min_perf limits
  cpufreq: Make cpufreq_update_policy() void
  ACPI / processor: Make acpi_processor_ppc_has_changed() void
  cpufreq: Avoid using inactive policies
  cpufreq: intel_pstate: Generic governors support
  cpufreq: intel_pstate: Request P-states control from SMM if needed
  cpufreq: dt: Add support for r8a7743 and r8a7745
  ...
2016-12-12 20:45:01 +01:00
Rafael J. Wysocki
57def856f3 Merge branch 'pm-opp'
* pm-opp:
  PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
  PM / OPP: Allow platform specific custom set_opp() callbacks
  PM / OPP: Separate out _generic_set_opp()
  PM / OPP: Add infrastructure to manage multiple regulators
  PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
  PM / OPP: Manage supply's voltage/current in a separate structure
  PM / OPP: Don't use OPP structure outside of rcu protected section
  PM / OPP: Reword binding supporting multiple regulators per device
  PM / OPP: Fix incorrect cpu-supply property in binding
  PM / OPP: Pass opp_table to dev_pm_opp_put_regulator()
  PM / OPP: fix debug/error messages in dev_pm_opp_of_get_sharing_cpus()
  PM / OPP: make _of_get_opp_desc_node() a static function
2016-12-12 20:44:01 +01:00
Srinivas Pandruvada
984edbdccc cpufreq: intel_pstate: Support for energy performance hints with HWP
It is possible to provide hints to the HWP algorithms in the processor
to be more performance centric to more energy centric. These hints are
provided by using HWP energy performance preference (EPP) or energy
performance bias (EPB) settings.

The scope of these settings is per logical processor, which means that
each of the logical processors in the package can be programmed with a
different value.

This change provides cpufreq sysfs interface to provide hint. For each
policy, two additional attributes will be available to check and provide
hint. These attributes will only be present when the intel_pstate driver
is using HWP mode.

These attributes are:
 - energy_performance_available_preferences
 - energy_performance_preference

To get list of supported hints:
$ cat energy_performance_available_preferences
default performance balance_performance balance_power power

The current preference can be read or changed via cpufreq sysfs
attribute "energy_performance_preference". Reading from this attribute
will display current effective setting changed via any method. User can
write any of the valid preference string to this attribute. User can
always restore to power-on default by writing "default".

Implementation
Since these hints can be provided by direct MSR write or using some tools
like x86_energy_perf_policy, the driver internally doesn't maintain any
state. The user operation will result in direct read/write of MSR: 0x774
(HWP_REQUEST_MSR). Also driver use read modify write to update other
fields in this MSR.

Summary of changes:
 - struct cpudata field epp_saved is renamed to epp_powersave, as this
   stores the value to restore once policy is switched from performance
   to powersave to restore original powersave EPP value.
 - A new struct cpudata field epp_saved is used to store the raw MSR
   EPP/EPB value when a CPU goes offline or on suspend and restore on
   online/resume. This ensures that EPP value is restored to correct
   value irrespective of the means used to set.
 - EPP/EPB value ranges are fixed for each preference, which can be
   set for the cpufreq sysfs, so user request is mapped to/from this
   range.
 - New attributes are only added when HWP is present.
 - Since EPP value of 0 is valid the fields are initialized to
   -EINVAL when not valid. The field epp_default is read only once
   after powerup to avoid reading on subsequent CPU online operation
 - New suspend callback to store epp on suspend operation
 - Don't invalidate old epp_saved field on resume and online as now
   we can restore last epp value on suspend and this field can still
   have old EPP value sampled during switch to performance from
   powersave.
 - While here optimized setting of cpu_data->epp_powersave = epp in
   intel_pstate_hwp_set() as this was done in both true and false
   paths.
 - epp/epb set function returns error to caller on failure to pass
   on to user space for display.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-08 01:43:05 +01:00
Srinivas Pandruvada
b59fe54053 cpufreq: intel_pstate: Add locking around HWP requests
To avoid race conditions from multiple threads, increase the scope
of intel_pstate_limits_lock to include HWP requests also.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Subject ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-08 01:43:04 +01:00
Viresh Kumar
dfbe4678d7 PM / OPP: Add infrastructure to manage multiple regulators
This patch adds infrastructure to manage multiple regulators and updates
the only user (cpufreq-dt) of dev_pm_opp_set{put}_regulator().

This is preparatory work for adding full support for devices with
multiple regulators.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-06 02:27:59 +01:00
Chen Yu
4dd63b49a7 cpufreq: ondemand: Set MIN_FREQUENCY_UP_THRESHOLD to 1
Currently the minimal up_threshold is 11, and user may want to
use a smaller minimal up_threshold for performance tuning,
so MIN_FREQUENCY_UP_THRESHOLD could be set to 1 because:

1. Current systems wouldn't be affected as they have already
   a value >= 11.
2. New systems with a default kernel would keep still the default
   value that is >= 11.

Users now have the advantage that they can make their own decisions
and customize the 'trip point' to switch to the max frequency.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=65501
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-01 22:43:33 +01:00
Piotr Luc
58bf454272 cpufreq: intel_pstate: Add Knights Mill CPUID
Add Knights Mill (KNM) to the list of CPUIDs supported by intel_pstate.

Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-01 15:08:12 +01:00
Baoyou Xie
ab83805667 cpufreq: dt: Add support for zx296718
Add the compatible string for supporting the generic cpufreq driver on
the ZTE's zx296718 SoC.

Signed-off-by: Baoyou Xie <baoyou.xie@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-30 22:42:47 +01:00
Stephen Boyd
91291d9ad9 PM / OPP: Pass opp_table to dev_pm_opp_put_regulator()
Joonyoung Shim reported an interesting problem on his ARM octa-core
Odoroid-XU3 platform. During system suspend, dev_pm_opp_put_regulator()
was failing for a struct device for which dev_pm_opp_set_regulator() is
called earlier.

This happened because an earlier call to
dev_pm_opp_of_cpumask_remove_table() function (from cpufreq-dt.c file)
removed all the entries from opp_table->dev_list apart from the last CPU
device in the cpumask of CPUs sharing the OPP.

But both dev_pm_opp_set_regulator() and dev_pm_opp_put_regulator()
routines get CPU device for the first CPU in the cpumask. And so the OPP
core failed to find the OPP table for the struct device.

This patch attempts to fix this problem by returning a pointer to the
opp_table from dev_pm_opp_set_regulator() and using that as the
parameter to dev_pm_opp_put_regulator(). This ensures that the
dev_pm_opp_put_regulator() doesn't fail to find the opp table.

Note that similar design problem also exists with other
dev_pm_opp_put_*() APIs, but those aren't used currently by anyone and
so we don't need to update them for now.

Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Reported-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ Viresh: Wrote commit log and tested on exynos 5250 ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-30 22:41:28 +01:00
Tim Chen
de966cf4a4 sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO
Rename CONFIG_SCHED_ITMT for Intel Turbo Boost Max Technology 3.0
to CONFIG_SCHED_MC_PRIO.  This makes the configuration extensible
in future to other architectures that wish to similarly establish
CPU core priorities support in the scheduler.

The description in Kconfig is updated to reflect this change with
added details for better clarity.  The configuration is explicitly
default-y, to enable the feature on CPUs that have this feature.

It has no effect on non-TBM3 CPUs.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: jolsa@redhat.com
Cc: linux-acpi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/2b2ee29d93e3f162922d72d0165a1405864fbb23.1480444902.git.tim.c.chen@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-30 08:27:08 +01:00
Sebastian Andrzej Siewior
a3605c46e0 cpufreq: acpi-cpufreq: drop rdmsr_on_cpus() usage
The online / pre_down callback is invoked on the target CPU since commit
1cf4f629d9 ("cpu/hotplug: Move online calls to hotplugged cpu") which means
for the hotplug callback we can use rmdsrl() instead of rdmsr_on_cpus().

This leaves us with set_boost() as the only user which still needs to
read/write the MSR on different CPUs. There is no point in doing that
update on all cpus with the read modify write magic via per cpu data. We
simply can issue a function call on all online CPUs which also means that we
need half that many IPIs.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-28 14:31:06 +01:00
Sebastian Andrzej Siewior
4d66ddf28d cpufreq: acpi-cpufreq: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-28 14:31:06 +01:00
Arnd Bergmann
7a3ba767f6 cpufreq: intel_pstate: fix intel_pstate_exit_perf_limits() prototype
The addition of the generic governor support marked the
intel_pstate_exit_perf_limits as inline(), which fixed a warning,
but it introduced another warning:

drivers/cpufreq/intel_pstate.c: In function ‘intel_pstate_exit_perf_limits’:
drivers/cpufreq/intel_pstate.c:483:1: error: no return statement in function returning non-void [-Werror=return-type]

This changes it back to a 'void' return type, and changes the
corresponding intel_pstate_init_acpi_perf_limits() function to
be inline as well for consistency.

Fixes: 001c76f05b (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-28 14:24:21 +01:00
Srinivas Pandruvada
8442885fca cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode
When user has selected performance policy, then set the EPP (Energy
Performance Preference) or EPB (Energy Performance Bias) to maximum
performance mode.

Also when user switch back to powersave, then restore EPP/EPB to last
EPP/EPB value before entering performance mode. If user has not changed
EPP/EPB manually then it will be power on default value.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-28 14:23:56 +01:00
Rafael J. Wysocki
17669006ad cpufreq/intel_pstate: Use CPPC to get max performance
Use the acpi cppc_lib interface to get CPPC performance limits and update
the per cpu priority for the ITMT scheduler. If the highest performance of
CPUs differs the ITMT feature is enabled.

Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/0998b98943bcdec7d1ddd4ff27358da555ea8e92.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-24 20:44:20 +01:00
Srinivas Pandruvada
d5dd33d9de cpufreq: intel_pstate: increase precision of performance limits
Even with round up of limits->min_perf and limits->max_perf, in some
cases resultant performance is 100 MHz less than the desired.

For example when the maximum frequency is 3.50 GHz, setting
scaling_min_frequency to 2.3 GHz always results in 2.2 GHz minimum.

Currently the fixed floating point operation uses 8 bit precision for
calculating limits->min_perf and limits->max_perf. For some operations
in this driver the 14 bit precision is used. Using the 14 bit precision
also for calculating limits->min_perf and limits->max_perf, addresses
this issue.

Introduced fp_ext_toint() equivalent to fp_toint() and int_ext_tofp()
equivalent to int_tofp() with 14 bit precision.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-22 02:31:49 +01:00
Srinivas Pandruvada
46992d6b55 cpufreq: intel_pstate: round up min_perf limits
In some use cases, user wants to enforce a minimum performance limit on
CPUs. But because of simple division the resultant performance is 100 MHz
less than the desired in some cases.

For example when the maximum frequency is 3.50 GHz, setting
scaling_min_frequency to 1.6 GHz always results in 1.5 GHz minimum. With
simple round up, the frequency can be set to 1.6 GHz to minimum in this
case. This round up is already done to max_policy_pct and max_perf, so do
the same for min_policy_pct and min_perf.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-22 02:31:48 +01:00
Rafael J. Wysocki
30248feff5 cpufreq: Make cpufreq_update_policy() void
The return value of cpufreq_update_policy() is never used, so make
it void.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-11-21 14:35:43 +01:00
Rafael J. Wysocki
182e36af06 cpufreq: Avoid using inactive policies
There are two places in the cpufreq core in which low-level driver
callbacks may be invoked for an inactive cpufreq policy, which isn't
guaranteed to work in general.  Both are due to possible races with
CPU offline.

First, in cpufreq_get(), the policy may become inactive after
the check against policy->cpus in cpufreq_cpu_get() and before
policy->rwsem is acquired, in which case using it going forward may
not be correct.

Second, an analogous situation is possible in cpufreq_update_policy().

Avoid using inactive policies by adding policy_is_inactive() checks
to the code in the above places.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-11-21 14:35:42 +01:00
Rafael J. Wysocki
001c76f05b cpufreq: intel_pstate: Generic governors support
There may be reasons to use generic cpufreq governors (eg. schedutil)
on Intel platforms instead of the intel_pstate driver's internal
governor.  However, that currently can only be done by disabling
intel_pstate altogether and using the acpi-cpufreq driver instead
of it, which is subject to limitations.

First of all, acpi-cpufreq only works on systems where the _PSS
object is present in the ACPI tables for all logical CPUs.  Second,
on those systems acpi-cpufreq will only use frequencies listed by
_PSS which may be suboptimal.  In particular, by convention, the
whole turbo range is represented in _PSS as a single P-state and
the frequency assigned to it is greater by 1 MHz than the greatest
non-turbo frequency listed by _PSS.  That may confuse governors to
use turbo frequencies less frequently which may lead to suboptimal
performance.

For this reason, make it possible to use the intel_pstate driver
with generic cpufreq governors as a "normal" cpufreq driver.  That
mode is enforced by adding intel_pstate=passive to the kernel
command line and cannot be disabled at run time.  In that mode,
intel_pstate provides a cpufreq driver interface including
the ->target() and ->fast_switch() callbacks and is listed in
scaling_driver as "intel_cpufreq".

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Doug Smythies <dsmythies@telus.net>
2016-11-21 14:32:32 +01:00
Rafael J. Wysocki
d0ea59e188 cpufreq: intel_pstate: Request P-states control from SMM if needed
Currently, intel_pstate is unable to control P-states on my
IvyBridge-based Acer Aspire S5, because they are controlled by SMM
on that machine by default and it is necessary to request OS control
of P-states from it via the SMI Command register exposed in the ACPI
FADT.  intel_pstate doesn't do that now, but acpi-cpufreq and other
cpufreq drivers for x86 platforms do.

Address this problem by making intel_pstate use the ACPI-defined
mechanism as well.  However, intel_pstate is not modular and it
doesn't need the module refcount tricks played by
acpi_processor_notify_smm(), so export the core of this function
to it as acpi_processor_pstate_control() and make it call that.
[The changes in processor_perflib.c related to this should not
make any functional difference for the acpi_processor_notify_smm()
users].

To be safe, only call acpi_processor_notify_smm() from intel_pstate
if ACPI _PPC support is enabled in it.

Suggested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-11-17 22:47:47 +01:00
Geert Uytterhoeven
f0da898b46 cpufreq: dt: Add support for r8a7743 and r8a7745
Add the compatible strings for supporting the generic cpufreq driver on
the Renesas RZ/G1M (r8a7743) and RZ/G1E (r8a7745) SoCs.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-16 23:31:52 +01:00
Denis Kirjanov
8a10c06a20 cpufreq: powernv: Disable preemption while checking CPU throttling state
With preemption turned on we can read incorrect throttling state
while being switched to CPU on a different chip.

 BUG: using smp_processor_id() in preemptible [00000000] code: cat/7343
 caller is .powernv_cpufreq_throttle_check+0x2c/0x710
 CPU: 13 PID: 7343 Comm: cat Not tainted 4.8.0-rc5-dirty #1
 Call Trace:
 [c0000007d25b75b0] [c000000000971378] .dump_stack+0xe4/0x150 (unreliable)
 [c0000007d25b7640] [c0000000005162e4] .check_preemption_disabled+0x134/0x150
 [c0000007d25b76e0] [c0000000007b63ac] .powernv_cpufreq_throttle_check+0x2c/0x710
 [c0000007d25b7790] [c0000000007b6d18] .powernv_cpufreq_target_index+0x288/0x360
 [c0000007d25b7870] [c0000000007acee4] .__cpufreq_driver_target+0x394/0x8c0
 [c0000007d25b7920] [c0000000007b22ac] .cpufreq_set+0x7c/0xd0
 [c0000007d25b79b0] [c0000000007adf50] .store_scaling_setspeed+0x80/0xc0
 [c0000007d25b7a40] [c0000000007ae270] .store+0xa0/0x100
 [c0000007d25b7ae0] [c0000000003566e8] .sysfs_kf_write+0x88/0xb0
 [c0000007d25b7b70] [c0000000003553b8] .kernfs_fop_write+0x178/0x260
 [c0000007d25b7c10] [c0000000002ac3cc] .__vfs_write+0x3c/0x1c0
 [c0000007d25b7cf0] [c0000000002ad584] .vfs_write+0xc4/0x230
 [c0000007d25b7d90] [c0000000002aeef8] .SyS_write+0x58/0x100
 [c0000007d25b7e30] [c00000000000bfec] system_call+0x38/0xfc

Fixes: 09a972d162 (cpufreq: powernv: Report cpu frequency throttling)
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-16 23:29:59 +01:00
Stratos Karafotis
42d951c851 cpufreq: conservative: Fix comment explaining frequency updates
The original comment about the frequency increase to maximum is wrong.

Both increase and decrease happen at steps.

Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-16 23:15:56 +01:00
Stratos Karafotis
00bfe05889 cpufreq: conservative: Decrease frequency faster for deferred updates
Conservative governor changes the CPU frequency in steps.
That means that if a CPU runs at max frequency, it will need several
sampling periods to return to min frequency when the workload
is finished.

If the update function that calculates the load and target frequency
is deferred, the governor might need even more time to decrease the
frequency.

This may have impact to power consumption and after all conservative
should decrease the frequency if there is no workload at every sampling
rate.

To resolve the above issue calculate the number of sampling periods
that the update is deferred. Considering that for each sampling period
conservative should drop the frequency by a freq_step because the
CPU was idle apply the proper subtraction to requested frequency.

Below, the kernel trace with and without this patch. First an
intensive workload is applied on a specific CPU. Then the workload
is removed and the CPU goes to idle.

WITHOUT

     <idle>-0     [007] dN..   620.329153: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   620.350857: cpu_frequency: state=1700000 cpu_id=7
kworker/7:2-556   [007] ....   620.370856: cpu_frequency: state=1900000 cpu_id=7
kworker/7:2-556   [007] ....   620.390854: cpu_frequency: state=2100000 cpu_id=7
kworker/7:2-556   [007] ....   620.411853: cpu_frequency: state=2200000 cpu_id=7
kworker/7:2-556   [007] ....   620.432854: cpu_frequency: state=2400000 cpu_id=7
kworker/7:2-556   [007] ....   620.453854: cpu_frequency: state=2600000 cpu_id=7
kworker/7:2-556   [007] ....   620.494856: cpu_frequency: state=2900000 cpu_id=7
kworker/7:2-556   [007] ....   620.515856: cpu_frequency: state=3100000 cpu_id=7
kworker/7:2-556   [007] ....   620.536858: cpu_frequency: state=3300000 cpu_id=7
kworker/7:2-556   [007] ....   620.557857: cpu_frequency: state=3401000 cpu_id=7
     <idle>-0     [007] d...   669.591363: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   669.591939: cpu_idle: state=4294967295 cpu_id=7
     <idle>-0     [007] d...   669.591980: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] dN..   669.591989: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   670.201224: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   670.221975: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   670.222016: cpu_frequency: state=3300000 cpu_id=7
     <idle>-0     [007] d...   670.222026: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   670.234964: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   670.801251: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.236046: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   671.236073: cpu_frequency: state=3100000 cpu_id=7
     <idle>-0     [007] d...   671.236112: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.393437: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   671.401277: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.404083: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   671.404111: cpu_frequency: state=2900000 cpu_id=7
     <idle>-0     [007] d...   671.404125: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.404974: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   671.501180: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.995414: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   671.995459: cpu_frequency: state=2800000 cpu_id=7
     <idle>-0     [007] d...   671.995469: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   671.996287: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   672.001305: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.078374: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   672.078410: cpu_frequency: state=2600000 cpu_id=7
     <idle>-0     [007] d...   672.078419: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.158020: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   672.158040: cpu_frequency: state=2400000 cpu_id=7
     <idle>-0     [007] d...   672.158044: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.160038: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   672.234557: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.237121: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   672.237174: cpu_frequency: state=2100000 cpu_id=7
     <idle>-0     [007] d...   672.237186: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.237778: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   672.267902: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.269860: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   672.269906: cpu_frequency: state=1900000 cpu_id=7
     <idle>-0     [007] d...   672.269914: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.271902: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...   672.751342: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...   672.823056: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-556   [007] ....   672.823095: cpu_frequency: state=1600000 cpu_id=7

WITH

     <idle>-0     [007] dN..  4380.928009: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-399   [007] ....  4380.949767: cpu_frequency: state=2000000 cpu_id=7
kworker/7:2-399   [007] ....  4380.969765: cpu_frequency: state=2200000 cpu_id=7
kworker/7:2-399   [007] ....  4381.009766: cpu_frequency: state=2500000 cpu_id=7
kworker/7:2-399   [007] ....  4381.029767: cpu_frequency: state=2600000 cpu_id=7
kworker/7:2-399   [007] ....  4381.049769: cpu_frequency: state=2800000 cpu_id=7
kworker/7:2-399   [007] ....  4381.069769: cpu_frequency: state=3000000 cpu_id=7
kworker/7:2-399   [007] ....  4381.089771: cpu_frequency: state=3100000 cpu_id=7
kworker/7:2-399   [007] ....  4381.109772: cpu_frequency: state=3400000 cpu_id=7
kworker/7:2-399   [007] ....  4381.129773: cpu_frequency: state=3401000 cpu_id=7
     <idle>-0     [007] d...  4428.226159: cpu_idle: state=1 cpu_id=7
     <idle>-0     [007] d...  4428.226176: cpu_idle: state=4294967295 cpu_id=7
     <idle>-0     [007] d...  4428.226181: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4428.227177: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...  4428.551640: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4428.649239: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-399   [007] ....  4428.649268: cpu_frequency: state=2800000 cpu_id=7
     <idle>-0     [007] d...  4428.649278: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4428.689856: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...  4428.799542: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4428.801683: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-399   [007] ....  4428.801748: cpu_frequency: state=1700000 cpu_id=7
     <idle>-0     [007] d...  4428.801761: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4428.806545: cpu_idle: state=4294967295 cpu_id=7
...
     <idle>-0     [007] d...  4429.051880: cpu_idle: state=4 cpu_id=7
     <idle>-0     [007] d...  4429.086240: cpu_idle: state=4294967295 cpu_id=7
kworker/7:2-399   [007] ....  4429.086293: cpu_frequency: state=1600000 cpu_id=7

Without the patch the CPU dropped to min frequency after 3.2s
With the patch applied the CPU dropped to min frequency after 0.86s

Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-16 23:15:56 +01:00
Viresh Kumar
d5f905a93c cpufreq: conservative: Rename get_freq_target() to get_freq_step()
What's returned from this function is the delta by which the frequency
must be increased or decreased and not the final frequency that should
be selected.

Name it properly to match its purpose. Also update the variables used to
store that value.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-14 21:34:52 +01:00
Akshay Adiga
c9a81e6864 cpufreq: powernv: Fix uninitialized lpstate_idx in gpstates_timer_handler()
lpstate_idx remains uninitialized in the case when elapsed_time
is greater than MAX_RAMP_DOWN_TIME.  At the end of rampdown the
global pstate should be equal to the local pstate.

Fixes: 20b15b7663 (cpufreq: powernv: Use PMCR to verify global and localpstate)
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-14 21:32:31 +01:00
Srinivas Pandruvada
7f7a516ee3 cpufreq: intel_pstate: Use CPU load based algorithm for PM_MOBILE
Use get_target_pstate_use_cpu_load() to calculate target P-State for
devices, with the preferred power management profile in ACPI FADT
set to PM_MOBILE.

This may help in resolving some thermal issues caused by low sustained
cpu bound workloads. The current algorithm tend to over provision in this
case as it doesn't look at the CPU busyness.

Also included the fix from Arnd Bergmann <arnd@arndb.de> to solve compile
issue, when CONFIG_ACPI is not defined.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-14 21:25:23 +01:00
Robert Jarzmik
dcd2ea410d cpufreq: pxa: use generic platdev driver for device-tree
For device-tree based pxa25x and pxa27x platforms, cpufreq-dt driver is
doing the job as well as pxa2xx-cpufreq, so add these platforms to the
compatibility list.

This won't work for legacy non device-tree platforms where
pxa2xx-cpufreq is still required.

Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 02:08:42 +01:00
Markus Mayer
ee7930ee27 cpufreq: stats: New sysfs attribute for clearing statistics
Allow CPUfreq statistics to be cleared by writing anything to
/sys/.../cpufreq/stats/reset.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 01:51:11 +01:00
Viresh Kumar
26f0dbc9ab cpufreq: governor: Don't use 'timer' keyword
The earlier implementation of governors used background timers and so
functions, mutex, etc had 'timer' keyword in their names.

But that's not true anymore. Replace 'timer' with 'update', as those
functions, variables are based around updates to frequency.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 01:48:33 +01:00
Akshay Adiga
20b15b7663 cpufreq: powernv: Use PMCR to verify global and local pstate
As fast_switch() may get called with interrupt disable mode, we cannot
hold a mutex to update the global_pstate_info. So currently, fast_switch()
does not update the global_pstate_info and it will end up with stale data
whenever pstate is updated through fast_switch().

As the gpstate_timer can fire after fast_switch() has updated the pstates,
the timer handler cannot rely on the cached values of local and global
pstate and needs to read it from the PMCR.

Only gpstate_timer_handler() is affected by the stale cached pstate data
beacause either fast_switch() or target_index() routines will be called
for a given govenor, but gpstate_timer can fire after the governor has
changed to schedutil.

Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 01:41:02 +01:00
Akshay Adiga
60c9efb8f7 cpufreq: powernv: Adding fast_switch for schedutil
Adding fast_switch which does light weight operation to set the desired
pstate. Both global and local pstates are set to the same desired pstate.

Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 01:41:02 +01:00
Wei Yongjun
e7d040b8a2 cpufreq: brcmstb-avs-cpufreq: make symbol brcm_avs_cpufreq_attr static
Fixes the following sparse warning:

drivers/cpufreq/brcmstb-avs-cpufreq.c:982:18: warning:
 symbol 'brcm_avs_cpufreq_attr' was not declared. Should it be static?

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Markus Mayer <mmayer@broadcom.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-11 01:32:53 +01:00
Srinivas Pandruvada
a410c03d66 cpufreq: intel_pstate: protect limits variable
The limits variable gets modified from intel_pstate sysfs and also gets
modified from cpufreq sysfs. So protect with a mutex to keep data
integrity, when they are getting modified from multiple threads.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:10:54 +01:00
Markus Mayer
33de45c133 cpufreq: brcmstb-avs-cpufreq: add debugfs support
In order to aid debugging, we add a debugfs interface to the driver
that allows direct interaction with the AVS co-processor.

The debugfs interface provides a means for reading all and writing some
of the mailbox registers directly from the shell prompt and enables a
user to execute the communications protocol between ARM CPU and AVS CPU
step-by-step.

This interface should be used for debugging purposes only.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:07:38 +01:00
Markus Mayer
de322e0859 cpufreq: brcmstb-avs-cpufreq: AVS CPUfreq driver for Broadcom STB SoCs
This driver supports voltage and frequency scaling on Broadcom STB SoCs
using AVS firmware with DFS and DVFS support.

Actual frequency or voltage scaling is done exclusively by the AVS
firmware. The driver merely provides a standard CPUfreq interface to
other kernel components and userland, and instructs the AVS firmware to
perform frequency or voltage changes on its behalf.

Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:07:37 +01:00
Masahiro Yamada
1758b3374b cpufreq: dt: add Socionext UniPhier SoCs support
Add compatible strings for Pro5, PXs2, LD6b, LD11, LD20 SoCs to use
the generic cpufreq driver.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:05:42 +01:00
Srinivas Pandruvada
5879f87739 cpufreq: intel_pstate: Reduce impact due to rounding error
When policy->max and policy->min are same, in some cases they don't
result in the same frequency cap. The max_policy_pct is rounded up but
not min_perf_pct. So even when they are same, results in different
percentage or maximum and minimum.
Since minimum is a conservative value for power, a lower value without
rounding is better in most of the cases, unless user wants
policy->max = policy->min.
This change uses use the same policy percentage when policy->max and
policy->min are same.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:04:06 +01:00
Srinivas Pandruvada
eae48f046f cpufreq: intel_pstate: Per CPU P-State limits
Intel P-State offers two interface to set performance limits:
- Intel P-State sysfs
	/sys/devices/system/cpu/intel_pstate/max_perf_pct
	/sys/devices/system/cpu/intel_pstate/min_perf_pct
- cpufreq
	/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq
	/sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq

In the current implementation both of the above methods, change limits
to every CPU in the system. Moreover the limits placed using cpufreq
policy interface also presented in the Intel P-State sysfs via modified
max_perf_pct and min_per_pct during sysfs reads. This allows to check
percent of reduced/increased performance, irrespective of method used to
limit.

There are some new generations of processors, where it is possible to
have limits placed on individual CPU cores. Using cpufreq interface it
is possible to set limits on each CPU. But the current processing will
use last limits placed on all CPUs. So the per core limit feature of
CPUs can't be used.

This change brings in capability to set P-States limits for each CPU,
with some limitations. In this case what should be the read of
max_perf_pct and min_perf_pct? It can be most restrictive limits placed
on any CPU or max possible performance on any given CPU on which no
limits are placed. In either case someone will have issue.

So the consensus is, we can't have both sysfs controls present when user
wants to use limit per core limits.
- By default per-core-control feature is not enabled. So no one will
notice any difference.
- The way to enable is by kernel command line
intel_pstate=per_cpu_perf_limits
- When the per-core-controls are enabled there is no display of for both
read and write on
	/sys/devices/system/cpu/intel_pstate/max_perf_pct
	/sys/devices/system/cpu/intel_pstate/min_perf_pct
- User can change limits using
	/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq
	/sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq
	/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
- User can still observe turbo percent and number of P-States from
	/sys/devices/system/cpu/intel_pstate/turbo_pct
	/sys/devices/system/cpu/intel_pstate/num_pstates
- User can read write system wide turbo status
	/sys/devices/system/cpu/no_turbo

While changing this BUG_ON is changed to WARN_ON, as they are not fatal
errors for the system.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:04:06 +01:00
Linus Walleij
ae8b8d8f86 cpufreq: retire the Integrator cpufreq driver
After switching the core module clocks controlling the Integrator
clock frequencies to the common clock framework, defining the
operating points in the device tree, and activating the generic
DT-based CPUfreq driver, we can retire the old Integrator
cpufreq driver.

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:01:18 +01:00
Linus Walleij
650ec6cfe3 cpufreq: enable the DT cpufreq driver on the Integrators
This enables the generic DT and OPP-based cpufreq driver on the
ARM Integrator/AP and Integrator/CP.

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-01 06:01:18 +01:00
Rafael J. Wysocki
fe0f59c412 Merge back earlier cpufreq material for v4.10. 2016-10-30 06:12:50 +01:00
Rafael J. Wysocki
8b2ada27dc Merge branches 'pm-cpufreq-fixes' and 'pm-sleep-fixes'
* pm-cpufreq-fixes:
  cpufreq: intel_pstate: Always set max P-state in performance mode
  cpufreq: intel_pstate: Set P-state upfront in performance mode

* pm-sleep-fixes:
  PM / suspend: Fix missing KERN_CONT for suspend message
2016-10-29 01:29:17 +02:00
Rafael J. Wysocki
2f1d407ada cpufreq: intel_pstate: Always set max P-state in performance mode
The only times at which intel_pstate checks the policy set for
a given CPU is the initialization of that CPU and updates of its
policy settings from cpufreq when intel_pstate_set_policy() is
invoked.

That is insufficient, however, because intel_pstate uses the same
P-state selection function for all CPUs regardless of the policy
setting for each of them and the P-state limits are shared between
them.  Thus if the policy is set to "performance" for a particular
CPU, it may not behave as expected if the cpufreq settings are
changed subsequently for another CPU.

That can be easily demonstrated by writing "performance" to
scaling_governor for all CPUs and then switching it to "powersave"
for one of them in which case all of the CPUs will behave as though
their scaling_governor were all "powersave" (even though the policy
still appears to be "performance" for the remaining CPUs).

Fix this problem by modifying intel_pstate_adjust_busy_pstate() to
always set the P-state to the maximum allowed by the current limits
for all CPUs whose policy is set to "performance".

Note that it still is recommended to always change the policy setting
in the same way for all CPUs even with this fix applied to avoid
confusion.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-24 23:20:25 +02:00
Rafael J. Wysocki
a6c6ead141 cpufreq: intel_pstate: Set P-state upfront in performance mode
After commit a4675fbc4a (cpufreq: intel_pstate: Replace timers with
utilization update callbacks) the cpufreq governor callbacks may not
be invoked on NOHZ_FULL CPUs and, in particular, switching to the
"performance" policy via sysfs may not have any effect on them.  That
is a problem, because it usually is desirable to squeeze the last
bit of performance out of those CPUs, so work around it by setting
the maximum P-state (within the limits) in intel_pstate_set_policy()
upfront when the policy is CPUFREQ_POLICY_PERFORMANCE.

Fixes: a4675fbc4a (cpufreq: intel_pstate: Replace timers with utilization update callbacks)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-10-21 22:18:22 +02:00
Srinivas Pandruvada
185d82456e cpufreq: intel_pstate: Remove PID debugfs when not used
When target state is calculated using get_target_pstate_use_cpu_load(),
PID controller is not used, hence it has no effect on performance.
So don't present debugfs entries to tune PID controller.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-21 22:16:26 +02:00
Rafael J. Wysocki
1d29815ef2 cpufreq: intel_pstate: Drop boost_iowait flag
The "IOwait boosting" mechanism is only used by the
get_target_pstate_use_cpu_load() governor function and the
boost_iowait flag in pid_params is always set when that function
is in use (and it is never set otherwise).  This means that the
boost_iowait flag is in fact redundant and may be dropped.

For this reason, replace the boost_iowait flag check in
intel_pstate_update_util() with an equivalent check against
pstate_funcs.get_target_pstate and drop that flag.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-10-21 22:13:51 +02:00
Prakash, Prashanth
974f86498e cpufreq / CPPC: Add MODULE_DEVICE_TABLE for cppc_cpufreq driver
MODULE_DEVICE_TABLE is added so that CPPC cpufreq module can be
automatically loaded when we have a acpi processor device with
"ACPI0007" hid.

Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-21 15:11:23 +02:00
Linus Torvalds
ef98988ba3 More power management updates for v4.9-rc1
- Fix two cpufreq regressions causing undesirable changes in
    behavior to appear (one in the core and one in the conservative
    governor) introduced during the 4.8 cycle (Aaro Koskinen, Rafael
    Wysocki).
 
  - Fix the way the intel_pstate driver accesses MSRs related to the
    hardware-managed P-states (HWP) feature during the initialization
    which currently is unsafe and may cause the processor to generate
    a general protection fault (Srinivas Pandruvada).
 
  - Rework the intel_pstate's P-state selection algorithm used on Atom
    processors to avoid known problems with the current one and to
    make the computation more straightforward, which also happens to
    improve performance in multiple benchmarks a bit (Rafael Wysocki).
 
  - Improve two comments in the intel_pstate driver (Rafael Wysocki).
 
  - Fix the desired performance computation in the CPPC cpufreq driver
    (Hoan Tran).
 
  - Fix the devfreq core to avoid printing misleading error messages
    in some cases (Tobias Jakobi).
 
  - Fix the error code path in devfreq_add_device() to use proper
    locking around list modifications (Axel Lin).
 
  - Fix a build failure and remove a couple of redundant updates of
    variables in the exynos-nocp devfreq driver (Axel Lin).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJYANqMAAoJEILEb/54YlRx+U4P/A1ZJ/93u+ChipehTckNDogR
 xMCNsUz6Pn9VIdilEnaUcsCaNc93R7e6KjwgSO7Caeriw4syW3YZz2LuGQTihs8b
 5vnvVvya9Bw1aXUweeayogMyOYZV1y1G/yzq7/+c02/cgxO8WBPnmGrE17Mhu43q
 IF1pQJ257e0HgKKspuzy+twRCLwnOqHbvWtQnEi2rzuaGrsK7XZk9yRuaXK4NshQ
 +M9hrHlw+OdmI+9lLmH8Ap2G68EJ4Q2o69sbAQ6MWgxRU44D0uEqgbT16cIdDs3J
 c9VCgiqHuhj2bfd9vqNAjr4bGdy4iwcEKyz2nkIl0KEq9tTPtJky8v6WUzV0+rbR
 xVbGIWg8X5wKe/Ndve2GLDrqhuVJ0hZkRdqpzRgm08VBGpRlmM0Gjqk+uEKqA2n2
 IhidwTlzbQFVh437cjqupCKVXPb2POdgNyk4fEK7WVckRR3K7LR+rXoWN1uwW2YJ
 9rjQBX0n2UfZ9Ft+gVO6/faWZlqLPmx60lHQSXNHvNY04HfZ5EiRFGEZEX1g0Uep
 16nYHpB+qx/GwR7druGQVVY58YEp2g68jbpL2ehr2lLBYVSExy0kiOrS7GpoA0vd
 ngImjroJ842wQYjfek4Gi8VfGu+tsuMIVdjltOn1sVZ1QvprgF/atZHcN84eV8BU
 OyEGOQ7H1idEZ14Oa19C
 =3yoB
 -----END PGP SIGNATURE-----

Merge tag 'pm-extra-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "This includes a couple of fixes for cpufreq regressions introduced in
  4.8, a rework of the intel_pstate algorithm used on Atom processors
  (that took some time to test) plus a fix and a couple of cleanups in
  that driver, a CPPC cpufreq driver fix, and a some devfreq fixes and
  cleanups (core and exynos-nocp).

  Specifics:

   - Fix two cpufreq regressions causing undesirable changes in behavior
     to appear (one in the core and one in the conservative governor)
     introduced during the 4.8 cycle (Aaro Koskinen, Rafael Wysocki).

   - Fix the way the intel_pstate driver accesses MSRs related to the
     hardware-managed P-states (HWP) feature during the initialization
     which currently is unsafe and may cause the processor to generate a
     general protection fault (Srinivas Pandruvada).

   - Rework the intel_pstate's P-state selection algorithm used on Atom
     processors to avoid known problems with the current one and to make
     the computation more straightforward, which also happens to improve
     performance in multiple benchmarks a bit (Rafael Wysocki).

   - Improve two comments in the intel_pstate driver (Rafael Wysocki).

   - Fix the desired performance computation in the CPPC cpufreq driver
     (Hoan Tran).

   - Fix the devfreq core to avoid printing misleading error messages in
     some cases (Tobias Jakobi).

   - Fix the error code path in devfreq_add_device() to use proper
     locking around list modifications (Axel Lin).

   - Fix a build failure and remove a couple of redundant updates of
     variables in the exynos-nocp devfreq driver (Axel Lin)"

* tag 'pm-extra-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  cpufreq: CPPC: Correct desired_perf calculation
  cpufreq: conservative: Fix next frequency selection
  cpufreq: skip invalid entries when searching the frequency
  cpufreq: intel_pstate: Fix struct pstate_adjust_policy kerneldoc
  cpufreq: intel_pstate: Proportional algorithm for Atom
  PM / devfreq: Skip status update on uninitialized previous_freq
  PM / devfreq: Add proper locking around list_del()
  PM / devfreq: exynos-nocp: Remove redundant code
  PM / devfreq: exynos-nocp: Select REGMAP_MMIO
  cpufreq: intel_pstate: Clarify comment in get_target_pstate_use_performance()
  cpufreq: intel_pstate: Fix unsafe HWP MSR access
2016-10-14 12:46:13 -07:00
Hoan Tran
c197d75803 cpufreq: CPPC: Correct desired_perf calculation
The desired_perf is an abstract performance number. Its value should
be in the range of [lowest perf, highest perf] of CPPC.
The correct calculation is
  desired_perf = freq * cppc_highest_perf / cppc_dmi_max_khz

And cppc_cpufreq_set_target() returns if desired_perf is exactly
the same with the old perf.

Signed-off-by: Hoan Tran <hotran@apm.com>
Reviewed-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-13 23:10:41 +02:00
Rafael J. Wysocki
abb6627910 cpufreq: conservative: Fix next frequency selection
Commit d352cf47d9 (cpufreq: conservative: Do not use transition
notifications) overlooked the case when the "frequency step" used
by the conservative governor is small relative to the distances
between the available frequencies and broke the algorithm by
using policy->cur instead of the previously requested frequency
when computing the next one.

As a result, the governor may not be able to go outside of a narrow
range between two consecutive available frequencies.

Fix the problem by making the governor save the previously requested
frequency and select the next one relative that value (unless it is
out of range, in which case policy->cur will be used instead).

Fixes: d352cf47d9 (cpufreq: conservative: Do not use transition notifications)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=177171
Reported-and-tested-by: Aleksey Rybalkin <aleksey@rybalkin.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 4.8+ <stable@vger.kernel.org> # 4.8+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-13 14:42:06 +02:00
Rafael J. Wysocki
3954517e2f cpufreq: intel_pstate: Fix struct pstate_adjust_policy kerneldoc
It looks like the name of struct pstate_adjust_policy was updated
without updating its kerneldoc comment accordingly, so fix that
mistake.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-12 20:58:14 +02:00
Rafael J. Wysocki
0843e83c1a cpufreq: intel_pstate: Proportional algorithm for Atom
The PID algorithm used by the intel_pstate driver tends to drive
performance to the minimum for workloads with utilization below the
setpoint, which is undesirable, so replace it with a modified
"proportional" algorithm on Atom.

The new algorithm will set the new P-state to be 1.25 times the
available maximum times the (frequency-invariant) utilization during
the previous sampling period except when the target P-state computed
this way is lower than the average P-state during the previous
sampling period.  In the latter case, it will increase the target by
50% of the difference between it and the average P-state to prevent
performance from dropping down too fast in some cases.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-10-12 20:58:13 +02:00
Rafael J. Wysocki
f00593a4bd cpufreq: intel_pstate: Clarify comment in get_target_pstate_use_performance()
Make the comment explaining the meaning of the perf_scaled variable
in get_target_pstate_use_performance() more straightforward.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-09 18:54:57 +02:00
Srinivas Pandruvada
f9f4872df6 cpufreq: intel_pstate: Fix unsafe HWP MSR access
This is a requirement that MSR MSR_PM_ENABLE must be set to 0x01 before
reading MSR_HWP_CAPABILITIES on a given CPU. If cpufreq init() is
scheduled on a CPU which is not same as policy->cpu or migrates to a
different CPU before calling msr read for MSR_HWP_CAPABILITIES, it
is possible that MSR_PM_ENABLE was not to set to 0x01 on that CPU.
This will cause GP fault. So like other places in this path
rdmsrl_on_cpu should be used instead of rdmsrl.

Moreover the scope of MSR_HWP_CAPABILITIES is on per thread basis, so it
should be read from the same CPU, for which MSR MSR_HWP_REQUEST is
getting set.

dmesg dump or warning:

[   22.014488] WARNING: CPU: 139 PID: 1 at arch/x86/mm/extable.c:50 ex_handler_rdmsr_unsafe+0x68/0x70
[   22.014492] unchecked MSR access error: RDMSR from 0x771
[   22.014493] Modules linked in:
[   22.014507] CPU: 139 PID: 1 Comm: swapper/0 Not tainted 4.7.5+ #1
...
...
[   22.014516] Call Trace:
[   22.014542]  [<ffffffff813d7dd1>] dump_stack+0x63/0x82
[   22.014558]  [<ffffffff8107bc8b>] __warn+0xcb/0xf0
[   22.014561]  [<ffffffff8107bcff>] warn_slowpath_fmt+0x4f/0x60
[   22.014563]  [<ffffffff810676f8>] ex_handler_rdmsr_unsafe+0x68/0x70
[   22.014564]  [<ffffffff810677d9>] fixup_exception+0x39/0x50
[   22.014604]  [<ffffffff8102e400>] do_general_protection+0x80/0x150
[   22.014610]  [<ffffffff817f9ec8>] general_protection+0x28/0x30
[   22.014635]  [<ffffffff81687940>] ? get_target_pstate_use_performance+0xb0/0xb0
[   22.014642]  [<ffffffff810600c7>] ? native_read_msr+0x7/0x40
[   22.014657]  [<ffffffff81688123>] intel_pstate_hwp_set+0x23/0x130
[   22.014660]  [<ffffffff81688406>] intel_pstate_set_policy+0x1b6/0x340
[   22.014662]  [<ffffffff816829bb>] cpufreq_set_policy+0xeb/0x2c0
[   22.014664]  [<ffffffff81682f39>] cpufreq_init_policy+0x79/0xe0
[   22.014666]  [<ffffffff81682cb0>] ? cpufreq_update_policy+0x120/0x120
[   22.014669]  [<ffffffff816833a6>] cpufreq_online+0x406/0x820
[   22.014671]  [<ffffffff8168381f>] cpufreq_add_dev+0x5f/0x90
[   22.014717]  [<ffffffff81530ac8>] subsys_interface_register+0xb8/0x100
[   22.014719]  [<ffffffff816821bc>] cpufreq_register_driver+0x14c/0x210
[   22.014749]  [<ffffffff81fe1d90>] intel_pstate_init+0x39d/0x4d5
[   22.014751]  [<ffffffff81fe13f2>] ? cpufreq_gov_dbs_init+0x12/0x12

Cc: 4.3+ <stable@vger.kernel.org> # 4.3+
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-10-09 18:54:13 +02:00
Linus Torvalds
82fa407da0 Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:

 - Correct ARMs dma-mapping to use the correct printk format strings.

 - Avoid defining OBJCOPYFLAGS globally which upsets lkdtm rodata
   testing.

 - Cleanups to ARMs asm/memory.h include.

 - L2 cache cleanups.

 - Allow flat nommu binaries to be executed on ARM MMU systems.

 - Kernel hardening - add more read-only after init annotations,
   including making some kernel vdso variables const.

 - Ensure AMBA primecell clocks are appropriately defaulted.

 - ARM breakpoint cleanup.

 - Various StrongARM 11x0 and companion chip (SA1111) updates to bring
   this legacy platform to use more modern APIs for (eg) GPIOs and
   interrupts, which will allow us in the future to reduce some of the
   board-level driver clutter and elimate function callbacks into board
   code via platform data. There still appears to be interest in these
   platforms!

 - Remove the now redundant secure_flush_area() API.

 - Module PLT relocation optimisations. Ard says: This series of 4
   patches optimizes the ARM PLT generation code that is invoked at
   module load time, to get rid of the O(n^2) algorithm that results in
   pathological load times of 10 seconds or more for large modules on
   certain STB platforms.

 - ARMv7M cache maintanence support.

 - L2 cache PMU support

* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (35 commits)
  ARM: sa1111: provide to_sa1111_device() macro
  ARM: sa1111: add sa1111_get_irq()
  ARM: sa1111: clean up duplication in IRQ chip implementation
  ARM: sa1111: implement a gpio_chip for SA1111 GPIOs
  ARM: sa1111: move irq cleanup to separate function
  ARM: sa1111: use devm_clk_get()
  ARM: sa1111: use devm_kzalloc()
  ARM: sa1111: ensure we only touch RAB bus type devices when removing
  ARM: 8611/1: l2x0: add PMU support
  ARM: 8610/1: V7M: Add dsb before jumping in handler mode
  ARM: 8609/1: V7M: Add support for the Cortex-M7 processor
  ARM: 8608/1: V7M: Indirect proc_info construction for V7M CPUs
  ARM: 8607/1: V7M: Wire up caches for V7M processors with cache support.
  ARM: 8606/1: V7M: introduce cache operations
  ARM: 8605/1: V7M: fix notrace variant of save_and_disable_irqs
  ARM: 8604/1: V7M: Add support for reading the CTR with read_cpuid_cachetype()
  ARM: 8603/1: V7M: Add addresses for mem-mapped V7M cache operations
  ARM: 8602/1: factor out CSSELR/CCSIDR operations that use cp15 directly
  ARM: kernel: avoid brute force search on PLT generation
  ARM: kernel: sort relocation sections before allocating PLTs
  ...
2016-10-06 07:59:37 -07:00
Russell King
301a36fa70 Merge branches 'misc' and 'sa1111-base' into for-linus 2016-10-06 08:56:43 +01:00
Linus Torvalds
597f03f9d1 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
 "Yet another batch of cpu hotplug core updates and conversions:

   - Provide core infrastructure for multi instance drivers so the
     drivers do not have to keep custom lists.

   - Convert custom lists to the new infrastructure. The block-mq custom
     list conversion comes through the block tree and makes the diffstat
     tip over to more lines removed than added.

   - Handle unbalanced hotplug enable/disable calls more gracefully.

   - Remove the obsolete CPU_STARTING/DYING notifier support.

   - Convert another batch of notifier users.

   The relayfs changes which conflicted with the conversion have been
   shipped to me by Andrew.

   The remaining lot is targeted for 4.10 so that we finally can remove
   the rest of the notifiers"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
  cpufreq: Fix up conversion to hotplug state machine
  blk/mq: Reserve hotplug states for block multiqueue
  x86/apic/uv: Convert to hotplug state machine
  s390/mm/pfault: Convert to hotplug state machine
  mips/loongson/smp: Convert to hotplug state machine
  mips/octeon/smp: Convert to hotplug state machine
  fault-injection/cpu: Convert to hotplug state machine
  padata: Convert to hotplug state machine
  cpufreq: Convert to hotplug state machine
  ACPI/processor: Convert to hotplug state machine
  virtio scsi: Convert to hotplug state machine
  oprofile/timer: Convert to hotplug state machine
  block/softirq: Convert to hotplug state machine
  lib/irq_poll: Convert to hotplug state machine
  x86/microcode: Convert to hotplug state machine
  sh/SH-X3 SMP: Convert to hotplug state machine
  ia64/mca: Convert to hotplug state machine
  ARM/OMAP/wakeupgen: Convert to hotplug state machine
  ARM/shmobile: Convert to hotplug state machine
  arm64/FP/SIMD: Convert to hotplug state machine
  ...
2016-10-03 19:43:08 -07:00
Linus Torvalds
72d39926f0 ACPI material for v4.9-rc1
- Update of the ACPICA code in the kernel to upstream revision 20160831 with
    the following major changes:
    * New mechanism for GPE masking.
    * Fixes for issues related to the LoadTable operator and table loading.
    * Fixes for issues related to so-called module-level code (MLC), that is
      AML that doesn't belong to any methods.
    * Change of the return value of the _OSI method to reflect the Windows
      behavior.
    * GAS (Generic Address Structure) support fix related to 32-bit FADT
      addresses.
    * Elimination of unnecessary FADT version 2 support.
    * ACPI tools fixes and cleanups.
    From Bob Moore, Lv Zheng, and Jung-uk Kim.
 
  - ACPI sysfs interface updates to fix GPE handling (on top of the new GPE
    masking mechanism in ACPICA) and issues related to table loading (Lv Zheng).
 
  - New watchdog driver based on the ACPI WDAT (ACPI Watchdog Action Table),
    needed on some platforms to replace the iTCO watchdog that doesn't work there
    and related updates of the intel_pmc_ipc, i2c/i801 and MFD/lcp_ich drivers
    (Mika Westerberg).
 
  - Driver core fix to prevent it from leaking secondary fwnode objects during
    device removal (Lukas Wunner).
 
  - New definitions of built-in properties for UART in ACPI-based x86 SoC drivers
    and a 8250_dw driver quirk for the APM X-Gene SoC (Heikki Krogerus).
 
  - New device ID for the Vulcan SPI controller and constification of local
    strucures in the AMD SoC (APD) ACPI driver (Kamlakant Patel, Julia Lawall).
 
  - Fix for a bug causing the allocation of PCI resorces to fail if
    ACPI-enumerated child platform devices are registered below the PCI
    devices in question (Mika Westerberg).
 
  - Change of the default polarity for PCI legacy IRQs to high on systems
    booting wth ACPI on platforms with a GIC interrupt controller model
    fixing the discrepancy between the specification and HW behavior (Lorenzo
    Pieralisi).
 
  - Fixes for the handling of system suspend/resume in the ACPI EC driver and
    update of that driver to make it cope with the cases when the EC device
    defined in the ECDT has to be used throughout the entire system life cycle
    (Lv Zheng).
 
  - Update of the ACPI CPPC library to allow it to batch requests sent over the
    PCC channel (to reduce overhead), to support the fixed functional hardware
    (FFH) CPPC registers access type, to notify the mailbox framework about TX
    completions when the interrupt flag is set for the PCC mailbox, and to
    support HW-Reduced Communication Subspace type 2 (Ashwin Chaugule, Prashanth
    Prakash, Srinivas Pandruvada, Hoan Tran).
 
  - ACPI button driver fix and documentation update related to the handling of
    laptop lids (Lv Zheng).
 
  - ACPI battery driver initialization fix (Carlos Garnacho).
 
  - ACPI GPIO enumeration documentation update (Mika Westerberg).
 
  - Assorted updates of the core ACPI bus type code (Lukas Wunner, Lv Zheng).
 
  - Assorted cleanups of the ACPI table parsing code and the x86-specific ACPI
    code (Al Stone).
 
  - Fixes for assorted ACPI-related issues found in linux-next (Wei Yongjun).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJX8Y5+AAoJEILEb/54YlRx73oP/RiAi86NKjOj+GfYceVe37jn
 6lSqoMugjgTQHRYvYiQCjJ/BR0GzQZqUkz9TAu1Op14+rhTH3OhSfPizzJWCpVfA
 G9l9ZRQNnsKNs14bbYmWtmWduh46dFLVFJqo+M/0H3ZMFZu6Adcb+1SBtXHUoQ6L
 z69ngFxTu3yRvqS4cmm5h7SOx5W2uZZl8zViJW8jgyGhUBStG87gzR6wsYBldGCk
 XFxcaGWBXRccWGAQLSwfs0psQccEooCqbpsDqaUdrK/mI0rsQr88f25ZxEE7Zw7H
 bv3py1cgJBZRq36L7eBGQXjIE7YQey6qG2lug2zsUJWe+vzy2vHjHVJHuBXKKgv3
 txOA6QZx63UgEyN3zFT7K5ek6uOnkKdeE+s+Laj+K/x4V2R6gbtgO011EVcXy+bI
 NvqsO76tfPHpwrn5s1VVc5lcEBEPHKHb+WulHrqhSSU4ivk0gtJDeSI+c8xta6YT
 XwSry5tozDLkG1uEZqkyY1XTlOUAHO8E6YcrlOv2z1+mG7L8OH/vCp1apzgexsZA
 1683AH5cwKc3KaP+4QdKGdxY2BDxb7OTVh3cGy4kAYb6tqQ/vj7vlRiJvtaMBtFw
 xJn3buuagwJzKtgebpA565opvyFAfUX/RNFlTP63aXAefSAgq6KLq70vKFxkIZto
 H1LpUbmiEbuBml8CBGb1
 =xDOQ
 -----END PGP SIGNATURE-----

Merge tag 'acpi-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI updates from Rafael Wysocki:
 "First off, the ACPICA code in the kernel is updated to upstream
  revision 20160831 that brings in a few bug fixes and cleanups. In
  particular, it is possible to mask GPEs now (and the sysfs interface
  for GPE control is fixed on top of that), problems related to the
  table loading mechanism are fixed and all code related to FADT version
  2 (which has never been part of the ACPI specification) is dropped.

  On the new features front, there is a new watchdog driver based on the
  ACPI WDAT (ACPI Watchdog Action Table), needed on some platforms to
  replace the iTCO watchdog that doesn't work there, and some UART
  devices get new definitions of built-in properties (to be accessed via
  the generic device properties API).

  Also, included is a fix for an ACPI-related PCI resorces allocation
  issue and a few problems in the EC driver and in the button and
  battery drivers are fixed.

  In addition to that, the ACPI CPPC library is updated to make batching
  of requests sent over the PCC channel possible (which reduces the PCC
  usage overhead substantially in some cases) and to support functional
  fixed hardware (FFH) type of CPPC registers access (which will allow
  CPPC to be used on x86 too in the future).

  As usual, there are some assorted fixes and cleanups too.

  Specifics:

   - Update of the ACPICA code in the kernel to upstream revision
     20160831 with the following major changes:

      * New mechanism for GPE masking.
      * Fixes for issues related to the LoadTable operator and table
        loading.
      * Fixes for issues related to so-called module-level code (MLC),
        that is AML that doesn't belong to any methods.
      * Change of the return value of the _OSI method to reflect the
        Windows behavior.
      * GAS (Generic Address Structure) support fix related to 32-bit
        FADT addresses.
      * Elimination of unnecessary FADT version 2 support.
      * ACPI tools fixes and cleanups.

     From Bob Moore, Lv Zheng, and Jung-uk Kim.

   - ACPI sysfs interface updates to fix GPE handling (on top of the new
     GPE masking mechanism in ACPICA) and issues related to table
     loading (Lv Zheng).

   - New watchdog driver based on the ACPI WDAT (ACPI Watchdog Action
     Table), needed on some platforms to replace the iTCO watchdog that
     doesn't work there and related updates of the intel_pmc_ipc,
     i2c/i801 and MFD/lcp_ich drivers (Mika Westerberg).

   - Driver core fix to prevent it from leaking secondary fwnode objects
     during device removal (Lukas Wunner).

   - New definitions of built-in properties for UART in ACPI-based x86
     SoC drivers and a 8250_dw driver quirk for the APM X-Gene SoC
     (Heikki Krogerus).

   - New device ID for the Vulcan SPI controller and constification of
     local strucures in the AMD SoC (APD) ACPI driver (Kamlakant Patel,
     Julia Lawall).

   - Fix for a bug causing the allocation of PCI resorces to fail if
     ACPI-enumerated child platform devices are registered below the PCI
     devices in question (Mika Westerberg).

   - Change of the default polarity for PCI legacy IRQs to high on
     systems booting wth ACPI on platforms with a GIC interrupt
     controller model fixing the discrepancy between the specification
     and HW behavior (Lorenzo Pieralisi).

   - Fixes for the handling of system suspend/resume in the ACPI EC
     driver and update of that driver to make it cope with the cases
     when the EC device defined in the ECDT has to be used throughout
     the entire system life cycle (Lv Zheng).

   - Update of the ACPI CPPC library to allow it to batch requests sent
     over the PCC channel (to reduce overhead), to support the fixed
     functional hardware (FFH) CPPC registers access type, to notify the
     mailbox framework about TX completions when the interrupt flag is
     set for the PCC mailbox, and to support HW-Reduced Communication
     Subspace type 2 (Ashwin Chaugule, Prashanth Prakash, Srinivas
     Pandruvada, Hoan Tran).

   - ACPI button driver fix and documentation update related to the
     handling of laptop lids (Lv Zheng).

   - ACPI battery driver initialization fix (Carlos Garnacho).

   - ACPI GPIO enumeration documentation update (Mika Westerberg).

   - Assorted updates of the core ACPI bus type code (Lukas Wunner, Lv
     Zheng).

   - Assorted cleanups of the ACPI table parsing code and the
     x86-specific ACPI code (Al Stone).

   - Fixes for assorted ACPI-related issues found in linux-next (Wei
     Yongjun)"

* tag 'acpi-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (98 commits)
  ACPI / documentation: Use recommended name in GPIO property names
  watchdog: wdat_wdt: Fix warning for using 0 as NULL
  watchdog: wdat_wdt: fix return value check in wdat_wdt_probe()
  platform/x86: intel_pmc_ipc: Do not create iTCO watchdog when WDAT table exists
  i2c: i801: Do not create iTCO watchdog when WDAT table exists
  mfd: lpc_ich: Do not create iTCO watchdog when WDAT table exists
  ACPI / bus: Adjust ACPI subsystem initialization for new table loading mode
  ACPICA: Parser: Fix a regression in LoadTable support
  ACPICA: Tables: Fix "UNLOAD" code path lock issues
  ACPI / watchdog: Add support for WDAT hardware watchdog
  ACPI / platform: Pay attention to parent device's resources
  PCI: Add pci_find_resource()
  ACPI / CPPC: Support PCC with interrupt flag
  ACPI / sysfs: Update sysfs signature handling code
  ACPI / sysfs: Fix an issue for LoadTable opcode
  ACPICA: Tables: Fix a regression in acpi_tb_find_table()
  ACPI / tables: Remove duplicated include from tables.c
  ACPI / APD: constify local structures
  x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries()
  x86: ACPI: remove extraneous white space after semicolon
  ...
2016-10-03 10:11:58 -07:00
Rafael J. Wysocki
b6e2511782 Merge branch 'pm-cpufreq-sched' into pm-cpufreq 2016-10-02 01:42:33 +02:00
Rafael J. Wysocki
0d573c6a01 Merge branches 'acpi-x86', 'acpi-cppc' and 'acpi-soc'
* acpi-x86:
  x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries()
  x86: ACPI: remove extraneous white space after semicolon

* acpi-cppc:
  ACPI / CPPC: Support PCC with interrupt flag
  ACPI / CPPC: Add prefix cppc to cpudata structure name
  ACPI / CPPC: Add support for functional fixed hardware address
  ACPI / CPPC: Don't return on CPPC probe failure
  ACPI / CPPC: Allow build with ACPI_CPU_FREQ_PSS config
  ACPI / CPPC: check for error bit in PCC status field
  ACPI / CPPC: move all PCC related information into pcc_data
  ACPI / CPPC: add sysfs support to compute delivered performance
  ACPI / CPPC: set a non-zero value for transition_latency
  ACPI / CPPC: support for batching CPPC requests
  ACPI / CPPC: acquire pcc_lock only while accessing PCC subspace
  ACPI / CPPC: restructure read/writes for efficient sys mapped reg ops
  mailbox: pcc: Support HW-Reduced Communication Subspace type 2

* acpi-soc:
  ACPI / APD: constify local structures
  ACPI / APD: Add device HID for Vulcan SPI controller
2016-10-02 01:39:09 +02:00
Colin Ian King
9ad0a1b6a2 cpufreq: st: add missing \n to end of dev_err message
Trival fix, dev_err message is missing a \n, so add it.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-26 15:11:42 +02:00
Colin Ian King
4c232f9469 cpufreq: kirkwood: add missing \n to end of dev_err messages
Trival fix, dev_err messages are missing a \n, so add it.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-26 15:10:58 +02:00
Sebastian Andrzej Siewior
5372e054a1 cpufreq: Fix up conversion to hotplug state machine
The function cpufreq_register_driver() returns zero on success and since
commit 27622b061e ("cpufreq: Convert to hotplug state machine")
erroneously a positive number. Due to the "if (x) assume_error" construct
all callers assumed an error and as a consequence the cpu freq kworker
crashes with a NULL pointer dereference.

Reset the return value back to zero in the success case.

Fixes: 27622b061e ("cpufreq: Convert to hotplug state machine")
Reported-by: Borislav Petkov <bp@alien8.de>
Reported-and-tested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: peterz@infradead.org
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/20160920145628.lp2bmq72ip3oiash@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-20 16:59:21 +02:00
Sebastian Andrzej Siewior
27622b061e cpufreq: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.or
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160906170457.32393-13-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-19 21:44:29 +02:00
Hoan Tran
f89f4147f7 cpufreq: CPPC: Avoid overflow when calculating desired_perf
This patch fixes overflow issue when calculating the desired_perf.

Fixes: ad38677df4 (cpufreq: CPPC: Force reporting values in KHz to fix user space interface)
Signed-off-by: Hoan Tran <hotran@apm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-16 23:59:19 +02:00
Dave Gerlach
e01072d22d cpufreq: ti: Use generic platdev driver
Now that the cpufreq-dt-platdev is used to create the cpufreq-dt platform
device for all OMAP platforms and the platform code that did it
before has been removed, add ti,am33xx and ti,dra7xx to the machine list
in cpufreq-dt-platdev which had relied on the removed platform code to do
this previously.

Fixes: 7694ca6e1d (cpufreq: omap: Use generic platdev driver)
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 4.7+ <stable@vger.kernel.org> # 4.7+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-16 23:57:04 +02:00
Srinivas Pandruvada
3ba7bcaa36 cpufreq: intel_pstate: Add io_boost trace
Add io_boost percent to current pstate_sample tracepoint.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-16 23:55:30 +02:00
Rafael J. Wysocki
09c448d3c6 cpufreq: intel_pstate: Use IOWAIT flag in Atom algorithm
Modify the P-state selection algorithm for Atom processors to use
the new SCHED_CPUFREQ_IOWAIT flag instead of the questionable
get_cpu_iowait_time_us() function.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-14 02:28:13 +02:00
Al Stone
ad38677df4 cpufreq: CPPC: Force reporting values in KHz to fix user space interface
When CPPC is being used by ACPI on arm64, user space tools such as
cpupower report CPU frequency values from sysfs that are incorrect.

What the driver was doing was reporting the values given by ACPI tables
in whatever scale was used to provide them.  However, the ACPI spec
defines the CPPC values as unitless abstract numbers.  Internal kernel
structures such as struct perf_cap, in contrast, expect these values
to be in KHz.  When these struct values get reported via sysfs, the
user space tools also assume they are in KHz, causing them to report
incorrect values (for example, reporting a CPU frequency of 1MHz when
it should be 1.8GHz).

The downside is that this approach has some assumptions:

   (1) It relies on SMBIOS3 being used, *and* that the Max Frequency
   value for a processor is set to a non-zero value.

   (2) It assumes that all processors run at the same speed, or that
   the CPPC values have all been scaled to reflect relative speed.
   This patch retrieves the largest CPU Max Frequency from a type 4 DMI
   record that it can find.  This may not be an issue, however, as a
   sampling of DMI data on x86 and arm64 indicates there is often only
   one such record regardless.  Since CPPC is relatively new, it is
   unclear if the ACPI ASL will always be written to reflect any sort
   of relative performance of processors of differing speeds.

   (3) It assumes that performance and frequency both scale linearly.

For arm64 servers, this may be sufficient, but it does rely on
firmware values being set correctly.  Hence, other approaches will
be considered in the future.

This has been tested on three arm64 servers, with and without DMI, with
and without CPPC support.

Signed-off-by: Al Stone <ahs3@redhat.com>
Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:47:44 +02:00
Viresh Kumar
26619804e7 cpufreq: create link to policy only for registered CPUs
If a cpufreq driver is registered very early in the boot stage (e.g.
registered from postcore_initcall()), then cpufreq core may generate
kernel warnings for it.

In this case, the CPUs are brought online, then the cpufreq driver is
registered, and then the CPU topology devices are registered. However,
by the time cpufreq_add_dev() gets called, the cpu device isn't stored
in the per-cpu variable (cpu_sys_devices,) which is read by
get_cpu_device().

So the cpufreq core fails to get device for the CPU, for which
cpufreq_add_dev() was called in the first place and we will hit a
WARN_ON(!cpu_dev).

Even if we reuse the 'dev' parameter passed to cpufreq_add_dev() to
avoid that warning, there might be other CPUs online that share the
policy with the cpu for which cpufreq_add_dev() is called. Eventually
get_cpu_device() will return NULL for them as well, and we will hit the
same WARN_ON() again.

In order to fix these issues, change cpufreq core to create links to the
policy for a cpu only when cpufreq_add_dev() is called for that CPU.

Reuse the 'real_cpus' mask to track that as well.

Note that cpufreq_remove_dev() already handles removal of the links for
individual CPUs and cpufreq_add_dev() has aligned with that now.

Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:41:15 +02:00
Julia Lawall
42ce8921cc intel_pstate: constify local structures
For structure types defined in the same file or local header files, find
top-level static structure declarations that have the following
properties:
1. Never reassigned.
2. Address never taken
3. Not passed to a top-level macro call
4. No pointer or array-typed field passed to a function or stored in a
variable.
Declare structures having all of these properties as const.

Done using Coccinelle.
Based on a suggestion by Joe Perches <joe@perches.com>.

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:40:24 +02:00
Viresh Kumar
297a66221d cpufreq: dt: Support governor tunables per policy
The cpufreq-dt driver is also used for systems with multiple
clock/voltage domains for CPUs, i.e. multiple cpufreq policies in a
system.

And in such cases the platform users may want to enable "governor
tunables per policy". Support that via platform data, as not all users
of the driver would want that behavior.

Reported-by: Juri Lelli <Juri.Lelli@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:39:12 +02:00
Viresh Kumar
33cc4fc1b2 cpufreq: dt: Update kconfig description
The cpufreq DT driver also supports systems that have multiple
clock/voltage domains for CPUs, i.e. multiple policy systems.

The description of the Kconfig entry was never updated after the driver
was modified to support such systems, fix it.

Reported-by: Juri Lelli <Juri.Lelli@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:39:12 +02:00
Viresh Kumar
e86eee6bc2 cpufreq: dt: Remove unused code
This is leftover from an earlier patch which removed the usage of
platform data but forgot to remove this line. Remove it now.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:39:12 +02:00
Geert Uytterhoeven
ffdf8b867b cpufreq: dt: Add support for r8a7792
Add the compatible string for supporting the generic cpufreq driver on
the Renesas R-Car V2H (r8a7792) SoC.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13 02:34:14 +02:00
Rafael J. Wysocki
d0fbf1d328 Merge back earlier cpufreq material for v4.9. 2016-09-12 14:49:29 +02:00
Srinivas Pandruvada
41dd640389 ACPI / CPPC: Add prefix cppc to cpudata structure name
Since struct cpudata is defined in a header file, add prefix cppc_ to
make it not a generic name. Otherwise it causes compile issue in locally
define structure with the same name.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-08 23:02:15 +02:00
Rafael J. Wysocki
3689ad7ed6 cpufreq: Drop unnecessary check from cpufreq_policy_alloc()
Since cpufreq_policy_alloc() doesn't use its dev variable for
anything useful, drop that variable from there along with the
NULL check against it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-09-01 00:29:10 +02:00
Wei Yongjun
bd37e022e3 cpufreq: dt: Add terminate entry for of_device_id tables
Make sure of_device_id tables are NULL terminated.

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Fixes: f56aad1d98 (cpufreq: dt: Add generic platform-device creation support)
CC: 4.7+ <stable@vger.kernel.org> # 4.7+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-31 02:49:05 +02:00
Prakash, Prashanth
be8b88d7d9 ACPI / CPPC: set a non-zero value for transition_latency
Compute the expected transition latency for frequency transitions
using the values from the PCCT tables when the desired perf
register is in PCC.

Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Reviewed-by: Alexey Klimov <alexey.klimov@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-31 01:02:33 +02:00
Russell King
83809b90a6 ARM: sa1100: move StrongARM CPU ID checks to cputype.h
Move the StrongARM CPU ID checks out of the platform's hardware.h
file into asm/cputype.h

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2016-08-23 10:25:17 +01:00
Markus Elfring
b0d8a69d08 cpufreq-SCPI: Delete unnecessary assignment for the field "owner"
The field "owner" is set by the core.
Thus delete an unneeded initialisation.

Generated by scripts/coccinelle/api/platform_no_drv_owner.cocci

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-18 03:42:32 +02:00
Rafael J. Wysocki
58919e83c8 cpufreq / sched: Pass flags to cpufreq_update_util()
It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to the ->func() callback in struct update_util_data.  However,
doing that in addition to passing the util and max arguments they
already take would be clumsy, so avoid it.

Instead, use the observation that the schedutil governor is part
of the scheduler proper, so it can access scheduler data directly.
This allows the util and max arguments of cpufreq_update_util()
and the ->func() callback in struct update_util_data to be replaced
with a flags one, but schedutil has to be modified to follow.

Thus make the schedutil governor obtain the CFS utilization
information from the scheduler and use the "RT" and "DL" flags
instead of the special utilization value of ULONG_MAX to track
updates from the RT and DL sched classes.  Make it non-modular
too to avoid having to export scheduler variables to modules at
large.

Next, update all of the other users of cpufreq_update_util()
and the ->func() callback in struct update_util_data accordingly.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-08-16 22:14:55 +02:00
Chanwoo Choi
c4b4057267 cpufreq: dt: Add exynos5433 compatible to use generic cpufreq driver
This patch adds the exynos5433 compatible string for supporting
the generic cpufreq driver on Exynos5433.

Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com>
Reviewed-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-16 13:57:30 +02:00
Rafael J. Wysocki
0aeeb3e73f Merge branches 'pm-sleep' and 'pm-cpufreq'
* pm-sleep:
  PM / hibernate: Restore processor state before using per-CPU variables
  x86/power/64: Always create temporary identity mapping correctly

* pm-cpufreq:
  cpufreq: powernv: Fix crash in gpstate_timer_handler()
2016-08-12 22:53:58 +02:00
Akshay Adiga
8e85946777 cpufreq: powernv: Fix crash in gpstate_timer_handler()
Commit 09ca4c9b59 (cpufreq: powernv: Replacing pstate_id with
frequency table index) changes calc_global_pstate() to use
cpufreq_table index instead of pstate_id.

But in gpstate_timer_handler(), pstate_id was being passed instead
of cpufreq_table index, which caused index_to_pstate() to access
out of bound indices, leading to this crash.

Adding sanity check for index and pstate, to ensure only valid pstate
and index values are returned.

Call Trace:
[c00000078d66b130] [c00000000011d224] __free_irq+0x234/0x360
(unreliable)
[c00000078d66b1c0] [c00000000011d44c] free_irq+0x6c/0xa0
[c00000078d66b1f0] [c00000000006c4f8] opal_event_shutdown+0x88/0xd0
[c00000078d66b230] [c000000000067a4c] opal_shutdown+0x1c/0x90
[c00000078d66b260] [c000000000063a00] pnv_shutdown+0x20/0x40
[c00000078d66b280] [c000000000021538] machine_restart+0x38/0x90
[c0000000078d66b310] [c000000000965ea0] panic+0x284/0x300
[c00000078d66b3a0] [c00000000001f508] die+0x388/0x450
[c00000078d66b430] [c000000000045a50] bad_page_fault+0xd0/0x140
[c00000078d66b4a0] [c000000000008964] handle_page_fault+0x2c/0x30
   interrupt: 300 at gpstate_timer_handler+0x150/0x260
    LR = gpstate_timer_handler+0x130/0x260
[c00000078d66b7f0] [c000000000132b58] call_timer_fn+0x58/0x1c0
[c00000078d66b880] [c000000000132e20] expire_timers+0x130/0x1d0
[c00000078d66b8f0] [c000000000133068] run_timer_softirq+0x1a8/0x230
[c00000078d66b980] [c0000000000b535c] __do_softirq+0x18c/0x400
[c00000078d66ba70] [c0000000000b5828] irq_exit+0xc8/0x100
[c00000078d66ba90] [c00000000001e214] timer_interrupt+0xa4/0xe0
[c00000078d66bac0] [c0000000000027d0] decrementer_common+0x150/0x180
   interrupt: 901 at arch_local_irq_restore+0x74/0x90
  0] [c000000000106b34] call_cpuidle+0x44/0x90
[c00000078d66be50] [c00000000010708c] cpu_startup_entry+0x38c/0x460
[c00000078d66bf20] [c00000000003d930] start_secondary+0x330/0x380
[c00000078d66bf90] [c000000000008e6c] start_secondary_prolog+0x10/0x14

Fixes: 09ca4c9b59 (cpufreq: powernv: Replacing pstate_id with frequency table index)
Reported-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-06 14:52:26 +02:00
Linus Torvalds
11d8ec408d More power management updates for v4.8-rc1
- Prevent the low-level assembly hibernate code on x86-64 from
    referring to __PAGE_OFFSET directly as a symbol which doesn't work
    when the kernel identity mapping base is randomized, in which case
    __PAGE_OFFSET is a variable (Rafael Wysocki).
 
  - Avoid selecting CPU_FREQ_STAT by default as the statistics are not
    required for proper cpufreq operation (Borislav Petkov).
 
  - Add Skylake-X and Broadwell-X IDs to the intel_pstate's list of
    processors where out-of-band (OBB) control of P-states is possible
    and if that is in use, intel_pstate should not attempt to manage
    P-states (Srinivas Pandruvada).
 
  - Drop some unnecessary checks from the wakeup IRQ handling code in
    the PM core (Markus Elfring).
 
  - Reduce the number operating performance point (OPP) lookups in
    one of the OPP framework's helper functions (Jisheng Zhang).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJXpKLNAAoJEILEb/54YlRx6L4P/39GR0kVB7vIyCajdWc4f3gh
 0zh5RbKC0YT4F6upebzgQ9uYS9cv4y+df7ShVwKQAea3wDReEmZhM/egOGw0Ls+8
 SS1MiJq1LSekyMIWH6cXwZsH69/V0LuWTBbzWYBgHUDbfEMlgwV5ZZMEH14/2bWw
 d4SLUUiW5P42im+IDAxpdYneKOrbJo3txj6WbOutgtIrHdPko6lF1dDouKvI1QTk
 zCBOkEB9nELq3rWN/sbPmHzbmbj/yFiiHk5+iqwuKKJZI8PQB9/C6Qmc3wvjtPpc
 GXLPI+OHqLgBMofGsiKOvm3hPQAIjf/ERsUilHLE3qOi/Mi0qj7U4dFivZrPWaCG
 j2bD+b36TffmG1r8L7NYbEKU60syeIFSRqAngbyswu6XF+NdVboaifENGcgM3tBC
 pUC1mFh/4PMKP5zW9mOwE6WSntZkw14CVR+A3fRFOuTBavNvjGdckwLi/aBsZdU3
 K4DJUFzdELF7+JdqnQV35yV2tgMbJhxQa/QBykiFBh3AyqliOZ8uBoIxxLinrGmH
 XWR3kB4ZPRBIStGI9IpG3lNhLLU7mLIdaFhGayicicAwFcLsXN7oKWVzYfUqWA9T
 1ptXApcRf6S9J1JnKHkznoQ1/D1pNYLbH+t7BOtWdK8SWBhMS2Lzo2kyKWsCFkJS
 16J8j1tcLDhN1dvcBT55
 =WvPB
 -----END PGP SIGNATURE-----

Merge tag 'pm-extra-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "A few more fixes and cleanups in the x86-64 low-level hibernation
  code, PM core, cpufreq (Kconfig and intel_pstate), and the operating
  points framework.

  Specifics:

   - Prevent the low-level assembly hibernate code on x86-64 from
     referring to __PAGE_OFFSET directly as a symbol which doesn't work
     when the kernel identity mapping base is randomized, in which case
     __PAGE_OFFSET is a variable (Rafael Wysocki).

   - Avoid selecting CPU_FREQ_STAT by default as the statistics are not
     required for proper cpufreq operation (Borislav Petkov).

   - Add Skylake-X and Broadwell-X IDs to the intel_pstate's list of
     processors where out-of-band (OBB) control of P-states is possible
     and if that is in use, intel_pstate should not attempt to manage
     P-states (Srinivas Pandruvada).

   - Drop some unnecessary checks from the wakeup IRQ handling code in
     the PM core (Markus Elfring).

   - Reduce the number operating performance point (OPP) lookups in one
     of the OPP framework's helper functions (Jisheng Zhang)"

* tag 'pm-extra-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  x86/power/64: Do not refer to __PAGE_OFFSET from assembly code
  cpufreq: Do not default-yes CPU_FREQ_STAT
  cpufreq: intel_pstate: Add more out-of-band IDs
  PM / OPP: optimize dev_pm_opp_set_rate() performance a bit
  PM-wakeup: Delete unnecessary checks before three function calls
2016-08-05 23:26:16 -04:00
Rafael J. Wysocki
e2b3b80de5 Merge branches 'pm-sleep', 'pm-cpufreq', 'pm-core' and 'pm-opp'
* pm-sleep:
  x86/power/64: Do not refer to __PAGE_OFFSET from assembly code

* pm-cpufreq:
  cpufreq: Do not default-yes CPU_FREQ_STAT
  cpufreq: intel_pstate: Add more out-of-band IDs

* pm-core:
  PM-wakeup: Delete unnecessary checks before three function calls

* pm-opp:
  PM / OPP: optimize dev_pm_opp_set_rate() performance a bit
2016-08-05 15:46:55 +02:00
Borislav Petkov
79ad70de53 cpufreq: Do not default-yes CPU_FREQ_STAT
CPU frequency transition statistics are not absolutely required for
proper cpufreq operation on the system AFAICT so remove the default-yes
setting in Kconfig.

Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-08-03 01:34:11 +02:00
Linus Torvalds
43a0a98aa8 ARM: SoC driver updates for v4.8
Driver updates for ARM SoCs.
 
 A slew of changes this release cycle. The reset driver tree, that we merge
 through arm-soc for historical reasons, is also sizable this time around.
 
 Among the changes:
 
  - clps711x: Treewide changes to compatible strings, merged here for simplicity.
  - Qualcomm: SCM firmware driver cleanups, move to platform driver
  - ux500: Major cleanups, removal of old mach-specific infrastructure.
  - Atmel external bus memory driver
  - Move of brcmstb platform to the rest of bcm
  - PMC driver updates for tegra, various fixes and improvements
  - Samsung platform driver updates to support 64-bit Exynos platforms
  - Reset controller cleanups moving to devm_reset_controller_register() APIs
  - Reset controller driver for Amlogic Meson
  - Reset controller driver for Hisilicon hi6220
  - ARM SCPI power domain support
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXnm1XAAoJEIwa5zzehBx35lcP/ApuQarIXeZCQZtjlUBV9McW
 o3o7FhKFHePmEPeoYCvVeK5D8NykTkQv3WpnCknoxPJzxGJF7jbPWQJcVnXfKOXD
 kTcyIK15WL2HHtSE3lYyLfyUPz8AbJyRt0l0cxgcg6jvo+uzlWooNz1y78rLIYzg
 UwRssj7OiHv4dsyYRHZIsjnB8gMWw8rYMk154gP2xy6MnNXXzzOVVnOiVqxSZBm+
 EgIIcROMOqkkHuFlClMYKluIgrmgz1Ypjf+FuAg7dqXZd+TGRrmGXeI7SkGThfLu
 nyvY3N18NViNu7xOUkI9zg7+ifyYM8Si9ylalSICSJdIAxZfiwFqFaLJvVWKU1rY
 rBOBjKckQI0/X9WYusFNFHcijhIFV8/FgGAnVRRMPdvlCss7Zp03C9mR4AEhmKMX
 rLG49x81hU1C+LftC59ml3iB8dhZrrRkbxNHjLFHVGWNrKMrmJKa8JhXGRAoNM+u
 LRauiuJZatqvLfISNvpfcoW2EashVoU3f+uC8ymT3QCyME3wZm0t7T4tllxhMfBl
 sOgJqNkTKDmPLofwm/dASiLML7ZF1WePScrFyOACnj9K4mUD+OaCnowtWoQPu0eI
 aNmT84oosJ2S9F/iUDPtFHXdzQ+1QPPfSiQ9FXMoauciVq/2F+pqq68yYgqoxFOG
 vmkmG2YM4Wyq43u0BONR
 =O8+y
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC driver updates from Olof Johansson:
 "Driver updates for ARM SoCs.

  A slew of changes this release cycle.  The reset driver tree, that we
  merge through arm-soc for historical reasons, is also sizable this
  time around.

  Among the changes:

   - clps711x: Treewide changes to compatible strings, merged here for simplicity.
   - Qualcomm: SCM firmware driver cleanups, move to platform driver
   - ux500: Major cleanups, removal of old mach-specific infrastructure.
   - Atmel external bus memory driver
   - Move of brcmstb platform to the rest of bcm
   - PMC driver updates for tegra, various fixes and improvements
   - Samsung platform driver updates to support 64-bit Exynos platforms
   - Reset controller cleanups moving to devm_reset_controller_register() APIs
   - Reset controller driver for Amlogic Meson
   - Reset controller driver for Hisilicon hi6220
   - ARM SCPI power domain support"

* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (100 commits)
  ARM: ux500: consolidate base platform files
  ARM: ux500: move soc_id driver to drivers/soc
  ARM: ux500: call ux500_setup_id later
  ARM: ux500: consolidate soc_device code in id.c
  ARM: ux500: remove cpu_is_u* helpers
  ARM: ux500: use CLK_OF_DECLARE()
  ARM: ux500: move l2x0 init to .init_irq
  mfd: db8500 stop passing around platform data
  ASoC: ab8500-codec: remove platform data based probe
  ARM: ux500: move ab8500_regulator_plat_data into driver
  ARM: ux500: remove unused regulator data
  soc: raspberrypi-power: add CONFIG_OF dependency
  firmware: scpi: add CONFIG_OF dependency
  video: clps711x-fb: Changing the compatibility string to match with the smallest supported chip
  input: clps711x-keypad: Changing the compatibility string to match with the smallest supported chip
  pwm: clps711x: Changing the compatibility string to match with the smallest supported chip
  serial: clps711x: Changing the compatibility string to match with the smallest supported chip
  irqchip: clps711x: Changing the compatibility string to match with the smallest supported chip
  clocksource: clps711x: Changing the compatibility string to match with the smallest supported chip
  clk: clps711x: Changing the compatibility string to match with the smallest supported chip
  ...
2016-08-01 18:36:01 -04:00
Srinivas Pandruvada
65c1262f40 cpufreq: intel_pstate: Add more out-of-band IDs
Add Skylake-X and Broadwell-X IDs for out-of-band (OBB) control of
P-States.

For these processors, if MSR_MISC_PWR_MGMT BIT(8) == 1, then the
Intel P-State driver should exit as OS can't control P-States.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw : Subject/changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-28 23:58:17 +02:00
Linus Torvalds
6453dbdda3 Power management material for v4.8-rc1
- Rework the cpufreq governor interface to make it more straightforward
    and modify the conservative governor to avoid using transition
    notifications (Rafael Wysocki).
 
  - Rework the handling of frequency tables by the cpufreq core to make
    it more efficient (Viresh Kumar).
 
  - Modify the schedutil governor to reduce the number of wakeups it
    causes to occur in cases when the CPU frequency doesn't need to be
    changed (Steve Muckle, Viresh Kumar).
 
  - Fix some minor issues and clean up code in the cpufreq core and
    governors (Rafael Wysocki, Viresh Kumar).
 
  - Add Intel Broxton support to the intel_pstate driver (Srinivas
    Pandruvada).
 
  - Fix problems related to the config TDP feature and to the validity
    of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
    Srinivas Pandruvada).
 
  - Make intel_pstate update the cpu_frequency tracepoint even if
    the frequency doesn't change to avoid confusing powertop (Rafael
    Wysocki).
 
  - Clean up the usage of __init/__initdata in intel_pstate, mark some
    of its internal variables as __read_mostly and drop an unused
    structure element from it (Jisheng Zhang, Carsten Emde).
 
  - Clean up the usage of some duplicate MSR symbols in intel_pstate
    and turbostat (Srinivas Pandruvada).
 
  - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
    Adiga, Viresh Kumar, Ben Dooks).
 
  - Fix a regression (introduced during the 4.5 cycle) in the
    pcc-cpufreq driver by reverting the problematic commit (Andreas
    Herrmann).
 
  - Add support for Intel Denverton to intel_idle, clean up Broxton
    support in it and make it explicitly non-modular (Jacob Pan,
    Jan Beulich, Paul Gortmaker).
 
  - Add support for Denverton and Ivy Bridge server to the Intel RAPL
    power capping driver and make it more careful about the handing
    of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
 
  - Fix resume from hibernation on x86-64 by making the CPU offline
    during resume avoid using MONITOR/MWAIT in the "play dead" loop
    which may lead to an inadvertent "revival" of a "dead" CPU and
    a page fault leading to a kernel crash from it (Rafael Wysocki).
 
  - Make memory management during resume from hibernation more
    straightforward (Rafael Wysocki).
 
  - Add debug features that should help to detect problems related
    to hibernation and resume from it (Rafael Wysocki, Chen Yu).
 
  - Clean up hibernation core somewhat (Rafael Wysocki).
 
  - Prevent KASAN from instrumenting the hibernation core which leads
    to large numbers of false-positives from it (James Morse).
 
  - Prevent PM (hibernate and suspend) notifiers from being called
    during the cleanup phase if they have not been called during the
    corresponding preparation phase which is possible if one of the
    other notifiers returns an error at that time (Lianwei Wang).
 
  - Improve suspend-related debug printout in the tasks freezer and
    clean up suspend-related console handling (Roger Lu, Borislav
    Petkov).
 
  - Update the AnalyzeSuspend script in the kernel sources to
    version 4.2 (Todd Brandt).
 
  - Modify the generic power domains framework to make it handle
    system suspend/resume better (Ulf Hansson).
 
  - Make the runtime PM framework avoid resuming devices synchronously
    when user space changes the runtime PM settings for them and
    improve its error reporting (Rafael Wysocki, Linus Walleij).
 
  - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
    and in the core, make some devfreq code explicitly non-modular and
    change some of it into tristate (Bartlomiej Zolnierkiewicz,
    Peter Chen, Paul Gortmaker).
 
  - Add DT support to the generic PM clocks management code and make
    it export some more symbols (Jon Hunter, Paul Gortmaker).
 
  - Make the PCI PM core code slightly more robust against possible
    driver errors (Andy Shevchenko).
 
  - Make it possible to change DESTDIR and PREFIX in turbostat
    (Andy Shevchenko).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
 5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
 oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
 jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
 bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
 UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
 ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
 FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
 SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
 8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
 xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
 JU1Cmumfdy2jJluT8xsR
 =uVGz
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael  Wysocki:
 "Again, the majority of changes go into the cpufreq subsystem, but
  there are no big features this time.  The cpufreq changes that stand
  out somewhat are the governor interface rework and improvements
  related to the handling of frequency tables.  Apart from those, there
  are fixes and new device/CPU IDs in drivers, cleanups and an
  improvement of the new schedutil governor.

  Next, there are some changes in the hibernation core, including a fix
  for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
  during resume from hibernation, a few core improvements related to
  memory management during resume, a couple of additional debug features
  and cleanups.

  Finally, we have some fixes and cleanups in the devfreq subsystem,
  generic power domains framework improvements related to system
  suspend/resume, support for some new chips in intel_idle and in the
  power capping RAPL driver, a new version of the AnalyzeSuspend utility
  and some assorted fixes and cleanups.

  Specifics:

   - Rework the cpufreq governor interface to make it more
     straightforward and modify the conservative governor to avoid using
     transition notifications (Rafael Wysocki).

   - Rework the handling of frequency tables by the cpufreq core to make
     it more efficient (Viresh Kumar).

   - Modify the schedutil governor to reduce the number of wakeups it
     causes to occur in cases when the CPU frequency doesn't need to be
     changed (Steve Muckle, Viresh Kumar).

   - Fix some minor issues and clean up code in the cpufreq core and
     governors (Rafael Wysocki, Viresh Kumar).

   - Add Intel Broxton support to the intel_pstate driver (Srinivas
     Pandruvada).

   - Fix problems related to the config TDP feature and to the validity
     of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
     Srinivas Pandruvada).

   - Make intel_pstate update the cpu_frequency tracepoint even if the
     frequency doesn't change to avoid confusing powertop (Rafael
     Wysocki).

   - Clean up the usage of __init/__initdata in intel_pstate, mark some
     of its internal variables as __read_mostly and drop an unused
     structure element from it (Jisheng Zhang, Carsten Emde).

   - Clean up the usage of some duplicate MSR symbols in intel_pstate
     and turbostat (Srinivas Pandruvada).

   - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
     Adiga, Viresh Kumar, Ben Dooks).

   - Fix a regression (introduced during the 4.5 cycle) in the
     pcc-cpufreq driver by reverting the problematic commit (Andreas
     Herrmann).

   - Add support for Intel Denverton to intel_idle, clean up Broxton
     support in it and make it explicitly non-modular (Jacob Pan, Jan
     Beulich, Paul Gortmaker).

   - Add support for Denverton and Ivy Bridge server to the Intel RAPL
     power capping driver and make it more careful about the handing of
     MSRs that may not be present (Jacob Pan, Xiaolong Wang).

   - Fix resume from hibernation on x86-64 by making the CPU offline
     during resume avoid using MONITOR/MWAIT in the "play dead" loop
     which may lead to an inadvertent "revival" of a "dead" CPU and a
     page fault leading to a kernel crash from it (Rafael Wysocki).

   - Make memory management during resume from hibernation more
     straightforward (Rafael Wysocki).

   - Add debug features that should help to detect problems related to
     hibernation and resume from it (Rafael Wysocki, Chen Yu).

   - Clean up hibernation core somewhat (Rafael Wysocki).

   - Prevent KASAN from instrumenting the hibernation core which leads
     to large numbers of false-positives from it (James Morse).

   - Prevent PM (hibernate and suspend) notifiers from being called
     during the cleanup phase if they have not been called during the
     corresponding preparation phase which is possible if one of the
     other notifiers returns an error at that time (Lianwei Wang).

   - Improve suspend-related debug printout in the tasks freezer and
     clean up suspend-related console handling (Roger Lu, Borislav
     Petkov).

   - Update the AnalyzeSuspend script in the kernel sources to version
     4.2 (Todd Brandt).

   - Modify the generic power domains framework to make it handle system
     suspend/resume better (Ulf Hansson).

   - Make the runtime PM framework avoid resuming devices synchronously
     when user space changes the runtime PM settings for them and
     improve its error reporting (Rafael Wysocki, Linus Walleij).

   - Fix error paths in devfreq drivers (exynos, exynos-ppmu,
     exynos-bus) and in the core, make some devfreq code explicitly
     non-modular and change some of it into tristate (Bartlomiej
     Zolnierkiewicz, Peter Chen, Paul Gortmaker).

   - Add DT support to the generic PM clocks management code and make it
     export some more symbols (Jon Hunter, Paul Gortmaker).

   - Make the PCI PM core code slightly more robust against possible
     driver errors (Andy Shevchenko).

   - Make it possible to change DESTDIR and PREFIX in turbostat (Andy
     Shevchenko)"

* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
  Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
  PM / hibernate: Introduce test_resume mode for hibernation
  cpufreq: export cpufreq_driver_resolve_freq()
  cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
  PCI / PM: check all fields in pci_set_platform_pm()
  cpufreq: acpi-cpufreq: use cached frequency mapping when possible
  cpufreq: schedutil: map raw required frequency to driver frequency
  cpufreq: add cpufreq_driver_resolve_freq()
  cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
  intel_pstate: Update cpu_frequency tracepoint every time
  cpufreq: intel_pstate: clean remnant struct element
  PM / tools: scripts: AnalyzeSuspend v4.2
  x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
  cpufreq: powernv: Replacing pstate_id with frequency table index
  intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
  PM / hibernate: Image data protection during restoration
  PM / hibernate: Add missing braces in __register_nosave_region()
  PM / hibernate: Clean up comments in snapshot.c
  PM / hibernate: Clean up function headers in snapshot.c
  PM / hibernate: Add missing braces in hibernate_setup()
  ...
2016-07-26 17:29:07 -07:00
Linus Torvalds
55392c4c06 Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "This update provides the following changes:

   - The rework of the timer wheel which addresses the shortcomings of
     the current wheel (cascading, slow search for next expiring timer,
     etc).  That's the first major change of the wheel in almost 20
     years since Finn implemted it.

   - A large overhaul of the clocksource drivers init functions to
     consolidate the Device Tree initialization

   - Some more Y2038 updates

   - A capability fix for timerfd

   - Yet another clock chip driver

   - The usual pile of updates, comment improvements all over the place"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (130 commits)
  tick/nohz: Optimize nohz idle enter
  clockevents: Make clockevents_subsys static
  clocksource/drivers/time-armada-370-xp: Fix return value check
  timers: Implement optimization for same expiry time in mod_timer()
  timers: Split out index calculation
  timers: Only wake softirq if necessary
  timers: Forward the wheel clock whenever possible
  timers/nohz: Remove pointless tick_nohz_kick_tick() function
  timers: Optimize collect_expired_timers() for NOHZ
  timers: Move __run_timers() function
  timers: Remove set_timer_slack() leftovers
  timers: Switch to a non-cascading wheel
  timers: Reduce the CPU index space to 256k
  timers: Give a few structs and members proper names
  hlist: Add hlist_is_singular_node() helper
  signals: Use hrtimer for sigtimedwait()
  timers: Remove the deprecated mod_timer_pinned() API
  timers, net/ipv4/inet: Initialize connection request timers as pinned
  timers, drivers/tty/mips_ejtag: Initialize the poll timer as pinned
  timers, drivers/tty/metag_da: Initialize the poll timer as pinned
  ...
2016-07-25 20:43:12 -07:00
Linus Torvalds
8e466955d6 Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Intel-SoC enhancements (Andy Shevchenko)

   - Intel CPU symbolic model definition rework (Dave Hansen)

   - ... other misc changes"

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
  x86/sfi: Enable enumeration of SD devices
  x86/pci: Use MRFLD abbreviation for Merrifield
  x86/platform/intel-mid: Make vertical indentation consistent
  x86/platform/intel-mid: Mark regulators explicitly defined
  x86/platform/intel-mid: Rename mrfl.c to mrfld.c
  x86/platform/intel-mid: Enable spidev on Intel Edison boards
  x86/platform/intel-mid: Extend PWRMU to support Penwell
  x86/pci, x86/platform/intel_mid_pci: Remove duplicate power off code
  x86/platform/intel-mid: Add pinctrl for Intel Merrifield
  x86/platform/intel-mid: Enable GPIO expanders on Edison
  x86/platform/intel-mid: Add Power Management Unit driver
  x86/platform/atom/punit: Enable support for Merrifield
  x86/platform/intel_mid_pci: Rework IRQ0 workaround
  x86, thermal: Clean up and fix CPU model detection for intel_soc_dts_thermal
  x86, mmc: Use Intel family name macros for mmc driver
  x86/intel_telemetry: Use Intel family name macros for telemetry driver
  x86/acpi/lss: Use Intel family name macros for the acpi_lpss driver
  x86/cpufreq: Use Intel family name macros for the intel_pstate cpufreq driver
  x86/platform: Use new Intel model number macros
  x86/intel_idle: Use Intel family macros for intel_idle
  ...
2016-07-25 19:15:35 -07:00
Rafael J. Wysocki
bc841e260c Merge branch 'pm-cpu'
* pm-cpu:
  x86: remove duplicate turbo ratio limit MSRs
  tools/power turbostat: Replace MSR_NHM_TURBO_RATIO_LIMIT
  cpufreq: intel_pstate: Replace MSR_NHM_TURBO_RATIO_LIMIT
2016-07-25 13:46:30 +02:00
Andreas Herrmann
da7d3abe1c Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
This reverts commit 790d849bf8.

Using a v4.7-rc7 kernel on a HP ProLiant triggered following messages

 pcc-cpufreq: (v1.10.00) driver loaded with frequency limits: 1200 MHz, 2800 MHz
 cpufreq: ondemand governor failed, too long transition latency of HW, fallback to performance governor

The last line was shown for each CPU in the system.
Testing v4.5 (where commit 790d849b was integrated) triggered
similar messages. Same behaviour on a 2nd HP Proliant system.

So commit 790d849bf (cpufreq: pcc-cpufreq: update default value of
cpuinfo_transition_latency) causes the system to use performance
governor which, I guess, was not the intention of the patch.

Enabling debug output in pcc-cpufreq provides following verbose output:

 pcc-cpufreq: (v1.10.00) driver loaded with frequency limits: 1200 MHz, 2800 MHz
 pcc_get_offset: for CPU 0: pcc_cpu_data input_offset: 0x44, pcc_cpu_data output_offset: 0x48
 init: policy->max is 2800000, policy->min is 1200000
 get: get_freq for CPU 0
 get: SUCCESS: (virtual) output_offset for cpu 0 is 0xffffc9000d7c0048, contains a value of: 0xff06. Speed is: 168000 MHz
 cpufreq: ondemand governor failed, too long transition latency of HW, fallback to performance governor
 target: CPU 0 should go to target freq: 2800000 (virtual) input_offset is 0xffffc9000d7c0044
 target: was SUCCESSFUL for cpu 0

I am asking to revert 790d849bf to re-enable usage of ondemand
governor with pcc-cpufreq.

Fixes: 790d849bf (cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency)
CC: <stable@vger.kernel.org> # 4.5+
Signed-off-by: Andreas Herrmann <aherrmann@suse.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-22 23:51:06 +02:00
Steve Muckle
ae2c1ca686 cpufreq: export cpufreq_driver_resolve_freq()
Export cpufreq_driver_resolve_freq() since governors may be compiled as
modules.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-22 13:53:51 +02:00
Viresh Kumar
abe8bd024e cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
The handlers provided by cpufreq core are sufficient for resolving the
frequency for drivers providing ->target_index(), as the core already
has the frequency table and so ->resolve_freq() isn't required for such
platforms.

This patch disallows drivers with ->target_index() callback to use the
->resolve_freq() callback.

Also, it fixes a potential kernel crash for drivers providing ->target()
but no ->resolve_freq().

Fixes: e3c0623608 "cpufreq: add cpufreq_driver_resolve_freq()"
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-21 23:45:17 +02:00
Steve Muckle
5b6667c76d cpufreq: acpi-cpufreq: use cached frequency mapping when possible
A call to cpufreq_driver_resolve_freq will cache the mapping from
the desired target frequency to the frequency table index. If there
is a mapping for the desired target frequency then use it instead of
looking up the mapping again.

Signed-off-by: Steve Muckle <smuckle@linaro.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-21 22:28:32 +02:00
Steve Muckle
e3c0623608 cpufreq: add cpufreq_driver_resolve_freq()
Cpufreq governors may need to know what a particular target frequency
maps to in the driver without necessarily wanting to set the frequency.
Support this operation via a new cpufreq API,
cpufreq_driver_resolve_freq(). This API returns the lowest driver
frequency equal or greater than the target frequency
(CPUFREQ_RELATION_L), subject to any policy (min/max) or driver
limitations. The mapping is also cached in the policy so that a
subsequent fast_switch operation can avoid repeating the same lookup.

The API will call a new cpufreq driver callback, resolve_freq(), if it
has been registered by the driver. Otherwise the frequency is resolved
via cpufreq_frequency_table_target(). Rather than require ->target()
style drivers to provide a resolve_freq() callback it is left to the
caller to ensure that the driver implements this callback if necessary
to use cpufreq_driver_resolve_freq().

Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-21 14:46:08 +02:00
Srinivas Pandruvada
da7de91c3e cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
The MSR MSR_HWP_INTERRUPT is valid only when CPUID.06H:EAX[8] = 1, so
check for feature before accessing this MSR.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-21 14:29:30 +02:00
Rafael J. Wysocki
bc95a454b6 intel_pstate: Update cpu_frequency tracepoint every time
Currently, intel_pstate only updates the cpu_frequency tracepoint
if the new P-state to set is different from the current one, but
that causes powertop to report 100% idle on an 100% loaded system
sometimes.

Prevent that from happening by updating the cpu_frequency tracepoint
every time intel_pstate_update_pstate() is called.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>-
2016-07-21 14:28:37 +02:00
Carsten Emde
2630abc243 cpufreq: intel_pstate: clean remnant struct element
When I was working with the Intel P state driver I came across a
remnant struct element that is no longer needed after the function
intel_pstate_calc_freq() was retired.

Signed-off-by: Carsten Emde <C.Emde@osadl.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-21 14:26:00 +02:00
Akshay Adiga
09ca4c9b59 cpufreq: powernv: Replacing pstate_id with frequency table index
Refactoring code to use frequency table index instead of pstate_id.
This abstraction will make the code independent of the pstate values.

- No functional changes
- The highest frequency is at frequency table index 0 and the frequency
  decreases as the index increases.
- Macros pstates_to_idx() and idx_to_pstate() can be used for conversion
  between pstate_id and index.
- powernv_pstate_info now contains frequency table index to min, max and
  nominal frequency (instead of pstate_ids)
- global_pstate_info new stores index values instead pstate ids.
- variables renamed as *_idx which now store index instead of pstate

Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-12 02:47:10 +02:00
Jan Kiszka
5fc8f707a2 intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
If MSR_CONFIG_TDP_CONTROL is locked, we currently try to address some
MSR 0x80000648 or so. Mask out the relevant level bits 0 and 1.

Found while running over the Jailhouse hypervisor which became upset
about this strange MSR index.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-11 15:12:30 +02:00
Srinivas Pandruvada
100cf6f277 cpufreq: intel_pstate: Replace MSR_NHM_TURBO_RATIO_LIMIT
Replace MSR_NHM_TURBO_RATIO_LIMIT with MSR_TURBO_RATIO_LIMIT.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-07 15:31:58 +02:00
Thomas Gleixner
7bc54b652f timers, cpufreq/powernv: Initialize the gpstate timer as pinned
Pinned timers must carry the pinned attribute in the timer structure
itself, so convert the code to the new API.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.297014487@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-07 10:25:14 +02:00
Viresh Kumar
825773609c cpufreq: Reuse new freq-table helpers
This patch migrates few users of cpufreq tables to the new helpers
that work on sorted freq-tables.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-07 00:14:27 +02:00
Viresh Kumar
da0c6dc00c cpufreq: Handle sorted frequency tables more efficiently
cpufreq drivers aren't required to provide a sorted frequency table
today, and even the ones which provide a sorted table aren't handled
efficiently by cpufreq core.

This patch adds infrastructure to verify if the freq-table provided by
the drivers is sorted or not, and use efficient helpers if they are
sorted.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-07-07 00:13:20 +02:00
Rafael J. Wysocki
8d540ea792 cpufreq: Drop redundant check from cpufreq_update_current_freq()
Both callers of cpufreq_update_current_freq(), cpufreq_update_policy()
and cpufreq_start_governor(), check cpufreq_suspended before calling
that function, so drop the redundant cpufreq_suspended check from it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-07-04 13:22:35 +02:00