Move HF_GIF_MASK out of the common "hflags" and into vcpu_svm.guest_gif.
GIF is an SVM-only concept and has should never be consulted outside of
SVM-specific code.
No functional change is intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-5-mlevitsk@redhat.com
[sean: split to separate patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't sync the TLB control field from vmcb02 to vmcs12 on nested VM-Exit.
Per AMD's APM, the field is not modified by hardware:
The VMRUN instruction reads, but does not change, the value of the
TLB_CONTROL field
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-2-mlevitsk@redhat.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reading DR[0-3]_ADDR_MASK MSRs takes about 250 cycles which is going to
be noticeable with the AMD KVM SEV-ES DebugSwap feature enabled. KVM is
going to store host's DR[0-3] and DR[0-3]_ADDR_MASK before switching to
a guest; the hardware is going to swap these on VMRUN and VMEXIT.
Store MSR values passed to set_dr_addr_mask() in percpu variables
(when changed) and return them via new amd_get_dr_addr_mask().
The gain here is about 10x.
As set_dr_addr_mask() uses the array too, change the @dr type to
unsigned to avoid checking for <0. And give it the amd_ prefix to match
the new helper as the whole DR_ADDR_MASK feature is AMD-specific anyway.
While at it, replace deprecated boot_cpu_has() with cpu_feature_enabled()
in set_dr_addr_mask().
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230120031047.628097-2-aik@amd.com
Microcode gets reloaded late only if "1" is written to the reload file.
However, the code silently treats any other unsigned integer as a
successful write even though no actions are performed to load microcode.
Make the loader more strict to accept only "1" as a trigger value and
return an error otherwise.
[ bp: Massage commit message. ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230130213955.6046-3-ashok.raj@intel.com
Clang likes to create conditional tail calls like:
0000000000000350 <amd_pmu_add_event>:
350: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) 351: R_X86_64_NONE __fentry__-0x4
355: 48 83 bf 20 01 00 00 00 cmpq $0x0,0x120(%rdi)
35d: 0f 85 00 00 00 00 jne 363 <amd_pmu_add_event+0x13> 35f: R_X86_64_PLT32 __SCT__amd_pmu_branch_add-0x4
363: e9 00 00 00 00 jmp 368 <amd_pmu_add_event+0x18> 364: R_X86_64_PLT32 __x86_return_thunk-0x4
Where 0x35d is a static call site that's turned into a conditional
tail-call using the Jcc class of instructions.
Teach the in-line static call text patching about this.
Notably, since there is no conditional-ret, in that case patch the Jcc
to point at an empty stub function that does the ret -- or the return
thunk when needed.
Reported-by: "Erhard F." <erhard_f@mailbox.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/Y9Kdg9QjHkr9G5b5@hirez.programming.kicks-ass.net
In order to re-write Jcc.d32 instructions text_poke_bp() needs to be
taught about them.
The biggest hurdle is that the whole machinery is currently made for 5
byte instructions and extending this would grow struct text_poke_loc
which is currently a nice 16 bytes and used in an array.
However, since text_poke_loc contains a full copy of the (s32)
displacement, it is possible to map the Jcc.d32 2 byte opcodes to
Jcc.d8 1 byte opcode for the int3 emulation.
This then leaves the replacement bytes; fudge that by only storing the
last 5 bytes and adding the rule that 'length == 6' instruction will
be prefixed with a 0x0f byte.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230123210607.115718513@infradead.org
Move the kprobe Jcc emulation into int3_emulate_jcc() so it can be
used by more code -- specifically static_call() will need this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230123210607.057678245@infradead.org
In order to use sched_clock() from noinstr code, mark it and all it's
implenentations noinstr.
The whole pvclock thing (used by KVM/Xen) is a bit of a pain,
since it calls out to watchdogs, create a
pvclock_clocksource_read_nowd() variant doesn't do that and can be
noinstr.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230126151323.702003578@infradead.org
Improve atomic update of last_value in pvclock_clocksource_read:
- Atomic update can be skipped if the "last_value" is already
equal to "ret".
- The detection of atomic update failure is not correct. The value,
returned by atomic64_cmpxchg should be compared to the old value
from the location to be updated. If these two are the same, then
atomic update succeeded and "last_value" location is updated to
"ret" in an atomic way. Otherwise, the atomic update failed and
it should be retried with the value from "last_value" - exactly
what atomic64_try_cmpxchg does in a correct and more optimal way.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20230118202330.3740-1-ubizjak@gmail.com
Link: https://lore.kernel.org/r/20230126151323.643408110@infradead.org
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ
E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg
nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG
TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp
s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER
ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh
SDc/Y/c=
=zpaD
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc6' into sched/core, to pick up fixes
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In kernels compiled with CONFIG_PARAVIRT=n, the compiler re-orders the
DR7 read in exc_nmi() to happen before the call to sev_es_ist_enter().
This is problematic when running as an SEV-ES guest because in this
environment the DR7 read might cause a #VC exception, and taking #VC
exceptions is not safe in exc_nmi() before sev_es_ist_enter() has run.
The result is stack recursion if the NMI was caused on the #VC IST
stack, because a subsequent #VC exception in the NMI handler will
overwrite the stack frame of the interrupted #VC handler.
As there are no compiler barriers affecting the ordering of DR7
reads/writes, make the accesses to this register volatile, forbidding
the compiler to re-order them.
[ bp: Massage text, make them volatile too, to make sure some
aggressive compiler optimization pass doesn't discard them. ]
Fixes: 315562c9af ("x86/sev-es: Adjust #VC IST Stack on entering NMI handler")
Reported-by: Alexey Kardashevskiy <aik@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230127035616.508966-1-aik@amd.com
EFI_MEMORY_ATTRIBUTE_PROTOCOL servers as a better alternative to
DXE services for setting memory attributes in EFI Boot Services
environment. This protocol is better since it is a part of UEFI
specification itself and not UEFI PI specification like DXE
services.
Add EFI_MEMORY_ATTRIBUTE_PROTOCOL definitions.
Support mixed mode properly for its calls.
Tested-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Evgeniy Baskov <baskov@ispras.ru>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
16 will support it
- Fix a NULL ptr deref when suspending with Xen PV
- Have a SEV-SNP guest check explicitly for features enabled by the hypervisor
and fail gracefully if some are unsupported by the guest instead of failing in
a non-obvious and hard-to-debug way
- Fix a MSI descriptor leakage under Xen
- Mark Xen's MSI domain as supporting MSI-X
- Prevent legacy PIC interrupts from being resent in software by marking them
level triggered, as they should be, which lead to a NULL ptr deref
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPWdaAACgkQEsHwGGHe
VUrHUBAAvRh7cDVKvr2wPNJ+9RFjPFubcLq/+4yTe4Bu14wnYn8+gb2S7P2bPJWl
TxbZhJGV2IeYyB+aJybjGwX96AzE5lWD6epQLRLI/BOVmqLA8Eyw9te0NEQDd9Wq
hgY1/hhUmLdpXubq09YjIht5nlxVZ+JFfppouTR7LVtZl7MFvQbAOU8rWzpcbm7l
UlA4GLakFeOYpbI5g+zzsZ1a1M0cSz8wQ43plD5aAtNy2wKbWiA4QDXJo9J7+ZQg
1FmOHZ3ChPjEhf9k/N2uAZ6RUHVEDIJ7hDfsM3j/qsKGzCV4cho2Ify+0PFWo4pt
FO2bRh1yDFqdz4m6ulhnmuMnoRnEuswwrTzrG+HYu1ntpUt72dULmmRBpJ0s6C7W
BHpCThNWIlcfHbLNY+VAOJ2hiOqfU/8ld+8R0sn7xmomjgCRYHh9kDGOeuvh1hJl
jfITDuL2gjcj3Ph6+xh6KvOga41ff3EcxkfvqolZ/emRllPiDWsKYXVgUIl22FHt
23xH7gutPCp27MdoXM1EaWs5s/PQfctvm4LrW6XS8IjWURLo4RrkU6y7YD5VKVy8
KCKcpF+JMdE1Ao1WpMFfjDG4ObyMYyqnD790nQVM1e5kIhOpeWaa7WzkGFRyIo6Q
5BU3GGDyMT8SHy7NFhQL62YJe0P2ZctNIDjiTQlYDnWWhjmvk8I=
=4QMN
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Start checking for -mindirect-branch-cs-prefix clang support too now
that LLVM 16 will support it
- Fix a NULL ptr deref when suspending with Xen PV
- Have a SEV-SNP guest check explicitly for features enabled by the
hypervisor and fail gracefully if some are unsupported by the guest
instead of failing in a non-obvious and hard-to-debug way
- Fix a MSI descriptor leakage under Xen
- Mark Xen's MSI domain as supporting MSI-X
- Prevent legacy PIC interrupts from being resent in software by
marking them level triggered, as they should be, which lead to a NULL
ptr deref
* tag 'x86_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build: Move '-mindirect-branch-cs-prefix' out of GCC-only block
acpi: Fix suspend with Xen PV
x86/sev: Add SEV-SNP guest feature negotiation support
x86/pci/xen: Fixup fallout from the PCI/MSI overhaul
x86/pci/xen: Set MSI_FLAG_PCI_MSIX support in Xen MSI domain
x86/i8259: Mark legacy PIC interrupts with IRQ_LEVEL
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY9RqJgAKCRDbK58LschI
gw2IAP9G5uhFO5abBzYLupp6SY3T5j97MUvPwLfFqUEt7EXmuwEA2lCUEWeW0KtR
QX+QmzCa6iHxrW7WzP4DUYLue//FJQY=
=yYqA
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2023-01-28
We've added 124 non-merge commits during the last 22 day(s) which contain
a total of 124 files changed, 6386 insertions(+), 1827 deletions(-).
The main changes are:
1) Implement XDP hints via kfuncs with initial support for RX hash and
timestamp metadata kfuncs, from Stanislav Fomichev and
Toke Høiland-Jørgensen.
Measurements on overhead: https://lore.kernel.org/bpf/875yellcx6.fsf@toke.dk
2) Extend libbpf's bpf_tracing.h support for tracing arguments of
kprobes/uprobes and syscall as a special case, from Andrii Nakryiko.
3) Significantly reduce the search time for module symbols by livepatch
and BPF, from Jiri Olsa and Zhen Lei.
4) Enable cpumasks to be used as kptrs, which is useful for tracing
programs tracking which tasks end up running on which CPUs
in different time intervals, from David Vernet.
5) Fix several issues in the dynptr processing such as stack slot liveness
propagation, missing checks for PTR_TO_STACK variable offset, etc,
from Kumar Kartikeya Dwivedi.
6) Various performance improvements, fixes, and introduction of more
than just one XDP program to XSK selftests, from Magnus Karlsson.
7) Big batch to BPF samples to reduce deprecated functionality,
from Daniel T. Lee.
8) Enable struct_ops programs to be sleepable in verifier,
from David Vernet.
9) Reduce pr_warn() noise on BTF mismatches when they are expected under
the CONFIG_MODULE_ALLOW_BTF_MISMATCH config anyway, from Connor O'Brien.
10) Describe modulo and division by zero behavior of the BPF runtime
in BPF's instruction specification document, from Dave Thaler.
11) Several improvements to libbpf API documentation in libbpf.h,
from Grant Seltzer.
12) Improve resolve_btfids header dependencies related to subcmd and add
proper support for HOSTCC, from Ian Rogers.
13) Add ipip6 and ip6ip decapsulation support for bpf_skb_adjust_room()
helper along with BPF selftests, from Ziyang Xuan.
14) Simplify the parsing logic of structure parameters for BPF trampoline
in the x86-64 JIT compiler, from Pu Lehui.
15) Get BTF working for kernels with CONFIG_RUST enabled by excluding
Rust compilation units with pahole, from Martin Rodriguez Reboredo.
16) Get bpf_setsockopt() working for kTLS on top of TCP sockets,
from Kui-Feng Lee.
17) Disable stack protection for BPF objects in bpftool given BPF backends
don't support it, from Holger Hoffstätte.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (124 commits)
selftest/bpf: Make crashes more debuggable in test_progs
libbpf: Add documentation to map pinning API functions
libbpf: Fix malformed documentation formatting
selftests/bpf: Properly enable hwtstamp in xdp_hw_metadata
selftests/bpf: Calls bpf_setsockopt() on a ktls enabled socket.
bpf: Check the protocol of a sock to agree the calls to bpf_setsockopt().
bpf/selftests: Verify struct_ops prog sleepable behavior
bpf: Pass const struct bpf_prog * to .check_member
libbpf: Support sleepable struct_ops.s section
bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable
selftests/bpf: Fix vmtest static compilation error
tools/resolve_btfids: Alter how HOSTCC is forced
tools/resolve_btfids: Install subcmd headers
bpf/docs: Document the nocast aliasing behavior of ___init
bpf/docs: Document how nested trusted fields may be defined
bpf/docs: Document cpumask kfuncs in a new file
selftests/bpf: Add selftest suite for cpumask kfuncs
selftests/bpf: Add nested trust selftests suite
bpf: Enable cpumasks to be queried and used as kptrs
bpf: Disallow NULLable pointers for trusted kfuncs
...
====================
Link: https://lore.kernel.org/r/20230128004827.21371-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
== Background ==
There is a class of side-channel attacks against SGX enclaves called
"SGX Step"[1]. These attacks create lots of exceptions inside of
enclaves. Basically, run an in-enclave instruction, cause an exception.
Over and over.
There is a concern that a VMM could attack a TDX guest in the same way
by causing lots of #VE's. The TDX architecture includes new
countermeasures for these attacks. It basically counts the number of
exceptions and can send another *special* exception once the number of
VMM-induced #VE's hits a critical threshold[2].
== Problem ==
But, these special exceptions are independent of any action that the
guest takes. They can occur anywhere that the guest executes. This
includes sensitive areas like the entry code. The (non-paranoid) #VE
handler is incapable of handling exceptions in these areas.
== Solution ==
Fortunately, the special exceptions can be disabled by the guest via
write to NOTIFY_ENABLES TDCS field. NOTIFY_ENABLES is disabled by
default, but might be enabled by a bootloader, firmware or an earlier
kernel before the current kernel runs.
Disable NOTIFY_ENABLES feature explicitly and unconditionally. Any
NOTIFY_ENABLES-based #VE's that occur before this point will end up
in the early #VE exception handler and die due to unexpected exit
reason.
[1] https://github.com/jovanbulck/sgx-step
[2] https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html#safety-against-ve-in-kernel-code
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-8-kirill.shutemov%40linux.intel.com
A "SEPT #VE" occurs when a TDX guest touches memory that is not properly
mapped into the "secure EPT". This can be the result of hypervisor
attacks or bugs, *OR* guest bugs. Most notably, buggy guests might
touch unaccepted memory for lots of different memory safety bugs like
buffer overflows.
TDX guests do not want to continue in the face of hypervisor attacks or
hypervisor bugs. They want to terminate as fast and safely as possible.
SEPT_VE_DISABLE ensures that TDX guests *can't* continue in the face of
these kinds of issues.
But, that causes a problem. TDX guests that can't continue can't spit
out oopses or other debugging info. In essence SEPT_VE_DISABLE=1 guests
are not debuggable.
Relax the SEPT_VE_DISABLE check to warning on debug TD and panic() in
the #VE handler on EPT-violation on private memory. It will produce
useful backtrace.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-7-kirill.shutemov%40linux.intel.com
Linux TDX guests require that the SEPT_VE_DISABLE "attribute" be set.
If it is not set, the kernel is theoretically required to handle
exceptions anywhere that kernel memory is accessed, including places
like NMI handlers and in the syscall entry gap.
Rather than even try to handle these exceptions, the kernel refuses to
run if SEPT_VE_DISABLE is unset.
However, the SEPT_VE_DISABLE detection and refusal code happens very
early in boot, even before earlyprintk runs. Calling panic() will
effectively just hang the system.
Instead, call a TDX-specific panic() function. This makes a very simple
TDVMCALL which gets a short error string out to the hypervisor without
any console infrastructure.
Use TDG.VP.VMCALL<ReportFatalError> to report the error. The hypercall
can encode message up to 64 bytes in eight registers.
[ dhansen: tweak comment and remove while loop brackets. ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-6-kirill.shutemov%40linux.intel.com
So far __tdx_hypercall() only handles six arguments for VMCALL.
Expanding it to six more register would allow to cover more use-cases
like ReportFatalError() and Hyper-V hypercalls.
With all preparations in place, the expansion is pretty straight
forward.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-5-kirill.shutemov%40linux.intel.com
RDI is the first argument to __tdx_hypercall() that used to pass pointer
to struct tdx_hypercall_args. RSI is the second argument that contains
flags, such as TDX_HCALL_HAS_OUTPUT and TDX_HCALL_ISSUE_STI.
RDI and RSI can also be used as arguments to TDVMCALL leafs. Move RDI to
RAX and RSI to RBP to free up them for the hypercall arguments.
RAX saved on stack during TDCALL as it returns status code in the
register.
RBP value has to be restored before returning from __tdx_hypercall() as
it is callee-saved register.
This is preparatory patch. No functional change.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-4-kirill.shutemov%40linux.intel.com
struct tdx_hypercall_args is used to pass down hypercall arguments to
__tdx_hypercall() assembly routine.
Currently __tdx_hypercall() handles up to 6 arguments. In preparation to
changes in __tdx_hypercall(), expand the structure to 6 more registers
and generate asm offsets for them.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-3-kirill.shutemov%40linux.intel.com
Comment in __tdx_hypercall() points that RAX==0 indicates TDVMCALL
failure which is opposite of the truth: RAX==0 is success.
Fix the comment. No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20230126221159.8635-2-kirill.shutemov%40linux.intel.com
net/checksum.h pulls in linux/uaccess.h which is large.
In the x86 header the include seems to not be needed at all.
ARM on the other hand does not include uaccess.h, even tho
it calls access_ok().
In the generic implementation guard the include of linux/uaccess.h
with the same condition as the code that needs it.
With this change pre-processed net/checksum.h shrinks on x86
from 30616 lines to just 1193.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide "error" semantics (read zeros, drop writes) for userspace accesses
to MSRs that are ultimately unsupported for whatever reason, but for which
KVM told userspace to save and restore the MSR, i.e. for MSRs that KVM
included in KVM_GET_MSR_INDEX_LIST.
Previously, KVM special cased a few PMU MSRs that were problematic at one
point or another. Extend the treatment to all PMU MSRs, e.g. to avoid
spurious unsupported accesses.
Note, the logic can also be used for non-PMU MSRs, but as of today only
PMU MSRs can end up being unsupported after KVM told userspace to save and
restore them.
Link: https://lore.kernel.org/r/20230124234905.3774678-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit the set of MSRs for fixed PMU counters based on the number of fixed
counters actually supported by the host so that userspace doesn't waste
time saving and restoring dummy values.
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: split for !enable_pmu logic, drop min(), write changelog]
Link: https://lore.kernel.org/r/20230124234905.3774678-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Omit all PMU MSRs from the "MSRs to save" list if the PMU is disabled so
that userspace doesn't waste time saving and restoring dummy values. KVM
provides "error" semantics (read zeros, drop writes) for such known-but-
unsupported MSRs, i.e. has fudged around this issue for quite some time.
Keep the "error" semantics as-is for now, the logic will be cleaned up in
a separate patch.
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Weijiang Yang <weijiang.yang@intel.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move all potential to-be-saved PMU MSRs into a separate array so that a
future patch can easily omit all PMU MSRs from the list when the PMU is
disabled.
No functional change intended.
Link: https://lore.kernel.org/r/20230124234905.3774678-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to print unimplemented MSR accesses and condition all such
prints on report_ignored_msrs, i.e. honor userspace's request to not
print unimplemented MSRs. Even though vcpu_unimpl() is ratelimited,
printing can still be problematic, e.g. if a print gets stalled when host
userspace is writing MSRs during live migration, an effective stall can
result in very noticeable disruption in the guest.
E.g. the profile below was taken while calling KVM_SET_MSRS on the PMU
counters while the PMU was disabled in KVM.
- 99.75% 0.00% [.] __ioctl
- __ioctl
- 99.74% entry_SYSCALL_64_after_hwframe
do_syscall_64
sys_ioctl
- do_vfs_ioctl
- 92.48% kvm_vcpu_ioctl
- kvm_arch_vcpu_ioctl
- 85.12% kvm_set_msr_ignored_check
svm_set_msr
kvm_set_msr_common
printk
vprintk_func
vprintk_default
vprintk_emit
console_unlock
call_console_drivers
univ8250_console_write
serial8250_console_write
uart_console_write
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit kvm_pmu_cap.num_counters_gp during kvm_init_pmu_capability() based
on the vendor PMU capabilities so that consuming num_counters_gp naturally
does the right thing. This fixes a mostly theoretical bug where KVM could
over-report its PMU support in KVM_GET_SUPPORTED_CPUID for leaf 0xA, e.g.
if the number of counters reported by perf is greater than KVM's
hardcoded internal limit. Incorporating input from the AMD PMU also
avoids over-reporting MSRs to save when running on AMD.
Link: https://lore.kernel.org/r/20230124234905.3774678-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit ("02791a5c362b KVM: x86/pmu: Use PERF_TYPE_RAW
to merge reprogram_{gp,fixed}counter()"), vPMU starts to directly
use the hardware event eventsel and unit_mask to reprogram perf_event,
and the event_type field in the "struct kvm_event_hw_type_mapping"
is simply no longer being used.
Convert the struct into an anonymous struct as the current name is
obsolete as the structure no longer has any mapping semantics, and
placing the struct definition directly above its sole user makes its
easier to understand what the array is filling in.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20221205122048.16023-1-likexu@tencent.com
[sean: drop new comment, use anonymous struct]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
__acpi_{acquire,release}_global_lock(). x86 CMPXCHG instruction returns
success in ZF flag, so this change saves a compare after CMPXCHG
(and related MOV instruction in front of CMPXCHG).
Also, try_cmpxchg() implicitly assigns old *ptr value to "old" when CMPXCHG
fails. There is no need to re-read the value in the loop.
Note that the value from *ptr should be read using READ_ONCE() to prevent
the compiler from merging, refetching or reordering the read.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20230116162522.4072-1-ubizjak@gmail.com
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
set_page_memtype. x86 CMPXCHG instruction returns success in ZF flag,
so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails. There is no need to re-read the value in the loop.
Note that the value from *ptr should be read using READ_ONCE to prevent
the compiler from merging, refetching or reordering the read.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230116163446.4734-1-ubizjak@gmail.com
clang correctly complains
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1456:6: warning: variable \
'h' set but not used [-Wunused-but-set-variable]
u32 h;
^
but it can't know whether this use is innocuous or really a problem.
There's a reason why those warning switches are behind a W=1 and not
enabled by default - yes, one needs to do:
make W=1 CC=clang HOSTCC=clang arch/x86/kernel/cpu/resctrl/
with clang 14 in order to trigger it.
I would normally not take a silly fix like that but this one is simple
and doesn't make the code uglier so...
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/202301242015.kbzkVteJ-lkp@intel.com
as-option tests new options using KBUILD_CFLAGS, which causes problems
when using as-option to update KBUILD_AFLAGS because many compiler
options are not valid assembler options.
This will be fixed in a follow up patch. Before doing so, move the
assembler test for -Wa,-mrelax-relocations=no from using as-option to
cc-option.
Link: https://lore.kernel.org/llvm/CAK7LNATcHt7GcXZ=jMszyH=+M_LC9Qr6yeAGRCBbE6xriLxtUQ@mail.gmail.com/
Suggested-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Add the AMD Automatic IBRS feature bit to those being propagated to the guest,
and enable the guest EFER bit.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-9-kim.phillips@amd.com
The AMD Zen4 core supports a new feature called Automatic IBRS.
It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBRS mitigation resources automatically across CPL transitions.
The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by
setting MSR C000_0080 (EFER) bit 21.
Enable Automatic IBRS by default if the CPU feature is present. It typically
provides greater performance over the incumbent generic retpolines mitigation.
Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and
Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to
cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS.
The kernel command line option spectre_v2=eibrs is used to select AMD Automatic
IBRS, if available.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com
The SMM_CTL MSR not present feature was being open-coded for KVM.
Add it to its newly added CPUID leaf 0x80000021 EAX proper.
Also drop the bit description comments now the code is more
self-describing.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-7-kim.phillips@amd.com
The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.
Also drop the bit description comments now it's more self-describing.
[ bp: Convert test in check_null_seg_clears_base() too. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-6-kim.phillips@amd.com
The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add
it to its newly added CPUID leaf 0x80000021 EAX proper. With
LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will
effectively synthesize the feature for KVM going forward.
Also, DE_CFG[1] doesn't need to be set on such CPUs anymore.
[ bp: Massage and merge diff from Sean. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com
The "Processor ignores nested data breakpoints" feature was being
open-coded for KVM. Add the feature to its newly introduced CPUID leaf
0x80000021 EAX proper.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-4-kim.phillips@amd.com
We don't set it on PF_KTHREAD threads as they never return to userspace,
and PF_IO_WORKER threads are identical in that regard. As they keep
running in the kernel until they die, skip setting the FPU flag on them.
More of a cosmetic thing that was found while debugging and
issue and pondering why the FPU flag is set on these threads.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/560c844c-f128-555b-40c6-31baff27537f@kernel.dk
Move code from __do_cpuid_func() to kvm_set_cpu_caps() in preparation for adding
the features in their native leaf.
Also drop the bit description comments as it will be more self-describing once
the individual features are added.
Whilst there, switch to using the more efficient cpu_feature_enabled() instead
of static_cpu_has().
Note, LFENCE_RDTSC and "NULL selector clears base" are currently synthetic,
Linux-defined feature flags as Linux tracking of the features predates AMD's
definition. Keep the manual propagation of the flags from their synthetic
counterparts until the kernel fully converts to AMD's definition, otherwise KVM
would stop synthesizing the flags as intended.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-3-kim.phillips@amd.com
Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.
Include KVM's reverse_cpuid entry because features are used by VM guests, too.
[ bp: Massage commit message. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com
X86_FEATURE_PGE determines whether the CPU has enabled global page
translations support. Use the faster cpu_feature_enabled() check to
shave off some more cycles when flushing all TLB entries, including the
global ones.
What this practically saves is:
mov 0x82eb308(%rip),%rax # 0xffffffff8935bec8 <boot_cpu_data+40>
test $0x20,%ah
... which test the bit. Not a lot, but TLB flushing is a timing-sensitive
path, so anything to make it even faster.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230125075013.9292-1-bp@alien8.de
- Pass the correct address to mte_clear_page_tags() on initialising
a tagged page
- Plug a race against a GICv4.1 doorbell interrupt while saving
the vgic-v3 pending state.
x86:
- A command line parsing fix and a clang compilation fix for selftests
- A fix for a longstanding VMX issue, that surprisingly was only found
now to affect real world guests
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmPM/foUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM18Af/ZygTp0zd0+ZEqI8lu6hi9MmL7pKu
CbzjuJUD7iw8fUGZDyYpL7CrcAdQX7JC6cRjBQMq+9Zzh+QBc1SkkBoEwpHy/EoR
xPOSlNmZGM3kQssqHhwC5ciLNYQQ9yEMAw0kTIoOw3/Aznjk70PUzjwIFC5fRTAB
+ScOQj+9hkr9bzNTnIxY50Ewt6kwiZ7BEbL3a6CHCvkFkLnUAjwp/Ci6dIsqXsae
Stlq/ZJi9QYw5Od4C0e63pfSG3MniaVT3aqisB3dEi8I4Tcpbsh7MaJf43ImFm56
jEymmu/FYWXyMpV2Dlt3703SstXO8V9lVztsnbOVgU7/TEjFD5ADUOi7Dg==
=WKnF
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM64:
- Pass the correct address to mte_clear_page_tags() on initialising a
tagged page
- Plug a race against a GICv4.1 doorbell interrupt while saving the
vgic-v3 pending state.
x86:
- A command line parsing fix and a clang compilation fix for
selftests
- A fix for a longstanding VMX issue, that surprisingly was only
found now to affect real world guests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: selftests: Make reclaim_period_ms input always be positive
KVM: x86/vmx: Do not skip segment attributes if unusable bit is set
selftests: kvm: move declaration at the beginning of main()
KVM: arm64: GICv4.1: Fix race with doorbell on VPE activation/deactivation
KVM: arm64: Pass the actual page address to mte_clear_page_tags()
Avoid type casts that are needed for IS_ERR() and use
IS_ERR_VALUE() instead.
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Link: https://lore.kernel.org/r/202211161718436948912@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move VMX's handling of NMI VM-Exits into vmx_vcpu_enter_exit() so that
the NMI is handled prior to leaving the safety of noinstr. Handling the
NMI after leaving noinstr exposes the kernel to potential ordering
problems as an instrumentation-induced fault, e.g. #DB, #BP, #PF, etc.
will unblock NMIs when IRETing back to the faulting instruction.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Split the asm subroutines for handling NMIs versus IRQs that occur in the
guest so that the NMI handler can be called from a noinstr section. As a
bonus, the NMI path doesn't need an indirect branch.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use a dedicated entry for invoking the NMI handler from KVM VMX's VM-Exit
path for 32-bit even though using a dedicated entry for 32-bit isn't
strictly necessary. Exposing a single symbol will allow KVM to reference
the entry point in assembly code without having to resort to more #ifdefs
(or #defines). identry.h is intended to be included from asm files only
once, and so simply including idtentry.h in KVM assembly isn't an option.
Bypassing the ESP fixup and CR3 switching in the standard NMI entry code
is safe as KVM always handles NMIs that occur in the guest on a kernel
stack, with a kernel CR3.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tag to_vmx() and to_kvm_vmx() __always_inline as they both just reflect
the passed in pointer (the embedded struct is the first field in the
container), and drop the @vmx param from vmx_vcpu_enter_exit(), which
likely existed purely to make noinstr validation happy.
Amusingly, when the compiler decides to not inline the helpers, e.g. for
KASAN builds, to_vmx() and to_kvm_vmx() may end up pointing at the same
symbol, which generates very confusing objtool warnings. E.g. the use of
to_vmx() in a future patch led to objtool complaining about to_kvm_vmx(),
and only once all use of to_kvm_vmx() was commented out did to_vmx() pop
up in the obj tool report.
vmlinux.o: warning: objtool: vmx_vcpu_enter_exit+0x160: call to to_kvm_vmx()
leaves .noinstr.text section
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tag all evmcs_{read,write}() helpers __always_inline so that they can be
freely used in noinstr sections, e.g. to get the VM-Exit reason in
vcpu_vmx_enter_exit() (in a future patch). For consistency and to avoid
more spot fixes in the future, e.g. see commit 010050a863 ("x86/kvm:
Always inline evmcs_write64()"), tag all accessors even though
evmcs_read32() is the only anticipated use case in the near future. In
practice, non-KASAN builds are all but guaranteed to inline the helpers
anyways.
vmlinux.o: warning: objtool: vmx_vcpu_enter_exit+0x107: call to evmcs_read32()
leaves .noinstr.text section
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Allow instrumentation in the VM-Fail path of __vmcs_readl() so that the
helper can be used in noinstr functions, e.g. to get the exit reason in
vmx_vcpu_enter_exit() in order to handle NMI VM-Exits in the noinstr
section. While allowing instrumentation isn't technically safe, KVM has
much bigger problems if VMREAD fails in a noinstr section.
Note, all other VMX instructions also allow instrumentation in their
VM-Fail paths for similar reasons, VMREAD was simply omitted by commit
3ebccdf373 ("x86/kvm/vmx: Move guest enter/exit into .noinstr.text")
because VMREAD wasn't used in a noinstr section at the time.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an extra special noinstr-friendly helper to test+mark a "register"
available and use it when caching vmcs.EXIT_QUALIFICATION and
vmcs.VM_EXIT_INTR_INFO. Make the caching helpers __always_inline too so
that they can be used in noinstr functions.
A future fix will move VMX's handling of NMI exits into the noinstr
vmx_vcpu_enter_exit() so that the NMI is processed before any kind of
instrumentation can trigger a fault and thus IRET, i.e. so that KVM
doesn't invoke the NMI handler with NMIs enabled.
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
__vmx_vcpu_run_flags() returns "unsigned int" and uses only 2 bits of it
so using "unsigned long" is very much pointless. Furthermore,
__vmx_vcpu_run() and vmx_spec_ctrl_restore_host() take an "unsigned int",
i.e. actually relying on an "unsigned long" value won't work.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/Y3e7UW0WNV2AZmsZ@p183
Signed-off-by: Sean Christopherson <seanjc@google.com>
Access @flags using 32-bit operands when saving and testing @flags for
VMX_RUN_VMRESUME, as using 8-bit operands is unnecessarily fragile due
to relying on VMX_RUN_VMRESUME being in bits 0-7. The behavior of
treating @flags a single byte is a holdover from when the param was
"bool launched", i.e. is not deliberate.
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20221119003747.2615229-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Account the temp/scratch allocation used to decrypt unaligned debug
accesses to SEV guest memory, the allocation is very much tied to the
target VM.
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Anish Ghulati <aghulati@google.com>
Link: https://lore.kernel.org/r/20230113220923.2834699-1-aghulati@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Even in commit 4bdec12aa8 ("KVM: SVM: Detect X2APIC virtualization
(x2AVIC) support"), where avic_hardware_setup() was first introduced,
its only pass-in parameter "struct kvm_x86_ops *ops" is not used at all.
Clean it up a bit to avoid compiler ranting from LLVM toolchain.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221109115952.92816-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Return value from svm_nmi_blocked() directly instead of taking
this in another redundant variable.
Signed-off-by: zhang songyi <zhang.songyi@zte.com.cn>
Link: https://lore.kernel.org/r/202211282003389362484@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
When building a list of filter events, it can sometimes be a challenge
to fit all the events needed to adequately restrict the guest into the
limited space available in the pmu event filter. This stems from the
fact that the pmu event filter requires each event (i.e. event select +
unit mask) be listed, when the intention might be to restrict the
event select all together, regardless of it's unit mask. Instead of
increasing the number of filter events in the pmu event filter, add a
new encoding that is able to do a more generalized match on the unit mask.
Introduce masked events as another encoding the pmu event filter
understands. Masked events has the fields: mask, match, and exclude.
When filtering based on these events, the mask is applied to the guest's
unit mask to see if it matches the match value (i.e. umask & mask ==
match). The exclude bit can then be used to exclude events from that
match. E.g. for a given event select, if it's easier to say which unit
mask values shouldn't be filtered, a masked event can be set up to match
all possible unit mask values, then another masked event can be set up to
match the unit mask values that shouldn't be filtered.
Userspace can query to see if this feature exists by looking for the
capability, KVM_CAP_PMU_EVENT_MASKED_EVENTS.
This feature is enabled by setting the flags field in the pmu event
filter to KVM_PMU_EVENT_FLAG_MASKED_EVENTS.
Events can be encoded by using KVM_PMU_ENCODE_MASKED_ENTRY().
It is an error to have a bit set outside the valid bits for a masked
event, and calls to KVM_SET_PMU_EVENT_FILTER will return -EINVAL in
such cases, including the high bits of the event select (35:32) if
called on Intel.
With these updates the filter matching code has been updated to match on
a common event. Masked events were flexible enough to handle both event
types, so they were used as the common event. This changes how guest
events get filtered because regardless of the type of event used in the
uAPI, they will be converted to masked events. Because of this there
could be a slight performance hit because instead of matching the filter
event with a lookup on event select + unit mask, it does a lookup on event
select then walks the unit masks to find the match. This shouldn't be a
big problem because I would expect the set of common event selects to be
small, and if they aren't the set can likely be reduced by using masked
events to generalize the unit mask. Using one type of event when
filtering guest events allows for a common code path to be used.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-5-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
If it's not possible for an event in the pmu event filter to match a
pmu event being programmed by the guest, it's pointless to have it in
the list. Opt for a shorter list by removing those events.
Because this is established uAPI the pmu event filter can't outright
rejected these events as garbage and return an error. Instead, play
nice and remove them from the list.
Also, opportunistically rewrite the comment when the filter is set to
clarify that it guards against *all* TOCTOU attacks on the verified
data.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-3-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When checking if a pmu event the guest is attempting to program should
be filtered, only consider the event select + unit mask in that
decision. Use an architecture specific mask to mask out all other bits,
including bits 35:32 on Intel. Those bits are not part of the event
select and should not be considered in that decision.
Fixes: 66bb8a065f ("KVM: x86: PMU Event Filter")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-2-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
strtobool() is the same as kstrtobool().
However, the latter is more used within the kernel.
In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.
While at it, include the corresponding header file (<linux/kstrtox.h>)
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/670882aa04dbdd171b46d3b20ffab87158454616.1673689135.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Sean Christopherson <seanjc@google.com>
The spte pointing to the children SP is dropped, so the whole gfn range
covered by the children SP should be flushed. Although, Hyper-V may
treat a 1-page flush the same if the address points to a huge page, it
still would be better to use the correct size of huge page.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/5f297c566f7d7ff2ea6da3c66d050f69ce1b8ede.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When a spte is dropped, the start gfn of tlb flushing should be the gfn
of spte not the base gfn of SP which contains the spte. Also introduce a
helper function to do range-based flushing when a spte is dropped, which
would help prevent future buggy use of
kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/72ac2169a261976f00c1703e88cda676dfb960f5.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Since the children SP is zapped, the gfn range of tlb flushing should be
the range covered by children SP not parent SP. Replace sp->gfn which is
the base gfn of parent SP with iter->gfn and use the correct size of gfn
range for children SP to reduce tlb flushing range.
Fixes: bb95dfb9e2 ("KVM: x86/mmu: Defer TLB flush to caller when freeing TDP MMU shadow pages")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/528ab9c784a486e9ce05f61462ad9260796a8732.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the spte of hupe page is dropped in kvm_set_pte_rmapp(), the whole
gfn range covered by the spte should be flushed. However,
rmap_walk_init_level() doesn't align down the gfn for new level like tdp
iterator does, then the gfn used in kvm_set_pte_rmapp() is not the base
gfn of huge page. And the size of gfn range is wrong too for huge page.
Use the base gfn of huge page and the size of huge page for flushing
tlbs for huge page. Also introduce a helper function to flush the given
page (huge or not) of guest memory, which would help prevent future
buggy use of kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/0ce24d7078fa5f1f8d64b0c59826c50f32f8065e.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rounding down the GFN to a huge page size is a common pattern throughout
KVM, so move round_gfn_for_level() helper in tdp_iter.c to
mmu_internal.h for common usage. Also rename it as gfn_round_for_level()
to use gfn_* prefix and clean up the other call sites.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/415c64782f27444898db650e21cf28eeb6441dfa.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no function named kvm_mmu_ensure_valid_pgd().
Fix the comment and remove the pair of braces to conform to Linux kernel
coding style.
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221128214709.224710-1-wei.liu@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
SPTE_TDP_AD_ENABLED_MASK, SPTE_TDP_AD_DISABLED_MASK and
SPTE_TDP_AD_WRPROT_ONLY_MASK are actual value, not mask.
Remove "MASK" from their names.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100204.6521-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable SVM and more importantly force GIF=1 when halting a CPU or
rebooting the machine. Similar to VMX, SVM allows software to block
INITs via CLGI, and thus can be problematic for a crash/reboot. The
window for failure is smaller with SVM as INIT is only blocked while
GIF=0, i.e. between CLGI and STGI, but the window does exist.
Fixes: fba4f472b3 ("x86/reboot: Turn off KVM when halting a CPU")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable SVM on all CPUs via NMI shootdown during an emergency reboot.
Like VMX, SVM can block INIT, e.g. if the emergency reboot is triggered
between CLGI and STGI, and thus can prevent bringing up other CPUs via
INIT-SIPI-SIPI.
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Set GIF=1 prior to disabling SVM to ensure that INIT is recognized if the
kernel is disabling SVM in an emergency, e.g. if the kernel is about to
jump into a crash kernel or may reboot without doing a full CPU RESET.
If GIF is left cleared, the new kernel (or firmware) will be unabled to
awaken APs. Eat faults on STGI (due to EFER.SVME=0) as it's possible
that SVM could be disabled via NMI shootdown between reading EFER.SVME
and executing STGI.
Link: https://lore.kernel.org/all/cbcb6f35-e5d7-c1c9-4db9-fe5cc4de579a@amd.com
Cc: stable@vger.kernel.org
Cc: Andrew Cooper <Andrew.Cooper3@citrix.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable virtualization in crash_nmi_callback() and rework the
emergency_vmx_disable_all() path to do an NMI shootdown if and only if a
shootdown has not already occurred. NMI crash shootdown fundamentally
can't support multiple invocations as responding CPUs are deliberately
put into halt state without unblocking NMIs. But, the emergency reboot
path doesn't have any work of its own, it simply cares about disabling
virtualization, i.e. so long as a shootdown occurred, emergency reboot
doesn't care who initiated the shootdown, or when.
If "crash_kexec_post_notifiers" is specified on the kernel command line,
panic() will invoke crash_smp_send_stop() and result in a second call to
nmi_shootdown_cpus() during native_machine_emergency_restart().
Invoke the callback _before_ disabling virtualization, as the current
VMCS needs to be cleared before doing VMXOFF. Note, this results in a
subtle change in ordering between disabling virtualization and stopping
Intel PT on the responding CPUs. While VMX and Intel PT do interact,
VMXOFF and writes to MSR_IA32_RTIT_CTL do not induce faults between one
another, which is all that matters when panicking.
Harden nmi_shootdown_cpus() against multiple invocations to try and
capture any such kernel bugs via a WARN instead of hanging the system
during a crash/dump, e.g. prior to the recent hardening of
register_nmi_handler(), re-registering the NMI handler would trigger a
double list_add() and hang the system if CONFIG_BUG_ON_DATA_CORRUPTION=y.
list_add double add: new=ffffffff82220800, prev=ffffffff8221cfe8, next=ffffffff82220800.
WARNING: CPU: 2 PID: 1319 at lib/list_debug.c:29 __list_add_valid+0x67/0x70
Call Trace:
__register_nmi_handler+0xcf/0x130
nmi_shootdown_cpus+0x39/0x90
native_machine_emergency_restart+0x1c9/0x1d0
panic+0x237/0x29b
Extract the disabling logic to a common helper to deduplicate code, and
to prepare for doing the shootdown in the emergency reboot path if SVM
is supported.
Note, prior to commit ed72736183 ("x86/reboot: Force all cpus to exit
VMX root if VMX is supported"), nmi_shootdown_cpus() was subtly protected
against a second invocation by a cpu_vmx_enabled() check as the kdump
handler would disable VMX if it ran first.
Fixes: ed72736183 ("x86/reboot: Force all cpus to exit VMX root if VMX is supported")
Cc: stable@vger.kernel.org
Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/all/20220427224924.592546-2-gpiccoli@igalia.com
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The scaling information in subleaf 1 should match the values set by KVM in
the 'vcpu_info' sub-structure 'time_info' (a.k.a. pvclock_vcpu_time_info)
which is shared with the guest, but is not directly available to the VMM.
The offset values are not set since a TSC offset is already applied.
The TSC frequency should also be set in sub-leaf 2.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230106103600.528-3-pdurrant@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
A subsequent patch will need to acquire the CPUID leaf range for emulated
Xen so explicitly pass the signature of the hypervisor we're interested in
to the new function. Also introduce a new kvm_hypervisor_cpuid structure
so we can neatly store both the base and limit leaf indices.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230106103600.528-2-pdurrant@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop cpu_dirty_logging_count in favor of nr_memslots_dirty_logging.
Both fields count the number of memslots that have dirty-logging enabled,
with the only difference being that cpu_dirty_logging_count is only
incremented when using PML. So while nr_memslots_dirty_logging is not a
direct replacement for cpu_dirty_logging_count, it can be combined with
enable_pml to get the same information.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230105214303.2919415-1-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Zero-length arrays are deprecated[1]. Replace struct kvm_nested_state's
"data" union 0-length arrays with flexible arrays. (How are the
sizes of these arrays verified?) Detected with GCC 13, using
-fstrict-flex-arrays=3:
arch/x86/kvm/svm/nested.c: In function 'svm_get_nested_state':
arch/x86/kvm/svm/nested.c:1536:17: error: array subscript 0 is outside array bounds of 'struct kvm_svm_nested_state_data[0]' [-Werror=array-bounds=]
1536 | &user_kvm_nested_state->data.svm[0];
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from include/uapi/linux/kvm.h:15,
from include/linux/kvm_host.h:40,
from arch/x86/kvm/svm/nested.c:18:
arch/x86/include/uapi/asm/kvm.h:511:50: note: while referencing 'svm'
511 | struct kvm_svm_nested_state_data svm[0];
| ^~~
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#zero-length-and-one-element-arrays
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230105190548.never.323-kees@kernel.org
Link: https://lore.kernel.org/r/20230118195905.gonna.693-kees@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fast zero-length REP MOVSB, fast short REP STOSB, and fast short REP
{CMPSB,SCASB} are inherent features of the processor that cannot be
hidden by the hypervisor. When these features are present on the host,
enumerate them in KVM_GET_SUPPORTED_CPUID.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220901211811.2883855-2-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
KVM_GET_SUPPORTED_CPUID should reflect these host CPUID bits. The bits
are already cached in word 12. Give the bits X86_FEATURE names, so
that they can be easily referenced. Hide these bits from
/proc/cpuinfo, since the host kernel makes no use of them at present.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220901211811.2883855-1-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
when the vCPU was migrated, if its timer is expired, KVM _should_ fire
the timer ASAP, zeroing the deadline here will cause the timer to
immediately fire on the destination
Cc: Sean Christopherson <seanjc@google.com>
Cc: Peter Shier <pshier@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20230106040625.8404-1-lirongqing@baidu.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Intercept reads to invalid (non-existent) and write-only x2APIC registers
when configuring VMX's MSR bitmaps for x2APIC+APICv. When APICv is fully
enabled, Intel hardware doesn't validate the registers on RDMSR and
instead blindly retrieves data from the vAPIC page, i.e. it's software's
responsibility to intercept reads to non-existent and write-only MSRs.
Fixes: 8d14695f95 ("x86, apicv: add virtual x2apic support")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't clear the "read" bits for x2APIC registers above SELF_IPI (APIC regs
0x400 - 0xff0, MSRs 0x840 - 0x8ff). KVM doesn't emulate registers in that
space (there are a smattering of AMD-only extensions) and so should
intercept reads in order to inject #GP. When APICv is fully enabled,
Intel hardware doesn't validate the registers on RDMSR and instead blindly
retrieves data from the vAPIC page, i.e. it's software's responsibility to
intercept reads to non-existent MSRs.
Fixes: 8d14695f95 ("x86, apicv: add virtual x2apic support")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230107011025.565472-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the generation of the readable APIC regs bitmask to a standalone
helper so that VMX can use the mask for its MSR interception bitmaps.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Mark APIC_DFR as being invalid/non-existent in x2APIC mode instead of
handling it as a one-off check in kvm_x2apic_msr_read(). This will allow
reusing "valid_reg_mask" to generate VMX's interception bitmaps for
x2APIC. Handling DFR in the common read path may also fix the Hyper-V
PV MSR interface, if that can coexist with x2APIC.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject attempts to set bits 63:32 for 32-bit x2APIC registers, i.e. all
x2APIC registers except ICR. Per Intel's SDM:
Non-zero writes (by WRMSR instruction) to reserved bits to these
registers will raise a general protection fault exception
Opportunistically fix a typo in a nearby comment.
Reported-by: Marc Orr <marcorr@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject a #GP if the guest attempts to set reserved bits in the x2APIC-only
Self-IPI register. Bits 7:0 hold the vector, all other bits are reserved.
Reported-by: Marc Orr <marcorr@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Venkatesh Srinivas <venkateshs@chromium.org>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Return value from apic_get_tmcct() directly instead of taking
this in another redundant variable.
Signed-off-by: zhang songyi <zhang.songyi@zte.com.cn>
Link: https://lore.kernel.org/r/202211231704457807160@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
The event configuration for mbm_local_bytes can be changed by the
user by writing to the configuration file
/sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config.
The event configuration settings are domain specific and will affect all
the CPUs in the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
For example, to change the mbm_local_bytes_config to count all the non-temporal
writes on domain 0, the bits 2 and 3 needs to be set which is 1100b (in hex
0xc).
Run the command:
$echo 0=0xc > /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
To change the mbm_local_bytes to count only reads to local NUMA domain 1,
the bit 0 needs to be set which 1b (in hex 0x1). Run the command:
$echo 1=0x1 > /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-13-babu.moger@amd.com
The event configuration for mbm_total_bytes can be changed by the user by
writing to the file /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config.
The event configuration settings are domain specific and affect all the
CPUs in the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
For example:
To change the mbm_total_bytes to count only reads on domain 0, the bits
0, 1, 4 and 5 needs to be set, which is 110011b (in hex 0x33).
Run the command:
$echo 0=0x33 > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
To change the mbm_total_bytes to count all the slow memory reads on domain 1,
the bits 4 and 5 needs to be set which is 110000b (in hex 0x30).
Run the command:
$echo 1=0x30 > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-12-babu.moger@amd.com
The event configuration can be viewed by the user by reading the configuration
file /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config. The event
configuration settings are domain specific and will affect all the CPUs in the
domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
By default, the mbm_local_bytes_config is set to 0x15 to count all the local
event types.
For example:
$cat /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
0=0x15;1=0x15;2=0x15;3=0x15
In this case, the event mbm_local_bytes is configured with 0x15 on
domains 0 to 3.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-11-babu.moger@amd.com
The event configuration can be viewed by the user by reading the
configuration file /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config. The
event configuration settings are domain specific and will affect all the CPUs in
the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
By default, the mbm_total_bytes_config is set to 0x7f to count all the
event types.
For example:
$cat /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
0=0x7f;1=0x7f;2=0x7f;3=0x7f
In this case, the event mbm_total_bytes is configured with 0x7f on
domains 0 to 3.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-10-babu.moger@amd.com
Add a new field in struct mon_evt to support Bandwidth Monitoring Event
Configuration (BMEC) and also update the "mon_features" display.
The resctrl file "mon_features" will display the supported events
and files that can be used to configure those events if monitor
configuration is supported.
Before the change:
$ cat /sys/fs/resctrl/info/L3_MON/mon_features
llc_occupancy
mbm_total_bytes
mbm_local_bytes
After the change when BMEC is supported:
$ cat /sys/fs/resctrl/info/L3_MON/mon_features
llc_occupancy
mbm_total_bytes
mbm_total_bytes_config
mbm_local_bytes
mbm_local_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-9-babu.moger@amd.com
In an upcoming change, rdt_get_mon_l3_config() needs to call rdt_cpu_has() to
query the monitor related features. It cannot be called right now because
rdt_cpu_has() has the __init attribute but rdt_get_mon_l3_config() doesn't.
Add the __init attribute to rdt_get_mon_l3_config() that is only called by
get_rdt_mon_resources() that already has the __init attribute. Also make
rdt_cpu_has() available to by rdt_get_mon_l3_config() via the internal header
file.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-8-babu.moger@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The QoS slow memory configuration details are available via
CPUID_Fn80000020_EDX_x02. Detect the available details and
initialize the rest to defaults.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-7-babu.moger@amd.com
Newer AMD processors support the new feature Bandwidth Monitoring Event
Configuration (BMEC).
The feature support is identified via CPUID Fn8000_0020_EBX_x0[3]: EVT_CFG -
Bandwidth Monitoring Event Configuration (BMEC)
The bandwidth monitoring events mbm_total_bytes and mbm_local_bytes are set to
count all the total and local reads/writes, respectively. With the introduction
of slow memory, the two counters are not enough to count all the different types
of memory events. Therefore, BMEC provides the option to configure
mbm_total_bytes and mbm_local_bytes to count the specific type of events.
Each BMEC event has a configuration MSR which contains one field for each
bandwidth type that can be used to configure the bandwidth event to track any
combination of supported bandwidth types. The event will count requests from
every bandwidth type bit that is set in the corresponding configuration
register.
Following are the types of events supported:
==== ========================================================
Bits Description
==== ========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ========================================================
By default, the mbm_total_bytes configuration is set to 0x7F to count
all the event types and the mbm_local_bytes configuration is set to 0x15 to
count all the local memory events.
Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication" at
https://bugzilla.kernel.org/attachment.cgi?id=301365
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-5-babu.moger@amd.com
Add a new resource type RDT_RESOURCE_SMBA to handle the QoS enforcement
policies on the external slow memory.
Mostly initialization of the essentials. Setting fflags to RFTYPE_RES_MB
configures the SMBA resource to have the same resctrl files as the
existing MBA resource. The SMBA resource has identical properties to
the existing MBA resource. These properties will be enumerated in an
upcoming change and exposed via resctrl because of this flag.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-4-babu.moger@amd.com
Add the new AMD feature X86_FEATURE_SMBA. With it, the QOS enforcement policies
can be applied to external slow memory connected to the host. QOS enforcement is
accomplished by assigning a Class Of Service (COS) to a processor and specifying
allocations or limits for that COS for each resource to be allocated.
This feature is identified by the CPUID function 0x8000_0020_EBX_x0[2]:
L3SBE - L3 external slow memory bandwidth enforcement.
CXL.memory is the only supported "slow" memory device. With SMBA, the hardware
enables bandwidth allocation on the slow memory devices. If there are multiple
slow memory devices in the system, then the throttling logic groups all the slow
sources together and applies the limit on them as a whole.
The presence of the SMBA feature (with CXL.memory) is independent of whether
slow memory device is actually present in the system. If there is no slow memory
in the system, then setting a SMBA limit will have no impact on the performance
of the system.
Presence of CXL memory can be identified by the numactl command:
$numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
node 0 size: 63678 MB node 0 free: 59542 MB
node 1 cpus:
node 1 size: 16122 MB
node 1 free: 15627 MB
node distances:
node 0 1
0: 10 50
1: 50 10
CPU list for CXL memory will be empty. The cpu-cxl node distance is greater than
cpu-to-cpu distances. Node 1 has the CXL memory in this case. CXL memory can
also be identified using ACPI SRAT table and memory maps.
Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication # 56375
Revision: 1.03 Issue Date: February 2022" at
https://bugzilla.kernel.org/attachment.cgi?id=301365
See also https://www.amd.com/en/support/tech-docs/amd64-technology-platform-quality-service-extensions
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-3-babu.moger@amd.com
on_each_cpu_mask() runs the function on each CPU specified by cpumask,
which may include the local processor.
Replace smp_call_function_many() with on_each_cpu_mask() to simplify
the code.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-2-babu.moger@amd.com
get disabled due to a value error
- Fix a NULL pointer access on UP configs
- Use the proper locking when updating CPU capacity
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPNKRsACgkQEsHwGGHe
VUr8NA/9GTqGUpOq0iRQkEOE1oAdT4ZxJ9dQpaWjwWSNv40HT7XJBzjtvzAyiOBF
LTUVClBct5i1/j0tVcNq1zXEj3im2e24Ki6A1TWukejgGAMT/7siSkuChEDAMg2M
b79nKCMpuIZMzkJND3qTkW/aMPpAyU82G8BeLCjw7vgPBsbVkjgbxGFKYdHgpLZa
kdX/GhOufu40jcGeUxA4zWTpXfuXT3OG7JYLrlHeJ/HEdzy9kLCkWH4jHHllzPQw
c4JwG7UnNkDKD6zkG0Guzi1zQy39egh/kaj7FQmVap9sneq+x69T4ta0BfXdBXnQ
Vsqc/nnOybUzr9Gjg5W6KRZWk0k6hK9n3+cye88BfRvzMY0KAgxeCiZEn7cuKqZp
15Agzz77vcwt32QsxjSp+hKQxJtePcBCurDhkfuAZyPELNIBeCW6inrXArprfTIg
IfEF068GKsvDGu3I/z49VXFZ9YBoerQREHbN/xL1VNeB8VoAxAE227OMUvhMcIu1
jxVvkESwc9BIybTcJbUjgg2i9t+Fv3gtZBQ6GFfDboHneia4U5a9aTyN6QGjX+5P
SIXPhePbFCNrhW7JbSGqKBd96MczbFNQinRhgX1lBU0241cAnchY4nH9fUvv7Zrt
b/QDg58tb2bJkm1Z08L256ZETELOU9nLJVxUbtBNSSO9dfkvoBs=
=aNSK
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Make sure the scheduler doesn't use stale frequency scaling values
when latter get disabled due to a value error
- Fix a NULL pointer access on UP configs
- Use the proper locking when updating CPU capacity
* tag 'sched_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/aperfmperf: Erase stale arch_freq_scale values when disabling frequency invariance readings
sched/core: Fix NULL pointer access fault in sched_setaffinity() with non-SMP configs
sched/fair: Fixes for capacity inversion detection
sched/uclamp: Fix a uninitialized variable warnings
Commit a6de553da0 ("kbuild: Allow to combine multiple W= levels")
supported W=123 to enable all the extra warning groups.
I think a similar idea is applicable to the V= option.
V=1 echos the whole command
V=2 prints the reason for rebuilding
These are orthogonal, and can be enabled at the same time.
This commit supports V=12 to enable both of them.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Nicolas Schier <nicolas@fjasle.eu>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
LLVM 16 will have support for this flag so move it out of the GCC-only
block to allow LLVM builds to take advantage of it.
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1665
Link: 6f867f9102
Link: https://lore.kernel.org/r/20230120165826.2469302-1-nathan@kernel.org
When serializing and deserializing kvm_sregs, attributes of the segment
descriptors are stored by user space. For unusable segments,
vmx_segment_access_rights skips all attributes and sets them to 0.
This means we zero out the DPL (Descriptor Privilege Level) for unusable
entries.
Unusable segments are - contrary to their name - usable in 64bit mode and
are used by guests to for example create a linear map through the
NULL selector.
VMENTER checks if SS.DPL is correct depending on the CS segment type.
For types 9 (Execute Only) and 11 (Execute Read), CS.DPL must be equal to
SS.DPL [1].
We have seen real world guests setting CS to a usable segment with DPL=3
and SS to an unusable segment with DPL=3. Once we go through an sregs
get/set cycle, SS.DPL turns to 0. This causes the virtual machine to crash
reproducibly.
This commit changes the attribute logic to always preserve attributes for
unusable segments. According to [2] SS.DPL is always saved on VM exits,
regardless of the unusable bit so user space applications should have saved
the information on serialization correctly.
[3] specifies that besides SS.DPL the rest of the attributes of the
descriptors are undefined after VM entry if unusable bit is set. So, there
should be no harm in setting them all to the previous state.
[1] Intel SDM Vol 3C 26.3.1.2 Checks on Guest Segment Registers
[2] Intel SDM Vol 3C 27.3.2 Saving Segment Registers and Descriptor-Table
Registers
[3] Intel SDM Vol 3C 26.3.2.2 Loading Guest Segment Registers and
Descriptor-Table Registers
Cc: Alexander Graf <graf@amazon.de>
Cc: stable@vger.kernel.org
Signed-off-by: Hendrik Borghorst <hborghor@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221114164823.69555-1-hborghor@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make early loading message match late loading message and print both old
and new revisions.
This is helpful to know what the BIOS loaded revision is before an early
update.
Cache the early BIOS revision before the microcode update and have
print_ucode_info() print both the old and new revision in the same
format as microcode_reload_late().
[ bp: Massage, remove useless comment. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230120161923.118882-6-ashok.raj@intel.com
print_ucode_info() takes a struct ucode_cpu_info pointer as parameter.
Its sole purpose is to print the microcode revision.
The only available ucode_cpu_info always describes the currently loaded
microcode revision. After a microcode update is successful, this is the
new revision, or on failure it is the original revision.
In preparation for future changes, replace the struct ucode_cpu_info
pointer parameter with a plain integer which contains the revision
number and adjust the call sites accordingly.
No functional change.
[ bp:
- Fix + cleanup commit message.
- Revert arbitrary, unrelated change.
]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230120161923.118882-5-ashok.raj@intel.com
During late microcode loading, the "Reload completed" message is issued
unconditionally, regardless of success or failure.
Adjust the message to report the result of the update.
[ bp: Massage. ]
Fixes: 9bd681251b ("x86/microcode: Announce reload operation's completion")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/lkml/874judpqqd.ffs@tglx/
The kernel caches each CPU's feature bits at boot in an x86_capability[]
structure. However, the capabilities in the BSP's copy can be turned off
as a result of certain command line parameters or configuration
restrictions, for example the SGX bit. This can cause a mismatch when
comparing the values before and after the microcode update.
Another example is X86_FEATURE_SRBDS_CTRL which gets added only after
microcode update:
--- cpuid.before 2023-01-21 14:54:15.652000747 +0100
+++ cpuid.after 2023-01-21 14:54:26.632001024 +0100
@@ -10,7 +10,7 @@ CPU:
0x00000004 0x04: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
0x00000005 0x00: eax=0x00000040 ebx=0x00000040 ecx=0x00000003 edx=0x11142120
0x00000006 0x00: eax=0x000027f7 ebx=0x00000002 ecx=0x00000001 edx=0x00000000
- 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002400
+ 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002e00
^^^
and which proves for a gazillionth time that late loading is a bad bad
idea.
microcode_check() is called after an update to report any previously
cached CPUID bits which might have changed due to the update.
Therefore, store the cached CPU caps before the update and compare them
with the CPU caps after the microcode update has succeeded.
Thus, the comparison is done between the CPUID *hardware* bits before
and after the upgrade instead of using the cached, possibly runtime
modified values in BSP's boot_cpu_data copy.
As a result, false warnings about CPUID bits changes are avoided.
[ bp:
- Massage.
- Add SRBDS_CTRL example.
- Add kernel-doc.
- Incorporate forgotten review feedback from dhansen.
]
Fixes: 1008c52c09 ("x86/CPU: Add a microcode loader callback")
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230109153555.4986-3-ashok.raj@intel.com
The kernel warning message is triggered, when SPR MCC is used.
[ 17.945331] ------------[ cut here ]------------
[ 17.946305] WARNING: CPU: 65 PID: 1 at
arch/x86/events/intel/uncore_discovery.c:184
intel_uncore_has_discovery_tables+0x4c0/0x65c
[ 17.946305] Modules linked in:
[ 17.946305] CPU: 65 PID: 1 Comm: swapper/0 Not tainted
5.4.17-2136.313.1-X10-2c+ #4
It's caused by the broken discovery table of UPI.
The discovery tables are from hardware. Except for dropping the broken
information, there is nothing Linux can do. Using WARN_ON_ONCE() is
overkilled.
Use the pr_info() to replace WARN_ON_ONCE(), and specify what uncore unit
is dropped and the reason.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Petlan <mpetlan@redhat.com>
Link: https://lore.kernel.org/r/20230112200105.733466-6-kan.liang@linux.intel.com
The discovery table of UPI on some SPR variants, e.g., MCC, is broken.
The third UPI table may includes a wrong address which points to a
non-exists device. The bug impacts both UPI and M3UPI uncore PMON.
Use a pre-defined UPI and M3UPI table to replace the broken table.
Different BIOS may populate a device into a different domain or a
different BUS. The accurate location can only be retrieved at load time.
Add spr_update_device_location() to update the location of the UPI and
M3UPI in the pre-defined table.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Petlan <mpetlan@redhat.com>
Link: https://lore.kernel.org/r/20230112200105.733466-5-kan.liang@linux.intel.com
Some units in a discovery table may be broken, e.g., UPI of SPR MCC.
A generic method is required to ignore the broken units.
Add uncore_units_ignore in the struct intel_uncore_init_fun, which
indicates the type ID of broken units. It will be assigned by the
platform-specific code later when the platform has a broken discovery
table.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Petlan <mpetlan@redhat.com>
Link: https://lore.kernel.org/r/20230112200105.733466-4-kan.liang@linux.intel.com
The current code assumes that the discovery table provides valid
box_ids for the normal units. It's not the case anymore since some units
in the discovery table are broken on some SPR variants.
Factor out uncore_get_box_id(). Check the existence of the type->box_ids
before using it. If it's not available, use pmu_idx.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Petlan <mpetlan@redhat.com>
Link: https://lore.kernel.org/r/20230112200105.733466-3-kan.liang@linux.intel.com
The same code is used to retrieve the logical die ID with a given PCI
device in both the discovery code and the code that supports a system
with > 8 nodes.
Factor out uncore_device_to_die() to replace the duplicate code.
No functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Petlan <mpetlan@redhat.com>
Link: https://lore.kernel.org/r/20230112200105.733466-2-kan.liang@linux.intel.com
Add a parameter to store CPU capabilities before performing a microcode
update so that CPU capabilities can be compared before and after update.
[ bp: Massage. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230109153555.4986-2-ashok.raj@intel.com
When a KVM guest has MWAIT, mwait_idle() is used as the default idle
function.
However, the cpuidle-haltpoll driver calls default_idle() from
default_enter_idle() directly and that one uses HLT instead of MWAIT,
which may affect performance adversely, because MWAIT is preferred to
HLT as explained by the changelog of commit aebef63cf7 ("x86: Remove
vendor checks from prefer_mwait_c1_over_halt").
Make default_enter_idle() call arch_cpu_idle(), which can use MWAIT,
instead of default_idle() to address this issue.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
[ rjw: Changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The minimum version of binutils for kernel build is currently 2.23 and
it doesn't support GFNI.
So, it fails to build the aria-avx512 if the old binutils is used.
aria-avx512 requires GFNI, so it should not be allowed to build if the
old binutils is used.
The AS_AVX512 and AS_GFNI are added to the Kconfig to disable build
aria-avx512 if the old binutils is used.
Fixes: c970d42001 ("crypto: x86/aria - implement aria-avx512")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The minimum version of binutils for kernel build is currently 2.23 and
it doesn't support GFNI.
So, it fails to build the aria-avx2 if the old binutils is used.
The code using GFNI is an optional part of aria-avx2.
So, it disables GFNI part in it when the old binutils is used.
Fixes: 37d8d3ae7a ("crypto: x86/aria - implement aria-avx2")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The minimum version of binutils for kernel build is currently 2.23 and
it doesn't support GFNI.
So, it fails to build the aria-avx if the old binutils is used.
The code using GFNI is an optional part of aria-avx.
So, it disables GFNI part in it when the old binutils is used.
In order to check whether the using binutils is supporting GFNI or not,
AS_GFNI is added.
Fixes: ba3579e6e4 ("crypto: aria-avx - add AES-NI/AVX/x86_64/GFNI assembler implementation of aria cipher")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instrument nmi_trigger_cpumask_backtrace() to dump out diagnostics based
on evidence accumulated by exc_nmi(). These diagnostics are dumped for
CPUs that ignored an NMI backtrace request for more than 10 seconds.
[ paulmck: Apply Ingo Molnar feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
CPUs ignoring NMIs is often a sign of those CPUs going bad, but there
are quite a few other reasons why a CPU might ignore NMIs. Therefore,
accumulate evidence within exc_nmi() as to what might be preventing a
given CPU from responding to an NMI.
[ paulmck: Apply Peter Zijlstra feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
KVM already has a 'GPA_INVALID' defined as (~(gpa_t)0) in kvm_types.h,
and it is used by ARM code. We do not need another definition of
'INVALID_GPA' for X86 specifically.
Instead of using the common 'GPA_INVALID' for X86, replace it with
'INVALID_GPA', and change the users of 'GPA_INVALID' so that the diff
can be smaller. Also because the name 'INVALID_GPA' tells the user we
are using an invalid GPA, while the name 'GPA_INVALID' is emphasizing
the GPA is an invalid one.
No functional change intended.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230105130127.866171-1-yu.c.zhang@linux.intel.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The hypervisor can enable various new features (SEV_FEATURES[1:63]) and start a
SNP guest. Some of these features need guest side implementation. If any of
these features are enabled without it, the behavior of the SNP guest will be
undefined. It may fail booting in a non-obvious way making it difficult to
debug.
Instead of allowing the guest to continue and have it fail randomly later,
detect this early and fail gracefully.
The SEV_STATUS MSR indicates features which the hypervisor has enabled. While
booting, SNP guests should ascertain that all the enabled features have guest
side implementation. In case a feature is not implemented in the guest, the
guest terminates booting with GHCB protocol Non-Automatic Exit(NAE) termination
request event, see "SEV-ES Guest-Hypervisor Communication Block Standardization"
document (currently at https://developer.amd.com/wp-content/resources/56421.pdf),
section "Termination Request".
Populate SW_EXITINFO2 with mask of unsupported features that the hypervisor can
easily report to the user.
More details in the AMD64 APM Vol 2, Section "SEV_STATUS MSR".
[ bp:
- Massage.
- Move snp_check_features() call to C code.
Note: the CC:stable@ aspect here is to be able to protect older, stable
kernels when running on newer hypervisors. Or not "running" but fail
reliably and in a well-defined manner instead of randomly. ]
Fixes: cbd3d4f7c4 ("x86/sev: Check SEV-SNP features support")
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230118061943.534309-1-nikunj@amd.com
zap_page_range was originally designed to unmap pages within an address
range that could span multiple vmas. While working on [1], it was
discovered that all callers of zap_page_range pass a range entirely within
a single vma. In addition, the mmu notification call within zap_page
range does not correctly handle ranges that span multiple vmas. When
crossing a vma boundary, a new mmu_notifier_range_init/end call pair with
the new vma should be made.
Instead of fixing zap_page_range, do the following:
- Create a new routine zap_vma_pages() that will remove all pages within
the passed vma. Most users of zap_page_range pass the entire vma and
can use this new routine.
- For callers of zap_page_range not passing the entire vma, instead call
zap_page_range_single().
- Remove zap_page_range.
[1] https://lore.kernel.org/linux-mm/20221114235507.294320-2-mike.kravetz@oracle.com/
Link: https://lkml.kernel.org/r/20230104002732.232573-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390]
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch is a cleanup to always wr-protect pte/pmd in mkuffd_wp paths.
The reasons I still think this patch is worthwhile, are:
(1) It is a cleanup already; diffstat tells.
(2) It just feels natural after I thought about this, if the pte is uffd
protected, let's remove the write bit no matter what it was.
(2) Since x86 is the only arch that supports uffd-wp, it also redefines
pte|pmd_mkuffd_wp() in that it should always contain removals of
write bits. It means any future arch that want to implement uffd-wp
should naturally follow this rule too. It's good to make it a
default, even if with vm_page_prot changes on VM_UFFD_WP.
(3) It covers more than vm_page_prot. So no chance of any potential
future "accident" (like pte_mkdirty() sparc64 or loongarch, even
though it just got its pte_mkdirty fixed <1 month ago). It'll be
fairly clear when reading the code too that we don't worry anything
before a pte_mkuffd_wp() on uncertainty of the write bit.
We may call pte_wrprotect() one more time in some paths (e.g. thp split),
but that should be fully local bitop instruction so the overhead should be
negligible.
Although this patch should logically also fix all the known issues on
uffd-wp too recently on page migration (not for numa hint recovery - that
may need another explcit pte_wrprotect), but this is not the plan for that
fix. So no fixes, and stable doesn't need this.
Link: https://lkml.kernel.org/r/20221214201533.1774616-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ives van Hoorne <ives@codesandbox.io>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
From the perspective of Intel cstate residency counters,
Emerald Rapids is the same as the Sapphire Rapids and Ice Lake.
Add Emerald Rapids model.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230106160449.3566477-2-kan.liang@linux.intel.com
From core PMU's perspective, Emerald Rapids is the same as the Sapphire
Rapids. The only difference is the event list, which will be
supported in the perf tool later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230106160449.3566477-1-kan.liang@linux.intel.com
Use DEVICE_ATTR_RO() helper instead of open-coded DEVICE_ATTR(),
which makes the code a bit shorter and easier to read.
No change in functionality.
Signed-off-by: Guangju Wang[baidu] <wgj900@163.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230118023554.1898-1-wgj900@163.com
Factor out perf_prepare_header() so that it can call
perf_prepare_sample() without a header if not needed.
Also it checks the filtered_sample_type to avoid duplicate
work when perf_prepare_sample() is called twice (or more).
Suggested-by: Peter Zijlstr <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-8-namhyung@kernel.org
When we saves the branch stack to the perf sample data, we needs to
update the sample flags and the dynamic size. To make sure this is
done consistently, add the perf_sample_save_brstack() helper and
convert all call sites.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-5-namhyung@kernel.org
When we save the raw_data to the perf sample data, we need to update
the sample flags and the dynamic size. To make sure this is done
consistently, add the perf_sample_save_raw_data() helper and convert
all call sites.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-4-namhyung@kernel.org
When we save the callchain to the perf sample data, we need to update
the sample flags and the dynamic size. To ensure this is done consistently,
add the perf_sample_save_callchain() helper and convert all call sites.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-3-namhyung@kernel.org
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPEGkMeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGE4YH/1sxdve3nlWT7eyf
VDanaCZFc2u6Sk1td23HyhvOVbFjj1E39UokHK9YfzD4hhn+u9SFvDgoXHGhHzYq
IhDvNM3mLsKpEtjwNbbi/lt6tryJchhZ96O5leRiUxZaw/GBVnHrKGR56vCjC/DB
zq8td4I+TmTPMpsL3e3WZqJoX3bjTqgZFNShA1mZFYtuQRpAVkJkafMRwuAySIMQ
+FyK/zZ+MpGJ7y/UmWfaBmS5GtjBz0fva7fTbEkUqk8bDtNUWMBhsTKtgU1LBpBe
Yrkhs3sdQdpKSm9yNaNrlLhSjFwkusV5kR09p6/5w+wthdPmjnoUZuEnAZpYyydE
ZY7+Vqk=
=q9Ac
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc4' into perf/core, to pick up fixes
Move from the -rc1 base to the fresher -rc4 kernel that
has various fixes included, before applying a larger
patchset.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to TLFS, in order to communicate to L0 hypervisor there needs
to be an additional bit set in the control register. This communication
is required to perform privileged instructions which can only be
performed by L0 hypervisor. An example of that could be setting up the
VMBus infrastructure.
Signed-off-by: Jinank Jain <jinankjain@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/24f9d46d5259a688113e6e5e69e21002647f4949.1672639707.git.jinankjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Child partitions are free to allocate SynIC message and event page but in
case of root partition it must use the pages allocated by Microsoft
Hypervisor (MSHV). Base address for these pages can be found using
synthetic MSRs exposed by MSHV. There is a slight difference in those MSRs
for nested vs non-nested root partition.
Signed-off-by: Jinank Jain <jinankjain@linux.microsoft.com>
Reviewed-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/cb951fb1ad6814996fc54f4a255c5841a20a151f.1672639707.git.jinankjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
David reported that the recent PCI/MSI rework results in MSI descriptor
leakage under XEN.
This is caused by:
1) The missing MSI_FLAG_FREE_MSI_DESCS flag in the XEN MSI domain info,
which is required now that PCI/MSI delegates descriptor freeing to
the core MSI code.
2) Not disassociating the interrupts on teardown, by setting the
msi_desc::irq to 0. This was not required before because the teardown
was unconditional and did not check whether a MSI descriptor was still
connected to a Linux interrupt.
On further inspection it came to light that the MSI_FLAG_DEV_SYSFS is
missing in the XEN MSI domain info as well to restore the pre 6.2 status
quo.
Add the missing MSI flags and disassociate the MSI descriptor from the
Linux interrupt in the XEN specific teardown function.
Fixes: b2bdda205c ("PCI/MSI: Let the MSI core free descriptors")
Fixes: 2f2940d168 ("genirq/msi: Remove filter from msi_free_descs_free_range()")
Fixes: ffd84485e6 ("PCI/MSI: Let the irq code handle sysfs groups")
Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/871qnunycr.ffs@tglx
The Xen MSI → PIRQ magic does support MSI-X, so advertise it.
(In fact it's better off with MSI-X than MSI, because it's actually
broken by design for 32-bit MSI, since it puts the high bits of the
PIRQ# into the high 32 bits of the MSI message address, instead of the
Extended Destination ID field which is in bits 4-11.
Strictly speaking, this really fixes a much older commit 2e4386eba0
("x86/xen: Wrap XEN MSI management into irqdomain") which failed to set
the flag. But that never really mattered until __pci_enable_msix_range()
started to check and bail out early. So in 6.2-rc we see failures e.g.
to bring up networking on an Amazon EC2 m4.16xlarge instance:
[ 41.498694] ena 0000:00:03.0 (unnamed net_device) (uninitialized): Failed to enable MSI-X. irq_cnt -524
[ 41.498705] ena 0000:00:03.0: Can not reserve msix vectors
[ 41.498712] ena 0000:00:03.0: Failed to enable and set the admin interrupts
Side note: This is the first bug found, and first patch tested, by running
Xen guests under QEMU/KVM instead of running under actual Xen.
Fixes: 99f3d27976 ("PCI/MSI: Reject MSI-X early")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/4bffa69a949bfdc92c4a18e5a1c3cbb3b94a0d32.camel@infradead.org
Baoquan reported that after triggering a crash the subsequent crash-kernel
fails to boot about half of the time. It triggers a NULL pointer
dereference in the periodic tick code.
This happens because the legacy timer interrupt (IRQ0) is resent in
software which happens in soft interrupt (tasklet) context. In this context
get_irq_regs() returns NULL which leads to the NULL pointer dereference.
The reason for the resend is a spurious APIC interrupt on the IRQ0 vector
which is captured and leads to a resend when the legacy timer interrupt is
enabled. This is wrong because the legacy PIC interrupts are level
triggered and therefore should never be resent in software, but nothing
ever sets the IRQ_LEVEL flag on those interrupts, so the core code does not
know about their trigger type.
Ensure that IRQ_LEVEL is set when the legacy PCI interrupts are set up.
Fixes: a4633adcdb ("[PATCH] genirq: add genirq sw IRQ-retrigger")
Reported-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Baoquan He <bhe@redhat.com>
Link: https://lore.kernel.org/r/87mt6rjrra.ffs@tglx
Once disable_freq_invariance_work is called the scale_freq_tick function
will not compute or update the arch_freq_scale values.
However the scheduler will still read these values and use them.
The result is that the scheduler might perform unfair decisions based on stale
values.
This patch adds the step of setting the arch_freq_scale values for all
cpus to the default (max) value SCHED_CAPACITY_SCALE, Once all cpus
have the same arch_freq_scale value the scaling is meaningless.
Signed-off-by: Yair Podemsky <ypodemsk@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230110160206.75912-1-ypodemsk@redhat.com
- Fixes for two resctrl races when moving a task or creating a new monitoring
group
- Fix SEV-SNP guests running under HyperV where MTRRs are disabled to not return
a UC- type mapping type on memremap() and thus cause a serious slowdown
- Fix insn mnemonics in bioscall.S now that binutils is starting to fix
confusing insn suffixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPD5xsACgkQEsHwGGHe
VUr65g/8CkfKQKIQ/kPn1B+M/PI4S8DBmz7CdufQTbB66GSfDwRpGnxIKJKZM1UG
pyOmP1kHVXGGCsvFQimalxnBtFx6t3wFS+R+c/l5pRtgU63bwQpNjJ+vBcBpb4xs
J7f06VgF6jB8qk0NqXBKNJt4kauZA50wiErYm8PU/yf0tmHratjrvDfKQmus9pI4
AMcQEudRhDDo8xqn8fvIC/S7xm9/TgNzKxYP+HciPa74HZm5vrjS0hIyZkIsh5d7
Q4MsP4VaBH12W6MbpF9TBw5VTDomwY8oS4xTNfkhyOTcHi8uLrMjA66VmaJwWXpe
EZjOk4+KhtxYigaI5oQO9M5e9IINK6ZfbzU65P74wTvP3orszsBPG7QvodIzLc76
YI1GEea/bXgxYgPuMR6spZoGMS58K7BXgViVMVRwZ9bZk17+5pfbLkzKqZsfw/s/
nj3n8z4ayoc+ffDPllh0471Dn16ugKMf+EvW2Su1Q1QoaA7icNNkZrKaM6eSuoFr
bClsrHeglQFadwy4kmY0fi7BUfiKTp+c5Ur7lM7VojrjH0XcoZreThVg0tNrk3ZR
IAyBjtCdtg1rzrRfb7qBf6B+WNGdxYWGuDgOPiH1Xh+/plvyCqQ2/3AGWQAbu/qP
to+IYmZg09mRpVBDYpCY4z6IzRbMJ9rRho4rNXCQUeAzSVMCrZE=
=W2zR
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.2_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Make sure the poking PGD is pinned for Xen PV as it requires it this
way
- Fixes for two resctrl races when moving a task or creating a new
monitoring group
- Fix SEV-SNP guests running under HyperV where MTRRs are disabled to
not return a UC- type mapping type on memremap() and thus cause a
serious slowdown
- Fix insn mnemonics in bioscall.S now that binutils is starting to fix
confusing insn suffixes
* tag 'x86_urgent_for_v6.2_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: fix poking_init() for Xen PV guests
x86/resctrl: Fix event counts regression in reused RMIDs
x86/resctrl: Fix task CLOSID/RMID update race
x86/pat: Fix pat_x_mtrr_type() for MTRR disabled case
x86/boot: Avoid using Intel mnemonics in AT&T syntax asm
Functions used with __setup() return 1 when the argument has been
successfully parsed.
Reverse the returned value so that 1 is returned when kstrtobool() is
successful (i.e. returns 0).
My understanding of these __setup() functions is that returning 1 or 0
does not change much anyway - so this is more of a cleanup than a
functional fix.
I spot it and found it spurious while looking at something else.
Even if the output is not perfect, you'll get the idea with:
$ git grep -B2 -A10 retu.*kstrtobool | grep __setup -B10
Fixes: 3aac3ebea0 ("x86/signal: Implement sigaltstack size validation")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/73882d43ebe420c9d8fb82d0560021722b243000.1673717552.git.christophe.jaillet@wanadoo.fr
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmPBniAUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vwOjRAAhjyRAgyiZV2rWS4pyvpQpqcpZWD9
796ZSqnzLJjVYCymGvUTX23FEA48n59+bCM/WpfEGUPrBf8LZQxC9YOCm6ltuM8+
FoSBykW/tHPq5IWaLzgrWpHeDOgEnZu/WFGGvrV3tl1mLpM1SJT8bGDsjHXlo+FM
qkTEiA3nUEKQs5x9r2TTLCeUWGPNTIHNd2VfuxOqM3qC/nVCOfTTxU8nm6Lk7Eix
nboAugAIADJIjs/+ZGekLBuzZYPkLYuDTyMYJ5hdo1p7wWCLc9gArEqvXKwVgmD3
ptenZeOlQi9Ay45HmkfIgfgKeeQ7REJj3dx04vf67neAianyUrB0EZDqDjR7LmgM
ozlNt0XjyoeEhu6AQS0s1LZtbDiED1R/00P6Gb+YEjUCVipW2lEYYwP0v9dsnNoh
6wblgnkQoxLFM+5CAXRmCmpaoQn0Uam7okfVeohtsz8/kNQF2St0hjzr4Dmws+O3
k9PUqnnUl4ByElzpEDesVGZMJ3pxFVH15ufu8VnRqN60pLTvNrsPyU4cVnG176Rc
3RSDN3zMtPxnHJVy4r3bTNEZsX/7RUrOb4xScOXMmRDBMUc8QdscF8Oj1ucKlj5j
mp7vB/7+VjU96uRarRyqUxGeQc77DCTcvOa1IGh/cuYom8ZJ6vpSCpKy6f6SFGuf
i8iTTUcQKCdqVW4=
=Fv2v
-----END PGP SIGNATURE-----
Merge tag 'pci-v6.2-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci fixes from Bjorn Helgaas:
- Work around apparent firmware issue that made Linux reject MMCONFIG
space, which broke PCI extended config space (Bjorn Helgaas)
- Fix CONFIG_PCIE_BT1 dependency due to mid-air collision between a
PCI_MSI_IRQ_DOMAIN -> PCI_MSI change and addition of PCIE_BT1 (Lukas
Bulwahn)
* tag 'pci-v6.2-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
x86/pci: Treat EfiMemoryMappedIO as reservation of ECAM space
x86/pci: Simplify is_mmconf_reserved() messages
PCI: dwc: Adjust to recent removal of PCI_MSI_IRQ_DOMAIN
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmPAT3EUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPmDAf+ICCVMwgm+PjAc6NuXzaUk6BFGWKF
1lzMvnKb6ARnhMKwyjl/Sf5EgnTuucnSTBHuE1kjaLkPUDNJvi4oRXVdDwKjtXnZ
Zxk4dpsNLWVfALHTk1KweIkR5KNif0kugUh9RNp6zOBnoTVRh8XdCHpeDv73tJaG
R1gCAreVTDbp+wNrVpiImUfYAZ4GrGpwwWRH/xLAGDWoTL9Z9J5tQygf+0C429n/
eJoTrToLjESbYadDgCNDD+TUkHbeDVg8aeio2JZga9SvH3RBhwriLqz26v9yvikL
UoY96AySMaiox4pgCUYUl8nng8MR8AG4C4vpNnLalj7tfHxRfhtAwD0EYw==
=gDOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix the PMCR_EL0 reset value after the PMU rework
- Correctly handle S2 fault triggered by a S1 page table walk by not
always classifying it as a write, as this breaks on R/O memslots
- Document why we cannot exit with KVM_EXIT_MMIO when taking a write
fault from a S1 PTW on a R/O memslot
- Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1 before
it
- Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
- Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
- Documentation improvements
- Do not return host topology information from KVM_GET_SUPPORTED_CPUID"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86/xen: Avoid deadlock by adding kvm->arch.xen.xen_lock leaf node lock
KVM: Ensure lockdep knows about kvm->lock vs. vcpu->mutex ordering rule
KVM: x86/xen: Fix potential deadlock in kvm_xen_update_runstate_guest()
KVM: x86/xen: Fix lockdep warning on "recursive" gpc locking
Documentation: kvm: fix SRCU locking order docs
KVM: x86: Do not return host topology information from KVM_GET_SUPPORTED_CPUID
KVM: nSVM: clarify recalc_intercepts() wrt CR8
MAINTAINERS: Remove myself as a KVM/arm64 reviewer
MAINTAINERS: Add Zenghui Yu as a KVM/arm64 reviewer
KVM: arm64: vgic: Add Apple M2 cpus to the list of broken SEIS implementations
KVM: arm64: Convert FSC_* over to ESR_ELx_FSC_*
KVM: arm64: Document the behaviour of S1PTW faults on RO memslots
KVM: arm64: Fix S1PTW handling on RO memslots
KVM: arm64: PMU: Fix PMCR_EL0 reset value
Normally we reject ECAM space unless it is reported as reserved in the E820
table or via a PNP0C02 _CRS method (PCI Firmware, r3.3, sec 4.1.2).
07eab0901e ("efi/x86: Remove EfiMemoryMappedIO from E820 map"), removes
E820 entries that correspond to EfiMemoryMappedIO regions because some
other firmware uses EfiMemoryMappedIO for PCI host bridge windows, and the
E820 entries prevent Linux from allocating BAR space for hot-added devices.
Some firmware doesn't report ECAM space via PNP0C02 _CRS methods, but does
mention it as an EfiMemoryMappedIO region via EFI GetMemoryMap(), which is
normally converted to an E820 entry by a bootloader or EFI stub. After
07eab0901e, that E820 entry is removed, so we reject this ECAM space,
which makes PCI extended config space (offsets 0x100-0xfff) inaccessible.
The lack of extended config space breaks anything that relies on it,
including perf, VSEC telemetry, EDAC, QAT, SR-IOV, etc.
Allow use of ECAM for extended config space when the region is covered by
an EfiMemoryMappedIO region, even if it's not included in E820 or PNP0C02
_CRS.
Link: https://lore.kernel.org/r/ac2693d8-8ba3-72e0-5b66-b3ae008d539d@linux.intel.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216891
Fixes: 07eab0901e ("efi/x86: Remove EfiMemoryMappedIO from E820 map")
Link: https://lore.kernel.org/r/20230110180243.1590045-3-helgaas@kernel.org
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Reported-by: Tony Luck <tony.luck@intel.com>
Reported-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Reported-by: Yunying Sun <yunying.sun@intel.com>
Reported-by: Baowen Zheng <baowen.zheng@corigine.com>
Reported-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reported-by: Yang Lixiao <lixiao.yang@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Yunying Sun <yunying.sun@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Rafael J. Wysocki <rafael@kernel.org>
Move the guts of kvm_recalculate_apic_map()'s main loop to two separate
helpers to handle recalculating the physical and logical pieces of the
optimized map. Having 100+ lines of code in the for-loop makes it hard
to understand what is being calculated where.
No functional change intended.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Legacy kernels prior to commit 4399c03c67 ("x86/apic: Remove
verify_local_APIC()") write the APIC ID of the boot CPU twice to verify
a functioning local APIC. This results in APIC acceleration inhibited
on these kernels for reason APICV_INHIBIT_REASON_APIC_ID_MODIFIED.
Allow the APICV_INHIBIT_REASON_APIC_ID_MODIFIED inhibit reason to be
cleared if/when all APICs in xAPIC mode set their APIC ID back to the
expected vcpu_id value.
Fold the functionality previously in kvm_lapic_xapic_id_updated() into
kvm_recalculate_apic_map(), as this allows examining all APICs in one
pass.
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Signed-off-by: Greg Edwards <gedwards@ddn.com>
Link: https://lore.kernel.org/r/20221117183247.94314-1-gedwards@ddn.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the per-vendor required APICv inhibits with a variable instead of
calling into vendor code every time KVM wants to query the set of
required inhibits. The required inhibits are a property of the vendor's
virtualization architecture, i.e. are 100% static.
Using a variable allows the compiler to inline the check, e.g. generate
a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking
inhibits for performance reasons.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turns out that some warnings exist for good reasons. Restore the warning
in avic_vcpu_load() that guards against calling avic_vcpu_load() on a
running vCPU now that KVM avoids doing so when switching between x2APIC
and xAPIC. The entire point of the WARN is to highlight that KVM should
not be reloading an AVIC.
Opportunistically convert the WARN_ON() to WARN_ON_ONCE() to avoid
spamming the kernel if it does fire.
This reverts commit c0caeee65a.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop writes to APIC_RRR, a.k.a. Remote Read Data Register, on AVIC
unaccelerated write traps. The register is read-only and isn't emulated
by KVM. Sending the register through kvm_apic_write_nodecode() will
result in screaming when x2APIC is enabled due to the unexpected failure
to retrieve the MSR (KVM expects that only "legal" accesses will trap).
Fixes: 4d1d7942e3 ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Iterate over all target logical IDs in the AVIC kick fastpath instead of
bailing if there is more than one target. Now that KVM inhibits AVIC if
vCPUs aren't mapped 1:1 with logical IDs, each bit in the destination is
guaranteed to match to at most one vCPU, i.e. iterating over the bitmap
is guaranteed to kick each valid target exactly once.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not modify AVIC's logical ID table if the logical ID portion of the
LDR is not a power-of-2, i.e. if the LDR has multiple bits set. Taking
only the first bit means that KVM will fail to match MDAs that intersect
with "higher" bits in the "ID"
The "ID" acts as a bitmap, but is referred to as an ID because there's an
implicit, unenforced "requirement" that software only set one bit. This
edge case is arguably out-of-spec behavior, but KVM cleanly handles it
in all other cases, e.g. the optimized logical map (and AVIC!) is also
disabled in this scenario.
Refactor the code to consolidate the checks, and so that the code looks
more like avic_kick_target_vcpus_fast().
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update SVM's cache of the LDR even if the new value is "bad". Leaving
stale information in the cache can result in KVM missing updates and/or
invalidating the wrong entry, e.g. if avic_invalidate_logical_id_entry()
is triggered after a different vCPU has "claimed" the old LDR.
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the vCPU's local (virtual) APIC on LDR writes even if the write
"fails". The APIC needs to recalc the optimized logical map even if the
LDR is invalid or zero, e.g. if the guest clears its LDR, the optimized
map will be left as is and the vCPU will receive interrupts using its
old LDR.
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit SVM's AVIC if multiple vCPUs are aliased to the same logical ID.
Architecturally, all CPUs whose logical ID matches the MDA are supposed
to receive the interrupt; overwriting existing entries in AVIC's
logical=>physical map can result in missed IPIs.
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM
KVM provides consistent APIC behavior if xAPIC IDs are aliased due to
vcpu_id being truncated and the x2APIC hotplug hack isn't enabled. If
the hotplug hack is disabled, events that are emulated by KVM will follow
architectural behavior (all matching vCPUs receive events, even if the
"match" is due to truncation), whereas APICv and AVIC will deliver events
only to the first matching vCPU, i.e. the vCPU that matches without
truncation.
Note, the "extra" inhibit is needed because KVM deliberately ignores
mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit
so that large VMs (>255 vCPUs) can run with APICv/AVIC.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs
for x2APIC. If 32-bit IDs are not enabled, disable the optimized map to
honor x86 architectural behavior if multiple vCPUs shared a physical APIC
ID. As called out in the changelog that added the hack, all CPUs whose
(possibly truncated) APIC ID matches the target are supposed to receive
the IPI.
KVM intentionally differs from real hardware, because real hardware
(Knights Landing) does just "x2apic_id & 0xff" to decide whether to
accept the interrupt in xAPIC mode and it can deliver one interrupt to
more than one physical destination, e.g. 0x123 to 0x123 and 0x23.
Applying the hack even when x2APIC is not fully enabled means KVM doesn't
correctly handle scenarios where the guest has aliased xAPIC IDs across
multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any
interrupts. It's extremely unlikely any real world guest aliases APIC
IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the
lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which
vCPU is "normal".
Furthermore, the hack is _not_ guaranteed to work! The hack works if and
only if the optimized APIC map is successfully allocated. If the map
allocation fails (unlikely), KVM will fall back to its unoptimized
behavior, which _does_ honor the architectural behavior.
Pivot on 32-bit x2APIC IDs being enabled as that is required to take
advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't
break existing setups unless they are way, way off in the weeds.
And an entry in KVM's errata to document the hack. Alternatively, KVM
could provide an actual x2APIC quirk and document the hack that way, but
there's unlikely to ever be a use case for disabling the quirk. Go the
errata route to avoid having to validate a quirk no one cares about.
Fixes: 5bd5db385b ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable the optimized APIC logical map if multiple vCPUs are aliased to
the same logical ID. Architecturally, all CPUs whose logical ID matches
the MDA are supposed to receive the interrupt; overwriting existing map
entries can result in missed IPIs.
Fixes: 1e08ec4a13 ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable the optimized APIC logical map if a logical ID covers multiple
MDAs, i.e. if a vCPU has multiple bits set in its ID. In logical mode,
events match if "ID & MDA != 0", i.e. creating an entry for only the
first bit can cause interrupts to be missed.
Note, creating an entry for every bit is also wrong as KVM would generate
IPIs for every matching bit. It would be possible to teach KVM to play
nice with this edge case, but it is very much an edge case and probably
not used in any real world OS, i.e. it's not worth optimizing.
Fixes: 1e08ec4a13 ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the optimized cluster[] setup for x2APIC logical mode, as KVM reuses
the optimized map's phys_map[] and doesn't actually need to insert the
target apic into the cluster[]. The LDR is derived from the x2APIC ID,
and both are read-only in KVM, thus the vCPU's cluster[ldr] is guaranteed
to be the same entry as the vCPU's phys_map[x2apic_id] entry.
Skipping the unnecessary setup will allow a future fix for aliased xAPIC
logical IDs to simply require that cluster[ldr] is non-NULL, i.e. won't
have to special case x2APIC.
Alternatively, the future check could allow "cluster[ldr] == apic", but
that ends up being terribly confusing because cluster[ldr] is only set
at the very end, i.e. it's only possible due to x2APIC's shenanigans.
Another alternative would be to send x2APIC down a separate path _after_
the calculation and then assert that all of the above, but the resulting
code is rather messy, and it's arguably unnecessary since asserting that
the actual LDR matches the expected LDR means that simply testing that
interrupts are delivered correctly provides the same guarantees.
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track all possibilities for the optimized APIC map's logical modes
instead of overloading the pseudo-bitmap and treating any "unknown" value
as "invalid".
As documented by the now-stale comment above the mode values, the values
did have meaning when the optimized map was originally added. That
dependent logical was removed by commit e45115b62f ("KVM: x86: use
physical LAPIC array for logical x2APIC"), but the obfuscated behavior
and its comment were left behind.
Opportunistically rename "mode" to "logical_mode", partly to make it
clear that the "disabled" case applies only to the logical map, but also
to prove that there is no lurking code that expects "mode" to be a bitmap.
Functionally, this is a glorified nop.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly skip the optimized map setup if the vCPU's LDR is '0', i.e. if
the vCPU will never respond to logical mode interrupts. KVM already
skips setup in this case, but relies on kvm_apic_map_get_logical_dest()
to generate mask==0. KVM still needs the mask=0 check as a non-zero LDR
can yield mask==0 depending on the mode, but explicitly handling the LDR
will make it simpler to clean up the logical mode tracking in the future.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to perform the final kick, two instances of the ICR decoding
is one too many.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document that AVIC is inhibited if any vCPU's APIC ID diverges from its
vCPU ID, i.e. that there's no need to check for a destination match in
the AVIC kick fast path.
Opportunistically tweak comments to remove "guest bug", as that suggests
KVM is punting on error handling, which is not the case. Targeting a
non-existent vCPU or no vCPUs _may_ be a guest software bug, but whether
or not it's a guest bug is irrelevant. Such behavior is architecturally
legal and thus needs to faithfully emulated by KVM (and it is).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Due to a likely mismerge of patches, KVM ended up with a superfluous
commit to "enable" AVIC's fast path for x2AVIC mode. Even worse, the
superfluous commit has several bugs and creates a nasty local shadow
variable.
Rather than fix the bugs piece-by-piece[*] to achieve the same end
result, revert the patch wholesale.
Opportunistically add a comment documenting the x2AVIC dependencies.
This reverts commit 8c9e639da4.
[*] https://lore.kernel.org/all/YxEP7ZBRIuFWhnYJ@google.com
Fixes: 8c9e639da4 ("KVM: SVM: Use target APIC ID to complete x2AVIC IRQs when possible")
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For X2APIC ID in cluster mode, the logical ID is bit [15:0].
Fixes: 603ccef42c ("KVM: x86: SVM: fix avic_kick_target_vcpus_fast")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Compute the destination from ICRH using the sender's x2APIC status, not
each (potential) target's x2APIC status.
Fixes: c514d3a348 ("KVM: SVM: Update avic_kick_target_vcpus to support 32-bit APIC ID")
Cc: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the "avic_mode" enum with a single bool to track whether or not
x2AVIC is enabled. KVM already has "apicv_enabled" that tracks if any
flavor of AVIC is enabled, i.e. AVIC_MODE_NONE and AVIC_MODE_X1 are
redundant and unnecessary noise.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's
AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with
x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled
when x2APIC is enabled even without x2AVIC support), keeping the APIC
access page memslot results in the guest being able to access the virtual
APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware
that the guest is operating in x2APIC mode.
Exempt nested SVM's update of APICv state from the new logic as x2APIC
can't be toggled on VM-Exit. In practice, invoking the x2APIC logic
should be harmless precisely because it should be a glorified nop, but
play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU
lock.
Intel doesn't suffer from the same issue as APICv has fully independent
VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM
should provide bus error semantics and not memory semantics for the APIC
page when x2APIC is enabled, but KVM already provides memory semantics in
other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware
disabled (via APIC_BASE MSR).
Note, checking apic_access_memslot_enabled without taking locks relies
it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can
race to set the inhibit and delete the memslot, i.e. can get false
positives, but can't get false negatives as apic_access_memslot_enabled
can't be toggled "on" once any vCPU reaches KVM_RUN.
Opportunistically drop the "can" while updating avic_activate_vmcb()'s
comment, i.e. to state that KVM _does_ support the hybrid mode. Move
the "Note:" down a line to conform to preferred kernel/KVM multi-line
comment style.
Opportunistically update the apicv_update_lock comment, as it isn't
actually used to protect apic_access_memslot_enabled (which is protected
by slots_lock).
Fixes: 0e311d33bf ("KVM: SVM: Introduce hybrid-AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the APIC access page allocation helper function to common x86 code,
the allocation routine is virtually identical between APICv (VMX) and
AVIC (SVM). Keep APICv's gfn_to_page() + put_page() sequence, which
verifies that a backing page can be allocated, i.e. that the system isn't
under heavy memory pressure. Forcing the backing page to be populated
isn't strictly necessary, but skipping the effective prefetch only delays
the inevitable.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM_REQ_UPDATE_APICV to react to APIC "mode" changes, i.e. to handle
the APIC being hardware enabled/disabled and/or x2APIC being toggled.
There is no need to immediately update APICv state, the only requirement
is that APICv be updating prior to the next VM-Enter.
Making a request will allow piggybacking KVM_REQ_UPDATE_APICV to "inhibit"
the APICv memslot when x2APIC is enabled. Doing that directly from
kvm_lapic_set_base() isn't feasible as KVM's SRCU must not be held when
modifying memslots (to avoid deadlock), and may or may not be held when
kvm_lapic_set_base() is called, i.e. KVM can't do the right thing without
tracking that is rightly buried behind CONFIG_PROVE_RCU=y.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the VMCB updates from avic_refresh_apicv_exec_ctrl() into
avic_set_virtual_apic_mode() and invert the dependency being said
functions to avoid calling avic_vcpu_{load,put}() and
avic_set_pi_irte_mode() when "only" setting the virtual APIC mode.
avic_set_virtual_apic_mode() is invoked from common x86 with preemption
enabled, which makes avic_vcpu_{load,put}() unhappy. Luckily, calling
those and updating IRTE stuff is unnecessary as the only reason
avic_set_virtual_apic_mode() is called is to handle transitions between
xAPIC and x2APIC that don't also toggle APICv activation. And if
activation doesn't change, there's no need to fiddle with the physical
APIC ID table or update IRTE.
The "full" refresh is guaranteed to be called if activation changes in
this case as the only call to the "set" path is:
kvm_vcpu_update_apicv(vcpu);
static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
and kvm_vcpu_update_apicv() invokes the refresh if activation changes:
if (apic->apicv_active == activate)
goto out;
apic->apicv_active = activate;
kvm_apic_update_apicv(vcpu);
static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
Rename the helper to reflect that it is also called during "refresh".
WARNING: CPU: 183 PID: 49186 at arch/x86/kvm/svm/avic.c:1081 avic_vcpu_put+0xde/0xf0 [kvm_amd]
CPU: 183 PID: 49186 Comm: stable Tainted: G O 6.0.0-smp--fcddbca45f0a-sink #34
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:avic_vcpu_put+0xde/0xf0 [kvm_amd]
avic_refresh_apicv_exec_ctrl+0x142/0x1c0 [kvm_amd]
avic_set_virtual_apic_mode+0x5a/0x70 [kvm_amd]
kvm_lapic_set_base+0x149/0x1a0 [kvm]
kvm_set_apic_base+0x8f/0xd0 [kvm]
kvm_set_msr_common+0xa3a/0xdc0 [kvm]
svm_set_msr+0x364/0x6b0 [kvm_amd]
__kvm_set_msr+0xb8/0x1c0 [kvm]
kvm_emulate_wrmsr+0x58/0x1d0 [kvm]
msr_interception+0x1c/0x30 [kvm_amd]
svm_invoke_exit_handler+0x31/0x100 [kvm_amd]
svm_handle_exit+0xfc/0x160 [kvm_amd]
vcpu_enter_guest+0x21bb/0x23e0 [kvm]
vcpu_run+0x92/0x450 [kvm]
kvm_arch_vcpu_ioctl_run+0x43e/0x6e0 [kvm]
kvm_vcpu_ioctl+0x559/0x620 [kvm]
Fixes: 05c4fe8c1b ("KVM: SVM: Refresh AVIC configuration when changing APIC mode")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Truncate the vcpu_id, a.k.a. x2APIC ID, to an 8-bit value when comparing
it against the xAPIC ID to avoid false positives (sort of) on systems
with >255 CPUs, i.e. with IDs that don't fit into a u8. The intent of
APIC_ID_MODIFIED is to inhibit APICv/AVIC when the xAPIC is changed from
it's original value,
The mismatch isn't technically a false positive, as architecturally the
xAPIC IDs do end up being aliased in this scenario, and neither APICv
nor AVIC correctly handles IPI virtualization when there is aliasing.
However, KVM already deliberately does not honor the aliasing behavior
that results when an x2APIC ID gets truncated to an xAPIC ID. I.e. the
resulting APICv/AVIC behavior is aligned with KVM's existing behavior
when KVM's x2APIC hotplug hack is effectively enabled.
If/when KVM provides a way to disable the hotplug hack, APICv/AVIC can
piggyback whatever logic disables the optimized APIC map (which is what
provides the hotplug hack), i.e. so that KVM's optimized map and APIC
virtualization yield the same behavior.
For now, fix the immediate problem of APIC virtualization being disabled
for large VMs, which is a much more pressing issue than ensuring KVM
honors architectural behavior for APIC ID aliasing.
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't inhibit APICv/AVIC due to an xAPIC ID mismatch if the APIC is
hardware disabled. The ID cannot be consumed while the APIC is disabled,
and the ID is guaranteed to be set back to the vcpu_id when the APIC is
hardware enabled (architectural behavior correctly emulated by KVM).
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate ICR writes on AVIC IPI failures due to invalid targets using the
same logic as failures due to invalid types. AVIC acceleration fails if
_any_ of the targets are invalid, and crucially VM-Exits before sending
IPIs to targets that _are_ valid. In logical mode, the destination is a
bitmap, i.e. a single IPI can target multiple logical IDs. Doing nothing
causes KVM to drop IPIs if at least one target is valid and at least one
target is invalid.
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the TLB when activating AVIC as the CPU can insert into the TLB
while AVIC is "locally" disabled. KVM doesn't treat "APIC hardware
disabled" as VM-wide AVIC inhibition, and so when a vCPU has its APIC
hardware disabled, AVIC is not guaranteed to be inhibited. As a result,
KVM may create a valid NPT mapping for the APIC base, which the CPU can
cache as a non-AVIC translation.
Note, Intel handles this in vmx_set_virtual_apic_mode().
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Purge the "highest ISR" cache when updating APICv state on a vCPU. The
cache must not be used when APICv is active as hardware may emulate EOIs
(and other operations) without exiting to KVM.
This fixes a bug where KVM will effectively block IRQs in perpetuity due
to the "highest ISR" never getting reset if APICv is activated on a vCPU
while an IRQ is in-service. Hardware emulates the EOI and KVM never gets
a chance to update its cache.
Fixes: b26a695a1d ("kvm: lapic: Introduce APICv update helper function")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating a x2APIC write in response to an APICv/AVIC trap, get the
the written value from the vAPIC page without checking that reads are
allowed for the target register. AVIC can generate trap-like VM-Exits on
writes to EOI, and so KVM needs to get the written value from the backing
page without running afoul of EOI's write-only behavior.
Alternatively, EOI could be special cased to always write '0', e.g. so
that the sanity check could be preserved, but x2APIC on AMD is actually
supposed to disallow non-zero writes (not emulated by KVM), and the
sanity check was a byproduct of how the KVM code was written, i.e. wasn't
added to guard against anything in particular.
Fixes: 70c8327c11 ("KVM: x86: Bug the VM if an accelerated x2APIC trap occurs on a "bad" reg")
Fixes: 1bd9dfec9f ("KVM: x86: Do not block APIC write for non ICR registers")
Reported-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The comment of the "#endif" after setup_disable_pku() is wrong.
As the related #ifdef is only a few lines above, just remove the
comment.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230113130126.1966-1-jgross@suse.com
- Fix PAGE_TABLE_CHECK failures on hugepage splitting path
- Fix PSCI encoding of MEM_PROTECT_RANGE function in UAPI header
- Fix NULL deref when accessing debugfs node if PSCI is not present
- Fix MTE core dumping when VMA list is being updated concurrently
- Fix SME signal frame handling when SVE is not implemented by the CPU
- Fix asm constraints for cmpxchg_double() to hazard both words
- Fix build failure with stack tracer and older versions of Clang
- Bring back workaround for Cortex-A715 erratum 2645198
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmO9SzwQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLdYB/9pX4El38TX4Y4M6sR2yl+m1rkGRiU4nV3N
MKJ3ZVjrx87QZ8CKVYmJbnHzolN0Art9WvqFnyxtPMBlZyWzHjtsrQnad3VwLDOu
4qmqjDCXvPod1EncCxBiGu28FZ88HoLqhnwWB6O2Su6TlczD0kJTfzincdyzqvi2
r0uUlBd9gtFt3sjV+sLPjE6NqMf9MfhoOLLafijz7ZMElQL+2/BjZxhpHLaWhUz1
aHIp4w841TJOuSlCwstX20Nc6Q9+6ta07bw+TD/flyQ+IGUptgDEoIrpjdSO5b2t
zFFHHN5IXovAJPDfhAdXGAbC2SDFyYJtURCpv6hVt/SSsilGEbYg
=241k
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"Here's a sizeable batch of Friday the 13th arm64 fixes for -rc4. What
could possibly go wrong?
The obvious reason we have so much here is because of the holiday
season right after the merge window, but we've also brought back an
erratum workaround that was previously dropped at the last minute and
there's an MTE coredumping fix that strays outside of the arch/arm64
directory.
Summary:
- Fix PAGE_TABLE_CHECK failures on hugepage splitting path
- Fix PSCI encoding of MEM_PROTECT_RANGE function in UAPI header
- Fix NULL deref when accessing debugfs node if PSCI is not present
- Fix MTE core dumping when VMA list is being updated concurrently
- Fix SME signal frame handling when SVE is not implemented by the
CPU
- Fix asm constraints for cmpxchg_double() to hazard both words
- Fix build failure with stack tracer and older versions of Clang
- Bring back workaround for Cortex-A715 erratum 2645198"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Fix build with CC=clang, CONFIG_FTRACE=y and CONFIG_STACK_TRACER=y
arm64/mm: Define dummy pud_user_exec() when using 2-level page-table
arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption
firmware/psci: Don't register with debugfs if PSCI isn't available
firmware/psci: Fix MEM_PROTECT_RANGE function numbers
arm64/signal: Always allocate SVE signal frames on SME only systems
arm64/signal: Always accept SVE signal frames on SME only systems
arm64/sme: Fix context switch for SME only systems
arm64: cmpxchg_double*: hazard against entire exchange variable
arm64/uprobes: change the uprobe_opcode_t typedef to fix the sparse warning
arm64: mte: Avoid the racy walk of the vma list during core dump
elfcore: Add a cprm parameter to elf_core_extra_{phdrs,data_size}
arm64: mte: Fix double-freeing of the temporary tag storage during coredump
arm64: ptrace: Use ARM64_SME to guard the SME register enumerations
arm64/mm: add pud_user_exec() check in pud_user_accessible_page()
arm64/mm: fix incorrect file_map_count for invalid pmd
Module build needs to be able to pick up the C prototype:
WARNING: modpost: EXPORT symbol "asm_load_gs_index" [vmlinux] version generation failed, symbol will not be versioned.
Is "asm_load_gs_index" prototyped in <asm/asm-prototypes.h>?
Fixes: ae53fa1870 ("x86/gsseg: Move load_gs_index() to its own new header file")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
objtool found that the mds_idle_clear_cpu_buffers() method got
uninlined by the compiler where it called out into instrumentation:
vmlinux.o: warning: objtool: mwait_idle+0x47: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section
vmlinux.o: warning: objtool: acpi_processor_ffh_cstate_enter+0xa2: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section
vmlinux.o: warning: objtool: intel_idle+0x91: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section
vmlinux.o: warning: objtool: intel_idle_s2idle+0x8c: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section
vmlinux.o: warning: objtool: intel_idle_irq+0xaa: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section
Solve this by marking mds_idle_clear_cpu_buffers() as __always_inline.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195541.233779815@infradead.org
objtool found a few cases where this code called out into instrumented
code:
vmlinux.o: warning: objtool: acpi_idle_enter_s2idle+0xde: call to wbinvd() leaves .noinstr.text section
vmlinux.o: warning: objtool: default_idle+0x4: call to arch_safe_halt() leaves .noinstr.text section
vmlinux.o: warning: objtool: xen_safe_halt+0xa: call to HYPERVISOR_sched_op.constprop.0() leaves .noinstr.text section
Solve this by:
- marking arch_safe_halt(), wbinvd(), native_wbinvd() and
HYPERVISOR_sched_op() as __always_inline().
- Explicitly uninlining xen_safe_halt() and pv_native_wbinvd() [they were
already uninlined by the compiler on use as function pointers] and
annotating them as 'noinstr'.
- Annotating pv_native_safe_halt() as 'noinstr'.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195541.171918174@infradead.org
objtool found a few cases where this code called out into instrumented
code:
vmlinux.o: warning: objtool: __halt+0x2c: call to hcall_func.constprop.0() leaves .noinstr.text section
vmlinux.o: warning: objtool: __halt+0x3f: call to __tdx_hypercall() leaves .noinstr.text section
vmlinux.o: warning: objtool: __tdx_hypercall+0x66: call to __tdx_hypercall_failed() leaves .noinstr.text section
Fix it by:
- moving TDX tdcall assembly methods into .noinstr.text (they are already noistr-clean)
- marking __tdx_hypercall_failed() as 'noinstr'
- annotating hcall_func() as __always_inline
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195541.111485720@infradead.org
objtool found a few cases where this code called out into instrumented
code:
vmlinux.o: warning: objtool: intel_idle_s2idle+0x6e: call to __monitor.constprop.0() leaves .noinstr.text section
vmlinux.o: warning: objtool: intel_idle_irq+0x8c: call to __monitor.constprop.0() leaves .noinstr.text section
vmlinux.o: warning: objtool: intel_idle+0x73: call to __monitor.constprop.0() leaves .noinstr.text section
vmlinux.o: warning: objtool: mwait_idle+0x88: call to clflush() leaves .noinstr.text section
Fix it by marking the affected methods as __always_inline.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195541.050542952@infradead.org
Now that arch_cpu_idle() is expected to return with IRQs disabled,
avoid the useless STI/CLI dance.
Per the specs this is supposed to work, but nobody has yet relied up
this behaviour so broken implementations are possible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.682137572@infradead.org
Current arch_cpu_idle() is called with IRQs disabled, but will return
with IRQs enabled.
However, the very first thing the generic code does after calling
arch_cpu_idle() is raw_local_irq_disable(). This means that
architectures that can idle with IRQs disabled end up doing a
pointless 'enable-disable' dance.
Therefore, push this IRQ disabling into the idle function, meaning
that those architectures can avoid the pointless IRQ state flipping.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Acked-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.618076436@infradead.org
Idle code is very like entry code in that RCU isn't available. As
such, add a little validation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.373461409@infradead.org
Typical boot time setup; no need to suffer an indirect call for that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20230112195539.453613251@infradead.org
The perf_lopwr_cb() function is called from the idle routines; there
is no RCU there, we must not enter tracing.
Use __always_inline, noidle annotations and existing no-trace methods.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195539.392862891@infradead.org
The LKGS instruction atomically loads a segment descriptor into the
%gs descriptor registers, *except* that %gs.base is unchanged, and the
base is instead loaded into MSR_IA32_KERNEL_GS_BASE, which is exactly
what we want this function to do.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230112072032.35626-6-xin3.li@intel.com
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCY76ohgAKCRCAXGG7T9hj
vo8fAP0XJ94B7asqcN4W3EyeyfqxUf1eZvmWRhrbKqpLnmHLaQEA/uJBkXL49Zj7
TTcbxR1coJ/hPwhtmONU4TNtCZ+RXw0=
=2Ib5
-----END PGP SIGNATURE-----
Merge tag 'for-linus-6.2-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
- two cleanup patches
- a fix of a memory leak in the Xen pvfront driver
- a fix of a locking issue in the Xen hypervisor console driver
* tag 'for-linus-6.2-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/pvcalls: free active map buffer on pvcalls_front_free_map
hvc/xen: lock console list traversal
x86/xen: Remove the unused function p2m_index()
xen: make remove callback of xen driver void returned
Detect if Linux is running as a nested hypervisor in the root
partition for Microsoft Hypervisor, using flags provided by MSHV.
Expose a new variable hv_nested that is used later for decisions
specific to the nested use case.
Signed-off-by: Jinank Jain <jinankjain@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/8e3e7112806e81d2292a66a56fe547162754ecea.1672639707.git.jinankjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
GS is a special segment on x86_64, move load_gs_index() to its own new
header file to simplify header inclusion.
No change in functionality.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230112072032.35626-5-xin3.li@intel.com
Let GCC know that only the low 16 bits of load_gs_index() argument
actually matter. It might allow it to create slightly better
code. However, do not propagate this into the prototypes of functions
that end up being paravirtualized, to avoid unnecessary changes.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230112072032.35626-4-xin3.li@intel.com
Add the instruction opcode used by LKGS to x86-opcode-map.
Opcode number is per public FRED draft spec v3.0.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230112072032.35626-3-xin3.li@intel.com
Add the CPU feature bit for LKGS (Load "Kernel" GS).
LKGS instruction is introduced with Intel FRED (flexible return and
event delivery) specification. Search for the latest FRED spec in most
search engines with this search pattern:
site:intel.com FRED (flexible return and event delivery) specification
LKGS behaves like the MOV to GS instruction except that it loads
the base address into the IA32_KERNEL_GS_BASE MSR instead of the
GS segment’s descriptor cache, which is exactly what Linux kernel
does to load a user level GS base. Thus, with LKGS, there is no
need to SWAPGS away from the kernel GS base.
[ mingo: Minor tweaks to the description. ]
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230112072032.35626-2-xin3.li@intel.com
Currently, x86_spec_ctrl_base is read at boot time and speculative bits
are set if Kconfig items are enabled. For example, IBRS is enabled if
CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared
if the mitigations are disabled.
This is a problem when kexec-ing a kernel that has the mitigation
disabled from a kernel that has the mitigation enabled. In this case,
the MSR bits are not cleared during the new kernel boot. As a result,
this might have some performance degradation that is hard to pinpoint.
This problem does not happen if the machine is (hard) rebooted because
the bit will be cleared by default.
[ bp: Massage. ]
Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org
Commit 3f4c8211d9 ("x86/mm: Use mm_alloc() in poking_init()") broke
the kernel for running as Xen PV guest.
It seems as if the new address space is never activated before being
used, resulting in Xen rejecting to accept the new CR3 value (the PGD
isn't pinned).
Fix that by adding the now missing call of paravirt_arch_dup_mmap() to
poking_init(). That call was previously done by dup_mm()->dup_mmap() and
it is a NOP for all cases but for Xen PV, where it is just doing the
pinning of the PGD.
Fixes: 3f4c8211d9 ("x86/mm: Use mm_alloc() in poking_init()")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230109150922.10578-1-jgross@suse.com
In commit 14243b3871 ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN
and event channel delivery") the clever version of me left some helpful
notes for those who would come after him:
/*
* For the irqfd workqueue, using the main kvm->lock mutex is
* fine since this function is invoked from kvm_set_irq() with
* no other lock held, no srcu. In future if it will be called
* directly from a vCPU thread (e.g. on hypercall for an IPI)
* then it may need to switch to using a leaf-node mutex for
* serializing the shared_info mapping.
*/
mutex_lock(&kvm->lock);
In commit 2fd6df2f2b ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
the other version of me ran straight past that comment without reading it,
and introduced a potential deadlock by taking vcpu->mutex and kvm->lock
in the wrong order.
Solve this as originally suggested, by adding a leaf-node lock in the Xen
state rather than using kvm->lock for it.
Fixes: 2fd6df2f2b ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-4-dwmw2@infradead.org>
[Rebase, add docs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
is_mmconf_reserved() takes a "with_e820" parameter that only determines the
message logged if it finds the MMCONFIG region is reserved. Pass the
message directly, which will simplify a future patch that adds a new way of
looking for that reservation. No functional change intended.
Link: https://lore.kernel.org/r/20230110180243.1590045-2-helgaas@kernel.org
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
The kvm_xen_update_runstate_guest() function can be called when the vCPU
is being scheduled out, from a preempt notifier. It *opportunistically*
updates the runstate area in the guest memory, if the gfn_to_pfn_cache
which caches the appropriate address is still valid.
If there is *contention* when it attempts to obtain gpc->lock, then
locking inside the priority inheritance checks may cause a deadlock.
Lockdep reports:
[13890.148997] Chain exists of:
&gpc->lock --> &p->pi_lock --> &rq->__lock
[13890.149002] Possible unsafe locking scenario:
[13890.149003] CPU0 CPU1
[13890.149004] ---- ----
[13890.149005] lock(&rq->__lock);
[13890.149007] lock(&p->pi_lock);
[13890.149009] lock(&rq->__lock);
[13890.149011] lock(&gpc->lock);
[13890.149013]
*** DEADLOCK ***
In the general case, if there's contention for a read lock on gpc->lock,
that's going to be because something else is either invalidating or
revalidating the cache. Either way, we've raced with seeing it in an
invalid state, in which case we would have aborted the opportunistic
update anyway.
So in the 'atomic' case when called from the preempt notifier, just
switch to using read_trylock() and avoid the PI handling altogether.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate
area") we declared it safe to obtain two gfn_to_pfn_cache locks at the same
time:
/*
* The guest's runstate_info is split across two pages and we
* need to hold and validate both GPCs simultaneously. We can
* declare a lock ordering GPC1 > GPC2 because nothing else
* takes them more than one at a time.
*/
However, we forgot to tell lockdep. Do so, by setting a subclass on the
first lock before taking the second.
Fixes: 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate area")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both the if and else blocks define an exact same boot_cpu_data variable, move
the duplicate variable definition out of the if/else block.
In addition, do some other minor cleanups.
[ bp: Massage. ]
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20220601122914.820890-1-ytcoode@gmail.com
Extra_nregs of structure parameters and nr_args can be
added directly at the beginning, and using a flip flag
to identifiy structure parameters. Meantime, renaming
some variables to make them more sense.
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230105035026.3091988-1-pulehui@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When creating a new monitoring group, the RMID allocated for it may have
been used by a group which was previously removed. In this case, the
hardware counters will have non-zero values which should be deducted
from what is reported in the new group's counts.
resctrl_arch_reset_rmid() initializes the prev_msr value for counters to
0, causing the initial count to be charged to the new group. Resurrect
__rmid_read() and use it to initialize prev_msr correctly.
Unlike before, __rmid_read() checks for error bits in the MSR read so
that callers don't need to.
Fixes: 1d81d15db3 ("x86/resctrl: Move mbm_overflow_count() into resctrl_arch_rmid_read()")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221220164132.443083-1-peternewman@google.com
When the user moves a running task to a new rdtgroup using the task's
file interface or by deleting its rdtgroup, the resulting change in
CLOSID/RMID must be immediately propagated to the PQR_ASSOC MSR on the
task(s) CPUs.
x86 allows reordering loads with prior stores, so if the task starts
running between a task_curr() check that the CPU hoisted before the
stores in the CLOSID/RMID update then it can start running with the old
CLOSID/RMID until it is switched again because __rdtgroup_move_task()
failed to determine that it needs to be interrupted to obtain the new
CLOSID/RMID.
Refer to the diagram below:
CPU 0 CPU 1
----- -----
__rdtgroup_move_task():
curr <- t1->cpu->rq->curr
__schedule():
rq->curr <- t1
resctrl_sched_in():
t1->{closid,rmid} -> {1,1}
t1->{closid,rmid} <- {2,2}
if (curr == t1) // false
IPI(t1->cpu)
A similar race impacts rdt_move_group_tasks(), which updates tasks in a
deleted rdtgroup.
In both cases, use smp_mb() to order the task_struct::{closid,rmid}
stores before the loads in task_curr(). In particular, in the
rdt_move_group_tasks() case, simply execute an smp_mb() on every
iteration with a matching task.
It is possible to use a single smp_mb() in rdt_move_group_tasks(), but
this would require two passes and a means of remembering which
task_structs were updated in the first loop. However, benchmarking
results below showed too little performance impact in the simple
approach to justify implementing the two-pass approach.
Times below were collected using `perf stat` to measure the time to
remove a group containing a 1600-task, parallel workload.
CPU: Intel(R) Xeon(R) Platinum P-8136 CPU @ 2.00GHz (112 threads)
# mkdir /sys/fs/resctrl/test
# echo $$ > /sys/fs/resctrl/test/tasks
# perf bench sched messaging -g 40 -l 100000
task-clock time ranges collected using:
# perf stat rmdir /sys/fs/resctrl/test
Baseline: 1.54 - 1.60 ms
smp_mb() every matching task: 1.57 - 1.67 ms
[ bp: Massage commit message. ]
Fixes: ae28d1aae4 ("x86/resctrl: Use an IPI instead of task_work_add() to update PQR_ASSOC MSR")
Fixes: 0efc89be94 ("x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20221220161123.432120-1-peternewman@google.com
Section 5.2.12.12 Processor Local x2APIC Structure in the ACPI v6.5
spec mandates that both "enabled" and "online capable" Local APIC Flags
should be used to determine if the processor is usable or not.
However, Linux doesn't use the "online capable" flag for x2APIC to
determine if the processor is usable. As a result, cpu_possible_mask has
incorrect value and results in more memory getting allocated for per_cpu
variables than it is going to be used.
Make sure Linux parses both "enabled" and "online capable" flags for
x2APIC to correctly determine if the processor is usable.
Fixes: aa06e20f1b ("x86/ACPI: Don't add CPUs that are not online capable")
Reported-by: Leo Duran <leo.duran@amd.com>
Signed-off-by: Kishon Vijay Abraham I <kvijayab@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20230105041059.39366-1-kvijayab@amd.com
Since
72cbc8f04f ("x86/PAT: Have pat_enabled() properly reflect state when running on Xen")
PAT can be enabled without MTRR.
This has resulted in problems e.g. for a SEV-SNP guest running under Hyper-V,
when trying to establish a new mapping via memremap() with WB caching mode, as
pat_x_mtrr_type() will call mtrr_type_lookup(), which in turn is returning
MTRR_TYPE_INVALID due to MTRR being disabled in this configuration.
The result is a mapping with UC- caching, leading to severe performance
degradation.
Fix that by handling MTRR_TYPE_INVALID the same way as MTRR_TYPE_WRBACK
in pat_x_mtrr_type() because MTRR_TYPE_INVALID means MTRRs are disabled.
[ bp: Massage commit message. ]
Fixes: 72cbc8f04f ("x86/PAT: Have pat_enabled() properly reflect state when running on Xen")
Reported-by: Michael Kelley (LINUX) <mikelley@microsoft.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230110065427.20767-1-jgross@suse.com
With 'GNU assembler (GNU Binutils for Debian) 2.39.90.20221231' the
build now reports:
arch/x86/realmode/rm/../../boot/bioscall.S: Assembler messages:
arch/x86/realmode/rm/../../boot/bioscall.S:35: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/realmode/rm/../../boot/bioscall.S:70: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/boot/bioscall.S: Assembler messages:
arch/x86/boot/bioscall.S:35: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/boot/bioscall.S:70: Warning: found `movsd'; assuming `movsl' was meant
Which is due to:
PR gas/29525
Note that with the dropped CMPSD and MOVSD Intel Syntax string insn
templates taking operands, mixed IsString/non-IsString template groups
(with memory operands) cannot occur anymore. With that
maybe_adjust_templates() becomes unnecessary (and is hence being
removed).
More details: https://sourceware.org/bugzilla/show_bug.cgi?id=29525
Borislav Petkov further explains:
" the particular problem here is is that the 'd' suffix is
"conflicting" in the sense that you can have SSE mnemonics like movsD %xmm...
and the same thing also for string ops (which is the case here) so apparently
the agreement in binutils land is to use the always accepted suffixes 'l' or 'q'
and phase out 'd' slowly... "
Fixes: 7a734e7dd9 ("x86, setup: "glove box" BIOS calls -- infrastructure")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/Y71I3Ex2pvIxMpsP@hirez.programming.kicks-ass.net
The prototype for the x86_read_arch_cap_msr() function has moved to
arch/x86/include/asm/cpu.h - kill the redundant definition in arch/x86/kernel/cpu.h
and include the header.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Link: https://lore.kernel.org/r/20221128172451.792595-1-ashok.raj@intel.com
For the `FF /digit` opcodes in prepare_emulation, use switch-case
instead of hand-written code to make the logic easier to understand.
Signed-off-by: Chuang Wang <nashuiliang@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20221129084022.718355-1-nashuiliang@gmail.com
Systems that support various memory encryption schemes (MKTME, TDX, SEV)
use high order physical address bits to indicate which key should be
used for a specific memory location.
When a memory error is reported, some systems may report those key
bits in the IA32_MCi_ADDR machine check MSR.
The Intel SDM has a footnote for the contents of the address register
that says: "Useful bits in this field depend on the address methodology
in use when the register state is saved."
AMD Processor Programming Reference has a more explicit description
of the MCA_ADDR register:
"For physical addresses, the most significant bit is given by
Core::X86::Cpuid::LongModeInfo[PhysAddrSize]."
Add a new #define MCI_ADDR_PHYSADDR for the mask of valid physical
address bits within the machine check bank address register. Use this
mask for recoverable machine check handling and in the EDAC driver to
ignore any key bits that may be present.
[ Tony: Based on independent fixes proposed by Fan Du and Isaku Yamahata ]
Reported-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reported-by: Fan Du <fan.du@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20230109152936.397862-1-tony.luck@intel.com
After commit ce697ccee1 ("kbuild: remove head-y syntax"), I
started digging whether x86 is ready for removing this old cruft.
Removing its objects from the list makes the kernel unbootable.
This applies only to bzImage, vmlinux still works correctly.
The reason is that with no strict object order determined by the
linker arguments, not the linker script, startup_64 can be placed
not right at the beginning of the kernel.
Here's vmlinux.map's beginning before removing:
ffffffff81000000 vmlinux.o:(.head.text)
ffffffff81000000 startup_64
ffffffff81000070 secondary_startup_64
ffffffff81000075 secondary_startup_64_no_verify
ffffffff81000160 verify_cpu
and after:
ffffffff81000000 vmlinux.o:(.head.text)
ffffffff81000000 pvh_start_xen
ffffffff81000080 startup_64
ffffffff810000f0 secondary_startup_64
ffffffff810000f5 secondary_startup_64_no_verify
Not a problem itself, but the self-extractor code has the address of
that function hardcoded the beginning, not looking onto the ELF
header, which always contains the address of startup_{32,64}().
So, instead of doing an "act of blind faith", just take the address
from the ELF header and extract a relative offset to the entry
point. The decompressor function already returns a pointer to the
beginning of the kernel to the Asm code, which then jumps to it,
so add that offset to the return value.
This doesn't change anything for now, but allows to resign from the
"head object list" for x86 and makes sure valid Kbuild or any other
improvements won't break anything here in general.
Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Slaby <jirislaby@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230109170403.4117105-2-alexandr.lobakin@intel.com
Meteor Lake is Intel's successor to Raptor lake. PPERF and SMI_COUNT MSRs
are also supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-7-kan.liang@linux.intel.com
Meteor Lake is Intel's successor to Raptor lake. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Raptor lake.
Share adl_cstates with Raptor lake.
Update the comments for Meteor Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-6-kan.liang@linux.intel.com
The new CPUID leaf 0x23 reports the "true view" of PMU resources.
The sub-leaf 1 reports the available general-purpose counters and fixed
counters. Update the number of counters and fixed counters when the
sub-leaf is detected.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-5-kan.liang@linux.intel.com
CPUID.(EAX=07H, ECX=1):EAX[8] indicates whether the Architectural
PerfMon Extension leaf (CPUID leaf 23) is supported.
The "X86_FEATURE_..., word 12" is already mirrored from CPUID
"0x00000007:1 (EAX)". Add X86_FEATURE_ARCH_PERFMON_EXT under the
"word 12" section.
The new Architectural PerfMon Extension leaf (CPUID leaf 23) will be
supported in the perf_events subsystem later.
The feature will not appear in /proc/cpuinfo.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-4-kan.liang@linux.intel.com
Retire Latency reports the number of elapsed core clocks between the
retirement of the instruction indicated by the Instruction Pointer field
of the PEBS record and the retirement of the prior instruction. It's
enumerated by the IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[17].
Add flag PMU_FL_RETIRE_LATENCY to indicate the availability of the
feature.
The Retire Latency is not supported by the fixed counter 0 on p-core of
MTL.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-3-kan.liang@linux.intel.com
From PMU's perspective, Meteor Lake is similar to Alder Lake. Both are
hybrid platforms, with e-core and p-core.
The key differences include:
- The e-core supports 2 PDIST GP counters (GP0 & GP1)
- New MSRs for the Module Snoop Response Events on the e-core.
- New Data Source fields are introduced for the e-core.
- There are 8 GP counters for the e-core.
- The load latency AUX event is not required for the p-core anymore.
- Retire Latency (Support in a separate patch) for both cores.
Since most of the code in the intel_pmu_init() should be the same as
Alder Lake, to avoid code duplication, share the path with Alder Lake.
Add new specific functions of extra_regs, and get_event_constraints
to support the OCR events, Module Snoop Response Events and 2 PDIST
GP counters on e-core.
Add new MTL specific mem_attrs which drops the load latency AUX event.
The Data Source field is extended to 4:0, which can contains max 32
sources.
The Retire Latency is implemented with a separate patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-2-kan.liang@linux.intel.com
From the perspective of the uncore PMU, the new Emerald Rapids is the
same as the Sapphire Rapids. The only difference is the event list,
which will be supported in the perf tool later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230106160449.3566477-4-kan.liang@linux.intel.com
Meteor Lake is Intel's successor to Raptor lake. PPERF and SMI_COUNT MSRs
are also supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/20230104201349.1451191-7-kan.liang@linux.intel.com
Meteor Lake is Intel's successor to Raptor lake. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Raptor lake.
Share adl_cstates with Raptor lake.
Update the comments for Meteor Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/20230104201349.1451191-6-kan.liang@linux.intel.com
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler. In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.
The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mysterious comment "We only want the cr8 intercept bits of L1"
dates back to basically the introduction of nested SVM, back when
the handling of "less typical" hypervisors was very haphazard.
With the development of kvm-unit-tests for interrupt handling,
the same code grew another vmcb_clr_intercept for the interrupt
window (VINTR) vmexit, this time with a comment that is at least
decent.
It turns out however that the same comment applies to the CR8 write
intercept, which is also a "recheck if an interrupt should be
injected" intercept. The CR8 read intercept instead has not
been used by KVM for 14 years (commit 649d68643e, "KVM: SVM:
sync TPR value to V_TPR field in the VMCB"), so do not bother
clearing it and let one comment describe both CR8 write and VINTR
handling.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function p2m_index is defined in the p2m.c file, but not called
elsewhere, so remove this unused function.
arch/x86/xen/p2m.c:137:24: warning: unused function 'p2m_index'.
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3557
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230105090141.36248-1-jiapeng.chong@linux.alibaba.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Drop removed INT3 handling code from kprobe_int3_handler() because this
case (get_kprobe() doesn't return corresponding kprobe AND the INT3 is
removed) must not happen with the kprobe managed INT3, but can happen
with the non-kprobe INT3, which should be handled by other callbacks.
For the kprobe managed INT3, it is already safe. The commit 5c02ece818
("x86/kprobes: Fix ordering while text-patching") introduced
text_poke_sync() to the arch_disarm_kprobe() right after removing INT3.
Since this text_poke_sync() uses IPI to call sync_core() on all online
cpus, that ensures that all running INT3 exception handlers have done.
And, the unregister_kprobe() will remove the kprobe from the hash table
after arch_disarm_kprobe().
Thus, when the kprobe managed INT3 hits, kprobe_int3_handler() should
be able to find corresponding kprobe always by get_kprobe(). If it can
not find any kprobe, this means that is NOT a kprobe managed INT3.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/166981518895.1131462.4693062055762912734.stgit@devnote3
The implementation of strscpy() is more robust and safer.
That's now the recommended way to copy NUL terminated strings.
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: Yang Yang <yang.yang29@zte.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/202212031419324523731@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmO4CGwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gCjg//YdjAjNrJ9HkLfhmEtYSA1fCXef0f9nD7
ddEY7FIHa+yTE5QJ3o3Ag4ZPVaHUHkD2t936pRMcZ6EOsbDldlS6R5c5P1ISpzvl
SAPv19iWoVKqFjjFv0ftocb6yO6bVizyUea0TV8yp2+3ih3C5pj1KhRJ/IHJaClX
ohyK6APMdYlffeb8VfLegM8Kr8E0bdn5FZyX8LmBuUi1PyYe4x/Bo3ZW3QhgtgI2
Rnm8bXC1dFkwqNHUFbw8dwkCKQe9jePc2VBjwah251X+M3RSIEoF7RHmPjUS1zpc
rn9o3elifV45D6g6A74wXJ+7eH2DRkDsXXyfeEB5dtrt5HBzhROfrw2PIyywAC91
B01HLMDaB/jRux+7i2uj2KZO1hwEWT3a3Y+GunB2ZrPqD2WvqASKDcs9wfe6kfuv
awOrip50sKZb6KmQgWq/xIDutpzBeK/smX49+rnY9ot/jXxBqsKgk9L6U7Qt6RiH
MpbT5EnT5149bVp6sUqZk4SmWjYa3El0f4X93Weqfxx6rxsuZYq70QVMdktnI9A+
VTeQE4525wQxu+oENQhB86iv63sRsk4i53LmyIkaV/KJxoAK1X1G9kNQ6fIrT7Ad
7vwrmeA1sLst8H76WpDGuEk9rngAg7SS3IorS0QPupc494eCgs6vazAvUS5pAOu2
ZdA365eMKe8=
=5mg2
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2023-01-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fix from Ingo Molnar:
"Intel RAPL updates for new model IDs"
* tag 'perf-urgent-2023-01-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/rapl: Add support for Intel Emerald Rapids
perf/x86/rapl: Add support for Intel Meteor Lake
perf/x86/rapl: Treat Tigerlake like Icelake
aria-avx512 implementation uses AVX512 and GFNI.
It supports 64way parallel processing.
So, byteslicing code is changed to support 64way parallel.
And it exports some aria-avx2 functions such as encrypt() and decrypt().
AVX and AVX2 have 16 registers.
They should use memory to store/load state because of lack of registers.
But AVX512 supports 32 registers.
So, it doesn't require store/load in the s-box layer.
It means that it can reduce overhead of store/load in the s-box layer.
Also code become much simpler.
Benchmark with modprobe tcrypt mode=610 num_mb=8192, i3-12100:
ARIA-AVX512(128bit and 256bit)
testing speed of multibuffer ecb(aria) (ecb-aria-avx512) encryption
tcrypt: 1 operation in 1504 cycles (1024 bytes)
tcrypt: 1 operation in 4595 cycles (4096 bytes)
tcrypt: 1 operation in 1763 cycles (1024 bytes)
tcrypt: 1 operation in 5540 cycles (4096 bytes)
testing speed of multibuffer ecb(aria) (ecb-aria-avx512) decryption
tcrypt: 1 operation in 1502 cycles (1024 bytes)
tcrypt: 1 operation in 4615 cycles (4096 bytes)
tcrypt: 1 operation in 1759 cycles (1024 bytes)
tcrypt: 1 operation in 5554 cycles (4096 bytes)
ARIA-AVX2 with GFNI(128bit and 256bit)
testing speed of multibuffer ecb(aria) (ecb-aria-avx2) encryption
tcrypt: 1 operation in 2003 cycles (1024 bytes)
tcrypt: 1 operation in 5867 cycles (4096 bytes)
tcrypt: 1 operation in 2358 cycles (1024 bytes)
tcrypt: 1 operation in 7295 cycles (4096 bytes)
testing speed of multibuffer ecb(aria) (ecb-aria-avx2) decryption
tcrypt: 1 operation in 2004 cycles (1024 bytes)
tcrypt: 1 operation in 5956 cycles (4096 bytes)
tcrypt: 1 operation in 2409 cycles (1024 bytes)
tcrypt: 1 operation in 7564 cycles (4096 bytes)
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
aria-avx2 implementation uses AVX2, AES-NI, and GFNI.
It supports 32way parallel processing.
So, byteslicing code is changed to support 32way parallel.
And it exports some aria-avx functions such as encrypt() and decrypt().
There are two main logics, s-box layer and diffusion layer.
These codes are the same as aria-avx implementation.
But some instruction are exchanged because they don't support 256bit
registers.
Also, AES-NI doesn't support 256bit register.
So, aesenclast and aesdeclast are used twice like below:
vextracti128 $1, ymm0, xmm6;
vaesenclast xmm7, xmm0, xmm0;
vaesenclast xmm7, xmm6, xmm6;
vinserti128 $1, xmm6, ymm0, ymm0;
Benchmark with modprobe tcrypt mode=610 num_mb=8192, i3-12100:
ARIA-AVX2 with GFNI(128bit and 256bit)
testing speed of multibuffer ecb(aria) (ecb-aria-avx2) encryption
tcrypt: 1 operation in 2003 cycles (1024 bytes)
tcrypt: 1 operation in 5867 cycles (4096 bytes)
tcrypt: 1 operation in 2358 cycles (1024 bytes)
tcrypt: 1 operation in 7295 cycles (4096 bytes)
testing speed of multibuffer ecb(aria) (ecb-aria-avx2) decryption
tcrypt: 1 operation in 2004 cycles (1024 bytes)
tcrypt: 1 operation in 5956 cycles (4096 bytes)
tcrypt: 1 operation in 2409 cycles (1024 bytes)
tcrypt: 1 operation in 7564 cycles (4096 bytes)
ARIA-AVX with GFNI(128bit and 256bit)
testing speed of multibuffer ecb(aria) (ecb-aria-avx) encryption
tcrypt: 1 operation in 2761 cycles (1024 bytes)
tcrypt: 1 operation in 9390 cycles (4096 bytes)
tcrypt: 1 operation in 3401 cycles (1024 bytes)
tcrypt: 1 operation in 11876 cycles (4096 bytes)
testing speed of multibuffer ecb(aria) (ecb-aria-avx) decryption
tcrypt: 1 operation in 2735 cycles (1024 bytes)
tcrypt: 1 operation in 9424 cycles (4096 bytes)
tcrypt: 1 operation in 3369 cycles (1024 bytes)
tcrypt: 1 operation in 11954 cycles (4096 bytes)
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
aria-avx assembly code accesses members of aria_ctx with magic number
offset. If the shape of struct aria_ctx is changed carelessly,
aria-avx will not work.
So, we need to ensure accessing members of aria_ctx with correct
offset values, not with magic numbers.
It adds ARIA_CTX_enc_key, ARIA_CTX_dec_key, and ARIA_CTX_rounds in the
asm-offsets.c So, correct offset definitions will be generated.
aria-avx assembly code can access members of aria_ctx safely with
these definitions.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
avx accelerated aria module used local keystream array.
But, keystream array size is too big.
So, it puts the keystream array into request ctx.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>