mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
58feff07e9
95 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Joonsoo Kim
|
48c96a3685 |
mm/page_owner: keep track of page owners
This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
eefa864b70 |
mm/page_ext: resurrect struct page extending code for debugging
When we debug something, we'd like to insert some information to every page. For this purpose, we sometimes modify struct page itself. But, this has drawbacks. First, it requires re-compile. This makes us hesitate to use the powerful debug feature so development process is slowed down. And, second, sometimes it is impossible to rebuild the kernel due to third party module dependency. At third, system behaviour would be largely different after re-compile, because it changes size of struct page greatly and this structure is accessed by every part of kernel. Keeping this as it is would be better to reproduce errornous situation. This feature is intended to overcome above mentioned problems. This feature allocates memory for extended data per page in certain place rather than the struct page itself. This memory can be accessed by the accessor functions provided by this code. During the boot process, it checks whether allocation of huge chunk of memory is needed or not. If not, it avoids allocating memory at all. With this advantage, we can include this feature into the kernel in default and can avoid rebuild and solve related problems. Until now, memcg uses this technique. But, now, memcg decides to embed their variable to struct page itself and it's code to extend struct page has been removed. I'd like to use this code to develop debug feature, so this patch resurrect it. To help these things to work well, this patch introduces two callbacks for clients. One is the need callback which is mandatory if user wants to avoid useless memory allocation at boot-time. The other is optional, init callback, which is used to do proper initialization after memory is allocated. Detailed explanation about purpose of these functions is in code comment. Please refer it. Others are completely same with previous extension code in memcg. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
5d1ea48bdd |
mm: page_cgroup: rename file to mm/swap_cgroup.c
Now that the external page_cgroup data structure and its lookup is gone, the only code remaining in there is swap slot accounting. Rename it and move the conditional compilation into mm/Makefile. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
3e32cb2e0a |
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
ce254b34da |
Fixup for 3.18: use PATCHv2 of "mm: Support compiling out madvise and fadvise"
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iEYEABECAAYFAlQ4QE8ACgkQGJuZRtD+evvV7wCgta2s0uREeOpfj5ulXhDCRk1u MpYAnRR8yscDvZa12v7oTtxMOCqbJPjh =NIl9 -----END PGP SIGNATURE----- Merge tag 'tiny/no-advice-fixup-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux Pull tinification fix from Josh "Paper Bag" Triplett: "Fixup to use PATCHv2 of 'mm: Support compiling out madvise and fadvise'" * tag 'tiny/no-advice-fixup-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux: mm: Support fadvise without CONFIG_MMU |
||
Josh Triplett
|
887e7019e3 |
mm: Support fadvise without CONFIG_MMU
Commit
|
||
Konstantin Khlebnikov
|
09316c09dd |
mm/balloon_compaction: add vmstat counters and kpageflags bit
Always mark pages with PageBalloon even if balloon compaction is disabled and expose this mark in /proc/kpageflags as KPF_BALLOON. Also this patch adds three counters into /proc/vmstat: "balloon_inflate", "balloon_deflate" and "balloon_migrate". They accumulate balloon activity. Current size of balloon is (balloon_inflate - balloon_deflate) pages. All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON. It should be selected by ballooning driver which wants use this feature. Currently virtio-balloon is the only user. Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sasha Levin
|
82742a3a51 |
mm: move debug code out of page_alloc.c
dump_page() and dump_vma() are not specific to page_alloc.c, move them out so page_alloc.c won't turn into the unofficial debug repository. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Josh Triplett
|
d3ac21cacc |
mm: Support compiling out madvise and fadvise
Many embedded systems will not need these syscalls, and omitting them saves space. Add a new EXPERT config option CONFIG_ADVISE_SYSCALLS (default y) to support compiling them out. bloat-o-meter: add/remove: 0/3 grow/shrink: 0/0 up/down: 0/-2250 (-2250) function old new delta sys_fadvise64 57 - -57 sys_fadvise64_64 691 - -691 sys_madvise 1502 - -1502 Signed-off-by: Josh Triplett <josh@joshtriplett.org> |
||
Dan Streetman
|
af8d417a04 |
mm/zpool: implement common zpool api to zbud/zsmalloc
Add zpool api. zpool provides an interface for memory storage, typically of compressed memory. Users can select what backend to use; currently the only implementations are zbud, a low density implementation with up to two compressed pages per storage page, and zsmalloc, a higher density implementation with multiple compressed pages per storage page. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Tested-by: Seth Jennings <sjennings@variantweb.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
a254129e86 |
CMA: generalize CMA reserved area management functionality
Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
4bbd4c776a |
mm: move get_user_pages()-related code to separate file
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is pretty much self-contained let's move it to separate file. No other changes made. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jens Axboe
|
719c555f44 |
block: move mm/bounce.c to block/
Continue moving some of the block files that are scattered around. bounce.c contains only code for bouncing the contents of a bio. It's block proper code, not mm code. Suggested-by: Ming Lei <tom.leiming@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com> |
||
Linus Torvalds
|
5166701b36 |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro: "The first vfs pile, with deep apologies for being very late in this window. Assorted cleanups and fixes, plus a large preparatory part of iov_iter work. There's a lot more of that, but it'll probably go into the next merge window - it *does* shape up nicely, removes a lot of boilerplate, gets rid of locking inconsistencie between aio_write and splice_write and I hope to get Kent's direct-io rewrite merged into the same queue, but some of the stuff after this point is having (mostly trivial) conflicts with the things already merged into mainline and with some I want more testing. This one passes LTP and xfstests without regressions, in addition to usual beating. BTW, readahead02 in ltp syscalls testsuite has started giving failures since "mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages" - might be a false positive, might be a real regression..." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits) missing bits of "splice: fix racy pipe->buffers uses" cifs: fix the race in cifs_writev() ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure kill generic_file_buffered_write() ocfs2_file_aio_write(): switch to generic_perform_write() ceph_aio_write(): switch to generic_perform_write() xfs_file_buffered_aio_write(): switch to generic_perform_write() export generic_perform_write(), start getting rid of generic_file_buffer_write() generic_file_direct_write(): get rid of ppos argument btrfs_file_aio_write(): get rid of ppos kill the 5th argument of generic_file_buffered_write() kill the 4th argument of __generic_file_aio_write() lustre: don't open-code kernel_recvmsg() ocfs2: don't open-code kernel_recvmsg() drbd: don't open-code kernel_recvmsg() constify blk_rq_map_user_iov() and friends lustre: switch to kernel_sendmsg() ocfs2: don't open-code kernel_sendmsg() take iov_iter stuff to mm/iov_iter.c process_vm_access: tidy up a bit ... |
||
Mark Salter
|
9e5c33d7ae |
mm: create generic early_ioremap() support
This patch creates a generic implementation of early_ioremap() support based on the existing x86 implementation. early_ioremp() is useful for early boot code which needs to temporarily map I/O or memory regions before normal mapping functions such as ioremap() are available. Some architectures have optional MMU. In the no-MMU case, the remap functions simply return the passed in physical address and the unmap functions do nothing. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Davidlohr Bueso
|
615d6e8756 |
mm: per-thread vma caching
This patch is a continuation of efforts trying to optimize find_vma(), avoiding potentially expensive rbtree walks to locate a vma upon faults. The original approach (https://lkml.org/lkml/2013/11/1/410), where the largest vma was also cached, ended up being too specific and random, thus further comparison with other approaches were needed. There are two things to consider when dealing with this, the cache hit rate and the latency of find_vma(). Improving the hit-rate does not necessarily translate in finding the vma any faster, as the overhead of any fancy caching schemes can be too high to consider. We currently cache the last used vma for the whole address space, which provides a nice optimization, reducing the total cycles in find_vma() by up to 250%, for workloads with good locality. On the other hand, this simple scheme is pretty much useless for workloads with poor locality. Analyzing ebizzy runs shows that, no matter how many threads are running, the mmap_cache hit rate is less than 2%, and in many situations below 1%. The proposed approach is to replace this scheme with a small per-thread cache, maximizing hit rates at a very low maintenance cost. Invalidations are performed by simply bumping up a 32-bit sequence number. The only expensive operation is in the rare case of a seq number overflow, where all caches that share the same address space are flushed. Upon a miss, the proposed replacement policy is based on the page number that contains the virtual address in question. Concretely, the following results are seen on an 80 core, 8 socket x86-64 box: 1) System bootup: Most programs are single threaded, so the per-thread scheme does improve ~50% hit rate by just adding a few more slots to the cache. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 50.61% | 19.90 | | patched | 73.45% | 13.58 | +----------------+----------+------------------+ 2) Kernel build: This one is already pretty good with the current approach as we're dealing with good locality. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 75.28% | 11.03 | | patched | 88.09% | 9.31 | +----------------+----------+------------------+ 3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 70.66% | 17.14 | | patched | 91.15% | 12.57 | +----------------+----------+------------------+ 4) Ebizzy: There's a fair amount of variation from run to run, but this approach always shows nearly perfect hit rates, while baseline is just about non-existent. The amounts of cycles can fluctuate between anywhere from ~60 to ~116 for the baseline scheme, but this approach reduces it considerably. For instance, with 80 threads: +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 1.06% | 91.54 | | patched | 99.97% | 14.18 | +----------------+----------+------------------+ [akpm@linux-foundation.org: fix nommu build, per Davidlohr] [akpm@linux-foundation.org: document vmacache_valid() logic] [akpm@linux-foundation.org: attempt to untangle header files] [akpm@linux-foundation.org: add vmacache_find() BUG_ON] [hughd@google.com: add vmacache_valid_mm() (from Oleg)] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: adjust and enhance comments] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Michel Lespinasse <walken@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
a528910e12 |
mm: thrash detection-based file cache sizing
The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Al Viro
|
4f18cd317a |
take iov_iter stuff to mm/iov_iter.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Minchan Kim
|
bcf1647d08 |
zsmalloc: move it under mm
This patch moves zsmalloc under mm directory. Before that, description will explain why we have needed custom allocator. Zsmalloc is a new slab-based memory allocator for storing compressed pages. It is designed for low fragmentation and high allocation success rate on large object, but <= PAGE_SIZE allocations. zsmalloc differs from the kernel slab allocator in two primary ways to achieve these design goals. zsmalloc never requires high order page allocations to back slabs, or "size classes" in zsmalloc terms. Instead it allows multiple single-order pages to be stitched together into a "zspage" which backs the slab. This allows for higher allocation success rate under memory pressure. Also, zsmalloc allows objects to span page boundaries within the zspage. This allows for lower fragmentation than could be had with the kernel slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the kernel slab allocator, if a page compresses to 60% of it original size, the memory savings gained through compression is lost in fragmentation because another object of the same size can't be stored in the leftover space. This ability to span pages results in zsmalloc allocations not being directly addressable by the user. The user is given an non-dereferencable handle in response to an allocation request. That handle must be mapped, using zs_map_object(), which returns a pointer to the mapped region that can be used. The mapping is necessary since the object data may reside in two different noncontigious pages. The zsmalloc fulfills the allocation needs for zram perfectly [sjenning@linux.vnet.ibm.com: borrow Seth's quote] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Nitin Gupta <ngupta@vflare.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Chinner
|
a38e408248 |
list: add a new LRU list type
Several subsystems use the same construct for LRU lists - a list head, a spin lock and and item count. They also use exactly the same code for adding and removing items from the LRU. Create a generic type for these LRU lists. This is the beginning of generic, node aware LRUs for shrinkers to work with. [glommer@openvz.org: enum defined constants for lru. Suggested by gthelen, don't relock over retry] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Seth Jennings
|
2b2811178e |
zswap: add to mm/
zswap is a thin backend for frontswap that takes pages that are in the process of being swapped out and attempts to compress them and store them in a RAM-based memory pool. This can result in a significant I/O reduction on the swap device and, in the case where decompressing from RAM is faster than reading from the swap device, can also improve workload performance. It also has support for evicting swap pages that are currently compressed in zswap to the swap device on an LRU(ish) basis. This functionality makes zswap a true cache in that, once the cache is full, the oldest pages can be moved out of zswap to the swap device so newer pages can be compressed and stored in zswap. This patch adds the zswap driver to mm/ Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Jenifer Hopper <jhopper@us.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Hansen <dave@sr71.net> Cc: Joe Perches <joe@perches.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Hugh Dickens <hughd@google.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Seth Jennings
|
4e2e2770b1 |
zbud: add to mm/
zbud is an special purpose allocator for storing compressed pages. It is designed to store up to two compressed pages per physical page. While this design limits storage density, it has simple and deterministic reclaim properties that make it preferable to a higher density approach when reclaim will be used. zbud works by storing compressed pages, or "zpages", together in pairs in a single memory page called a "zbud page". The first buddy is "left justifed" at the beginning of the zbud page, and the last buddy is "right justified" at the end of the zbud page. The benefit is that if either buddy is freed, the freed buddy space, coalesced with whatever slack space that existed between the buddies, results in the largest possible free region within the zbud page. zbud also provides an attractive lower bound on density. The ratio of zpages to zbud pages can not be less than 1. This ensures that zbud can never "do harm" by using more pages to store zpages than the uncompressed zpages would have used on their own. This implementation is a rewrite of the zbud allocator internally used by zcache in the driver/staging tree. The rewrite was necessary to remove some of the zcache specific elements that were ingrained throughout and provide a generic allocation interface that can later be used by zsmalloc and others. This patch adds zbud to mm/ for later use by zswap. Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Jenifer Hopper <jhopper@us.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Hansen <dave@sr71.net> Cc: Joe Perches <joe@perches.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Hugh Dickens <hughd@google.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Bob Liu <bob.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anton Vorontsov
|
70ddf637ee |
memcg: add memory.pressure_level events
With this patch userland applications that want to maintain the interactivity/memory allocation cost can use the pressure level notifications. The levels are defined like this: The "low" level means that the system is reclaiming memory for new allocations. Monitoring this reclaiming activity might be useful for maintaining cache level. Upon notification, the program (typically "Activity Manager") might analyze vmstat and act in advance (i.e. prematurely shutdown unimportant services). The "medium" level means that the system is experiencing medium memory pressure, the system might be making swap, paging out active file caches, etc. Upon this event applications may decide to further analyze vmstat/zoneinfo/memcg or internal memory usage statistics and free any resources that can be easily reconstructed or re-read from a disk. The "critical" level means that the system is actively thrashing, it is about to out of memory (OOM) or even the in-kernel OOM killer is on its way to trigger. Applications should do whatever they can to help the system. It might be too late to consult with vmstat or any other statistics, so it's advisable to take an immediate action. The events are propagated upward until the event is handled, i.e. the events are not pass-through. Here is what this means: for example you have three cgroups: A->B->C. Now you set up an event listener on cgroups A, B and C, and suppose group C experiences some pressure. In this situation, only group C will receive the notification, i.e. groups A and B will not receive it. This is done to avoid excessive "broadcasting" of messages, which disturbs the system and which is especially bad if we are low on memory or thrashing. So, organize the cgroups wisely, or propagate the events manually (or, ask us to implement the pass-through events, explaining why would you need them.) Performance wise, the memory pressure notifications feature itself is lightweight and does not require much of bookkeeping, in contrast to the rest of memcg features. Unfortunately, as of current memcg implementation, pages accounting is an inseparable part and cannot be turned off. The good news is that there are some efforts[1] to improve the situation; plus, implementing the same, fully API-compatible[2] interface for CONFIG_MEMCG=n case (e.g. embedded) is also a viable option, so it will not require any changes on the userland side. [1] http://permalink.gmane.org/gmane.linux.kernel.cgroups/6291 [2] http://lkml.org/lkml/2013/2/21/454 [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix CONFIG_CGROPUPS=n warnings] Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Leonid Moiseichuk <leonid.moiseichuk@nokia.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: John Stultz <john.stultz@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rafael Aquini
|
18468d93e5 |
mm: introduce a common interface for balloon pages mobility
Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch introduces a common interface to help a balloon driver on making its page set movable to compaction, and thus allowing the system to better leverage the compation efforts on memory defragmentation. [akpm@linux-foundation.org: use PAGE_FLAGS_CHECK_AT_PREP, s/__balloon_page_flags/page_flags_cleared/, small cleanups] [rientjes@google.com: allow balloon compaction for any system with memory compaction enabled, which is the defconfig] Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
6b2dbba8b6 |
mm: replace vma prio_tree with an interval tree
Implement an interval tree as a replacement for the VMA prio_tree. The algorithms are similar to lib/interval_tree.c; however that code can't be directly reused as the interval endpoints are not explicitly stored in the VMA. So instead, the common algorithm is moved into a template and the details (node type, how to get interval endpoints from the node, etc) are filled in using the C preprocessor. Once the interval tree functions are available, using them as a replacement to the VMA prio tree is a relatively simple, mechanical job. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
ee6f509c32 |
mm: factor out memory isolate functions
mm/page_alloc.c has some memory isolation functions but they are used only when we enable CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. So let's make it configurable by new CONFIG_MEMORY_ISOLATION so that it can reduce binary size and we can check it simple by CONFIG_MEMORY_ISOLATION, not if defined CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
c255a45805 |
memcg: rename config variables
Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
2bc64a2046 |
mm/hugetlb: add new HugeTLB cgroup
Implement a new controller that allows us to control HugeTLB allocations. The extension allows to limit the HugeTLB usage per control group and enforces the controller limit during page fault. Since HugeTLB doesn't support page reclaim, enforcing the limit at page fault time implies that, the application will get SIGBUS signal if it tries to access HugeTLB pages beyond its limit. This requires the application to know beforehand how much HugeTLB pages it would require for its use. The charge/uncharge calls will be added to HugeTLB code in later patch. Support for cgroup removal will be added in later patches. [akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g] [akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g] Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
720d85075b |
Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull SLAB changes from Pekka Enberg: "Most of the changes included are from Christoph Lameter's "common slab" patch series that unifies common parts of SLUB, SLAB, and SLOB allocators. The unification is needed for Glauber Costa's "kmem memcg" work that will hopefully appear for v3.7. The rest of the changes are fixes and speedups by various people." * 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (32 commits) mm: Fix build warning in kmem_cache_create() slob: Fix early boot kernel crash mm, slub: ensure irqs are enabled for kmemcheck mm, sl[aou]b: Move kmem_cache_create mutex handling to common code mm, sl[aou]b: Use a common mutex definition mm, sl[aou]b: Common definition for boot state of the slab allocators mm, sl[aou]b: Extract common code for kmem_cache_create() slub: remove invalid reference to list iterator variable mm: Fix signal SIGFPE in slabinfo.c. slab: move FULL state transition to an initcall slab: Fix a typo in commit 8c138b "slab: Get rid of obj_size macro" mm, slab: Build fix for recent kmem_cache changes slab: rename gfpflags to allocflags slub: refactoring unfreeze_partials() slub: use __cmpxchg_double_slab() at interrupt disabled place slab/mempolicy: always use local policy from interrupt context slab: Get rid of obj_size macro mm, sl[aou]b: Extract common fields from struct kmem_cache slab: Remove some accessors slab: Use page struct fields instead of casting ... |
||
Christoph Lameter
|
039363f38b |
mm, sl[aou]b: Extract common code for kmem_cache_create()
Kmem_cache_create() does a variety of sanity checks but those vary depending on the allocator. Use the strictest tests and put them into a slab_common file. Make the tests conditional on CONFIG_DEBUG_VM. This patch has the effect of adding sanity checks for SLUB and SLOB under CONFIG_DEBUG_VM and removes the checks in SLAB for !CONFIG_DEBUG_VM. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org> |
||
Linus Torvalds
|
a3fe778c78 |
Frontswap provides a "transcendent memory" interface for swap pages.
In some environments, dramatic performance savings may be obtained because swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk. This tag provides the basic infrastructure along with some changes to the existing backends. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQEcBAABAgAGBQJPsorBAAoJEFjIrFwIi8fJcz8H/RBXCtFo0kiJmRked3nMAIDO /2zN/q/Qawsg9aeoGlP7G8hQi9PMipbhQj3ixHyCTMv0zMbH988GXbBce+gIcg6e TOQi7xXAuPEwLizmSpiTv84XzN5bMgu1oJXEqIXw0EIpuZAmp+9m/o3WBwEAtyxi B+hvjE7eZM8f75K3lxs6sOtmIcERj9zqmT933Y8+i9iiuRyGMey2SyKtvVLbYZ+j HroFMUi0so5TzxT/cpkRiHu0U75c651o+LV00zh7InMqbwyRsWlKTf53k8Q/q2WP I7dVmfItwN/TpOrYTfxglYFlbYuUP35ziFvZ2trd6hcs9RK8OuKw+OmBLReHTtc= =x9Vp -----END PGP SIGNATURE----- Merge tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm Pull frontswap feature from Konrad Rzeszutek Wilk: "Frontswap provides a "transcendent memory" interface for swap pages. In some environments, dramatic performance savings may be obtained because swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk. This tag provides the basic infrastructure along with some changes to the existing backends." Fix up trivial conflict in mm/Makefile due to removal of swap token code changing a line next to the new frontswap entry. This pull request came in before the merge window even opened, it got delayed to after the merge window by me just wanting to make sure it had actual users. Apparently IBM is using this on their embedded side, and Jan Beulich says that it's already made available for SLES and OpenSUSE users. Also acked by Rik van Riel, and Konrad points to other people liking it too. So in it goes. By Dan Magenheimer (4) and Konrad Rzeszutek Wilk (2) via Konrad Rzeszutek Wilk * tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm: frontswap: s/put_page/store/g s/get_page/load MAINTAINER: Add myself for the frontswap API mm: frontswap: config and doc files mm: frontswap: core frontswap functionality mm: frontswap: core swap subsystem hooks and headers mm: frontswap: add frontswap header file |
||
Christopher Yeoh
|
5febcbe99d |
Cross Memory Attach: make it Kconfigurable
Add a Kconfig option to allow people who don't want cross memory attach to not have it included in their build. Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rik van Riel
|
e709ffd616 |
mm: remove swap token code
The swap token code no longer fits in with the current VM model. It does not play well with cgroups or the better NUMA placement code in development, since we have only one swap token globally. It also has the potential to mess with scalability of the system, by increasing the number of non-reclaimable pages on the active and inactive anon LRU lists. Last but not least, the swap token code has been broken for a year without complaints, as reported by Konstantin Khlebnikov. This suggests we no longer have much use for it. The days of sub-1G memory systems with heavy use of swap are over. If we ever need thrashing reducing code in the future, we will have to implement something that does scale. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Acked-by: Bob Picco <bpicco@meloft.net> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Nazarewicz
|
ff9543fd32 |
mm: compaction: export some of the functions
This commit exports some of the functions from compaction.c file outside of it adding their declaration into internal.h header file so that other mm related code can use them. This forced compaction.c to always be compiled (as opposed to being compiled only if CONFIG_COMPACTION is defined) but as to avoid introducing code that user did not ask for, part of the compaction.c is now wrapped in on #ifdef. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com> |
||
Dan Magenheimer
|
27c6aec214 |
mm: frontswap: config and doc files
This patch 4of4 adds configuration and documentation files including a FAQ. [v14: updated docs/FAQ to use zcache and RAMster as examples] [v10: no change] [v9: akpm@linux-foundation.org: sysfs->debugfs; no longer need Doc/ABI file] [v8: rebase to 3.0-rc4] [v7: rebase to 3.0-rc3] [v6: rebase to 3.0-rc1] [v5: change config default to n] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
||
Christopher Yeoh
|
fcf634098c |
Cross Memory Attach
The basic idea behind cross memory attach is to allow MPI programs doing intra-node communication to do a single copy of the message rather than a double copy of the message via shared memory. The following patch attempts to achieve this by allowing a destination process, given an address and size from a source process, to copy memory directly from the source process into its own address space via a system call. There is also a symmetrical ability to copy from the current process's address space into a destination process's address space. - Use of /proc/pid/mem has been considered, but there are issues with using it: - Does not allow for specifying iovecs for both src and dest, assuming preadv or pwritev was implemented either the area read from or written to would need to be contiguous. - Currently mem_read allows only processes who are currently ptrace'ing the target and are still able to ptrace the target to read from the target. This check could possibly be moved to the open call, but its not clear exactly what race this restriction is stopping (reason appears to have been lost) - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix domain socket is a bit ugly from a userspace point of view, especially when you may have hundreds if not (eventually) thousands of processes that all need to do this with each other - Doesn't allow for some future use of the interface we would like to consider adding in the future (see below) - Interestingly reading from /proc/pid/mem currently actually involves two copies! (But this could be fixed pretty easily) As mentioned previously use of vmsplice instead was considered, but has problems. Since you need the reader and writer working co-operatively if the pipe is not drained then you block. Which requires some wrapping to do non blocking on the send side or polling on the receive. In all to all communication it requires ordering otherwise you can deadlock. And in the example of many MPI tasks writing to one MPI task vmsplice serialises the copying. There are some cases of MPI collectives where even a single copy interface does not get us the performance gain we could. For example in an MPI_Reduce rather than copy the data from the source we would like to instead use it directly in a mathops (say the reduce is doing a sum) as this would save us doing a copy. We don't need to keep a copy of the data from the source. I haven't implemented this, but I think this interface could in the future do all this through the use of the flags - eg could specify the math operation and type and the kernel rather than just copying the data would apply the specified operation between the source and destination and store it in the destination. Although we don't have a "second user" of the interface (though I've had some nibbles from people who may be interested in using it for intra process messaging which is not MPI). This interface is something which hardware vendors are already doing for their custom drivers to implement fast local communication. And so in addition to this being useful for OpenMPI it would mean the driver maintainers don't have to fix things up when the mm changes. There was some discussion about how much faster a true zero copy would go. Here's a link back to the email with some testing I did on that: http://marc.info/?l=linux-mm&m=130105930902915&w=2 There is a basic man page for the proposed interface here: http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt This has been implemented for x86 and powerpc, other architecture should mainly (I think) just need to add syscall numbers for the process_vm_readv and process_vm_writev. There are 32 bit compatibility versions for 64-bit kernels. For arch maintainers there are some simple tests to be able to quickly verify that the syscalls are working correctly here: http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: <linux-man@vger.kernel.org> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dan Magenheimer
|
077b1f83a6 |
mm: cleancache core ops functions and config
This third patch of eight in this cleancache series provides the core code for cleancache that interfaces between the hooks in VFS and individual filesystems and a cleancache backend. It also includes build and config patches. Two new files are added: mm/cleancache.c and include/linux/cleancache.h. Note that CONFIG_CLEANCACHE can default to on; in systems that do not provide a cleancache backend, all hooks devolve to a simple check of a global enable flag, so performance impact should be negligible but can be reduced to zero impact if config'ed off. However for this first commit, it defaults to off. Details and a FAQ can be found in Documentation/vm/cleancache.txt Credits: Cleancache_ops design derived from Jeremy Fitzhardinge design for tmem [v8: dan.magenheimer@oracle.com: fix exportfs call affecting btrfs] [v8: akpm@linux-foundation.org: use static inline function, not macro] [v7: dan.magenheimer@oracle.com: cleanup sysfs and remove cleancache prefix] [v6: JBeulich@novell.com: robustly handle buggy fs encode_fh actor definition] [v5: jeremy@goop.org: clean up global usage and static var names] [v5: jeremy@goop.org: simplify init hook and any future fs init changes] [v5: hch@infradead.org: cleaner non-global interface for ops registration] [v4: adilger@sun.com: interface must support exportfs FS's] [v4: hch@infradead.org: interface must support 64-bit FS on 32-bit kernel] [v3: akpm@linux-foundation.org: use one ops struct to avoid pointer hops] [v3: akpm@linux-foundation.org: document and ensure PageLocked reqts are met] [v3: ngupta@vflare.org: fix success/fail codes, change funcs to void] [v2: viro@ZenIV.linux.org.uk: use sane types] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Al Viro <viro@ZenIV.linux.org.uk> Acked-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Andreas Dilger <adilger@sun.com> Acked-by: Jan Beulich <JBeulich@novell.com> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik Van Riel <riel@redhat.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <joel.becker@oracle.com> |
||
Yinghai Lu
|
0932587328 |
bootmem: Separate out CONFIG_NO_BOOTMEM code into nobootmem.c
mm/bootmem.c contained code paths for both bootmem and no bootmem configurations. They implement about the same set of APIs in different ways and as a result bootmem.c contains massive amount of #ifdef CONFIG_NO_BOOTMEM. Separate out CONFIG_NO_BOOTMEM code into mm/nobootmem.c. As the common part is relatively small, duplicate them in nobootmem.c instead of creating a common file or ifdef'ing in bootmem.c. The followings are duplicated. * {min|max}_low_pfn, max_pfn, saved_max_pfn * free_bootmem_late() * ___alloc_bootmem() * __alloc_bootmem_low() The followings are applicable only to nobootmem and moved verbatim. * __free_pages_memory() * free_all_memory_core_early() The followings are not applicable to nobootmem and omitted in nobootmem.c. * reserve_bootmem_node() * reserve_bootmem() The rest split function bodies according to CONFIG_NO_BOOTMEM. Makefile is updated so that only either bootmem.c or nobootmem.c is built according to CONFIG_NO_BOOTMEM. This patch doesn't introduce any behavior change. -tj: Rewrote commit description. Suggested-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Andrea Arcangeli
|
71e3aac072 |
thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
e2cda32264 |
thp: add pmd mangling generic functions
Some are needed to build but not actually used on archs not supporting transparent hugepages. Others like pmdp_clear_flush are used by x86 too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
bbddff0545 |
percpu: use percpu allocator on UP too
On UP, percpu allocations were redirected to kmalloc. This has the following problems. * For certain amount of allocations (determined by PERCPU_DYNAMIC_EARLY_SLOTS and PERCPU_DYNAMIC_EARLY_SIZE), percpu allocator can be used before the usual kernel memory allocator is brought online. On SMP, this is used to initialize the kernel memory allocator. * percpu allocator honors alignment upto PAGE_SIZE but kmalloc() doesn't. For example, workqueue makes use of larger alignments for cpu_workqueues. Currently, users of percpu allocators need to handle UP differently, which is somewhat fragile and ugly. Other than small amount of memory, there isn't much to lose by enabling percpu allocator on UP. It can simply use kernel memory based chunk allocation which was added for SMP archs w/o MMUs. This patch removes mm/percpu_up.c, builds mm/percpu.c on UP too and makes UP build use percpu-km. As percpu addresses and kernel addresses are always identity mapped and static percpu variables don't need any special treatment, nothing is arch dependent and mm/percpu.c implements generic setup_per_cpu_areas() for UP. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> |
||
Yinghai Lu
|
95f72d1ed4 |
lmb: rename to memblock
via following scripts FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/lmb/memblock/g' \ -e 's/LMB/MEMBLOCK/g' \ $FILES for N in $(find . -name lmb.[ch]); do M=$(echo $N | sed 's/lmb/memblock/g') mv $N $M done and remove some wrong change like lmbench and dlmb etc. also move memblock.c from lib/ to mm/ Suggested-by: Ingo Molnar <mingo@elte.hu> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
||
Mel Gorman
|
748446bb6b |
mm: compaction: memory compaction core
This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
de380b55f9 |
percpu: don't implicitly include slab.h from percpu.h
percpu.h has always been including slab.h to get k[mz]alloc/free() for UP inline implementation. percpu.h being used by very low level headers including module.h and sched.h, this meant that a lot files unintentionally got slab.h inclusion. Lee Schermerhorn was trying to make topology.h use percpu.h and got bitten by this implicit inclusion. The right thing to do is break this ultimately unnecessary dependency. The previous patch added explicit inclusion of either gfp.h or slab.h to the source files using them. This patch updates percpu.h such that slab.h is no longer included from percpu.h. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> |
||
Christoph Hellwig
|
1c7c474c31 |
make generic_acl slightly more generic
Now that we cache the ACL pointers in the generic inode all the generic_acl cruft can go away and generic_acl.c can directly implement xattr handlers dealing with the full Posix ACL semantics for in-memory filesystems. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Tejun Heo
|
23fb064bb9 |
percpu: kill legacy percpu allocator
With ia64 converted, there's no arch left which still uses legacy percpu allocator. Kill it. Signed-off-by: Tejun Heo <tj@kernel.org> Delightedly-acked-by: Rusty Russell <rusty@rustcorp.com.au> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Lameter <cl@linux-foundation.org> |
||
Andrew Morton
|
c44972f178 |
procfs: disable per-task stack usage on NOMMU
It needs walk_page_range(). Reported-by: Michal Simek <monstr@monstr.eu> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Stefani Seibold <stefani@seibold.net> Cc: David Howells <dhowells@redhat.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Ungerer <gerg@snapgear.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
db16826367 |
Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits) HWPOISON: Enable error_remove_page on btrfs HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs HWPOISON: Add madvise() based injector for hardware poisoned pages v4 HWPOISON: Enable error_remove_page for NFS HWPOISON: Enable .remove_error_page for migration aware file systems HWPOISON: The high level memory error handler in the VM v7 HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process HWPOISON: shmem: call set_page_dirty() with locked page HWPOISON: Define a new error_remove_page address space op for async truncation HWPOISON: Add invalidate_inode_page HWPOISON: Refactor truncate to allow direct truncating of page v2 HWPOISON: check and isolate corrupted free pages v2 HWPOISON: Handle hardware poisoned pages in try_to_unmap HWPOISON: Use bitmask/action code for try_to_unmap behaviour HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2 HWPOISON: Add poison check to page fault handling HWPOISON: Add basic support for poisoned pages in fault handler v3 HWPOISON: Add new SIGBUS error codes for hardware poison signals HWPOISON: Add support for poison swap entries v2 HWPOISON: Export some rmap vma locking to outside world ... |
||
Stefani Seibold
|
d899bf7b55 |
procfs: provide stack information for threads
A patch to give a better overview of the userland application stack usage, especially for embedded linux. Currently you are only able to dump the main process/thread stack usage which is showed in /proc/pid/status by the "VmStk" Value. But you get no information about the consumed stack memory of the the threads. There is an enhancement in the /proc/<pid>/{task/*,}/*maps and which marks the vm mapping where the thread stack pointer reside with "[thread stack xxxxxxxx]". xxxxxxxx is the maximum size of stack. This is a value information, because libpthread doesn't set the start of the stack to the top of the mapped area, depending of the pthread usage. A sample output of /proc/<pid>/task/<tid>/maps looks like: 08048000-08049000 r-xp 00000000 03:00 8312 /opt/z 08049000-0804a000 rw-p 00001000 03:00 8312 /opt/z 0804a000-0806b000 rw-p 00000000 00:00 0 [heap] a7d12000-a7d13000 ---p 00000000 00:00 0 a7d13000-a7f13000 rw-p 00000000 00:00 0 [thread stack: 001ff4b4] a7f13000-a7f14000 ---p 00000000 00:00 0 a7f14000-a7f36000 rw-p 00000000 00:00 0 a7f36000-a8069000 r-xp 00000000 03:00 4222 /lib/libc.so.6 a8069000-a806b000 r--p 00133000 03:00 4222 /lib/libc.so.6 a806b000-a806c000 rw-p 00135000 03:00 4222 /lib/libc.so.6 a806c000-a806f000 rw-p 00000000 00:00 0 a806f000-a8083000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0 a8083000-a8084000 r--p 00013000 03:00 14462 /lib/libpthread.so.0 a8084000-a8085000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0 a8085000-a8088000 rw-p 00000000 00:00 0 a8088000-a80a4000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2 a80a4000-a80a5000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2 a80a5000-a80a6000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2 afaf5000-afb0a000 rw-p 00000000 00:00 0 [stack] ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] Also there is a new entry "stack usage" in /proc/<pid>/{task/*,}/status which will you give the current stack usage in kb. A sample output of /proc/self/status looks like: Name: cat State: R (running) Tgid: 507 Pid: 507 . . . CapBnd: fffffffffffffeff voluntary_ctxt_switches: 0 nonvoluntary_ctxt_switches: 0 Stack usage: 12 kB I also fixed stack base address in /proc/<pid>/{task/*,}/stat to the base address of the associated thread stack and not the one of the main process. This makes more sense. [akpm@linux-foundation.org: fs/proc/array.c now needs walk_page_range()] Signed-off-by: Stefani Seibold <stefani@seibold.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michael S. Tsirkin
|
3d2d827f5c |
mm: move use_mm/unuse_mm from aio.c to mm/
Anyone who wants to do copy to/from user from a kernel thread, needs use_mm (like what fs/aio has). Move that into mm/, to make reusing and exporting easier down the line, and make aio use it. Next intended user, besides aio, will be vhost-net. Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |