This patch makes it so that if a destructor is not present we avoid trying
to update the skb socket or any reference counting that would be associated
with the NULL socket and/or descriptor. By doing this we can support
traffic coming from another namespace without any issues.
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for a software provided checksum and GSO_PARTIAL
segmentation support. With this we can offload UDP segmentation on devices
that only have partial support for tunnels.
Since we are no longer needing the hardware checksum we can drop the checks
in the segmentation code that were verifying if it was present.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows us to take care of unrolling the first segment and the
last segment of the loop for processing the segmented skb. Part of the
motivation for this is that it makes it easier to process the fact that the
first fame and all of the frames in between should be mostly identical
in terms of header data, and the last frame has differences in the length
and partial checksum.
In addition I am dropping the header length calculation since we don't
really need it for anything but the last frame and it can be easily
obtained by just pulling the data_len and offset of tail from the transport
header.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is meant to allow us to avoid having to recompute the checksum
from scratch and have it passed as a parameter.
Instead of taking that approach we can take advantage of the fact that the
length that was used to compute the existing checksum is included in the
UDP header.
Finally to avoid the need to invert the result we can just call csum16_add
and csum16_sub directly. By doing this we can avoid a number of
instructions in the loop that is handling segmentation.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is no point in passing MSS as a parameter for for the GSO
segmentation call as it is already available via the shared info for the
skb itself.
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using the udp_v4_check() function to calculate the pseudo header
for the newly segmented UDP packets results in assigning the complement
of the value to the UDP header checksum field.
Always undo the complement the partial checksum value in order to
match the case where GSO is not used on the UDP transmit path.
Fixes: ee80d1ebe5 ("udp: add udp gso")
Signed-off-by: Sean Tranchetti <stranche@codeaurora.org>
Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
UDP GSO needs to export __udp_gso_segment to call it from ipv6.
I accidentally exported static ipv4 function __udp4_gso_segment.
Remove that EXPORT_SYMBOL_GPL.
Fixes: ee80d1ebe5 ("udp: add udp gso")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
skb_segment by default transfers allocated wmem from the gso skb
to the tail of the segment list. This underreports real truesize
of the list, especially if the tail might be dropped.
Similar to tcp_gso_segment, update wmem_alloc with the aggregate
list truesize and make each segment responsible for its own
share by setting skb->destructor.
Clear gso_skb->destructor prior to calling skb_segment to skip
the default assignment to tail.
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement generic segmentation offload support for udp datagrams. A
follow-up patch adds support to the protocol stack to generate such
packets.
UDP GSO is not UFO. UFO fragments a single large datagram. GSO splits
a large payload into a number of discrete UDP datagrams.
The implementation adds a GSO type SKB_UDP_GSO_L4 to differentiate it
from UFO (SKB_UDP_GSO).
IPPROTO_UDPLITE is excluded, as that protocol has no gso handler
registered.
[ Export __udp_gso_segment for ipv6. -DaveM ]
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Validate gso_type during segmentation as SKB_GSO_DODGY sources
may pass packets where the gso_type does not match the contents.
Syzkaller was able to enter the SCTP gso handler with a packet of
gso_type SKB_GSO_TCPV4.
On entry of transport layer gso handlers, verify that the gso_type
matches the transport protocol.
Fixes: 90017accff ("sctp: Add GSO support")
Link: http://lkml.kernel.org/r/<001a1137452496ffc305617e5fe0@google.com>
Reported-by: syzbot+fee64147a25aecd48055@syzkaller.appspotmail.com
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Tuntap and similar devices can inject GSO packets. Accept type
VIRTIO_NET_HDR_GSO_UDP, even though not generating UFO natively.
Processes are expected to use feature negotiation such as TUNSETOFFLOAD
to detect supported offload types and refrain from injecting other
packets. This process breaks down with live migration: guest kernels
do not renegotiate flags, so destination hosts need to expose all
features that the source host does.
Partially revert the UFO removal from 182e0b6b5846~1..d9d30adf5677.
This patch introduces nearly(*) no new code to simplify verification.
It brings back verbatim tuntap UFO negotiation, VIRTIO_NET_HDR_GSO_UDP
insertion and software UFO segmentation.
It does not reinstate protocol stack support, hardware offload
(NETIF_F_UFO), SKB_GSO_UDP tunneling in SKB_GSO_SOFTWARE or reception
of VIRTIO_NET_HDR_GSO_UDP packets in tuntap.
To support SKB_GSO_UDP reappearing in the stack, also reinstate
logic in act_csum and openvswitch. Achieve equivalence with v4.13 HEAD
by squashing in commit 939912216f ("net: skb_needs_check() removes
CHECKSUM_UNNECESSARY check for tx.") and reverting commit 8d63bee643
("net: avoid skb_warn_bad_offload false positives on UFO").
(*) To avoid having to bring back skb_shinfo(skb)->ip6_frag_id,
ipv6_proxy_select_ident is changed to return a __be32 and this is
assigned directly to the frag_hdr. Also, SKB_GSO_UDP is inserted
at the end of the enum to minimize code churn.
Tested
Booted a v4.13 guest kernel with QEMU. On a host kernel before this
patch `ethtool -k eth0` shows UFO disabled. After the patch, it is
enabled, same as on a v4.13 host kernel.
A UFO packet sent from the guest appears on the tap device:
host:
nc -l -p -u 8000 &
tcpdump -n -i tap0
guest:
dd if=/dev/zero of=payload.txt bs=1 count=2000
nc -u 192.16.1.1 8000 < payload.txt
Direct tap to tap transmission of VIRTIO_NET_HDR_GSO_UDP succeeds,
packets arriving fragmented:
./with_tap_pair.sh ./tap_send_ufo tap0 tap1
(from https://github.com/wdebruij/kerneltools/tree/master/tests)
Changes
v1 -> v2
- simplified set_offload change (review comment)
- documented test procedure
Link: http://lkml.kernel.org/r/<CAF=yD-LuUeDuL9YWPJD9ykOZ0QCjNeznPDr6whqZ9NGMNF12Mw@mail.gmail.com>
Fixes: fb652fdfe8 ("macvlan/macvtap: Remove NETIF_F_UFO advertisement.")
Reported-by: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When gso_size reset to zero for the tail segment in skb_segment(), later
in ipv6_gso_segment(), __skb_udp_tunnel_segment() and gre_gso_segment()
we will get incorrect results (payload length, pcsum) for that segment.
inet_gso_segment() already has a check for gso_size before calculating
payload.
The issue was found with LTP vxlan & gre tests over ixgbe NIC.
Fixes: 07b26c9454 ("gso: Support partial splitting at the frag_list pointer")
Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Acked-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Otherwise, UDP checksum offloads could corrupt ESP packets by attempting
to calculate UDP checksum when this inner UDP packet is already protected
by IPsec.
One way to reproduce this bug is to have a VM with virtio_net driver (UFO
set to ON in the guest VM); and then encapsulate all guest's Ethernet
frames in Geneve; and then further encrypt Geneve with IPsec. In this
case following symptoms are observed:
1. If using ixgbe NIC, then it will complain with following error message:
ixgbe 0000:01:00.1: partial checksum but l4 proto=32!
2. Receiving IPsec stack will drop all the corrupted ESP packets and
increase XfrmInStateProtoError counter in /proc/net/xfrm_stat.
3. iperf UDP test from the VM with packet sizes above MTU will not work at
all.
4. iperf TCP test from the VM will get ridiculously low performance because.
Signed-off-by: Ansis Atteka <aatteka@ovn.org>
Co-authored-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, GRO can do unlimited recursion through the gro_receive
handlers. This was fixed for tunneling protocols by limiting tunnel GRO
to one level with encap_mark, but both VLAN and TEB still have this
problem. Thus, the kernel is vulnerable to a stack overflow, if we
receive a packet composed entirely of VLAN headers.
This patch adds a recursion counter to the GRO layer to prevent stack
overflow. When a gro_receive function hits the recursion limit, GRO is
aborted for this skb and it is processed normally. This recursion
counter is put in the GRO CB, but could be turned into a percpu counter
if we run out of space in the CB.
Thanks to Vladimír Beneš <vbenes@redhat.com> for the initial bug report.
Fixes: CVE-2016-7039
Fixes: 9b174d88c2 ("net: Add Transparent Ethernet Bridging GRO support.")
Fixes: 66e5133f19 ("vlan: Add GRO support for non hardware accelerated vlan")
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Jiri Benc <jbenc@redhat.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 8a29111c7 ("net: gro: allow to build full sized skb")
gro may build buffers with a frag_list. This can hurt forwarding
because most NICs can't offload such packets, they need to be
segmented in software. This patch splits buffers with a frag_list
at the frag_list pointer into buffers that can be TSO offloaded.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Acked-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In several gso_segment functions there are checks of gso_type against
a seemingly arbitrary list of SKB_GSO_* flags. This seems like an
attempt to identify unsupported GSO types, but since the stack is
the one that set these GSO types in the first place this seems
unnecessary to do. If a combination isn't valid in the first
place that stack should not allow setting it.
This is a code simplication especially for add new GSO types.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In netdevice.h we removed the structure in net-next that is being
changes in 'net'. In macsec.c and rtnetlink.c we have overlaps
between fixes in 'net' and the u64 attribute changes in 'net-next'.
The mlx5 conflicts have to do with vxlan support dependencies.
Signed-off-by: David S. Miller <davem@davemloft.net>
UDP tunnel segmentation code relies on the inner offsets being set for
an UDP tunnel GSO packet, but the inner *_complete() functions will
set the inner offsets only if 'encapsulation' is set before calling
them. Currently, udp_gro_complete() sets 'encapsulation' only after
the inner *_complete() functions are done. This causes the inner
offsets having invalid values after udp_gro_complete() returns, which
in turn will make it impossible to properly segment the packet in case
it needs to be forwarded, which would be visible to the user either as
invalid packets being sent or as packet loss.
This patch fixes this by setting skb's 'encapsulation' in
udp_gro_complete() before calling into the inner complete functions,
and by making each possible UDP tunnel gro_complete() callback set the
inner_mac_header to the beginning of the tunnel payload.
Signed-off-by: Jarno Rajahalme <jarno@ovn.org>
Reviewed-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for something I am referring to as GSO partial.
The basic idea is that we can support a broader range of devices for
segmentation if we use fixed outer headers and have the hardware only
really deal with segmenting the inner header. The idea behind the naming
is due to the fact that everything before csum_start will be fixed headers,
and everything after will be the region that is handled by hardware.
With the current implementation it allows us to add support for the
following GSO types with an inner TSO_MANGLEID or TSO6 offload:
NETIF_F_GSO_GRE
NETIF_F_GSO_GRE_CSUM
NETIF_F_GSO_IPIP
NETIF_F_GSO_SIT
NETIF_F_UDP_TUNNEL
NETIF_F_UDP_TUNNEL_CSUM
In the case of hardware that already supports tunneling we may be able to
extend this further to support TSO_TCPV4 without TSO_MANGLEID if the
hardware can support updating inner IPv4 headers.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that the UDP encapsulation GRO functions have been moved to the UDP
socket we not longer need the udp_offload insfrastructure so removing it.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds GRO functions (gro_receive and gro_complete) to UDP
sockets. udp_gro_receive is changed to perform socket lookup on a
packet. If a socket is found the related GRO functions are called.
This features obsoletes using UDP offload infrastructure for GRO
(udp_offload). This has the advantage of not being limited to provide
offload on a per port basis, GRO is now applied to whatever individual
UDP sockets are bound to. This also allows the possbility of
"application defined GRO"-- that is we can attach something like
a BPF program to a UDP socket to perfrom GRO on an application
layer protocol.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch corrects an oversight in which we were allowing the encap_level
value to pass from the outer headers to the inner headers. As a result we
were incorrectly identifying UDP or GRE tunnels as also making use of ipip
or sit when the second header actually represented a tunnel encapsulated in
either a UDP or GRE tunnel which already had the features masked.
Fixes: 7644345622 ("net: Move GSO csum into SKB_GSO_CB")
Reported-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When drivers express support for TSO of encapsulated packets, they
only mean that they can do it for one layer of encapsulation.
Supporting additional levels would mean updating, at a minimum,
more IP length fields and they are unaware of this.
No encapsulation device expresses support for handling offloaded
encapsulated packets, so we won't generate these types of frames
in the transmit path. However, GRO doesn't have a check for
multiple levels of encapsulation and will attempt to build them.
UDP tunnel GRO actually does prevent this situation but it only
handles multiple UDP tunnels stacked on top of each other. This
generalizes that solution to prevent any kind of tunnel stacking
that would cause problems.
Fixes: bf5a755f ("net-gre-gro: Add GRE support to the GRO stack")
Signed-off-by: Jesse Gross <jesse@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is possible for tunnels to end up generating IP or IPv6 datagrams that
are larger than 64K and expecting to be segmented. As such we need to deal
with length values greater than 64K. In order to accommodate this we need
to update the code to work with a 32b length value instead of a 16b one.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On reviewing the code I realized that GRE and UDP tunnels could cause a
kernel panic if we used GSO to segment a large UDP frame that was sent
through the tunnel with an outer checksum and hardware offloads were not
available.
In order to correct this we need to update the feature flags that are
passed to the skb_segment function so that in the event of UDP
fragmentation being requested for the inner header the segmentation
function will correctly generate the checksum for the payload if we cannot
segment the outer header.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The segmentation code was having to do a bunch of work to pull the
skb->len and strip the udp header offset before the value could be used to
adjust the checksum. Instead of doing all this work we can just use the
value that goes into uh->len since that is the correct value with the
correct byte order that we need anyway. By using this value we can save
ourselves a bunch of pain as there is no need to do multiple byte swaps.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch goes though and cleans up the logic related to several of the
control flags used in UDP segmentation. Specifically the use of dont_encap
isn't really needed as we can just check the skb for CHECKSUM_PARTIAL and
if it isn't set then we don't need to update the internal headers. As such
we can just drop that value.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch addresses two main issues.
First in the case of remote checksum offload we were avoiding dealing with
scatter-gather issues. As a result it would be possible to assemble a
series of frames that used frags instead of being linearized as they should
have if remote checksum offload was enabled.
Second I have updated the code so that we now let GSO take care of doing
the checksum on the data itself and drop the special case that was added
for remote checksum offload.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The enc_features variable isn't necessary since features isn't used
anywhere after we create enc_features so instead just use a destructive AND
on features itself and save ourselves the variable declaration.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/bonding/bond_main.c
drivers/net/ethernet/mellanox/mlxsw/spectrum.h
drivers/net/ethernet/mellanox/mlxsw/spectrum_switchdev.c
The bond_main.c and mellanox switch conflicts were cases of
overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
udp tunnel offloads tend to aggregate datagrams based on inner
headers. gro engine gets notified by tunnel implementations about
possible offloads. The match is solely based on the port number.
Imagine a tunnel bound to port 53, the offloading will look into all
DNS packets and tries to aggregate them based on the inner data found
within. This could lead to data corruption and malformed DNS packets.
While this patch minimizes the problem and helps an administrator to find
the issue by querying ip tunnel/fou, a better way would be to match on
the specific destination ip address so if a user space socket is bound
to the same address it will conflict.
Cc: Tom Herbert <tom@herbertland.com>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
These netif flags are unnecessary convolutions. It is more
straightforward to just use NETIF_F_HW_CSUM, NETIF_F_IP_CSUM,
and NETIF_F_IPV6_CSUM directly.
This patch also:
- Cleans up can_checksum_protocol
- Simplifies netdev_intersect_features
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ipv4 code uses a mixture of coding styles. In some instances check
for non-NULL pointer is done as x != NULL and sometimes as x. x is
preferred according to checkpatch and this patch makes the code
consistent by adopting the latter form.
No changes detected by objdiff.
Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Properly set GSO types and skb->encapsulation in the UDP tunnel GRO
complete so that packets are properly represented for GSO. This sets
SKB_GSO_UDP_TUNNEL or SKB_GSO_UDP_TUNNEL_CSUM depending on whether
non-zero checksums were received, and sets SKB_GSO_TUNNEL_REMCSUM if
the remote checksum option was processed.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch introduces udp_offload_callbacks which has the same
GRO functions (but not a GSO function) as offload_callbacks,
except there is an argument to a udp_offload struct passed to
gro_receive and gro_complete functions. This additional argument
can be used to retrieve the per port structure of the encapsulation
for use in gro processing (mostly by doing container_of on the
structure).
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Device can export MPLS GSO support in dev->mpls_features same way
it export vlan features in dev->vlan_features. So it is safe to
remove NETIF_F_GSO_MPLS redundant flag.
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Add a new GSO type, SKB_GSO_TUNNEL_REMCSUM, which indicates remote
checksum offload being done (in this case inner checksum must not
be offloaded to the NIC).
Added logic in __skb_udp_tunnel_segment to handle remote checksum
offload case.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In __skb_udp_tunnel_segment if outer UDP checksums are enabled and
ip_summed is not already CHECKSUM_PARTIAL, set up checksum offload
if device features allow it.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
skb_gso_segment() has a 'features' argument representing offload features
available to the output path.
A few handlers, e.g. GRE, instead re-fetch the features of skb->dev and use
those instead of the provided ones when handing encapsulation/tunnels.
Depending on dev->hw_enc_features of the output device skb_gso_segment() can
then return NULL even when the caller has disabled all GSO feature bits,
as segmentation of inner header thinks device will take care of segmentation.
This e.g. affects the tbf scheduler, which will silently drop GRE-encap GSO skbs
that did not fit the remaining token quota as the segmentation does not work
when device supports corresponding hw offload capabilities.
Cc: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes fou[46]_gro_receive and fou[46]_gro_complete
functions. The v4 or v6 variants were chosen for the UDP offloads
based on the address family of the socket this is not necessary
or correct. Alternatively, this patch adds is_ipv6 to napi_gro_skb.
This is set in udp6_gro_receive and unset in udp4_gro_receive. In
fou_gro_receive the value is used to select the correct inet_offloads
for the protocol of the outer IP header.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
skb_udp_segment is the function called from udp4_ufo_fragment to
segment a UDP tunnel packet. This function currently assumes
segmentation is transparent Ethernet bridging (i.e. VXLAN
encapsulation). This patch generalizes the function to
operate on either Ethertype or IP protocol.
The inner_protocol field must be set to the protocol of the inner
header. This can now be either an Ethertype or an IP protocol
(in a union). A new flag in the skbuff indicates which type is
effective. skb_set_inner_protocol and skb_set_inner_ipproto
helper functions were added to set the inner_protocol. These
functions are called from the point where the tunnel encapsulation
is occuring.
When skb_udp_tunnel_segment is called, the function to segment the
inner packet is selected based on the inner IP or Ethertype. In the
case of an IP protocol encapsulation, the function is derived from
inet[6]_offloads. In the case of Ethertype, skb->protocol is
set to the inner_protocol and skb_mac_gso_segment is called. (GRE
currently does this, but it might be possible to lookup the protocol
in offload_base and call the appropriate segmenation function
directly).
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The send_check logic was only interesting in cases of TCP offload and
UDP UFO where the checksum needed to be initialized to the pseudo
header checksum. Now we've moved that logic into the related
gso_segment functions so gso_send_check is no longer needed.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In udp[46]_ufo_send_check the UDP checksum initialized to the pseudo
header checksum. We can move this logic into udp[46]_ufo_fragment.
After this change udp[64]_ufo_send_check is a no-op.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement fou_gro_receive and fou_gro_complete, and populate these
in the correponsing udp_offloads for the socket. Added ipproto to
udp_offloads and pass this from UDP to the fou GRO routine in proto
field of napi_gro_cb structure.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 2abb7cdc0d ("udp: Add support for doing checksum unnecessary
conversion") caused napi_gro_cb structs with the "flush" field zero to
take the "udp_gro_receive" path rather than the "set flush to 1" path
that they would previously take. As a result I saw booting from an NFS
root hang shortly after starting userspace, with "server not
responding" messages.
This change to the handling of "flush == 0" packets appears to be
incidental to the goal of adding new code in the case where
skb_gro_checksum_validate_zero_check() returns zero. Based on that and
the fact that it breaks things, I'm assuming that it is unintentional.
Fixes: 2abb7cdc0d ("udp: Add support for doing checksum unnecessary conversion")
Cc: Tom Herbert <therbert@google.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
net/ipv4/udp_offload.c:339:5: warning: symbol 'udp4_gro_complete' was
not declared. Should it be static?
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Tom Herbert <therbert@google.com>
Fixes: 57c67ff4bd ("udp: additional GRO support")
Acked-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for doing CHECKSUM_UNNECESSARY to CHECKSUM_COMPLETE
conversion in UDP tunneling path.
In the normal UDP path, we call skb_checksum_try_convert after locating
the UDP socket. The check is that checksum conversion is enabled for
the socket (new flag in UDP socket) and that checksum field is
non-zero.
In the UDP GRO path, we call skb_gro_checksum_try_convert after
checksum is validated and checksum field is non-zero. Since this is
already in GRO we assume that checksum conversion is always wanted.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>