Commit Graph

273 Commits

Author SHA1 Message Date
Filipe Manana
943553ef9b btrfs: fix processing of delayed tree block refs during backref walking
During backref walking, when processing a delayed reference with a type of
BTRFS_TREE_BLOCK_REF_KEY, we have two bugs there:

1) We are accessing the delayed references extent_op, and its key, without
   the protection of the delayed ref head's lock;

2) If there's no extent op for the delayed ref head, we end up with an
   uninitialized key in the stack, variable 'tmp_op_key', and then pass
   it to add_indirect_ref(), which adds the reference to the indirect
   refs rb tree.

   This is wrong, because indirect references should have a NULL key
   when we don't have access to the key, and in that case they should be
   added to the indirect_missing_keys rb tree and not to the indirect rb
   tree.

   This means that if have BTRFS_TREE_BLOCK_REF_KEY delayed ref resulting
   from freeing an extent buffer, therefore with a count of -1, it will
   not cancel out the corresponding reference we have in the extent tree
   (with a count of 1), since both references end up in different rb
   trees.

   When using fiemap, where we often need to check if extents are shared
   through shared subtrees resulting from snapshots, it means we can
   incorrectly report an extent as shared when it's no longer shared.
   However this is temporary because after the transaction is committed
   the extent is no longer reported as shared, as running the delayed
   reference results in deleting the tree block reference from the extent
   tree.

   Outside the fiemap context, the result is unpredictable, as the key was
   not initialized but it's used when navigating the rb trees to insert
   and search for references (prelim_ref_compare()), and we expect all
   references in the indirect rb tree to have valid keys.

The following reproducer triggers the second bug:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount -o compress $DEV $MNT

   # With a compressed 128M file we get a tree height of 2 (level 1 root).
   xfs_io -f -c "pwrite -b 1M 0 128M" $MNT/foo

   btrfs subvolume snapshot $MNT $MNT/snap

   # Fiemap should output 0x2008 in the flags column.
   # 0x2000 means shared extent
   # 0x8 means encoded extent (because it's compressed)
   echo
   echo "fiemap after snapshot, range [120M, 120M + 128K):"
   xfs_io -c "fiemap -v 120M 128K" $MNT/foo
   echo

   # Overwrite one extent and fsync to flush delalloc and COW a new path
   # in the snapshot's tree.
   #
   # After this we have a BTRFS_DROP_DELAYED_REF delayed ref of type
   # BTRFS_TREE_BLOCK_REF_KEY with a count of -1 for every COWed extent
   # buffer in the path.
   #
   # In the extent tree we have inline references of type
   # BTRFS_TREE_BLOCK_REF_KEY, with a count of 1, for the same extent
   # buffers, so they should cancel each other, and the extent buffers in
   # the fs tree should no longer be considered as shared.
   #
   echo "Overwriting file range [120M, 120M + 128K)..."
   xfs_io -c "pwrite -b 128K 120M 128K" $MNT/snap/foo
   xfs_io -c "fsync" $MNT/snap/foo

   # Fiemap should output 0x8 in the flags column. The extent in the range
   # [120M, 120M + 128K) is no longer shared, it's now exclusive to the fs
   # tree.
   echo
   echo "fiemap after overwrite range [120M, 120M + 128K):"
   xfs_io -c "fiemap -v 120M 128K" $MNT/foo
   echo

   umount $MNT

Running it before this patch:

   $ ./test.sh
   (...)
   wrote 134217728/134217728 bytes at offset 0
   128 MiB, 128 ops; 0.1152 sec (1.085 GiB/sec and 1110.5809 ops/sec)
   Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap'

   fiemap after snapshot, range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

   Overwriting file range [120M, 120M + 128K)...
   wrote 131072/131072 bytes at offset 125829120
   128 KiB, 1 ops; 0.0001 sec (683.060 MiB/sec and 5464.4809 ops/sec)

   fiemap after overwrite range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

The extent in the range [120M, 120M + 128K) is still reported as shared
(0x2000 bit set) after overwriting that range and flushing delalloc, which
is not correct - an entire path was COWed in the snapshot's tree and the
extent is now only referenced by the original fs tree.

Running it after this patch:

   $ ./test.sh
   (...)
   wrote 134217728/134217728 bytes at offset 0
   128 MiB, 128 ops; 0.1198 sec (1.043 GiB/sec and 1068.2067 ops/sec)
   Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap'

   fiemap after snapshot, range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

   Overwriting file range [120M, 120M + 128K)...
   wrote 131072/131072 bytes at offset 125829120
   128 KiB, 1 ops; 0.0001 sec (694.444 MiB/sec and 5555.5556 ops/sec)

   fiemap after overwrite range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256   0x8

Now the extent is not reported as shared anymore.

So fix this by passing a NULL key pointer to add_indirect_ref() when
processing a delayed reference for a tree block if there's no extent op
for our delayed ref head with a defined key. Also access the extent op
only after locking the delayed ref head's lock.

The reproducer will be converted later to a test case for fstests.

Fixes: 86d5f99442 ("btrfs: convert prelimary reference tracking to use rbtrees")
Fixes: a6dbceafb9 ("btrfs: Remove unused op_key var from add_delayed_refs")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-11 14:48:01 +02:00
Filipe Manana
4fc7b57228 btrfs: fix processing of delayed data refs during backref walking
When processing delayed data references during backref walking and we are
using a share context (we are being called through fiemap), whenever we
find a delayed data reference for an inode different from the one we are
interested in, then we immediately exit and consider the data extent as
shared. This is wrong, because:

1) This might be a DROP reference that will cancel out a reference in the
   extent tree;

2) Even if it's an ADD reference, it may be followed by a DROP reference
   that cancels it out.

In either case we should not exit immediately.

Fix this by never exiting when we find a delayed data reference for
another inode - instead add the reference and if it does not cancel out
other delayed reference, we will exit early when we call
extent_is_shared() after processing all delayed references. If we find
a drop reference, then signal the code that processes references from
the extent tree (add_inline_refs() and add_keyed_refs()) to not exit
immediately if it finds there a reference for another inode, since we
have delayed drop references that may cancel it out. In this later case
we exit once we don't have references in the rb trees that cancel out
each other and have two references for different inodes.

Example reproducer for case 1):

   $ cat test-1.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount $DEV $MNT

   xfs_io -f -c "pwrite 0 64K" $MNT/foo
   cp --reflink=always $MNT/foo $MNT/bar

   echo
   echo "fiemap after cloning:"
   xfs_io -c "fiemap -v" $MNT/foo

   rm -f $MNT/bar
   echo
   echo "fiemap after removing file bar:"
   xfs_io -c "fiemap -v" $MNT/foo

   umount $MNT

Running it before this patch, the extent is still listed as shared, it has
the flag 0x2000 (FIEMAP_EXTENT_SHARED) set:

   $ ./test-1.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

Example reproducer for case 2):

   $ cat test-2.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount $DEV $MNT

   xfs_io -f -c "pwrite 0 64K" $MNT/foo
   cp --reflink=always $MNT/foo $MNT/bar

   # Flush delayed references to the extent tree and commit current
   # transaction.
   sync

   echo
   echo "fiemap after cloning:"
   xfs_io -c "fiemap -v" $MNT/foo

   rm -f $MNT/bar
   echo
   echo "fiemap after removing file bar:"
   xfs_io -c "fiemap -v" $MNT/foo

   umount $MNT

Running it before this patch, the extent is still listed as shared, it has
the flag 0x2000 (FIEMAP_EXTENT_SHARED) set:

   $ ./test-2.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

After this patch, after deleting bar in both tests, the extent is not
reported with the 0x2000 flag anymore, it gets only the flag 0x1
(which is FIEMAP_EXTENT_LAST):

   $ ./test-1.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128   0x1

   $ ./test-2.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128   0x1

These tests will later be converted to a test case for fstests.

Fixes: dc046b10c8 ("Btrfs: make fiemap not blow when you have lots of snapshots")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-11 14:47:58 +02:00
Filipe Manana
96dbcc0072 btrfs: add missing path cache update during fiemap
When looking the stored result for a cached path node, if the stored
result is valid and has a value of true, we must update all the nodes for
all levels below it with a result of true as well. This is necessary when
moving from one leaf in the fs tree to the next one, as well as when
moving from a node at any level to the next node at the same level.

Currently this logic is missing as it was somehow forgotten by a recent
patch with the subject: "btrfs: speedup checking for extent sharedness
during fiemap".

This adds the missing logic, which is the counter part to what we do
when adding a shared node to the cache at store_backref_shared_cache().

Fixes: 12a824dc67 ("btrfs: speedup checking for extent sharedness during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-07 17:55:00 +02:00
Filipe Manana
b8f164e3e6 btrfs: skip unnecessary extent buffer sharedness checks during fiemap
During fiemap, for each file extent we find, we must check if it's shared
or not. The sharedness check starts by verifying if the extent is directly
shared (its refcount in the extent tree is > 1), and if it is not directly
shared, then we will check if every node in the subvolume b+tree leading
from the root to the leaf that has the file extent item (in reverse order),
is shared (through snapshots).

However this second step is not needed if our extent was created in a
transaction more recent than the last transaction where a snapshot of the
inode's root happened, because it can't be shared indirectly (through
shared subtrees) without a snapshot created in a more recent transaction.

So grab the generation of the extent from the extent map and pass it to
btrfs_is_data_extent_shared(), which will skip this second phase when the
generation is more recent than the root's last snapshot value. Note that
we skip this optimization if the extent map is the result of merging 2
or more extent maps, because in this case its generation is the maximum
of the generations of all merged extent maps.

The fact the we use extent maps and they can be merged despite the
underlying extents being distinct (different file extent items in the
subvolume b+tree and different extent items in the extent b+tree), can
result in some bugs when reporting shared extents. But this is a problem
of the current implementation of fiemap relying on extent maps.
One example where we get incorrect results is:

    $ cat fiemap-bug.sh
    #!/bin/bash

    DEV=/dev/sdj
    MNT=/mnt/sdj

    mkfs.btrfs -f $DEV
    mount $DEV $MNT

    # Create a file with two 256K extents.
    # Since there is no other write activity, they will be contiguous,
    # and their extent maps merged, despite having two distinct extents.
    xfs_io -f -c "pwrite -S 0xab 0 256K" \
              -c "fsync" \
              -c "pwrite -S 0xcd 256K 256K" \
              -c "fsync" \
              $MNT/foo

    # Now clone only the second extent into another file.
    xfs_io -f -c "reflink $MNT/foo 256K 0 256K" $MNT/bar

    # Filefrag will report a single 512K extent, and say it's not shared.
    echo
    filefrag -v $MNT/foo

    umount $MNT

Running the reproducer:

    $ ./fiemap-bug.sh
    wrote 262144/262144 bytes at offset 0
    256 KiB, 64 ops; 0.0038 sec (65.479 MiB/sec and 16762.7030 ops/sec)
    wrote 262144/262144 bytes at offset 262144
    256 KiB, 64 ops; 0.0040 sec (61.125 MiB/sec and 15647.9218 ops/sec)
    linked 262144/262144 bytes at offset 0
    256 KiB, 1 ops; 0.0002 sec (1.034 GiB/sec and 4237.2881 ops/sec)

    Filesystem type is: 9123683e
    File size of /mnt/sdj/foo is 524288 (128 blocks of 4096 bytes)
     ext:     logical_offset:        physical_offset: length:   expected: flags:
       0:        0..     127:       3328..      3455:    128:             last,eof
    /mnt/sdj/foo: 1 extent found

We end up reporting that we have a single 512K that is not shared, however
we have two 256K extents, and the second one is shared. Changing the
reproducer to clone instead the first extent into file 'bar', makes us
report a single 512K extent that is shared, which is algo incorrect since
we have two 256K extents and only the first one is shared.

This is z problem that existed before this change, and remains after this
change, as it can't be easily fixed. The next patch in the series reworks
fiemap to primarily use file extent items instead of extent maps (except
for checking for delalloc ranges), with the goal of improving its
scalability and performance, but it also ends up fixing this particular
bug caused by extent map merging.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26 12:28:01 +02:00
Filipe Manana
12a824dc67 btrfs: speedup checking for extent sharedness during fiemap
One of the most expensive tasks performed during fiemap is to check if
an extent is shared. This task has two major steps:

1) Check if the data extent is shared. This implies checking the extent
   item in the extent tree, checking delayed references, etc. If we
   find the data extent is directly shared, we terminate immediately;

2) If the data extent is not directly shared (its extent item has a
   refcount of 1), then it may be shared if we have snapshots that share
   subtrees of the inode's subvolume b+tree. So we check if the leaf
   containing the file extent item is shared, then its parent node, then
   the parent node of the parent node, etc, until we reach the root node
   or we find one of them is shared - in which case we stop immediately.

During fiemap we process the extents of a file from left to right, from
file offset 0 to EOF. This means that we iterate b+tree leaves from left
to right, and has the implication that we keep repeating that second step
above several times for the same b+tree path of the inode's subvolume
b+tree.

For example, if we have two file extent items in leaf X, and the path to
leaf X is A -> B -> C -> X, then when we try to determine if the data
extent referenced by the first extent item is shared, we check if the data
extent is shared - if it's not, then we check if leaf X is shared, if not,
then we check if node C is shared, if not, then check if node B is shared,
if not than check if node A is shared. When we move to the next file
extent item, after determining the data extent is not shared, we repeat
the checks for X, C, B and A - doing all the expensive searches in the
extent tree, delayed refs, etc. If we have thousands of tile extents, then
we keep repeating the sharedness checks for the same paths over and over.

On a file that has no shared extents or only a small portion, it's easy
to see that this scales terribly with the number of extents in the file
and the sizes of the extent and subvolume b+trees.

This change eliminates the repeated sharedness check on extent buffers
by caching the results of the last path used. The results can be used as
long as no snapshots were created since they were cached (for not shared
extent buffers) or no roots were dropped since they were cached (for
shared extent buffers). This greatly reduces the time spent by fiemap for
files with thousands of extents and/or large extent and subvolume b+trees.

Example performance test:

    $ cat fiemap-perf-test.sh
    #!/bin/bash

    DEV=/dev/sdi
    MNT=/mnt/sdi

    mkfs.btrfs -f $DEV
    mount -o compress=lzo $DEV $MNT

    # 40G gives 327680 128K file extents (due to compression).
    xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar

    umount $MNT
    mount -o compress=lzo $DEV $MNT

    start=$(date +%s%N)
    filefrag $MNT/foobar
    end=$(date +%s%N)
    dur=$(( (end - start) / 1000000 ))
    echo "fiemap took $dur milliseconds (metadata not cached)"

    start=$(date +%s%N)
    filefrag $MNT/foobar
    end=$(date +%s%N)
    dur=$(( (end - start) / 1000000 ))
    echo "fiemap took $dur milliseconds (metadata cached)"

    umount $MNT

Before this patch:

    $ ./fiemap-perf-test.sh
    (...)
    /mnt/sdi/foobar: 327680 extents found
    fiemap took 3597 milliseconds (metadata not cached)
    /mnt/sdi/foobar: 327680 extents found
    fiemap took 2107 milliseconds (metadata cached)

After this patch:

    $ ./fiemap-perf-test.sh
    (...)
    /mnt/sdi/foobar: 327680 extents found
    fiemap took 1646 milliseconds (metadata not cached)
    /mnt/sdi/foobar: 327680 extents found
    fiemap took 698 milliseconds (metadata cached)

That's about 2.2x faster when no metadata is cached, and about 3x faster
when all metadata is cached. On a real filesystem with many other files,
data, directories, etc, the b+trees will be 2 or 3 levels higher,
therefore this optimization will have a higher impact.

Several reports of a slow fiemap show up often, the two Link tags below
refer to two recent reports of such slowness. This patch, together with
the next ones in the series, is meant to address that.

Link: https://lore.kernel.org/linux-btrfs/21dd32c6-f1f9-f44a-466a-e18fdc6788a7@virtuozzo.com/
Link: https://lore.kernel.org/linux-btrfs/Ysace25wh5BbLd5f@atmark-techno.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26 12:28:01 +02:00
Filipe Manana
8eedaddaab btrfs: rename btrfs_check_shared() to a more descriptive name
The function btrfs_check_shared() is supposed to be used to check if a
data extent is shared, but its name is too generic, may easily cause
confusion in the sense that it may be used for metadata extents.

So rename it to btrfs_is_data_extent_shared(), which will also make it
less confusing after the next change that adds a backref lookup cache for
the b+tree nodes that lead to the leaf that contains the file extent item
that points to the target data extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26 12:28:01 +02:00
David Sterba
e3059ec06b btrfs: sink iterator parameter to btrfs_ioctl_logical_to_ino
There's only one function we pass to iterate_inodes_from_logical as
iterator, so we can drop the indirection and call it directly, after
moving the function to backref.c

Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25 17:45:36 +02:00
David Sterba
875d1daa7b btrfs: simplify parameters of backref iterators
The inode reference iterator interface takes parameters that are derived
from the context parameter, but as it's a void* type the values are
passed individually.

Change the ctx type to inode_fs_path as it's the only thing we pass and
drop any parameters that are derived from that.

Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25 17:45:36 +02:00
David Sterba
ad6240f662 btrfs: call inode_to_path directly and drop indirection
The functions for iterating inode reference take a function parameter
but there's only one value, inode_to_path(). Remove the indirection and
call the function. As paths_from_inode would become just an alias for
iterate_irefs(), merge the two into one function.

Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25 17:45:36 +02:00
Qu Wenruo
4eb150d612 btrfs: unify the error handling pattern for read_tree_block()
We had an error handling pattern for read_tree_block() like this:

	eb = read_tree_block();
	if (IS_ERR(eb)) {
		/*
		 * Handling error here
		 * Normally ended up with return or goto out.
		 */
	} else if (!extent_buffer_uptodate(eb)) {
		/*
		 * Different error handling here
		 * Normally also ended up with return or goto out;
		 */
	}

This is fine, but if we want to add extra check for each
read_tree_block(), the existing if-else-if is not that expandable and
will take reader some seconds to figure out there is no extra branch.

Here we change it to a more common way, without the extra else:

	eb = read_tree_block();
	if (IS_ERR(eb)) {
		/*
		 * Handling error here
		 */
		return eb or goto out;
	}
	if (!extent_buffer_uptodate(eb)) {
		/*
		 * Different error handling here
		 */
		return eb or goto out;
	}

This also removes some oddball call sites which uses some creative way
to check error.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
29cbcf4017 btrfs: stop accessing ->extent_root directly
When we start having multiple extent roots we'll need to use a helper to
get to the correct extent_root.  Rename fs_info->extent_root to
_extent_root and convert all of the users of the extent root to using
the btrfs_extent_root() helper.  This will allow us to easily clean up
the remaining direct accesses in the future.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:49 +01:00
Josef Bacik
30a9da5d8d btrfs: don't use extent_root in iterate_extent_inodes
We are going to have many extent_roots soon, and we don't need a root
here necessarily as we're not modifying anything, we're just getting the
trans handle so we can have an accurate view of references, so use the
tree_root here.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:48 +01:00
Josef Bacik
9f05c09d6b btrfs: remove BUG_ON(!eie) in find_parent_nodes
If we're looking for leafs that point to a data extent we want to record
the extent items that point at our bytenr.  At this point we have the
reference and we know for a fact that this leaf should have a reference
to our bytenr.  However if there's some sort of corruption we may not
find any references to our leaf, and thus could end up with eie == NULL.
Replace this BUG_ON() with an ASSERT() and then return -EUCLEAN for the
mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:47 +01:00
Josef Bacik
fcba0120ed btrfs: remove BUG_ON() in find_parent_nodes()
We search for an extent entry with .offset = -1, which shouldn't be a
thing, but corruption happens.  Add an ASSERT() for the developers,
return -EUCLEAN for mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:47 +01:00
Josef Bacik
e0b7661d44 btrfs: remove SANITY_TESTS check form find_parent_nodes
We define __TRANS_DUMMY always, so this extra ifdef stuff is not needed.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:47 +01:00
Josef Bacik
9665ebd5db btrfs: move comment in find_parent_nodes()
This comment was much closer to the related code when it was originally
added, but has slowly migrated north far from its ancestral lands.  Move
it back down with its people.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:47 +01:00
Josef Bacik
98cc42227a btrfs: pass the root to add_keyed_refs
We pass in the path, but use btrfs_next_item() using the root we
searched with.  Pass the root down to add_keyed_refs() instead of the
fs_info so we can continue to use the same root we searched with.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:47 +01:00
Josef Bacik
3212fa14e7 btrfs: drop the _nr from the item helpers
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:43 +01:00
Josef Bacik
227f3cd0d5 btrfs: use btrfs_item_size_nr/btrfs_item_offset_nr everywhere
We have this pattern in a lot of places

	item = btrfs_item_nr(slot);
	btrfs_item_size(leaf, item);

when we could simply use

	btrfs_item_size(leaf, slot);

Fix all callers of btrfs_item_size() and btrfs_item_offset() to use the
_nr variation of the helpers.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:42 +01:00
Filipe Manana
c7bcbb2120 btrfs: remove ignore_offset argument from btrfs_find_all_roots()
Currently all the callers of btrfs_find_all_roots() pass a value of false
for its ignore_offset argument. This makes the argument pointless and we
can remove it and make btrfs_find_all_roots() always pass false as the
ignore_offset argument for btrfs_find_all_roots_safe(). So just do that.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:19:01 +02:00
Marcos Paulo de Souza
6534c0c99d btrfs: pass NULL as trans to btrfs_search_slot if we only want to search
Using a transaction in btrfs_search_slot is only useful when we are
searching to add or modify the tree. When the function is used for
searching, insert length and mod arguments are 0, there is no need to
use a transaction.

No functional changes, changing for consistency.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:19:00 +02:00
Filipe Manana
8949b9a114 btrfs: fix lock inversion problem when doing qgroup extent tracing
At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a
NULL value as the transaction handle argument, which makes that function
take the commit_root_sem semaphore, which is necessary when we don't hold
a transaction handle or any other mechanism to prevent a transaction
commit from wiping out commit roots.

However btrfs_qgroup_trace_extent_post() can be called in a context where
we are holding a write lock on an extent buffer from a subvolume tree,
namely from btrfs_truncate_inode_items(), called either during truncate
or unlink operations. In this case we end up with a lock inversion problem
because the commit_root_sem is a higher level lock, always supposed to be
acquired before locking any extent buffer.

Lockdep detects this lock inversion problem since we switched the extent
buffer locks from custom locks to semaphores, and when running btrfs/158
from fstests, it reported the following trace:

[ 9057.626435] ======================================================
[ 9057.627541] WARNING: possible circular locking dependency detected
[ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted
[ 9057.628961] ------------------------------------------------------
[ 9057.629867] kworker/u16:4/30781 is trying to acquire lock:
[ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 9057.632542]
               but task is already holding lock:
[ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs]
[ 9057.635255]
               which lock already depends on the new lock.

[ 9057.636292]
               the existing dependency chain (in reverse order) is:
[ 9057.637240]
               -> #1 (&fs_info->commit_root_sem){++++}-{3:3}:
[ 9057.638138]        down_read+0x46/0x140
[ 9057.638648]        btrfs_find_all_roots+0x41/0x80 [btrfs]
[ 9057.639398]        btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs]
[ 9057.640283]        btrfs_add_delayed_data_ref+0x418/0x490 [btrfs]
[ 9057.641114]        btrfs_free_extent+0x35/0xb0 [btrfs]
[ 9057.641819]        btrfs_truncate_inode_items+0x424/0xf70 [btrfs]
[ 9057.642643]        btrfs_evict_inode+0x454/0x4f0 [btrfs]
[ 9057.643418]        evict+0xcf/0x1d0
[ 9057.643895]        do_unlinkat+0x1e9/0x300
[ 9057.644525]        do_syscall_64+0x3b/0xc0
[ 9057.645110]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 9057.645835]
               -> #0 (btrfs-tree-00){++++}-{3:3}:
[ 9057.646600]        __lock_acquire+0x130e/0x2210
[ 9057.647248]        lock_acquire+0xd7/0x310
[ 9057.647773]        down_read_nested+0x4b/0x140
[ 9057.648350]        __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 9057.649175]        btrfs_read_lock_root_node+0x31/0x40 [btrfs]
[ 9057.650010]        btrfs_search_slot+0x537/0xc00 [btrfs]
[ 9057.650849]        scrub_print_warning_inode+0x89/0x370 [btrfs]
[ 9057.651733]        iterate_extent_inodes+0x1e3/0x280 [btrfs]
[ 9057.652501]        scrub_print_warning+0x15d/0x2f0 [btrfs]
[ 9057.653264]        scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs]
[ 9057.654295]        scrub_bio_end_io_worker+0x101/0x2e0 [btrfs]
[ 9057.655111]        btrfs_work_helper+0xf8/0x400 [btrfs]
[ 9057.655831]        process_one_work+0x247/0x5a0
[ 9057.656425]        worker_thread+0x55/0x3c0
[ 9057.656993]        kthread+0x155/0x180
[ 9057.657494]        ret_from_fork+0x22/0x30
[ 9057.658030]
               other info that might help us debug this:

[ 9057.659064]  Possible unsafe locking scenario:

[ 9057.659824]        CPU0                    CPU1
[ 9057.660402]        ----                    ----
[ 9057.660988]   lock(&fs_info->commit_root_sem);
[ 9057.661581]                                lock(btrfs-tree-00);
[ 9057.662348]                                lock(&fs_info->commit_root_sem);
[ 9057.663254]   lock(btrfs-tree-00);
[ 9057.663690]
                *** DEADLOCK ***

[ 9057.664437] 4 locks held by kworker/u16:4/30781:
[ 9057.665023]  #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0
[ 9057.666260]  #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0
[ 9057.667639]  #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs]
[ 9057.669017]  #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs]
[ 9057.670408]
               stack backtrace:
[ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1
[ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs]
[ 9057.674258] Call Trace:
[ 9057.674588]  dump_stack_lvl+0x57/0x72
[ 9057.675083]  check_noncircular+0xf3/0x110
[ 9057.675611]  __lock_acquire+0x130e/0x2210
[ 9057.676132]  lock_acquire+0xd7/0x310
[ 9057.676605]  ? __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 9057.677313]  ? lock_is_held_type+0xe8/0x140
[ 9057.677849]  down_read_nested+0x4b/0x140
[ 9057.678349]  ? __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 9057.679068]  __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 9057.679760]  btrfs_read_lock_root_node+0x31/0x40 [btrfs]
[ 9057.680458]  btrfs_search_slot+0x537/0xc00 [btrfs]
[ 9057.681083]  ? _raw_spin_unlock+0x29/0x40
[ 9057.681594]  ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs]
[ 9057.682336]  scrub_print_warning_inode+0x89/0x370 [btrfs]
[ 9057.683058]  ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs]
[ 9057.683834]  ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs]
[ 9057.684632]  iterate_extent_inodes+0x1e3/0x280 [btrfs]
[ 9057.685316]  scrub_print_warning+0x15d/0x2f0 [btrfs]
[ 9057.685977]  ? ___ratelimit+0xa4/0x110
[ 9057.686460]  scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs]
[ 9057.687316]  scrub_bio_end_io_worker+0x101/0x2e0 [btrfs]
[ 9057.688021]  btrfs_work_helper+0xf8/0x400 [btrfs]
[ 9057.688649]  ? lock_is_held_type+0xe8/0x140
[ 9057.689180]  process_one_work+0x247/0x5a0
[ 9057.689696]  worker_thread+0x55/0x3c0
[ 9057.690175]  ? process_one_work+0x5a0/0x5a0
[ 9057.690731]  kthread+0x155/0x180
[ 9057.691158]  ? set_kthread_struct+0x40/0x40
[ 9057.691697]  ret_from_fork+0x22/0x30

Fix this by making btrfs_find_all_roots() never attempt to lock the
commit_root_sem when it is called from btrfs_qgroup_trace_extent_post().

We can't just pass a non-NULL transaction handle to btrfs_find_all_roots()
from btrfs_qgroup_trace_extent_post(), because that would make backref
lookup not use commit roots and acquire read locks on extent buffers, and
therefore could deadlock when btrfs_qgroup_trace_extent_post() is called
from the btrfs_truncate_inode_items() code path which has acquired a write
lock on an extent buffer of the subvolume btree.

CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22 15:50:07 +02:00
David Sterba
1a9fd4172d btrfs: fix typos in comments
Fix typos that have snuck in since the last round. Found by codespell.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-22 14:11:57 +02:00
Filipe Manana
f3a84ccd28 btrfs: move the tree mod log code into its own file
The tree modification log, which records modifications done to btrees, is
quite large and currently spread all over ctree.c, which is a huge file
already.

To make things better organized, move all that code into its own separate
source and header files. Functions and definitions that are used outside
of the module (mostly by ctree.c) are renamed so that they start with a
"btrfs_" prefix. Everything else remains unchanged.

This makes it easier to go over the tree modification log code every
time I need to go read it to fix a bug.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:16 +02:00
Josef Bacik
f78743fbda btrfs: do not warn if we can't find the reloc root when looking up backref
The backref code is looking for a reloc_root that corresponds to the
given fs root.  However any number of things could have gone wrong while
initializing that reloc_root, like ENOMEM while trying to allocate the
root itself, or EIO while trying to write the root item.  This would
result in no corresponding reloc_root being in the reloc root cache, and
thus would return NULL when we do the find_reloc_root() call.

Because of this we do not want to WARN_ON().  This presumably was meant
to catch developer errors, cases where we messed up adding the reloc
root.  However we can easily hit this case with error injection, and
thus should not do a WARN_ON().

CC: stable@vger.kernel.org # 5.10+
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:56 +01:00
Nikolay Borisov
6e353e3b3c btrfs: document btrfs_check_shared parameters
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:54 +01:00
Josef Bacik
7e2a870a59 btrfs: do not cleanup upper nodes in btrfs_backref_cleanup_node
Zygo reported the following panic when testing my error handling patches
for relocation:

  kernel BUG at fs/btrfs/backref.c:2545!
  invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 3 PID: 8472 Comm: btrfs Tainted: G        W 14
  Hardware name: QEMU Standard PC (i440FX + PIIX,

  Call Trace:
   btrfs_backref_error_cleanup+0x4df/0x530
   build_backref_tree+0x1a5/0x700
   ? _raw_spin_unlock+0x22/0x30
   ? release_extent_buffer+0x225/0x280
   ? free_extent_buffer.part.52+0xd7/0x140
   relocate_tree_blocks+0x2a6/0xb60
   ? kasan_unpoison_shadow+0x35/0x50
   ? do_relocation+0xc10/0xc10
   ? kasan_kmalloc+0x9/0x10
   ? kmem_cache_alloc_trace+0x6a3/0xcb0
   ? free_extent_buffer.part.52+0xd7/0x140
   ? rb_insert_color+0x342/0x360
   ? add_tree_block.isra.36+0x236/0x2b0
   relocate_block_group+0x2eb/0x780
   ? merge_reloc_roots+0x470/0x470
   btrfs_relocate_block_group+0x26e/0x4c0
   btrfs_relocate_chunk+0x52/0x120
   btrfs_balance+0xe2e/0x18f0
   ? pvclock_clocksource_read+0xeb/0x190
   ? btrfs_relocate_chunk+0x120/0x120
   ? lock_contended+0x620/0x6e0
   ? do_raw_spin_lock+0x1e0/0x1e0
   ? do_raw_spin_unlock+0xa8/0x140
   btrfs_ioctl_balance+0x1f9/0x460
   btrfs_ioctl+0x24c8/0x4380
   ? __kasan_check_read+0x11/0x20
   ? check_chain_key+0x1f4/0x2f0
   ? __asan_loadN+0xf/0x20
   ? btrfs_ioctl_get_supported_features+0x30/0x30
   ? kvm_sched_clock_read+0x18/0x30
   ? check_chain_key+0x1f4/0x2f0
   ? lock_downgrade+0x3f0/0x3f0
   ? handle_mm_fault+0xad6/0x2150
   ? do_vfs_ioctl+0xfc/0x9d0
   ? ioctl_file_clone+0xe0/0xe0
   ? check_flags.part.50+0x6c/0x1e0
   ? check_flags.part.50+0x6c/0x1e0
   ? check_flags+0x26/0x30
   ? lock_is_held_type+0xc3/0xf0
   ? syscall_enter_from_user_mode+0x1b/0x60
   ? do_syscall_64+0x13/0x80
   ? rcu_read_lock_sched_held+0xa1/0xd0
   ? __kasan_check_read+0x11/0x20
   ? __fget_light+0xae/0x110
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

This occurs because of this check

  if (RB_EMPTY_NODE(&upper->rb_node))
	  BUG_ON(!list_empty(&node->upper));

As we are dropping the backref node, if we discover that our upper node
in the edge we just cleaned up isn't linked into the cache that we are
now done with this node, thus the BUG_ON().

However this is an erroneous assumption, as we will look up all the
references for a node first, and then process the pending edges.  All of
the 'upper' nodes in our pending edges won't be in the cache's rb_tree
yet, because they haven't been processed.  We could very well have many
edges still left to cleanup on this node.

The fact is we simply do not need this check, we can just process all of
the edges only for this node, because below this check we do the
following

  if (list_empty(&upper->lower)) {
	  list_add_tail(&upper->lower, &cache->leaves);
	  upper->lowest = 1;
  }

If the upper node truly isn't used yet, then we add it to the
cache->leaves list to be cleaned up later.  If it is still used then the
last child node that has it linked into its node will add it to the
leaves list and then it will be cleaned up.

Fix this problem by dropping this logic altogether.  With this fix I no
longer see the panic when testing with error injection in the backref
code.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:52 +01:00
Josef Bacik
49ecc679ab btrfs: do not double free backref nodes on error
Zygo reported the following KASAN splat:

  BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420
  Read of size 8 at addr ffff888112402950 by task btrfs/28836

  CPU: 0 PID: 28836 Comm: btrfs Tainted: G        W         5.10.0-e35f27394290-for-next+ #23
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
  Call Trace:
   dump_stack+0xbc/0xf9
   ? btrfs_backref_cleanup_node+0x18a/0x420
   print_address_description.constprop.8+0x21/0x210
   ? record_print_text.cold.34+0x11/0x11
   ? btrfs_backref_cleanup_node+0x18a/0x420
   ? btrfs_backref_cleanup_node+0x18a/0x420
   kasan_report.cold.10+0x20/0x37
   ? btrfs_backref_cleanup_node+0x18a/0x420
   __asan_load8+0x69/0x90
   btrfs_backref_cleanup_node+0x18a/0x420
   btrfs_backref_release_cache+0x83/0x1b0
   relocate_block_group+0x394/0x780
   ? merge_reloc_roots+0x4a0/0x4a0
   btrfs_relocate_block_group+0x26e/0x4c0
   btrfs_relocate_chunk+0x52/0x120
   btrfs_balance+0xe2e/0x1900
   ? check_flags.part.50+0x6c/0x1e0
   ? btrfs_relocate_chunk+0x120/0x120
   ? kmem_cache_alloc_trace+0xa06/0xcb0
   ? _copy_from_user+0x83/0xc0
   btrfs_ioctl_balance+0x3a7/0x460
   btrfs_ioctl+0x24c8/0x4360
   ? __kasan_check_read+0x11/0x20
   ? check_chain_key+0x1f4/0x2f0
   ? __asan_loadN+0xf/0x20
   ? btrfs_ioctl_get_supported_features+0x30/0x30
   ? kvm_sched_clock_read+0x18/0x30
   ? check_chain_key+0x1f4/0x2f0
   ? lock_downgrade+0x3f0/0x3f0
   ? handle_mm_fault+0xad6/0x2150
   ? do_vfs_ioctl+0xfc/0x9d0
   ? ioctl_file_clone+0xe0/0xe0
   ? check_flags.part.50+0x6c/0x1e0
   ? check_flags.part.50+0x6c/0x1e0
   ? check_flags+0x26/0x30
   ? lock_is_held_type+0xc3/0xf0
   ? syscall_enter_from_user_mode+0x1b/0x60
   ? do_syscall_64+0x13/0x80
   ? rcu_read_lock_sched_held+0xa1/0xd0
   ? __kasan_check_read+0x11/0x20
   ? __fget_light+0xae/0x110
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7f4c4bdfe427

  Allocated by task 28836:
   kasan_save_stack+0x21/0x50
   __kasan_kmalloc.constprop.18+0xbe/0xd0
   kasan_kmalloc+0x9/0x10
   kmem_cache_alloc_trace+0x410/0xcb0
   btrfs_backref_alloc_node+0x46/0xf0
   btrfs_backref_add_tree_node+0x60d/0x11d0
   build_backref_tree+0xc5/0x700
   relocate_tree_blocks+0x2be/0xb90
   relocate_block_group+0x2eb/0x780
   btrfs_relocate_block_group+0x26e/0x4c0
   btrfs_relocate_chunk+0x52/0x120
   btrfs_balance+0xe2e/0x1900
   btrfs_ioctl_balance+0x3a7/0x460
   btrfs_ioctl+0x24c8/0x4360
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

  Freed by task 28836:
   kasan_save_stack+0x21/0x50
   kasan_set_track+0x20/0x30
   kasan_set_free_info+0x1f/0x30
   __kasan_slab_free+0xf3/0x140
   kasan_slab_free+0xe/0x10
   kfree+0xde/0x200
   btrfs_backref_error_cleanup+0x452/0x530
   build_backref_tree+0x1a5/0x700
   relocate_tree_blocks+0x2be/0xb90
   relocate_block_group+0x2eb/0x780
   btrfs_relocate_block_group+0x26e/0x4c0
   btrfs_relocate_chunk+0x52/0x120
   btrfs_balance+0xe2e/0x1900
   btrfs_ioctl_balance+0x3a7/0x460
   btrfs_ioctl+0x24c8/0x4360
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

This occurred because we freed our backref node in
btrfs_backref_error_cleanup(), but then tried to free it again in
btrfs_backref_release_cache().  This is because
btrfs_backref_release_cache() will cycle through all of the
cache->leaves nodes and free them up.  However
btrfs_backref_error_cleanup() freed the backref node with
btrfs_backref_free_node(), which simply kfree()d the backref node
without unlinking it from the cache.  Change this to a
btrfs_backref_drop_node(), which does the appropriate cleanup and
removes the node from the cache->leaves list, so when we go to free the
remaining cache we don't trip over items we've already dropped.

Fixes: 75bfb9aff4 ("Btrfs: cleanup error handling in build_backref_tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-18 15:44:53 +01:00
Josef Bacik
1b7ec85ef4 btrfs: pass root owner to read_tree_block
In order to properly set the lockdep class of a newly allocated block we
need to know the owner of the block.  For non-refcounted trees this is
straightforward, we always know in advance what tree we're reading from.
For refcounted trees we don't necessarily know, however all refcounted
trees share the same lockdep class name, tree-<level>.

Fix all the callers of read_tree_block() to pass in the root objectid
we're using.  In places like relocation and backref we could probably
unconditionally use 0, but just in case use the root when we have it,
otherwise use 0 in the cases we don't have the root as it's going to be
a refcounted tree anyway.

This is a preparation patch for further changes.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
b9729ce014 btrfs: locking: rip out path->leave_spinning
We no longer distinguish between blocking and spinning, so rip out all
this code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
ac5887c8e0 btrfs: locking: remove all the blocking helpers
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning.  Remove these helpers and all the places they are
called.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:01 +01:00
Josef Bacik
49d11bead7 btrfs: add a helper to read the tree_root commit root for backref lookup
I got the following lockdep splat with tree locks converted to rwsem
patches on btrfs/104:

  ======================================================
  WARNING: possible circular locking dependency detected
  5.9.0+ #102 Not tainted
  ------------------------------------------------------
  btrfs-cleaner/903 is trying to acquire lock:
  ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170

  but task is already holding lock:
  ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #3 (&fs_info->commit_root_sem){++++}-{3:3}:
	 down_read+0x40/0x130
	 caching_thread+0x53/0x5a0
	 btrfs_work_helper+0xfa/0x520
	 process_one_work+0x238/0x540
	 worker_thread+0x55/0x3c0
	 kthread+0x13a/0x150
	 ret_from_fork+0x1f/0x30

  -> #2 (&caching_ctl->mutex){+.+.}-{3:3}:
	 __mutex_lock+0x7e/0x7b0
	 btrfs_cache_block_group+0x1e0/0x510
	 find_free_extent+0xb6e/0x12f0
	 btrfs_reserve_extent+0xb3/0x1b0
	 btrfs_alloc_tree_block+0xb1/0x330
	 alloc_tree_block_no_bg_flush+0x4f/0x60
	 __btrfs_cow_block+0x11d/0x580
	 btrfs_cow_block+0x10c/0x220
	 commit_cowonly_roots+0x47/0x2e0
	 btrfs_commit_transaction+0x595/0xbd0
	 sync_filesystem+0x74/0x90
	 generic_shutdown_super+0x22/0x100
	 kill_anon_super+0x14/0x30
	 btrfs_kill_super+0x12/0x20
	 deactivate_locked_super+0x36/0xa0
	 cleanup_mnt+0x12d/0x190
	 task_work_run+0x5c/0xa0
	 exit_to_user_mode_prepare+0x1df/0x200
	 syscall_exit_to_user_mode+0x54/0x280
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  -> #1 (&space_info->groups_sem){++++}-{3:3}:
	 down_read+0x40/0x130
	 find_free_extent+0x2ed/0x12f0
	 btrfs_reserve_extent+0xb3/0x1b0
	 btrfs_alloc_tree_block+0xb1/0x330
	 alloc_tree_block_no_bg_flush+0x4f/0x60
	 __btrfs_cow_block+0x11d/0x580
	 btrfs_cow_block+0x10c/0x220
	 commit_cowonly_roots+0x47/0x2e0
	 btrfs_commit_transaction+0x595/0xbd0
	 sync_filesystem+0x74/0x90
	 generic_shutdown_super+0x22/0x100
	 kill_anon_super+0x14/0x30
	 btrfs_kill_super+0x12/0x20
	 deactivate_locked_super+0x36/0xa0
	 cleanup_mnt+0x12d/0x190
	 task_work_run+0x5c/0xa0
	 exit_to_user_mode_prepare+0x1df/0x200
	 syscall_exit_to_user_mode+0x54/0x280
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

  -> #0 (btrfs-root-00){++++}-{3:3}:
	 __lock_acquire+0x1167/0x2150
	 lock_acquire+0xb9/0x3d0
	 down_read_nested+0x43/0x130
	 __btrfs_tree_read_lock+0x32/0x170
	 __btrfs_read_lock_root_node+0x3a/0x50
	 btrfs_search_slot+0x614/0x9d0
	 btrfs_find_root+0x35/0x1b0
	 btrfs_read_tree_root+0x61/0x120
	 btrfs_get_root_ref+0x14b/0x600
	 find_parent_nodes+0x3e6/0x1b30
	 btrfs_find_all_roots_safe+0xb4/0x130
	 btrfs_find_all_roots+0x60/0x80
	 btrfs_qgroup_trace_extent_post+0x27/0x40
	 btrfs_add_delayed_data_ref+0x3fd/0x460
	 btrfs_free_extent+0x42/0x100
	 __btrfs_mod_ref+0x1d7/0x2f0
	 walk_up_proc+0x11c/0x400
	 walk_up_tree+0xf0/0x180
	 btrfs_drop_snapshot+0x1c7/0x780
	 btrfs_clean_one_deleted_snapshot+0xfb/0x110
	 cleaner_kthread+0xd4/0x140
	 kthread+0x13a/0x150
	 ret_from_fork+0x1f/0x30

  other info that might help us debug this:

  Chain exists of:
    btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(&fs_info->commit_root_sem);
				 lock(&caching_ctl->mutex);
				 lock(&fs_info->commit_root_sem);
    lock(btrfs-root-00);

   *** DEADLOCK ***

  3 locks held by btrfs-cleaner/903:
   #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140
   #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0
   #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80

  stack backtrace:
  CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
  Call Trace:
   dump_stack+0x8b/0xb0
   check_noncircular+0xcf/0xf0
   __lock_acquire+0x1167/0x2150
   ? __bfs+0x42/0x210
   lock_acquire+0xb9/0x3d0
   ? __btrfs_tree_read_lock+0x32/0x170
   down_read_nested+0x43/0x130
   ? __btrfs_tree_read_lock+0x32/0x170
   __btrfs_tree_read_lock+0x32/0x170
   __btrfs_read_lock_root_node+0x3a/0x50
   btrfs_search_slot+0x614/0x9d0
   ? find_held_lock+0x2b/0x80
   btrfs_find_root+0x35/0x1b0
   ? do_raw_spin_unlock+0x4b/0xa0
   btrfs_read_tree_root+0x61/0x120
   btrfs_get_root_ref+0x14b/0x600
   find_parent_nodes+0x3e6/0x1b30
   btrfs_find_all_roots_safe+0xb4/0x130
   btrfs_find_all_roots+0x60/0x80
   btrfs_qgroup_trace_extent_post+0x27/0x40
   btrfs_add_delayed_data_ref+0x3fd/0x460
   btrfs_free_extent+0x42/0x100
   __btrfs_mod_ref+0x1d7/0x2f0
   walk_up_proc+0x11c/0x400
   walk_up_tree+0xf0/0x180
   btrfs_drop_snapshot+0x1c7/0x780
   ? btrfs_clean_one_deleted_snapshot+0x73/0x110
   btrfs_clean_one_deleted_snapshot+0xfb/0x110
   cleaner_kthread+0xd4/0x140
   ? btrfs_alloc_root+0x50/0x50
   kthread+0x13a/0x150
   ? kthread_create_worker_on_cpu+0x40/0x40
   ret_from_fork+0x1f/0x30
  BTRFS info (device sdb): disk space caching is enabled
  BTRFS info (device sdb): has skinny extents

This happens because qgroups does a backref lookup when we create a
delayed ref.  From here it may have to look up a root from an indirect
ref, which does a normal lookup on the tree_root, which takes the read
lock on the tree_root nodes.

To fix this we need to add a variant for looking up roots that searches
the commit root of the tree_root.  Then when we do the backref search
using the commit root we are sure to not take any locks on the tree_root
nodes.  This gets rid of the lockdep splat when running btrfs/104.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-26 15:04:57 +01:00
David Sterba
0af447d050 btrfs: remove unnecessarily shadowed variables
In btrfs_orphan_cleanup, there's another instance of fs_info, but it's
the same as the one we already have.

In btrfs_backref_finish_upper_links, rb_node is same type and used
as temporary cursor to the tree.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:06:55 +02:00
Boleyn Su
c15c2ec07a btrfs: check correct variable after allocation in btrfs_backref_iter_alloc
The `if (!ret)` check will always be false and it may result in
ret->path being dereferenced while it is a NULL pointer.

Fixes: a37f232b7b ("btrfs: backref: introduce the skeleton of btrfs_backref_iter")
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boleyn Su <boleynsu@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 19:50:54 +02:00
Filipe Manana
580c079b57 btrfs: fix double free on ulist after backref resolution failure
At btrfs_find_all_roots_safe() we allocate a ulist and set the **roots
argument to point to it. However if later we fail due to an error returned
by find_parent_nodes(), we free that ulist but leave a dangling pointer in
the **roots argument. Upon receiving the error, a caller of this function
can attempt to free the same ulist again, resulting in an invalid memory
access.

One such scenario is during qgroup accounting:

btrfs_qgroup_account_extents()

 --> calls btrfs_find_all_roots() passes &new_roots (a stack allocated
     pointer) to btrfs_find_all_roots()

   --> btrfs_find_all_roots() just calls btrfs_find_all_roots_safe()
       passing &new_roots to it

     --> allocates ulist and assigns its address to **roots (which
         points to new_roots from btrfs_qgroup_account_extents())

     --> find_parent_nodes() returns an error, so we free the ulist
         and leave **roots pointing to it after returning

 --> btrfs_qgroup_account_extents() sees btrfs_find_all_roots() returned
     an error and jumps to the label 'cleanup', which just tries to
     free again the same ulist

Stack trace example:

 ------------[ cut here ]------------
 BTRFS: tree first key check failed
 WARNING: CPU: 1 PID: 1763215 at fs/btrfs/disk-io.c:422 btrfs_verify_level_key+0xe0/0x180 [btrfs]
 Modules linked in: dm_snapshot dm_thin_pool (...)
 CPU: 1 PID: 1763215 Comm: fsstress Tainted: G        W         5.8.0-rc3-btrfs-next-64 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
 RIP: 0010:btrfs_verify_level_key+0xe0/0x180 [btrfs]
 Code: 28 5b 5d (...)
 RSP: 0018:ffffb89b473779a0 EFLAGS: 00010286
 RAX: 0000000000000000 RBX: ffff90397759bf08 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000000027 RDI: 00000000ffffffff
 RBP: ffff9039a419c000 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: ffffb89b43301000 R12: 000000000000005e
 R13: ffffb89b47377a2e R14: ffffb89b473779af R15: 0000000000000000
 FS:  00007fc47e1e1000(0000) GS:ffff9039ac200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fc47e1df000 CR3: 00000003d9e4e001 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  read_block_for_search+0xf6/0x350 [btrfs]
  btrfs_next_old_leaf+0x242/0x650 [btrfs]
  resolve_indirect_refs+0x7cf/0x9e0 [btrfs]
  find_parent_nodes+0x4ea/0x12c0 [btrfs]
  btrfs_find_all_roots_safe+0xbf/0x130 [btrfs]
  btrfs_qgroup_account_extents+0x9d/0x390 [btrfs]
  btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
  btrfs_sync_file+0x3d4/0x4d0 [btrfs]
  do_fsync+0x38/0x70
  __x64_sys_fdatasync+0x13/0x20
  do_syscall_64+0x5c/0xe0
  entry_SYSCALL_64_after_hwframe+0x44/0xa9
 RIP: 0033:0x7fc47e2d72e3
 Code: Bad RIP value.
 RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
 softirqs last  enabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace 8639237550317b48 ]---
 BTRFS error (device sdc): tree first key mismatch detected, bytenr=62324736 parent_transid=94 key expected=(262,108,1351680) has=(259,108,1921024)
 general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
 CPU: 2 PID: 1763215 Comm: fsstress Tainted: G        W         5.8.0-rc3-btrfs-next-64 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
 RIP: 0010:ulist_release+0x14/0x60 [btrfs]
 Code: c7 07 00 (...)
 RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
 FS:  00007fc47e1e1000(0000) GS:ffff9039ac600000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f8c1c0a51c8 CR3: 00000003d9e4e004 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  ulist_free+0x13/0x20 [btrfs]
  btrfs_qgroup_account_extents+0xf3/0x390 [btrfs]
  btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
  btrfs_sync_file+0x3d4/0x4d0 [btrfs]
  do_fsync+0x38/0x70
  __x64_sys_fdatasync+0x13/0x20
  do_syscall_64+0x5c/0xe0
  entry_SYSCALL_64_after_hwframe+0x44/0xa9
 RIP: 0033:0x7fc47e2d72e3
 Code: Bad RIP value.
 RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
 Modules linked in: dm_snapshot dm_thin_pool (...)
 ---[ end trace 8639237550317b49 ]---
 RIP: 0010:ulist_release+0x14/0x60 [btrfs]
 Code: c7 07 00 (...)
 RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
 FS:  00007fc47e1e1000(0000) GS:ffff9039ad200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f6a776f7d40 CR3: 00000003d9e4e002 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fix this by making btrfs_find_all_roots_safe() set *roots to NULL after
it frees the ulist.

Fixes: 8da6d5815c ("Btrfs: added btrfs_find_all_roots()")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 21:59:15 +02:00
David Sterba
56e9357a1e btrfs: simplify root lookup by id
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.

Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Qu Wenruo
92a7cc4252 btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.

In fact, that bit can only be set to those trees:

- Subvolume roots
- Data reloc root
- Reloc roots for above roots

All other trees won't get this bit set.  So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees.  Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).

This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Qu Wenruo
876de781b0 btrfs: backref: distinguish reloc and non-reloc use of indirect resolution
For relocation tree detection, relocation backref cache uses
btrfs_should_ignore_reloc_root() which uses relocation-specific checks
like checking the DEAD_RELOC_ROOT bit.

However for general purpose backref cache, we can rely on that check, as
it's possible that relocation is also running.

For generic purposed backref cache, we detect reloc root by
SHARED_BLOCK_REF item.  Only reloc root node has its parent bytenr
pointing back to itself.

And in that case, backref cache will mark the reloc root node useless,
dropping any child orphan nodes.

So only call btrfs_should_ignore_reloc_root() if the backref cache is
for relocation.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:22 +02:00
Qu Wenruo
1b23ea180b btrfs: reloc: move error handling of build_backref_tree() to backref.c
The error cleanup will be extracted as a new function,
btrfs_backref_error_cleanup(), and moved to backref.c and exported for
later usage.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:21 +02:00
Qu Wenruo
fc997ed05a btrfs: backref: rename and move finish_upper_links()
This the the 2nd major part of generic backref cache. Move it to
backref.c so we can reuse it.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:21 +02:00
Qu Wenruo
1b60d2ec98 btrfs: backref: rename and move handle_one_tree_block()
This function is the major part of backref cache build process, move it
to backref.c so we can reuse it later.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:21 +02:00
Qu Wenruo
13fe1bdb22 btrfs: backref: rename and move backref_cache_cleanup()
Since we're releasing all existing nodes/edges, other than cleanup the
mess after error, "release" is a more proper naming here.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:20 +02:00
Qu Wenruo
023acb07bc btrfs: backref: rename and move remove_backref_node()
Also add comment explaining the cleanup progress, to differ it from
btrfs_backref_drop_node().

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:20 +02:00
Qu Wenruo
47254d07f3 btrfs: backref: rename and move alloc_backref_edge()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:19 +02:00
Qu Wenruo
b1818dab9b btrfs: backref: rename and move alloc_backref_node()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:19 +02:00
Qu Wenruo
584fb12187 btrfs: backref: rename and move backref_cache_init()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:19 +02:00
Qu Wenruo
c39c2ddc67 btrfs: backref: implement btrfs_backref_iter_next()
This function will go to the next inline/keyed backref for
btrfs_backref_iter infrastructure.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:16 +02:00
Qu Wenruo
a37f232b7b btrfs: backref: introduce the skeleton of btrfs_backref_iter
Due to the complex nature of btrfs extent tree, when we want to iterate
all backrefs of one extent, this involves quite a lot of work, like
searching the EXTENT_ITEM/METADATA_ITEM, iteration through inline and keyed
backrefs.

Normally this would result in a complex code, something like:

  btrfs_search_slot()
  /* Ensure we are at EXTENT_ITEM/METADATA_ITEM */
  while (1) {	/* Loop for extent tree items */
	while (ptr < end) { /* Loop for inlined items */
		/* Real work here */
	}
  next:
  	ret = btrfs_next_item()
	/* Ensure we're still at keyed item for specified bytenr */
  }

The idea of btrfs_backref_iter is to avoid such complex and hard to
read code structure, but something like the following:

  iter = btrfs_backref_iter_alloc();
  ret = btrfs_backref_iter_start(iter, bytenr);
  if (ret < 0)
	goto out;
  for (; ; ret = btrfs_backref_iter_next(iter)) {
	/* Real work here */
  }
  out:
  btrfs_backref_iter_free(iter);

This patch is just the skeleton + btrfs_backref_iter_start() code.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:16 +02:00
Arnd Bergmann
9c6c723f48 btrfs: fix gcc-4.8 build warning for struct initializer
Some older compilers like gcc-4.8 warn about mismatched curly braces in
a initializer:

fs/btrfs/backref.c: In function 'is_shared_data_backref':
fs/btrfs/backref.c:394:9: error: missing braces around
initializer [-Werror=missing-braces]
  struct prelim_ref target = {0};
         ^
fs/btrfs/backref.c:394:9: error: (near initialization for
'target.rbnode') [-Werror=missing-braces]

Use the GNU empty initializer extension to avoid this.

Fixes: ed58f2e66e ("btrfs: backref, don't add refs from shared block when resolving normal backref")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-30 12:17:49 +02:00
Josef Bacik
39dba8739c btrfs: do not resolve backrefs for roots that are being deleted
Zygo reported a deadlock where a task was stuck in the inode logical
resolve code.  The deadlock looks like this

  Task 1
  btrfs_ioctl_logical_to_ino
  ->iterate_inodes_from_logical
   ->iterate_extent_inodes
    ->path->search_commit_root isn't set, so a transaction is started
      ->resolve_indirect_ref for a root that's being deleted
	->search for our key, attempt to lock a node, DEADLOCK

  Task 2
  btrfs_drop_snapshot
  ->walk down to a leaf, lock it, walk up, lock node
   ->end transaction
    ->start transaction
      -> wait_cur_trans

  Task 3
  btrfs_commit_transaction
  ->wait_event(cur_trans->write_wait, num_writers == 1) DEADLOCK

We are holding a transaction open in btrfs_ioctl_logical_to_ino while we
try to resolve our references.  btrfs_drop_snapshot() holds onto its
locks while it stops and starts transaction handles, because it assumes
nobody is going to touch the root now.  Commit just does what commit
does, waiting for the writers to finish, blocking any new trans handles
from starting.

Fix this by making the backref code not try to resolve backrefs of roots
that are currently being deleted.  This will keep us from walking into a
snapshot that's currently being deleted.

This problem was harder to hit before because we rarely broke out of the
snapshot delete halfway through, but with my delayed ref throttling code
it happened much more often.  However we've always been able to do this,
so it's not a new problem.

Fixes: 8da6d5815c ("Btrfs: added btrfs_find_all_roots()")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:03:51 +01:00
Josef Bacik
c75e839414 btrfs: kill the subvol_srcu
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.

* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes

* the refcount_t used for the references checks for accidental 0->1
  in cases where the root lifetime would not be properly protected

* there's a leak detector for roots to catch unfreed roots at umount
  time

* SRCU served us well over the years but is was not a proper
  synchronization mechanism for some cases

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:02:00 +01:00
Qu Wenruo
19b546d7a1 btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves
In relocation, we need to locate all parent tree leaves referring to one
data extent, thus we have a complex mechanism to iterate throught extent
tree and subvolume trees to locate the related leaves.

However this is already done in backref.c, we have
btrfs_find_all_leafs(), which can return a ulist containing all leaves
referring to that data extent.

Use btrfs_find_all_leafs() to replace find_data_references().

There is a special handling for v1 space cache data extents, where we
need to delete the v1 space cache data extents, to avoid those data
extents to hang the data relocation.

In this patch, the special handling is done by re-iterating the root
tree leaf.  Although it's a little less efficient than the old handling,
considering we can reuse a lot of code, it should be acceptable.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:57 +01:00
ethanwu
b25b0b871f btrfs: backref, use correct count to resolve normal data refs
With the following patches:

- btrfs: backref, only collect file extent items matching backref offset
- btrfs: backref, not adding refs from shared block when resolving normal backref
- btrfs: backref, only search backref entries from leaves of the same root

we only collect the normal data refs we want, so the imprecise upper
bound total_refs of that EXTENT_ITEM could now be changed to the count
of the normal backref entry we want to search.

Background and how the patches fit together:

Btrfs has two types of data backref.
For BTRFS_EXTENT_DATA_REF_KEY type of backref, we don't have the
exact block number. Therefore, we need to call resolve_indirect_refs.
It uses btrfs_search_slot to locate the leaf block. Then
we need to walk through the leaves to search for the EXTENT_DATA items
that have disk bytenr matching the extent item (add_all_parents).

When resolving indirect refs, we could take entries that don't
belong to the backref entry we are searching for right now.
For that reason when searching backref entry, we always use total
refs of that EXTENT_ITEM rather than individual count.

For example:
item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize
  extent refs 24 gen 7302 flags DATA
  shared data backref parent 394985472 count 10 #1
  extent data backref root 257 objectid 260 offset 1048576 count 3 #2
  extent data backref root 256 objectid 260 offset 65536 count 6 #3
  extent data backref root 257 objectid 260 offset 65536 count 5 #4

For example, when searching backref entry #4, we'll use total_refs
24, a very loose loop ending condition, instead of total_refs = 5.

But using total_refs = 24 is not accurate. Sometimes, we'll never find
all the refs from specific root.  As a result, the loop keeps on going
until we reach the end of that inode.

The first 3 patches, handle 3 different types refs we might encounter.
These refs do not belong to the normal backref we are searching, and
hence need to be skipped.

This patch changes the total_refs to correct number so that we could
end loop as soon as we find all the refs we want.

btrfs send uses backref to find possible clone sources, the following
is a simple test to compare the results with and without this patch:

 $ btrfs subvolume create /sub1
 $ for i in `seq 1 163840`; do
     dd if=/dev/zero of=/sub1/file bs=64K count=1 seek=$((i-1)) conv=notrunc oflag=direct
   done
 $ btrfs subvolume snapshot /sub1 /sub2
 $ for i in `seq 1 163840`; do
     dd if=/dev/zero of=/sub1/file bs=4K count=1 seek=$(((i-1)*16+10)) conv=notrunc oflag=direct
   done
 $ btrfs subvolume snapshot -r /sub1 /snap1
 $ time btrfs send /snap1 | btrfs receive /volume2

Without this patch:

real 69m48.124s
user 0m50.199s
sys  70m15.600s

With this patch:

real    1m59.683s
user    0m35.421s
sys     2m42.684s

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
[ add patchset cover letter with background and numbers ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:40 +01:00
ethanwu
cfc0eed0ec btrfs: backref, only search backref entries from leaves of the same root
We could have some nodes/leaves in subvolume whose owner are not the
that subvolume. In this way, when we resolve normal backrefs of that
subvolume, we should avoid collecting those references from these blocks.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:40 +01:00
ethanwu
ed58f2e66e btrfs: backref, don't add refs from shared block when resolving normal backref
All references from the block of SHARED_DATA_REF belong to that shared
block backref.

For example:

  item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize 95
      extent refs 24 gen 7302 flags DATA
      extent data backref root 257 objectid 260 offset 65536 count 5
      extent data backref root 258 objectid 265 offset 0 count 9
      shared data backref parent 394985472 count 10

Block 394985472 might be leaf from root 257, and the item obejctid and
(file_pos - file_extent_item::offset) in that leaf just happens to be
260 and 65536 which is equal to the first extent data backref entry.

Before this patch, when we resolve backref:

  root 257 objectid 260 offset 65536

we will add those refs in block 394985472 and wrongly treat those as the
refs we want.

Fix this by checking if the leaf we are processing is shared data
backref, if so, just skip this leaf.

Shared data refs added into preftrees.direct have all entry value = 0
(root_id = 0, key = NULL, level = 0) except parent entry.

Other refs from indirect tree will have key value and root id != 0, and
these values won't be changed when their parent is resolved and added to
preftrees.direct. Therefore, we could reuse the preftrees.direct and
search ref with all values = 0 except parent is set to avoid getting
those resolved refs block.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:40 +01:00
ethanwu
7ac8b88ee6 btrfs: backref, only collect file extent items matching backref offset
When resolving one backref of type EXTENT_DATA_REF, we collect all
references that simply reference the EXTENT_ITEM even though their
(file_pos - file_extent_item::offset) are not the same as the
btrfs_extent_data_ref::offset we are searching for.

This patch adds additional check so that we only collect references whose
(file_pos - file_extent_item::offset) == btrfs_extent_data_ref::offset.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:40 +01:00
Josef Bacik
0024652895 btrfs: rename btrfs_put_fs_root and btrfs_grab_fs_root
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:33 +01:00
Josef Bacik
bc44d7c4b2 btrfs: push btrfs_grab_fs_root into btrfs_get_fs_root
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:32 +01:00
Josef Bacik
9326f76f4b btrfs: hold a ref on the root in resolve_indirect_ref
We're looking up a random root, we need to hold a ref on it while we're
using it.

Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:27 +01:00
Filipe Manana
a6d155d2e3 Btrfs: fix deadlock between fiemap and transaction commits
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:

  (...)
  [404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
  [404571.515956] Call Trace:
  [404571.516360]  ? __schedule+0x3ae/0x7b0
  [404571.516730]  schedule+0x3a/0xb0
  [404571.517104]  lock_extent_bits+0x1ec/0x2a0 [btrfs]
  [404571.517465]  ? remove_wait_queue+0x60/0x60
  [404571.517832]  btrfs_finish_ordered_io+0x292/0x800 [btrfs]
  [404571.518202]  normal_work_helper+0xea/0x530 [btrfs]
  [404571.518566]  process_one_work+0x21e/0x5c0
  [404571.518990]  worker_thread+0x4f/0x3b0
  [404571.519413]  ? process_one_work+0x5c0/0x5c0
  [404571.519829]  kthread+0x103/0x140
  [404571.520191]  ? kthread_create_worker_on_cpu+0x70/0x70
  [404571.520565]  ret_from_fork+0x3a/0x50
  [404571.520915] kworker/u8:6    D    0 31651      2 0x80004000
  [404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
  (...)
  [404571.537000] fsstress        D    0 13117  13115 0x00004000
  [404571.537263] Call Trace:
  [404571.537524]  ? __schedule+0x3ae/0x7b0
  [404571.537788]  schedule+0x3a/0xb0
  [404571.538066]  wait_current_trans+0xc8/0x100 [btrfs]
  [404571.538349]  ? remove_wait_queue+0x60/0x60
  [404571.538680]  start_transaction+0x33c/0x500 [btrfs]
  [404571.539076]  btrfs_check_shared+0xa3/0x1f0 [btrfs]
  [404571.539513]  ? extent_fiemap+0x2ce/0x650 [btrfs]
  [404571.539866]  extent_fiemap+0x2ce/0x650 [btrfs]
  [404571.540170]  do_vfs_ioctl+0x526/0x6f0
  [404571.540436]  ksys_ioctl+0x70/0x80
  [404571.540734]  __x64_sys_ioctl+0x16/0x20
  [404571.540997]  do_syscall_64+0x60/0x1d0
  [404571.541279]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  (...)
  [404571.543729] btrfs           D    0 14210  14208 0x00004000
  [404571.544023] Call Trace:
  [404571.544275]  ? __schedule+0x3ae/0x7b0
  [404571.544526]  ? wait_for_completion+0x112/0x1a0
  [404571.544795]  schedule+0x3a/0xb0
  [404571.545064]  schedule_timeout+0x1ff/0x390
  [404571.545351]  ? lock_acquire+0xa6/0x190
  [404571.545638]  ? wait_for_completion+0x49/0x1a0
  [404571.545890]  ? wait_for_completion+0x112/0x1a0
  [404571.546228]  wait_for_completion+0x131/0x1a0
  [404571.546503]  ? wake_up_q+0x70/0x70
  [404571.546775]  btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
  [404571.547159]  btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
  [404571.547449]  ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
  [404571.547703]  ? remove_wait_queue+0x60/0x60
  [404571.547969]  btrfs_mksubvol+0x605/0x640 [btrfs]
  [404571.548226]  ? __sb_start_write+0xd4/0x1c0
  [404571.548512]  ? mnt_want_write_file+0x24/0x50
  [404571.548789]  btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
  [404571.549048]  btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
  [404571.549307]  btrfs_ioctl+0x133f/0x3150 [btrfs]
  [404571.549549]  ? mem_cgroup_charge_statistics+0x4c/0xd0
  [404571.549792]  ? mem_cgroup_commit_charge+0x84/0x4b0
  [404571.550064]  ? __handle_mm_fault+0xe3e/0x11f0
  [404571.550306]  ? do_raw_spin_unlock+0x49/0xc0
  [404571.550608]  ? _raw_spin_unlock+0x24/0x30
  [404571.550976]  ? __handle_mm_fault+0xedf/0x11f0
  [404571.551319]  ? do_vfs_ioctl+0xa2/0x6f0
  [404571.551659]  ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
  [404571.552087]  do_vfs_ioctl+0xa2/0x6f0
  [404571.552355]  ksys_ioctl+0x70/0x80
  [404571.552621]  __x64_sys_ioctl+0x16/0x20
  [404571.552864]  do_syscall_64+0x60/0x1d0
  [404571.553104]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  (...)

If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.

So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.

Fixes: 03628cdbc6 ("Btrfs: do not start a transaction during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-30 18:25:12 +02:00
David Sterba
5911c8fe05 btrfs: fiemap: preallocate ulists for btrfs_check_shared
btrfs_check_shared looks up parents of a given extent and uses ulists
for that. These are allocated and freed repeatedly. Preallocation in the
caller will avoid the overhead and also allow us to use the GFP_KERNEL
as it is happens before the extent locks are taken.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01 13:34:53 +02:00
Filipe Manana
03628cdbc6 Btrfs: do not start a transaction during fiemap
During fiemap, for regular extents (non inline) we need to check if they
are shared and if they are, set the shared bit. Checking if an extent is
shared requires checking the delayed references of the currently running
transaction, since some reference might have not yet hit the extent tree
and be only in the in-memory delayed references.

However we were using a transaction join for this, which creates a new
transaction when there is no transaction currently running. That means
that two more potential failures can happen: creating the transaction and
committing it. Further, if no write activity is currently happening in the
system, and fiemap calls keep being done, we end up creating and
committing transactions that do nothing.

In some extreme cases this can result in the commit of the transaction
created by fiemap to fail with ENOSPC when updating the root item of a
subvolume tree because a join does not reserve any space, leading to a
trace like the following:

 heisenberg kernel: ------------[ cut here ]------------
 heisenberg kernel: BTRFS: Transaction aborted (error -28)
 heisenberg kernel: WARNING: CPU: 0 PID: 7137 at fs/btrfs/root-tree.c:136 btrfs_update_root+0x22b/0x320 [btrfs]
(...)
 heisenberg kernel: CPU: 0 PID: 7137 Comm: btrfs-transacti Not tainted 4.19.0-4-amd64 #1 Debian 4.19.28-2
 heisenberg kernel: Hardware name: FUJITSU LIFEBOOK U757/FJNB2A5, BIOS Version 1.21 03/19/2018
 heisenberg kernel: RIP: 0010:btrfs_update_root+0x22b/0x320 [btrfs]
(...)
 heisenberg kernel: RSP: 0018:ffffb5448828bd40 EFLAGS: 00010286
 heisenberg kernel: RAX: 0000000000000000 RBX: ffff8ed56bccef50 RCX: 0000000000000006
 heisenberg kernel: RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8ed6bda166a0
 heisenberg kernel: RBP: 00000000ffffffe4 R08: 00000000000003df R09: 0000000000000007
 heisenberg kernel: R10: 0000000000000000 R11: 0000000000000001 R12: ffff8ed63396a078
 heisenberg kernel: R13: ffff8ed092d7c800 R14: ffff8ed64f5db028 R15: ffff8ed6bd03d068
 heisenberg kernel: FS:  0000000000000000(0000) GS:ffff8ed6bda00000(0000) knlGS:0000000000000000
 heisenberg kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 heisenberg kernel: CR2: 00007f46f75f8000 CR3: 0000000310a0a002 CR4: 00000000003606f0
 heisenberg kernel: DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 heisenberg kernel: DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 heisenberg kernel: Call Trace:
 heisenberg kernel:  commit_fs_roots+0x166/0x1d0 [btrfs]
 heisenberg kernel:  ? _cond_resched+0x15/0x30
 heisenberg kernel:  ? btrfs_run_delayed_refs+0xac/0x180 [btrfs]
 heisenberg kernel:  btrfs_commit_transaction+0x2bd/0x870 [btrfs]
 heisenberg kernel:  ? start_transaction+0x9d/0x3f0 [btrfs]
 heisenberg kernel:  transaction_kthread+0x147/0x180 [btrfs]
 heisenberg kernel:  ? btrfs_cleanup_transaction+0x530/0x530 [btrfs]
 heisenberg kernel:  kthread+0x112/0x130
 heisenberg kernel:  ? kthread_bind+0x30/0x30
 heisenberg kernel:  ret_from_fork+0x35/0x40
 heisenberg kernel: ---[ end trace 05de912e30e012d9 ]---

Since fiemap (and btrfs_check_shared()) is a read-only operation, do not do
a transaction join to avoid the overhead of creating a new transaction (if
there is currently no running transaction) and introducing a potential
point of failure when the new transaction gets committed, instead use a
transaction attach to grab a handle for the currently running transaction
if any.

Reported-by: Christoph Anton Mitterer <calestyo@scientia.net>
Link: https://lore.kernel.org/linux-btrfs/b2a668d7124f1d3e410367f587926f622b3f03a4.camel@scientia.net/
Fixes: afce772e87 ("btrfs: fix check_shared for fiemap ioctl")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:51 +02:00
Filipe Manana
bfc61c3626 Btrfs: do not start a transaction at iterate_extent_inodes()
When finding out which inodes have references on a particular extent, done
by backref.c:iterate_extent_inodes(), from the BTRFS_IOC_LOGICAL_INO (both
v1 and v2) ioctl and from scrub we use the transaction join API to grab a
reference on the currently running transaction, since in order to give
accurate results we need to inspect the delayed references of the currently
running transaction.

However, if there is currently no running transaction, the join operation
will create a new transaction. This is inefficient as the transaction will
eventually be committed, doing unnecessary IO and introducing a potential
point of failure that will lead to a transaction abort due to -ENOSPC, as
recently reported [1].

That's because the join, creates the transaction but does not reserve any
space, so when attempting to update the root item of the root passed to
btrfs_join_transaction(), during the transaction commit, we can end up
failling with -ENOSPC. Users of a join operation are supposed to actually
do some filesystem changes and reserve space by some means, which is not
the case of iterate_extent_inodes(), it is a read-only operation for all
contextes from which it is called.

The reported [1] -ENOSPC failure stack trace is the following:

 heisenberg kernel: ------------[ cut here ]------------
 heisenberg kernel: BTRFS: Transaction aborted (error -28)
 heisenberg kernel: WARNING: CPU: 0 PID: 7137 at fs/btrfs/root-tree.c:136 btrfs_update_root+0x22b/0x320 [btrfs]
(...)
 heisenberg kernel: CPU: 0 PID: 7137 Comm: btrfs-transacti Not tainted 4.19.0-4-amd64 #1 Debian 4.19.28-2
 heisenberg kernel: Hardware name: FUJITSU LIFEBOOK U757/FJNB2A5, BIOS Version 1.21 03/19/2018
 heisenberg kernel: RIP: 0010:btrfs_update_root+0x22b/0x320 [btrfs]
(...)
 heisenberg kernel: RSP: 0018:ffffb5448828bd40 EFLAGS: 00010286
 heisenberg kernel: RAX: 0000000000000000 RBX: ffff8ed56bccef50 RCX: 0000000000000006
 heisenberg kernel: RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8ed6bda166a0
 heisenberg kernel: RBP: 00000000ffffffe4 R08: 00000000000003df R09: 0000000000000007
 heisenberg kernel: R10: 0000000000000000 R11: 0000000000000001 R12: ffff8ed63396a078
 heisenberg kernel: R13: ffff8ed092d7c800 R14: ffff8ed64f5db028 R15: ffff8ed6bd03d068
 heisenberg kernel: FS:  0000000000000000(0000) GS:ffff8ed6bda00000(0000) knlGS:0000000000000000
 heisenberg kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 heisenberg kernel: CR2: 00007f46f75f8000 CR3: 0000000310a0a002 CR4: 00000000003606f0
 heisenberg kernel: DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 heisenberg kernel: DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 heisenberg kernel: Call Trace:
 heisenberg kernel:  commit_fs_roots+0x166/0x1d0 [btrfs]
 heisenberg kernel:  ? _cond_resched+0x15/0x30
 heisenberg kernel:  ? btrfs_run_delayed_refs+0xac/0x180 [btrfs]
 heisenberg kernel:  btrfs_commit_transaction+0x2bd/0x870 [btrfs]
 heisenberg kernel:  ? start_transaction+0x9d/0x3f0 [btrfs]
 heisenberg kernel:  transaction_kthread+0x147/0x180 [btrfs]
 heisenberg kernel:  ? btrfs_cleanup_transaction+0x530/0x530 [btrfs]
 heisenberg kernel:  kthread+0x112/0x130
 heisenberg kernel:  ? kthread_bind+0x30/0x30
 heisenberg kernel:  ret_from_fork+0x35/0x40
 heisenberg kernel: ---[ end trace 05de912e30e012d9 ]---

So fix that by using the attach API, which does not create a transaction
when there is currently no running transaction.

[1] https://lore.kernel.org/linux-btrfs/b2a668d7124f1d3e410367f587926f622b3f03a4.camel@scientia.net/

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:48 +02:00
Arnd Bergmann
290342f661 btrfs: use BUG() instead of BUG_ON(1)
BUG_ON(1) leads to bogus warnings from clang when
CONFIG_PROFILE_ANNOTATED_BRANCHES is set:

fs/btrfs/volumes.c:5041:3: error: variable 'max_chunk_size' is used uninitialized whenever 'if' condition is false
      [-Werror,-Wsometimes-uninitialized]
                BUG_ON(1);
                ^~~~~~~~~
include/asm-generic/bug.h:61:36: note: expanded from macro 'BUG_ON'
 #define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
                                   ^~~~~~~~~~~~~~~~~~~
include/linux/compiler.h:48:23: note: expanded from macro 'unlikely'
 #  define unlikely(x)   (__branch_check__(x, 0, __builtin_constant_p(x)))
                        ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fs/btrfs/volumes.c:5046:9: note: uninitialized use occurs here
                             max_chunk_size);
                             ^~~~~~~~~~~~~~
include/linux/kernel.h:860:36: note: expanded from macro 'min'
 #define min(x, y)       __careful_cmp(x, y, <)
                                         ^
include/linux/kernel.h:853:17: note: expanded from macro '__careful_cmp'
                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
                              ^
include/linux/kernel.h:847:25: note: expanded from macro '__cmp_once'
                typeof(y) unique_y = (y);               \
                                      ^
fs/btrfs/volumes.c:5041:3: note: remove the 'if' if its condition is always true
                BUG_ON(1);
                ^
include/asm-generic/bug.h:61:32: note: expanded from macro 'BUG_ON'
 #define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
                               ^
fs/btrfs/volumes.c:4993:20: note: initialize the variable 'max_chunk_size' to silence this warning
        u64 max_chunk_size;
                          ^
                           = 0

Change it to BUG() so clang can see that this code path can never
continue.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:28 +02:00
Josef Bacik
38e3eebff6 btrfs: honor path->skip_locking in backref code
Qgroups will do the old roots lookup at delayed ref time, which could be
while walking down the extent root while running a delayed ref.  This
should be fine, except we specifically lock eb's in the backref walking
code irrespective of path->skip_locking, which deadlocks the system.
Fix up the backref code to honor path->skip_locking, nobody will be
modifying the commit_root when we're searching so it's completely safe
to do.

This happens since fb235dc06f ("btrfs: qgroup: Move half of the qgroup
accounting time out of commit trans"), kernel may lockup with quota
enabled.

There is one backref trace triggered by snapshot dropping along with
write operation in the source subvolume.  The example can be reliably
reproduced:

  btrfs-cleaner   D    0  4062      2 0x80000000
  Call Trace:
   schedule+0x32/0x90
   btrfs_tree_read_lock+0x93/0x130 [btrfs]
   find_parent_nodes+0x29b/0x1170 [btrfs]
   btrfs_find_all_roots_safe+0xa8/0x120 [btrfs]
   btrfs_find_all_roots+0x57/0x70 [btrfs]
   btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs]
   btrfs_qgroup_trace_leaf_items+0x10b/0x140 [btrfs]
   btrfs_qgroup_trace_subtree+0xc8/0xe0 [btrfs]
   do_walk_down+0x541/0x5e3 [btrfs]
   walk_down_tree+0xab/0xe7 [btrfs]
   btrfs_drop_snapshot+0x356/0x71a [btrfs]
   btrfs_clean_one_deleted_snapshot+0xb8/0xf0 [btrfs]
   cleaner_kthread+0x12b/0x160 [btrfs]
   kthread+0x112/0x130
   ret_from_fork+0x27/0x50

When dropping snapshots with qgroup enabled, we will trigger backref
walk.

However such backref walk at that timing is pretty dangerous, as if one
of the parent nodes get WRITE locked by other thread, we could cause a
dead lock.

For example:

           FS 260     FS 261 (Dropped)
            node A        node B
           /      \      /      \
       node C      node D      node E
      /   \         /  \        /     \
  leaf F|leaf G|leaf H|leaf I|leaf J|leaf K

The lock sequence would be:

      Thread A (cleaner)             |       Thread B (other writer)
-----------------------------------------------------------------------
write_lock(B)                        |
write_lock(D)                        |
^^^ called by walk_down_tree()       |
                                     |       write_lock(A)
                                     |       write_lock(D) << Stall
read_lock(H) << for backref walk     |
read_lock(D) << lock owner is        |
                the same thread A    |
                so read lock is OK   |
read_lock(A) << Stall                |

So thread A hold write lock D, and needs read lock A to unlock.
While thread B holds write lock A, while needs lock D to unlock.

This will cause a deadlock.

This is not only limited to snapshot dropping case.  As the backref
walk, even only happens on commit trees, is breaking the normal top-down
locking order, makes it deadlock prone.

Fixes: fb235dc06f ("btrfs: qgroup: Move half of the qgroup accounting time out of commit trans")
CC: stable@vger.kernel.org # 4.14+
Reported-and-tested-by: David Sterba <dsterba@suse.com>
Reported-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[ rebase to latest branch and fix lock assert bug in btrfs/007 ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ copy logs and deadlock analysis from Qu's patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 14:13:39 +01:00
David Sterba
300aa896e1 btrfs: replace btrfs_set_lock_blocking_rw with appropriate helpers
We can use the right helper where the lock type is a fixed parameter.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 14:13:27 +01:00
Andrea Gelmini
52042d8e82 btrfs: Fix typos in comments and strings
The typos accumulate over time so once in a while time they get fixed in
a large patch.

Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:50 +01:00
Nikolay Borisov
5c623d334a btrfs: Remove needless tree locking in iterate_inode_extrefs
In iterate_inode_exrefs the eb is cloned via btrfs_clone_extent_buffer
which creates a private extent buffer with the dummy flag set and ref
count of 1. Then this buffer is locked for reading and its ref count is
incremented by 1. Finally it's fed to the passed iterate_irefs_t
function. The actual iterate call back is inode_to_path (coming from
paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final
function the passed eb is only read by first assigning it to the local
eb variable. This variable is only modified in the case another eb was
referenced from the passed path that is eb != eb_in check triggers.

Considering this there is no point in locking the cloned eb in
iterate_inode_refs since it's never being modified and is not published
anywhere. Furthermore the cloned eb is completely fine having its ref
count be 1.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:30 +01:00
Nikolay Borisov
e5bba0b0f8 btrfs: Remove needless tree locking in iterate_inode_refs
In iterate_inode_refs the eb is cloned via btrfs_clone_extent_buffer
which creates a private extent buffer with the dummy flag set and ref
count of 1. Then this buffer is locked for reading and its ref count is
incremented by 1. Finally it's fed to the passed iterate_irefs_t
function. The actual iterate call back is inode_to_path (coming from
paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final
function the passed eb is only read by first assigning it to the local
eb variable. This variable is only modified in the case another eb was
referenced from the passed path that is eb != eb_in check triggers.

Considering this there is no point in locking the cloned eb in
iterate_inode_refs since it's never being modified and is not published
anywhere. Furthermore the cloned eb is completely fine having its ref
count be 1.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:30 +01:00
Liu Bo
ecf160b424 Btrfs: preftree: use rb_first_cached
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).

While resolving indirect refs and missing refs, it always looks for the
first rb entry in a while loop, it's helpful to use rb_first_cached
instead.

For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".

Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:33 +02:00
Liu Bo
e3d0396563 Btrfs: delayed-refs: use rb_first_cached for ref_tree
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).

Functions manipulating href->ref_tree need to get the first entry, this
converts href->ref_tree to use rb_first_cached().

For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".

Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:33 +02:00
Misono Tomohiro
4fd786e6c3 btrfs: Remove 'objectid' member from struct btrfs_root
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.

They are both set to the same value in __setup_root():

  static void __setup_root(struct btrfs_root *root,
                           struct btrfs_fs_info *fs_info,
                           u64 objectid)
  {
    ...
    root->objectid = objectid;
    ...
    root->root_key.objectid = objecitd;
    ...
  }

and not changed to other value after initialization.

grep in btrfs directory shows both are used in many places:
  $ grep -rI "root->root_key.objectid" | wc -l
  133
  $ grep -rI "root->objectid" | wc -l
  55
 (4.17, inc. some noise)

It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.

Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.

Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:25 +02:00
Misono Tomohiro
afc6961ffd btrfs: backref: Use ERR_CAST to return error code
Use ERR_CAST() instead of void * to make meaning clear.

Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:13:01 +02:00
Su Yue
af431dcb24 btrfs: return EUCLEAN if extent_inline_ref type is invalid
If type of extent_inline_ref found is not expected, filesystem may have
been corrupted, should return EUCLEAN instead of EINVAL.

Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:40 +02:00
David Sterba
c1d7c514f7 btrfs: replace GPL boilerplate by SPDX -- sources
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12 16:29:51 +02:00
Qu Wenruo
581c176041 btrfs: Validate child tree block's level and first key
We have several reports about node pointer points to incorrect child
tree blocks, which could have even wrong owner and level but still with
valid generation and checksum.

Although btrfs check could handle it and print error message like:
leaf parent key incorrect 60670574592

Kernel doesn't have enough check on this type of corruption correctly.
At least add such check to read_tree_block() and btrfs_read_buffer(),
where we need two new parameters @level and @first_key to verify the
child tree block.

The new @level check is mandatory and all call sites are already
modified to extract expected level from its call chain.

While @first_key is optional, the following call sites are skipping such
check:
1) Root node/leaf
   As ROOT_ITEM doesn't contain the first key, skip @first_key check.
2) Direct backref
   Only parent bytenr and level is known and we need to resolve the key
   all by ourselves, skip @first_key check.

Another note of this verification is, it needs extra info from nodeptr
or ROOT_ITEM, so it can't fit into current tree-checker framework, which
is limited to node/leaf boundary.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31 02:01:06 +02:00
Nikolay Borisov
a6dbceafb9 btrfs: Remove unused op_key var from add_delayed_refs
Added as part of 86d5f99442 ("btrfs: convert prelimary reference
tracking to use rbtrees") but never used. tmp_op_key essentially
subsumed that variable.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31 01:26:57 +02:00
David Sterba
e67c718b5b btrfs: add more __cold annotations
The __cold functions are placed to a special section, as they're
expected to be called rarely. This could help i-cache prefetches or help
compiler to decide which branches are more/less likely to be taken
without any other annotations needed.

Though we can't add more __exit annotations, it's still possible to add
__cold (that's also added with __exit). That way the following function
categories are tagged:

- printf wrappers, error messages
- exit helpers

Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26 15:09:39 +02:00
Edmund Nadolski
18bf591ba9 btrfs: add missing initialization in btrfs_check_shared
This patch addresses an issue that causes fiemap to falsely
report a shared extent.  The test case is as follows:

xfs_io -f -d -c "pwrite -b 16k 0 64k" -c "fiemap -v" /media/scratch/file5
sync
xfs_io  -c "fiemap -v" /media/scratch/file5

which gives the resulting output:

wrote 65536/65536 bytes at offset 0
64 KiB, 4 ops; 0.0000 sec (121.359 MiB/sec and 7766.9903 ops/sec)
/media/scratch/file5:
 EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
   0: [0..127]:        24576..24703       128 0x2001
/media/scratch/file5:
 EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
   0: [0..127]:        24576..24703       128   0x1

This is because btrfs_check_shared calls find_parent_nodes
repeatedly in a loop, passing a share_check struct to report
the count of shared extent. But btrfs_check_shared does not
re-initialize the count value to zero for subsequent calls
from the loop, resulting in a false share count value. This
is a regressive behavior from 4.13.

With proper re-initialization the test result is as follows:

wrote 65536/65536 bytes at offset 0
64 KiB, 4 ops; 0.0000 sec (110.035 MiB/sec and 7042.2535 ops/sec)
/media/scratch/file5:
 EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
   0: [0..127]:        24576..24703       128   0x1
/media/scratch/file5:
 EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
   0: [0..127]:        24576..24703       128   0x1

which corrects the regression.

Fixes: 3ec4d3238a ("btrfs: allow backref search checks for shared extents")
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
[ add text from cover letter to changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-14 22:26:46 +01:00
Zygo Blaxell
c8195a7b1a btrfs: remove spurious WARN_ON(ref->count < 0) in find_parent_nodes
Until v4.14, this warning was very infrequent:

	WARNING: CPU: 3 PID: 18172 at fs/btrfs/backref.c:1391 find_parent_nodes+0xc41/0x14e0
	Modules linked in: [...]
	CPU: 3 PID: 18172 Comm: bees Tainted: G      D W    L  4.11.9-zb64+ #1
	Hardware name: System manufacturer System Product Name/M5A78L-M/USB3, BIOS 2101    12/02/2014
	Call Trace:
	 dump_stack+0x85/0xc2
	 __warn+0xd1/0xf0
	 warn_slowpath_null+0x1d/0x20
	 find_parent_nodes+0xc41/0x14e0
	 __btrfs_find_all_roots+0xad/0x120
	 ? extent_same_check_offsets+0x70/0x70
	 iterate_extent_inodes+0x168/0x300
	 iterate_inodes_from_logical+0x87/0xb0
	 ? iterate_inodes_from_logical+0x87/0xb0
	 ? extent_same_check_offsets+0x70/0x70
	 btrfs_ioctl+0x8ac/0x2820
	 ? lock_acquire+0xc2/0x200
	 do_vfs_ioctl+0x91/0x700
	 ? __fget+0x112/0x200
	 SyS_ioctl+0x79/0x90
	 entry_SYSCALL_64_fastpath+0x23/0xc6
	 ? trace_hardirqs_off_caller+0x1f/0x140

Starting with v4.14 (specifically 86d5f99442 ("btrfs: convert prelimary
reference tracking to use rbtrees")) the WARN_ON occurs three orders of
magnitude more frequently--almost once per second while running workloads
like bees.

Replace the WARN_ON() with a comment rationale for its removal.
The rationale is paraphrased from an explanation by Edmund Nadolski
<enadolski@suse.de> on the linux-btrfs mailing list.

Fixes: 8da6d5815c ("Btrfs: added btrfs_find_all_roots()")
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-02-02 16:25:33 +01:00
Colin Ian King
ccc8dc758d btrfs: make function update_share_count static
The function update_share_count is local to the source and does
not need to be in global scope, so make it static.

Cleans up sparse warning:
fs/btrfs/backref.c:219:6: warning: symbol 'update_share_count' was not
declared. Should it be static?

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
Josef Bacik
0e0adbcfdc btrfs: track refs in a rb_tree instead of a list
If we get a significant amount of delayed refs for a single block (think
modifying multiple snapshots) we can end up spending an ungodly amount
of time looping through all of the entries trying to see if they can be
merged.  This is because we only add them to a list, so we have O(2n)
for every ref head.  This doesn't make any sense as we likely have refs
for different roots, and so they cannot be merged.  Tracking in a tree
will allow us to break as soon as we hit an entry that doesn't match,
making our worst case O(n).

With this we can also merge entries more easily.  Before we had to hope
that matching refs were on the ends of our list, but with the tree we
can search down to exact matches and merge them at insert time.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01 20:45:35 +01:00
Zygo Blaxell
c995ab3cda btrfs: add a flag to iterate_inodes_from_logical to find all extent refs for uncompressed extents
The LOGICAL_INO ioctl provides a backward mapping from extent bytenr and
offset (encoded as a single logical address) to a list of extent refs.
LOGICAL_INO complements TREE_SEARCH, which provides the forward mapping
(extent ref -> extent bytenr and offset, or logical address).  These are
useful capabilities for programs that manipulate extents and extent
references from userspace (e.g. dedup and defrag utilities).

When the extents are uncompressed (and not encrypted and not other),
check_extent_in_eb performs filtering of the extent refs to remove any
extent refs which do not contain the same extent offset as the 'logical'
parameter's extent offset.  This prevents LOGICAL_INO from returning
references to more than a single block.

To find the set of extent references to an uncompressed extent from [a, b),
userspace has to run a loop like this pseudocode:

	for (i = a; i < b; ++i)
		extent_ref_set += LOGICAL_INO(i);

At each iteration of the loop (up to 32768 iterations for a 128M extent),
data we are interested in is collected in the kernel, then deleted by
the filter in check_extent_in_eb.

When the extents are compressed (or encrypted or other), the 'logical'
parameter must be an extent bytenr (the 'a' parameter in the loop).
No filtering by extent offset is done (or possible?) so the result is
the complete set of extent refs for the entire extent.  This removes
the need for the loop, since we get all the extent refs in one call.

Add an 'ignore_offset' argument to iterate_inodes_from_logical,
[...several levels of function call graph...], and check_extent_in_eb, so
that we can disable the extent offset filtering for uncompressed extents.
This flag can be set by an improved version of the LOGICAL_INO ioctl to
get either behavior as desired.

There is no functional change in this patch.  The new flag is always
false.

Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor coding style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01 20:45:34 +01:00
Josef Bacik
d278850eff btrfs: remove delayed_ref_node from ref_head
This is just excessive information in the ref_head, and makes the code
complicated.  It is a relic from when we had the heads and the refs in
the same tree, which is no longer the case.  With this removal I've
cleaned up a bunch of the cruft around this old assumption as well.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-10-30 12:28:00 +01:00
Liu Bo
3de28d579e Btrfs: convert to use btrfs_get_extent_inline_ref_type
Since we have a helper which can do sanity check, this converts all
btrfs_extent_inline_ref_type to it.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-21 17:47:43 +02:00
Edmund Nadolski
01747e92a9 btrfs: clean up extraneous computations in add_delayed_refs
Repeating the same computation in multiple places is not
necessary.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:12:01 +02:00
Edmund Nadolski
3ec4d3238a btrfs: allow backref search checks for shared extents
When called with a struct share_check, find_parent_nodes()
will detect a shared extent and immediately return with
BACKREF_SHARED_FOUND.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:12:01 +02:00
Edmund Nadolski
9dd14fd696 btrfs: add cond_resched() calls when resolving backrefs
Since backref resolution is CPU-intensive, the cond_resched calls
should help alleviate soft lockup occurences.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:12:01 +02:00
Jeff Mahoney
00142756e1 btrfs: backref, add tracepoints for prelim_ref insertion and merging
This patch adds a tracepoint event for prelim_ref insertion and
merging.  For each, the ref being inserted or merged and the count
of tree nodes is issued.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:12:01 +02:00
Jeff Mahoney
6c336b212b btrfs: add a node counter to each of the rbtrees
This patch adds counters to each of the rbtrees so that we can tell
how large they are growing for a given workload.  These counters
will be exported by tracepoints in the next patch.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:12:01 +02:00
Edmund Nadolski
86d5f99442 btrfs: convert prelimary reference tracking to use rbtrees
It's been known for a while that the use of multiple lists
that are periodically merged was an algorithmic problem within
btrfs.  There are several workloads that don't complete in any
reasonable amount of time (e.g. btrfs/130) and others that cause
soft lockups.

The solution is to use a set of rbtrees that do insertion merging
for both indirect and direct refs, with the former converting
refs into the latter.  The result is a btrfs/130 workload that
used to take several hours now takes about half of that. This
runtime still isn't acceptable and a future patch will address that
by moving the rbtrees higher in the stack so the lookups can be
shared across multiple calls to find_parent_nodes.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 16:11:55 +02:00
Edmund Nadolski
f6954245d9 btrfs: remove ref_tree implementation from backref.c
Commit afce772e87 ("btrfs: fix check_shared for fiemap ioctl") added
the ref_tree code in backref.c to reduce backref searching for
shared extents under the FIEMAP ioctl. This code will not be
compatible with the upcoming rbtree changes for improved backref
searching, so this patch removes the ref_tree code.  The rbtree
changes will provide the equivalent functionality for FIEMAP.

The above commit also introduced transaction semantics around calls to
btrfs_check_shared() in order to accurately account for delayed refs.
This functionality needs to be retained, so a complete revert of the
above commit is not desirable. This patch therefore removes the
ref_tree portion of the commit as above, however it does not remove
the transaction portion.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 14:19:53 +02:00
Edmund Nadolski
bb739cf08e btrfs: btrfs_check_shared should manage its own transaction
Commit afce772e87 ("btrfs: fix check_shared for fiemap ioctl") added
transaction semantics around calls to btrfs_check_shared() in order to
provide accurate accounting of delayed refs. The transaction management
should be done inside btrfs_check_shared(), so that callers do not need
to manage transactions individually.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 14:19:53 +02:00
Jeff Mahoney
e0c476b128 btrfs: backref, cleanup __ namespace abuse
We typically use __ to indicate a helper routine that shouldn't be
called directly without understanding the proper context required
to do so.  We use static functions to indicate that a function is
private to a particular C file.  The backref code uses static
function and __ prefixes on nearly everything, which makes the code
difficult to read and establishes a pattern for future code that
shouldn't be followed.  This patch drops all the unnecessary prefixes.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 14:19:53 +02:00
Jeff Mahoney
4dae077a83 btrfs: backref, add unode_aux_to_inode_list helper
Replacing the double cast and ternary conditional with a helper makes
the code easier on the eyes.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 14:19:53 +02:00
Jeff Mahoney
73980becae btrfs: backref, constify some arguments
This constifies a few buffers used in the backref code.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16 14:19:53 +02:00
David Sterba
f54de068dd btrfs: use GFP_KERNEL in init_ipath
Now that init_ipath is called either from a safe context or with
memalloc_nofs protection, we can switch to GFP_KERNEL allocations in
init_path and init_data_container.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-19 18:26:02 +02:00
Edmund Nadolski
de47c9d3ff btrfs: replace hardcoded value with SEQ_LAST macro
Define the SEQ_LAST macro to replace (u64)-1 in places where said
value triggers a special-case ref search behavior.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:25 +02:00
Edmund Nadolski
f58d88b336 btrfs: provide enumeration for __merge_refs mode argument
Replace hardcoded numeric values for __merge_refs 'mode' argument
with descriptive constants.

Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:25 +02:00
Elena Reshetova
6df8cdf5bd btrfs: convert btrfs_delayed_ref_node.refs from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:23 +02:00