LVDS panel support uses the LCDC (parallel) encoder. Unlike with HDMI,
there is not a separate LVDS block, so no need to split things into a
bridge+connector. Nor is there is anything re-used with mdp5.
Note that there can be some regulators shared between HDMI and LVDS (in
particular, on apq8064, ext_3v3p), so we should not use the _exclusive()
variants of devm_regulator_get().
The drm_panel framework is used for panel-specific driver.
Signed-off-by: Rob Clark <robdclark@gmail.com>
To ease debugging, add debugfs file which can be cat/tail'd to log
submits, along with fence #. If GPU hangs, you can look at 'gpu'
debugfs file to find last completed fence and current register state,
and compare with logged rd file to narrow down the DRAW_INDX which
triggered the GPU hang.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add support for the new MDP5 display controller block. The mapping
between parts of the display controller and KMS is:
plane -> PIPE{RGBn,VIGn} \
crtc -> LM (layer mixer) |-> MDP "device"
encoder -> INTF /
connector -> HDMI/DSI/eDP/etc --> other device(s)
Unlike MDP4, it appears we can get by with a single encoder, rather
than needing a different implementation for DTV, DSI, etc. (Ie. the
register interface is same, just different bases.)
Also unlike MDP4, all the IRQs for other blocks (HDMI, DSI, etc) are
routed through MDP.
And finally, MDP5 has this "Shared Memory Pool" (called "SMP"), from
which blocks need to be allocated to the active pipes based on fetch
stride.
Signed-off-by: Rob Clark <robdclark@gmail.com>
The HDMI block is basically the same between older SoC's with mdp4
display controller, and newer ones with mdp5.
So mostly this consists of better abstracting out the different sets of
regulators, clks, etc. In particular, for regulators and clks we can
split it up by what is needed for hot plug detect to work, and what is
needed to light up the display.
Also, 8x74 has a new phy.. a very simple one, but split out into a
different mmio space. And with mdp5, the irq is shared with mdp, so we
don't directly register our own irq handler.
Signed-off-by: Rob Clark <robdclark@gmail.com>
This can be shared between mdp4 and mdp5. Both use the same set of
parameters to describe the format to the hw.
Signed-off-by: Rob Clark <robdclark@gmail.com>
There are some little bits and pieces that mdp4 and mdp5 can share, so
move things around so that we can have both in a common parent
directory.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add a VRAM carveout that is used for systems which do not have an IOMMU.
The VRAM carveout uses CMA. The arch code must setup a CMA pool for the
device (preferrably in highmem.. a 256m-512m VRAM pool in lowmem is not
cool). The user can configure the VRAM pool size using msm.vram module
param.
Technically, the abstraction of IOMMU behind msm_mmu is not strictly
needed, but it simplifies the GEM code a bit, and will be useful later
when I add support for a2xx devices with GPUMMU, so I decided to keep
this part.
It appears to be possible to configure the GPU to restrict access to
addresses within the VRAM pool, but this is not done yet. So for now
the GPU will refuse to load if there is no sort of mmu. Once address
based limits are supported and tested to confirm that we aren't giving
the GPU access to arbitrary memory, this restriction can be lifted
Signed-off-by: Rob Clark <robdclark@gmail.com>
Drop the msm_connector base class, and special calls to base class
methods from the encoder, and use instead drm_bridge. This allows for a
cleaner division between the hdmi (and in future dsi) blocks, from the
mdp block.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Add initial support for a3xx 3d core.
So far, with hardware that I've seen to date, we can have:
+ zero, one, or two z180 2d cores
+ a3xx or a2xx 3d core, which share a common CP (the firmware
for the CP seems to implement some different PM4 packet types
but the basics of cmdstream submission are the same)
Which means that the eventual complete "class" hierarchy, once
support for all past and present hw is in place, becomes:
+ msm_gpu
+ adreno_gpu
+ a3xx_gpu
+ a2xx_gpu
+ z180_gpu
This commit splits out the parts that will eventually be common
between a2xx/a3xx into adreno_gpu, and the parts that are even
common to z180 into msm_gpu.
Note that there is no cmdstream validation required. All memory access
from the GPU is via IOMMU/MMU. So as long as you don't map silly things
to the GPU, there isn't much damage that the GPU can do.
Signed-off-by: Rob Clark <robdclark@gmail.com>
The snapdragon chips have multiple different display controllers,
depending on which chip variant/version. (As far as I can tell, current
devices have either MDP3 or MDP4, and upcoming devices have MDSS.) And
then external to the display controller are HDMI, DSI, etc. blocks which
may be shared across devices which have different display controller
blocks.
To more easily add support for different display controller blocks, the
display controller specific bits are split out into a "kms" module,
which provides the kms plane/crtc/encoder objects.
The external HDMI, DSI, etc. blocks are part encoder, and part connector
currently. But I think I will pull in the drm_bridge patches from
chromeos tree, and split them into a bridge+connector, with the
registers that need to be set in modeset handled by the bridge. This
would remove the 'msm_connector' base class. But some things need to be
double checked to make sure I could get the correct ON/OFF sequencing..
This patch adds support for mdp4 crtc (including hw cursor), dtv encoder
(part of MDP4 block), and hdmi.
Signed-off-by: Rob Clark <robdclark@gmail.com>