Commit Graph

4995 Commits

Author SHA1 Message Date
Jordan Borgner
0e96f31ea4 x86: Clean up 'sizeof x' => 'sizeof(x)'
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.

(Also do some whitespace cleanups in a few places while at it.)

[ mingo: Rewrote the changelog. ]

Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-29 07:13:28 +01:00
Linus Torvalds
0d1e8b8d2b KVM updates for v4.20
ARM:
  - Improved guest IPA space support (32 to 52 bits)
 
  - RAS event delivery for 32bit
 
  - PMU fixes
 
  - Guest entry hardening
 
  - Various cleanups
 
  - Port of dirty_log_test selftest
 
 PPC:
  - Nested HV KVM support for radix guests on POWER9.  The performance is
    much better than with PR KVM.  Migration and arbitrary level of
    nesting is supported.
 
  - Disable nested HV-KVM on early POWER9 chips that need a particular hardware
    bug workaround
 
  - One VM per core mode to prevent potential data leaks
 
  - PCI pass-through optimization
 
  - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
 
 s390:
  - Initial version of AP crypto virtualization via vfio-mdev
 
  - Improvement for vfio-ap
 
  - Set the host program identifier
 
  - Optimize page table locking
 
 x86:
  - Enable nested virtualization by default
 
  - Implement Hyper-V IPI hypercalls
 
  - Improve #PF and #DB handling
 
  - Allow guests to use Enlightened VMCS
 
  - Add migration selftests for VMCS and Enlightened VMCS
 
  - Allow coalesced PIO accesses
 
  - Add an option to perform nested VMCS host state consistency check
    through hardware
 
  - Automatic tuning of lapic_timer_advance_ns
 
  - Many fixes, minor improvements, and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
 3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
 BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
 XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
 teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
 ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
 =yEPW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:
   - Improved guest IPA space support (32 to 52 bits)

   - RAS event delivery for 32bit

   - PMU fixes

   - Guest entry hardening

   - Various cleanups

   - Port of dirty_log_test selftest

  PPC:
   - Nested HV KVM support for radix guests on POWER9. The performance
     is much better than with PR KVM. Migration and arbitrary level of
     nesting is supported.

   - Disable nested HV-KVM on early POWER9 chips that need a particular
     hardware bug workaround

   - One VM per core mode to prevent potential data leaks

   - PCI pass-through optimization

   - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base

  s390:
   - Initial version of AP crypto virtualization via vfio-mdev

   - Improvement for vfio-ap

   - Set the host program identifier

   - Optimize page table locking

  x86:
   - Enable nested virtualization by default

   - Implement Hyper-V IPI hypercalls

   - Improve #PF and #DB handling

   - Allow guests to use Enlightened VMCS

   - Add migration selftests for VMCS and Enlightened VMCS

   - Allow coalesced PIO accesses

   - Add an option to perform nested VMCS host state consistency check
     through hardware

   - Automatic tuning of lapic_timer_advance_ns

   - Many fixes, minor improvements, and cleanups"

* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
  KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
  Revert "kvm: x86: optimize dr6 restore"
  KVM: PPC: Optimize clearing TCEs for sparse tables
  x86/kvm/nVMX: tweak shadow fields
  selftests/kvm: add missing executables to .gitignore
  KVM: arm64: Safety check PSTATE when entering guest and handle IL
  KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
  arm/arm64: KVM: Enable 32 bits kvm vcpu events support
  arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
  KVM: arm64: Fix caching of host MDCR_EL2 value
  KVM: VMX: enable nested virtualization by default
  KVM/x86: Use 32bit xor to clear registers in svm.c
  kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
  kvm: vmx: Defer setting of DR6 until #DB delivery
  kvm: x86: Defer setting of CR2 until #PF delivery
  kvm: x86: Add payload operands to kvm_multiple_exception
  kvm: x86: Add exception payload fields to kvm_vcpu_events
  kvm: x86: Add has_payload and payload to kvm_queued_exception
  KVM: Documentation: Fix omission in struct kvm_vcpu_events
  KVM: selftests: add Enlightened VMCS test
  ...
2018-10-25 17:57:35 -07:00
KarimAllah Ahmed
22a7cdcae6 KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
The spec only requires the posted interrupt descriptor address to be
64-bytes aligned (i.e. bits[0:5] == 0). Using page_address_valid also
forces the address to be page aligned.

Only validate that the address does not cross the maximum physical address
without enforcing a page alignment.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: 6de84e581c ("nVMX x86: check posted-interrupt descriptor addresss on vmentry of L2")
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhuhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-10-24 12:47:16 +02:00
Linus Torvalds
ba9f6f8954 Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo updates from Eric Biederman:
 "I have been slowly sorting out siginfo and this is the culmination of
  that work.

  The primary result is in several ways the signal infrastructure has
  been made less error prone. The code has been updated so that manually
  specifying SEND_SIG_FORCED is never necessary. The conversion to the
  new siginfo sending functions is now complete, which makes it
  difficult to send a signal without filling in the proper siginfo
  fields.

  At the tail end of the patchset comes the optimization of decreasing
  the size of struct siginfo in the kernel from 128 bytes to about 48
  bytes on 64bit. The fundamental observation that enables this is by
  definition none of the known ways to use struct siginfo uses the extra
  bytes.

  This comes at the cost of a small user space observable difference.
  For the rare case of siginfo being injected into the kernel only what
  can be copied into kernel_siginfo is delivered to the destination, the
  rest of the bytes are set to 0. For cases where the signal and the
  si_code are known this is safe, because we know those bytes are not
  used. For cases where the signal and si_code combination is unknown
  the bits that won't fit into struct kernel_siginfo are tested to
  verify they are zero, and the send fails if they are not.

  I made an extensive search through userspace code and I could not find
  anything that would break because of the above change. If it turns out
  I did break something it will take just the revert of a single change
  to restore kernel_siginfo to the same size as userspace siginfo.

  Testing did reveal dependencies on preferring the signo passed to
  sigqueueinfo over si->signo, so bit the bullet and added the
  complexity necessary to handle that case.

  Testing also revealed bad things can happen if a negative signal
  number is passed into the system calls. Something no sane application
  will do but something a malicious program or a fuzzer might do. So I
  have fixed the code that performs the bounds checks to ensure negative
  signal numbers are handled"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
  signal: Guard against negative signal numbers in copy_siginfo_from_user32
  signal: Guard against negative signal numbers in copy_siginfo_from_user
  signal: In sigqueueinfo prefer sig not si_signo
  signal: Use a smaller struct siginfo in the kernel
  signal: Distinguish between kernel_siginfo and siginfo
  signal: Introduce copy_siginfo_from_user and use it's return value
  signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
  signal: Fail sigqueueinfo if si_signo != sig
  signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
  signal/unicore32: Use force_sig_fault where appropriate
  signal/unicore32: Generate siginfo in ucs32_notify_die
  signal/unicore32: Use send_sig_fault where appropriate
  signal/arc: Use force_sig_fault where appropriate
  signal/arc: Push siginfo generation into unhandled_exception
  signal/ia64: Use force_sig_fault where appropriate
  signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
  signal/ia64: Use the generic force_sigsegv in setup_frame
  signal/arm/kvm: Use send_sig_mceerr
  signal/arm: Use send_sig_fault where appropriate
  signal/arm: Use force_sig_fault where appropriate
  ...
2018-10-24 11:22:39 +01:00
Linus Torvalds
fec98069fb Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
     based on the AMD Zen architecture, and are built and sold in China,
     for domestic datacenter use. The code is pretty close to AMD
     support, mostly with a few quirks and enumeration differences. (Pu
     Wen)

   - Enable CPUID support on Cyrix 6x86/6x86L processors"

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  tools/cpupower: Add Hygon Dhyana support
  cpufreq: Add Hygon Dhyana support
  ACPI: Add Hygon Dhyana support
  x86/xen: Add Hygon Dhyana support to Xen
  x86/kvm: Add Hygon Dhyana support to KVM
  x86/mce: Add Hygon Dhyana support to the MCA infrastructure
  x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
  x86/apic: Add Hygon Dhyana support
  x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
  x86/amd_nb: Check vendor in AMD-only functions
  x86/alternative: Init ideal_nops for Hygon Dhyana
  x86/events: Add Hygon Dhyana support to PMU infrastructure
  x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
  x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
  x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
  x86/cpu: Create Hygon Dhyana architecture support file
  x86/CPU: Change query logic so CPUID is enabled before testing
  x86/CPU: Use correct macros for Cyrix calls
2018-10-23 16:16:40 +01:00
Radim Krčmář
f9dcf08e20 Revert "kvm: x86: optimize dr6 restore"
This reverts commit 0e0a53c551.

As Christian Ehrhardt noted:

  The most common case is that vcpu->arch.dr6 and the host's %dr6 value
  are not related at all because ->switch_db_regs is zero. To do this
  all correctly, we must handle the case where the guest leaves an arbitrary
  unused value in vcpu->arch.dr6 before disabling breakpoints again.

  However, this means that vcpu->arch.dr6 is not suitable to detect the
  need for a %dr6 clear.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-10-23 16:34:59 +02:00
Vitaly Kuznetsov
cbe3f898d1 x86/kvm/nVMX: tweak shadow fields
It seems we have some leftovers from times when 'unrestricted guest'
wasn't exposed to L1. Stop shadowing GUEST_CS_{BASE,LIMIT,AR_SELECTOR}
and GUEST_ES_BASE, shadow GUEST_SS_AR_BYTES as it was found that some
hypervisors (e.g. Hyper-V without Enlightened VMCS) access it pretty
often.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-19 18:45:14 +02:00
Paolo Bonzini
1e58e5e591 KVM: VMX: enable nested virtualization by default
With live migration support and finally a good solution for exception
event injection, nested VMX should be ready for having a stable userspace
ABI.  The results of syzkaller fuzzing are not perfect but not horrible
either (and might be partially due to running on GCE, so that effectively
we're testing three-level nesting on a fork of upstream KVM!).  Enabling
it by default seems like a nice way to conclude the 4.20 pull request. :)

Unfortunately, enabling nested SVM in 2009 (commit 4b6e4dca70) was a
bit premature.  However, until live migration support is in place we can
reasonably expect that it does not offer much in terms of ABI guarantees.
Therefore we are still in time to break things and conform as much as
possible to the interface used for VMX.

Suggested-by: Jim Mattson <jmattson@google.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Celebrated-by: Liran Alon <liran.alon@oracle.com>
Celebrated-by: Wanpeng Li <kernellwp@gmail.com>
Celebrated-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:10:09 +02:00
Uros Bizjak
43ce76ce73 KVM/x86: Use 32bit xor to clear registers in svm.c
x86_64 zero-extends 32bit xor operation to a full 64bit register.

Also add a comment and remove unnecessary instruction suffix in vmx.c

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:08:21 +02:00
Jim Mattson
c4f55198c7 kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
This is a per-VM capability which can be enabled by userspace so that
the faulting linear address will be included with the information
about a pending #PF in L2, and the "new DR6 bits" will be included
with the information about a pending #DB in L2. With this capability
enabled, the L1 hypervisor can now intercept #PF before CR2 is
modified. Under VMX, the L1 hypervisor can now intercept #DB before
DR6 and DR7 are modified.

When userspace has enabled KVM_CAP_EXCEPTION_PAYLOAD, it should
generally provide an appropriate payload when injecting a #PF or #DB
exception via KVM_SET_VCPU_EVENTS. However, to support restoring old
checkpoints, this payload is not required.

Note that bit 16 of the "new DR6 bits" is set to indicate that a debug
exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions was
enabled. This is the reverse of DR6.RTM, which is cleared in this
scenario.

This capability also enables exception.pending in struct
kvm_vcpu_events, which allows userspace to distinguish between pending
and injected exceptions.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:44 +02:00
Jim Mattson
f10c729ff9 kvm: vmx: Defer setting of DR6 until #DB delivery
When exception payloads are enabled by userspace (which is not yet
possible) and a #DB is raised in L2, defer the setting of DR6 until
later. Under VMX, this allows the L1 hypervisor to intercept the fault
before DR6 is modified. Under SVM, DR6 is modified before L1 can
intercept the fault (as has always been the case with DR7).

Note that the payload associated with a #DB exception includes only
the "new DR6 bits." When the payload is delievered, DR6.B0-B3 will be
cleared and DR6.RTM will be set prior to merging in the new DR6 bits.

Also note that bit 16 in the "new DR6 bits" is set to indicate that a
debug exception (#DB) or a breakpoint exception (#BP) occurred inside
an RTM region while advanced debugging of RTM transactional regions
was enabled. Though the reverse of DR6.RTM, this makes the #DB payload
field compatible with both the pending debug exceptions field under
VMX and the exit qualification for #DB exceptions under VMX.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:43 +02:00
Jim Mattson
da998b46d2 kvm: x86: Defer setting of CR2 until #PF delivery
When exception payloads are enabled by userspace (which is not yet
possible) and a #PF is raised in L2, defer the setting of CR2 until
the #PF is delivered. This allows the L1 hypervisor to intercept the
fault before CR2 is modified.

For backwards compatibility, when exception payloads are not enabled
by userspace, kvm_multiple_exception modifies CR2 when the #PF
exception is raised.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:43 +02:00
Jim Mattson
91e86d225e kvm: x86: Add payload operands to kvm_multiple_exception
kvm_multiple_exception now takes two additional operands: has_payload
and payload, so that updates to CR2 (and DR6 under VMX) can be delayed
until the exception is delivered. This is necessary to properly
emulate VMX or SVM hardware behavior for nested virtualization.

The new behavior is triggered by
vcpu->kvm->arch.exception_payload_enabled, which will (later) be set
by a new per-VM capability, KVM_CAP_EXCEPTION_PAYLOAD.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:42 +02:00
Jim Mattson
59073aaf6d kvm: x86: Add exception payload fields to kvm_vcpu_events
The per-VM capability KVM_CAP_EXCEPTION_PAYLOAD (to be introduced in a
later commit) adds the following fields to struct kvm_vcpu_events:
exception_has_payload, exception_payload, and exception.pending.

With this capability set, all of the details of vcpu->arch.exception,
including the payload for a pending exception, are reported to
userspace in response to KVM_GET_VCPU_EVENTS.

With this capability clear, the original ABI is preserved, and the
exception.injected field is set for either pending or injected
exceptions.

When userspace calls KVM_SET_VCPU_EVENTS with
KVM_CAP_EXCEPTION_PAYLOAD clear, exception.injected is no longer
translated to exception.pending. KVM_SET_VCPU_EVENTS can now only
establish a pending exception when KVM_CAP_EXCEPTION_PAYLOAD is set.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:38 +02:00
Jim Mattson
c851436a34 kvm: x86: Add has_payload and payload to kvm_queued_exception
The payload associated with a #PF exception is the linear address of
the fault to be loaded into CR2 when the fault is delivered. The
payload associated with a #DB exception is a mask of the DR6 bits to
be set (or in the case of DR6.RTM, cleared) when the fault is
delivered. Add fields has_payload and payload to kvm_queued_exception
to track payloads for pending exceptions.

The new fields are introduced here, but for now, they are just cleared.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:22 +02:00
Vitaly Kuznetsov
8cab6507f6 x86/kvm/nVMX: nested state migration for Enlightened VMCS
Add support for get/set of nested state when Enlightened VMCS is in use.
A new KVM_STATE_NESTED_EVMCS flag to indicate eVMCS on the vCPU was enabled
is added.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:19 +02:00
Vitaly Kuznetsov
a1b0c1c64d x86/kvm/nVMX: allow bare VMXON state migration
It is perfectly valid for a guest to do VMXON and not do VMPTRLD. This
state needs to be preserved on migration.

Cc: stable@vger.kernel.org
Fixes: 8fcc4b5923
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:18 +02:00
Vitaly Kuznetsov
a7c42bb6da x86/kvm/lapic: preserve gfn_to_hva_cache len on cache reinit
vcpu->arch.pv_eoi is accessible through both HV_X64_MSR_VP_ASSIST_PAGE and
MSR_KVM_PV_EOI_EN so on migration userspace may try to restore them in any
order. Values match, however, kvm_lapic_enable_pv_eoi() uses different
length: for Hyper-V case it's the whole struct hv_vp_assist_page, for KVM
native case it is 8. In case we restore KVM-native MSR last cache will
be reinitialized with len=8 so trying to access VP assist page beyond
8 bytes with kvm_read_guest_cached() will fail.

Check if we re-initializing cache for the same address and preserve length
in case it was greater.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:17 +02:00
Vitaly Kuznetsov
12e0c6186b x86/kvm/hyperv: don't clear VP assist pages on init
VP assist pages may hold valuable data which needs to be preserved across
migration. Clean PV EOI portion of the data on init, the guest is
responsible for making sure there's no garbage in the rest.

This will be used for nVMX migration, eVMCS address needs to be preserved.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:17 +02:00
Vitaly Kuznetsov
c4ebd6295a KVM: nVMX: optimize prepare_vmcs02{,_full} for Enlightened VMCS case
When Enlightened VMCS is in use by L1 hypervisor we can avoid vmwriting
VMCS fields which did not change.

Our first goal is to achieve minimal impact on traditional VMCS case so
we're not wrapping each vmwrite() with an if-changed checker. We also can't
utilize static keys as Enlightened VMCS usage is per-guest.

This patch implements the simpliest solution: checking fields in groups.
We skip single vmwrite() statements as doing the check will cost us
something even in non-evmcs case and the win is tiny. Unfortunately, this
makes prepare_vmcs02_full{,_full}() code Enlightened VMCS-dependent (and
a bit ugly).

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:16 +02:00
Vitaly Kuznetsov
b8bbab928f KVM: nVMX: implement enlightened VMPTRLD and VMCLEAR
Per Hyper-V TLFS 5.0b:

"The L1 hypervisor may choose to use enlightened VMCSs by writing 1 to
the corresponding field in the VP assist page (see section 7.8.7).
Another field in the VP assist page controls the currently active
enlightened VMCS. Each enlightened VMCS is exactly one page (4 KB) in
size and must be initially zeroed. No VMPTRLD instruction must be
executed to make an enlightened VMCS active or current.

After the L1 hypervisor performs a VM entry with an enlightened VMCS,
the VMCS is considered active on the processor. An enlightened VMCS
can only be active on a single processor at the same time. The L1
hypervisor can execute a VMCLEAR instruction to transition an
enlightened VMCS from the active to the non-active state. Any VMREAD
or VMWRITE instructions while an enlightened VMCS is active is
unsupported and can result in unexpected behavior."

Keep Enlightened VMCS structure for the current L2 guest permanently mapped
from struct nested_vmx instead of mapping it every time.

Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:16 +02:00
Vitaly Kuznetsov
945679e301 KVM: nVMX: add enlightened VMCS state
Adds hv_evmcs pointer and implement copy_enlightened_to_vmcs12() and
copy_enlightened_to_vmcs12().

prepare_vmcs02()/prepare_vmcs02_full() separation is not valid for
Enlightened VMCS, do full sync for now.

Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:15 +02:00
Vitaly Kuznetsov
57b119da35 KVM: nVMX: add KVM_CAP_HYPERV_ENLIGHTENED_VMCS capability
Enlightened VMCS is opt-in. The current version does not contain all
fields supported by nested VMX so we must not advertise the
corresponding VMX features if enlightened VMCS is enabled.

Userspace is given the enlightened VMCS version supported by KVM as
part of enabling KVM_CAP_HYPERV_ENLIGHTENED_VMCS. The version is to
be advertised to the nested hypervisor, currently done via a cpuid
leaf for Hyper-V.

Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:14 +02:00
Vitaly Kuznetsov
5d7a644336 KVM: VMX: refactor evmcs_sanitize_exec_ctrls()
Split off EVMCS1_UNSUPPORTED_* macros so we can re-use them when
enabling Enlightened VMCS for Hyper-V on KVM.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:14 +02:00
Ladi Prosek
72bbf9358c KVM: hyperv: define VP assist page helpers
The state related to the VP assist page is still managed by the LAPIC
code in the pv_eoi field.

Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:13 +02:00
Wei Yang
e7912386ed KVM: x86: reintroduce pte_list_remove, but including mmu_spte_clear_track_bits
rmap_remove() removes the sptep after locating the correct rmap_head but,
in several cases, the caller has already known the correct rmap_head.

This patch introduces a new pte_list_remove(); because it is known that
the spte is present (or it would not have an rmap_head), it is safe
to remove the tracking bits without any previous check.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:12 +02:00
Wei Yang
8daf346226 KVM: x86: rename pte_list_remove to __pte_list_remove
This is a patch preparing for further change.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:11 +02:00
Peng Hao
39337ad1a7 kvm/x86 : fix some typo
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:10 +02:00
Lan Tianyu
a5c214dad1 KVM/VMX: Change hv flush logic when ept tables are mismatched.
If ept table pointers are mismatched, flushing tlb for each vcpus via
hv flush interface still helps to reduce vmexits which are triggered
by IPI and INEPT emulation.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:09 +02:00
Uros Bizjak
44c2d667ce KVM/x86: Use 32bit xor to clear register
x86_64 zero-extends 32bit xor to a full 64bit register. Use %k asm
operand modifier to force 32bit register and save 268 bytes in kvm.o

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:09 +02:00
Uros Bizjak
4b1e54786e KVM/x86: Use assembly instruction mnemonics instead of .byte streams
Recently the minimum required version of binutils was changed to 2.20,
which supports all VMX instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.

The compiler is now able to pass memory operand to the instruction,
so there is no need for memory clobber anymore. Also, the compiler
adds CC register clobber automatically to all extended asm clauses,
so the patch also removes explicit CC clobber.

The immediate benefit of the patch is removal of many unnecesary
register moves, resulting in 1434 saved bytes in vmx.o:

   text    data     bss     dec     hex filename
 151257   18246    8500  178003   2b753 vmx.o
 152691   18246    8500  179437   2bced vmx-old.o

Some examples of improvement include removal of unneeded moves
of %rsp to %rax in front of invept and invvpid instructions:

    a57e:	b9 01 00 00 00       	mov    $0x1,%ecx
    a583:	48 89 04 24          	mov    %rax,(%rsp)
    a587:	48 89 e0             	mov    %rsp,%rax
    a58a:	48 c7 44 24 08 00 00 	movq   $0x0,0x8(%rsp)
    a591:	00 00
    a593:	66 0f 38 80 08       	invept (%rax),%rcx

to:

    a45c:	48 89 04 24          	mov    %rax,(%rsp)
    a460:	b8 01 00 00 00       	mov    $0x1,%eax
    a465:	48 c7 44 24 08 00 00 	movq   $0x0,0x8(%rsp)
    a46c:	00 00
    a46e:	66 0f 38 80 04 24    	invept (%rsp),%rax

and the ability to use more optimal registers and memory operands
in the instruction:

    8faa:	48 8b 44 24 28       	mov    0x28(%rsp),%rax
    8faf:	4c 89 c2             	mov    %r8,%rdx
    8fb2:	0f 79 d0             	vmwrite %rax,%rdx

to:

    8e7c:	44 0f 79 44 24 28    	vmwrite 0x28(%rsp),%r8

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:08 +02:00
Uros Bizjak
5ebb272b2e KVM/x86: Fix invvpid and invept register operand size in 64-bit mode
Register operand size of invvpid and invept instruction in 64-bit mode
has always 64 bits. Adjust inline function argument type to reflect
correct size.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:07 +02:00
Vitaly Kuznetsov
bf627a9288 x86/kvm/mmu: check if MMU reconfiguration is needed in init_kvm_nested_mmu()
We don't use root page role for nested_mmu, however, optimizing out
re-initialization in case nothing changed is still valuable as this
is done for every nested vmentry.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:07 +02:00
Vitaly Kuznetsov
7dcd575520 x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed
MMU reconfiguration in init_kvm_tdp_mmu()/kvm_init_shadow_mmu() can be
avoided if the source data used to configure it didn't change; enhance
MMU extended role with the required fields and consolidate common code in
kvm_calc_mmu_role_common().

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:06 +02:00
Vitaly Kuznetsov
a336282d77 x86/kvm/nVMX: introduce source data cache for kvm_init_shadow_ept_mmu()
MMU re-initialization is expensive, in particular,
update_permission_bitmask() and update_pkru_bitmask() are.

Cache the data used to setup shadow EPT MMU and avoid full re-init when
it is unchanged.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:06 +02:00
Vitaly Kuznetsov
36d9594dfb x86/kvm/mmu: make space for source data caching in struct kvm_mmu
In preparation to MMU reconfiguration avoidance we need a space to
cache source data. As this partially intersects with kvm_mmu_page_role,
create 64bit sized union kvm_mmu_role holding both base and extended data.
No functional change.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:05 +02:00
Paolo Bonzini
e173299101 x86/kvm/mmu: get rid of redundant kvm_mmu_setup()
Just inline the contents into the sole caller, kvm_init_mmu is now
public.

Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
2018-10-17 00:30:04 +02:00
Vitaly Kuznetsov
14c07ad89f x86/kvm/mmu: introduce guest_mmu
When EPT is used for nested guest we need to re-init MMU as shadow
EPT MMU (nested_ept_init_mmu_context() does that). When we return back
from L2 to L1 kvm_mmu_reset_context() in nested_vmx_load_cr3() resets
MMU back to normal TDP mode. Add a special 'guest_mmu' so we can use
separate root caches; the improved hit rate is not very important for
single vCPU performance, but it avoids contention on the mmu_lock for
many vCPUs.

On the nested CPUID benchmark, with 16 vCPUs, an L2->L1->L2 vmexit
goes from 42k to 26k cycles.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:04 +02:00
Vitaly Kuznetsov
6a82cd1c7b x86/kvm/mmu.c: add kvm_mmu parameter to kvm_mmu_free_roots()
Add an option to specify which MMU root we want to free. This will
be used when nested and non-nested MMUs for L1 are split.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
2018-10-17 00:30:03 +02:00
Vitaly Kuznetsov
3dc773e745 x86/kvm/mmu.c: set get_pdptr hook in kvm_init_shadow_ept_mmu()
kvm_init_shadow_ept_mmu() doesn't set get_pdptr() hook and is this
not a problem just because MMU context is already initialized and this
hook points to kvm_pdptr_read(). As we're intended to use a dedicated
MMU for shadow EPT MMU set this hook explicitly.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
2018-10-17 00:30:03 +02:00
Vitaly Kuznetsov
44dd3ffa7b x86/kvm/mmu: make vcpu->mmu a pointer to the current MMU
As a preparation to full MMU split between L1 and L2 make vcpu->arch.mmu
a pointer to the currently used mmu. For now, this is always
vcpu->arch.root_mmu. No functional change.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
2018-10-17 00:30:02 +02:00
Paolo Bonzini
0e0a53c551 kvm: x86: optimize dr6 restore
The quote from the comment almost says it all: we are currently zeroing
the guest dr6 in kvm_arch_vcpu_put, because do_debug expects it.  However,
the host %dr6 is either:

- zero because the guest hasn't run after kvm_arch_vcpu_load

- written from vcpu->arch.dr6 by vcpu_enter_guest

- written by the guest and copied to vcpu->arch.dr6 by ->sync_dirty_debug_regs().

Therefore, we can skip the write if vcpu->arch.dr6 is already zero.  We
may do extra useless writes if vcpu->arch.dr6 is nonzero but the guest
hasn't run; however that is less important for performance.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:02 +02:00
Vitaly Kuznetsov
f21dd49450 KVM: x86: hyperv: optimize sparse VP set processing
Rewrite kvm_hv_flush_tlb()/send_ipi_vcpus_mask() making them cleaner and
somewhat more optimal.

hv_vcpu_in_sparse_set() is converted to sparse_set_to_vcpu_mask()
which copies sparse banks u64-at-a-time and then, depending on the
num_mismatched_vp_indexes value, returns immediately or does
vp index to vcpu index conversion by walking all vCPUs.

To support the change and make kvm_hv_send_ipi() look similar to
kvm_hv_flush_tlb() send_ipi_vcpus_mask() is introduced.

Suggested-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:01 +02:00
Vitaly Kuznetsov
e6b6c483eb KVM: x86: hyperv: fix 'tlb_lush' typo
Regardless of whether your TLB is lush or not it still needs flushing.

Reported-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:00 +02:00
Sean Christopherson
2768c0cc4a KVM: nVMX: WARN if nested run hits VMFail with early consistency checks enabled
When early consistency checks are enabled, all VMFail conditions
should be caught by nested_vmx_check_vmentry_hw().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:00 +02:00
Sean Christopherson
52017608da KVM: nVMX: add option to perform early consistency checks via H/W
KVM defers many VMX consistency checks to the CPU, ostensibly for
performance reasons[1], including checks that result in VMFail (as
opposed to VMExit).  This behavior may be undesirable for some users
since this means KVM detects certain classes of VMFail only after it
has processed guest state, e.g. emulated MSR load-on-entry.  Because
there is a strict ordering between checks that cause VMFail and those
that cause VMExit, i.e. all VMFail checks are performed before any
checks that cause VMExit, we can detect (almost) all VMFail conditions
via a dry run of sorts.  The almost qualifier exists because some
state in vmcs02 comes from L0, e.g. VPID, which means that hardware
will never detect an invalid VPID in vmcs12 because it never sees
said value.  Software must (continue to) explicitly check such fields.

After preparing vmcs02 with all state needed to pass the VMFail
consistency checks, optionally do a "test" VMEnter with an invalid
GUEST_RFLAGS.  If the VMEnter results in a VMExit (due to bad guest
state), then we can safely say that the nested VMEnter should not
VMFail, i.e. any VMFail encountered in nested_vmx_vmexit() must
be due to an L0 bug.  GUEST_RFLAGS is used to induce VMExit as it
is unconditionally loaded on all implementations of VMX, has an
invalid value that is writable on a 32-bit system and its consistency
check is performed relatively early in all implementations (the exact
order of consistency checks is micro-architectural).

Unfortunately, since the "passing" case causes a VMExit, KVM must
be extra diligent to ensure that host state is restored, e.g. DR7
and RFLAGS are reset on VMExit.  Failure to restore RFLAGS.IF is
particularly fatal.

And of course the extra VMEnter and VMExit impacts performance.
The raw overhead of the early consistency checks is ~6% on modern
hardware (though this could easily vary based on configuration),
while the added latency observed from the L1 VMM is ~10%.  The
early consistency checks do not occur in a vacuum, e.g. spending
more time in L0 can lead to more interrupts being serviced while
emulating VMEnter, thereby increasing the latency observed by L1.

Add a module param, early_consistency_checks, to provide control
over whether or not VMX performs the early consistency checks.
In addition to standard on/off behavior, the param accepts a value
of -1, which is essentialy an "auto" setting whereby KVM does
the early checks only when it thinks it's running on bare metal.
When running nested, doing early checks is of dubious value since
the resulting behavior is heavily dependent on L0.  In the future,
the "auto" setting could also be used to default to skipping the
early hardware checks for certain configurations/platforms if KVM
reaches a state where it has 100% coverage of VMFail conditions.

[1] To my knowledge no one has implemented and tested full software
    emulation of the VMFail consistency checks.  Until that happens,
    one can only speculate about the actual performance overhead of
    doing all VMFail consistency checks in software.  Obviously any
    code is slower than no code, but in the grand scheme of nested
    virtualization it's entirely possible the overhead is negligible.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:59 +02:00
Sean Christopherson
5a5e8a15d7 KVM: vmx: write HOST_IA32_EFER in vmx_set_constant_host_state()
EFER is constant in the host and writing it once during setup means
we can skip writing the host value in add_atomic_switch_msr_special().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:59 +02:00
Sean Christopherson
09abb5e3e5 KVM: nVMX: call kvm_skip_emulated_instruction in nested_vmx_{fail,succeed}
... as every invocation of nested_vmx_{fail,succeed} is immediately
followed by a call to kvm_skip_emulated_instruction().  This saves
a bit of code and eliminates some silly paths, e.g. nested_vmx_run()
ended up with a goto label purely used to call and return
kvm_skip_emulated_instruction().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:58 +02:00
Sean Christopherson
c37a6116d8 KVM: nVMX: do not call nested_vmx_succeed() for consistency check VMExit
EFLAGS is set to a fixed value on VMExit, calling nested_vmx_succeed()
is unnecessary and wrong.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:57 +02:00
Sean Christopherson
cb61de2f48 KVM: nVMX: do not skip VMEnter instruction that succeeds
A successful VMEnter is essentially a fancy indirect branch that
pulls the target RIP from the VMCS.  Skipping the instruction is
unnecessary (RIP will get overwritten by the VMExit handler) and
is problematic because it can incorrectly suppress a #DB due to
EFLAGS.TF when a VMFail is detected by hardware (happens after we
skip the instruction).

Now that vmx_nested_run() is not prematurely skipping the instr,
use the full kvm_skip_emulated_instruction() in the VMFail path
of nested_vmx_vmexit().  We also need to explicitly update the
GUEST_INTERRUPTIBILITY_INFO when loading vmcs12 host state.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:57 +02:00
Sean Christopherson
16fb9a46c5 KVM: nVMX: do early preparation of vmcs02 before check_vmentry_postreqs()
In anticipation of using vmcs02 to do early consistency checks, move
the early preparation of vmcs02 prior to checking the postreqs.  The
downside of this approach is that we'll unnecessary load vmcs02 in
the case that check_vmentry_postreqs() fails, but that is essentially
our slow path anyways (not actually slow, but it's the path we don't
really care about optimizing).

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:56 +02:00
Sean Christopherson
9d6105b2b5 KVM: nVMX: initialize vmcs02 constant exactly once (per VMCS)
Add a dedicated flag to track if vmcs02 has been initialized, i.e.
the constant state for vmcs02 has been written to the backing VMCS.
The launched flag (in struct loaded_vmcs) gets cleared on logical
CPU migration to mirror hardware behavior[1], i.e. using the launched
flag to determine whether or not vmcs02 constant state needs to be
initialized results in unnecessarily re-initializing the VMCS when
migrating between logical CPUS.

[1] The active VMCS needs to be VMCLEARed before it can be migrated
    to a different logical CPU.  Hardware's VMCS cache is per-CPU
    and is not coherent between CPUs.  VMCLEAR flushes the cache so
    that any dirty data is written back to memory.  A side effect
    of VMCLEAR is that it also clears the VMCS's internal launch
    flag, which KVM must mirror because VMRESUME must be used to
    run a previously launched VMCS.

Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:56 +02:00
Sean Christopherson
09abe32002 KVM: nVMX: split pieces of prepare_vmcs02() to prepare_vmcs02_early()
Add prepare_vmcs02_early() and move pieces of prepare_vmcs02() to the
new function.  prepare_vmcs02_early() writes the bits of vmcs02 that
a) must be in place to pass the VMFail consistency checks (assuming
vmcs12 is valid) and b) are needed recover from a VMExit, e.g. host
state that is loaded on VMExit.  Splitting the functionality will
enable KVM to leverage hardware to do VMFail consistency checks via
a dry run of VMEnter and recover from a potential VMExit without
having to fully initialize vmcs02.

Add prepare_vmcs02_constant_state() to handle writing vmcs02 state that
comes from vmcs01 and never changes, i.e. we don't need to rewrite any
of the vmcs02 that is effectively constant once defined.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:55 +02:00
Sean Christopherson
860ff2aa84 KVM: VMX: remove ASSERT() on vmx->pml_pg validity
vmx->pml_pg is allocated by vmx_create_vcpu() and is only nullified
when the vCPU is destroyed by vmx_free_vcpu().  Remove the ASSERTs
on vmx->pml_pg, there is no need to carry debug code that provides
no value to the current code base.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:55 +02:00
Sean Christopherson
39f9c3885c KVM: vVMX: rename label for post-enter_guest_mode consistency check
Rename 'fail' to 'vmentry_fail_vmexit_guest_mode' to make it more
obvious that it's simply a different entry point to the VMExit path,
whose purpose is unwind the updates done prior to calling
prepare_vmcs02().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:54 +02:00
Sean Christopherson
a633e41e73 KVM: nVMX: assimilate nested_vmx_entry_failure() into nested_vmx_enter_non_root_mode()
Handling all VMExits due to failed consistency checks on VMEnter in
nested_vmx_enter_non_root_mode() consolidates all relevant code into
a single location, and removing nested_vmx_entry_failure() eliminates
a confusing function name and label.  For a VMEntry, "fail" and its
derivatives has a very specific meaning due to the different behavior
of a VMEnter VMFail versus VMExit, i.e. it wasn't obvious that
nested_vmx_entry_failure() handled VMExit scenarios.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:53 +02:00
Sean Christopherson
7671ce21b1 KVM: nVMX: move check_vmentry_postreqs() call to nested_vmx_enter_non_root_mode()
In preparation of supporting checkpoint/restore for nested state,
commit ca0bde28f2 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()")
modified check_vmentry_postreqs() to only perform the guest EFER
consistency checks when nested_run_pending is true.  But, in the
normal nested VMEntry flow, nested_run_pending is only set after
check_vmentry_postreqs(), i.e. the consistency check is being skipped.

Alternatively, nested_run_pending could be set prior to calling
check_vmentry_postreqs() in nested_vmx_run(), but placing the
consistency checks in nested_vmx_enter_non_root_mode() allows us
to split prepare_vmcs02() and interleave the preparation with
the consistency checks without having to change the call sites
of nested_vmx_enter_non_root_mode().  In other words, the rest
of the consistency check code in nested_vmx_run() will be joining
the postreqs checks in future patches.

Fixes: ca0bde28f2 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:53 +02:00
Sean Christopherson
d63907dc7d KVM: nVMX: rename enter_vmx_non_root_mode to nested_vmx_enter_non_root_mode
...to be more consistent with the nested VMX nomenclature.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:52 +02:00
Sean Christopherson
3df5c37e55 KVM: nVMX: try to set EFER bits correctly when initializing controls
VM_ENTRY_IA32E_MODE and VM_{ENTRY,EXIT}_LOAD_IA32_EFER will be
explicitly set/cleared as needed by vmx_set_efer(), but attempt
to get the bits set correctly when intializing the control fields.
Setting the value correctly can avoid multiple VMWrites.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:52 +02:00
Sean Christopherson
02343cf207 KVM: vmx: do not unconditionally clear EFER switching
Do not unconditionally call clear_atomic_switch_msr() when updating
EFER.  This adds up to four unnecessary VMWrites in the case where
guest_efer != host_efer, e.g. if the load_on_{entry,exit} bits were
already set.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:51 +02:00
Sean Christopherson
b7031fd40f KVM: nVMX: reset cache/shadows when switching loaded VMCS
Reset the vm_{entry,exit}_controls_shadow variables as well as the
segment cache after loading a new VMCS in vmx_switch_vmcs().  The
shadows/cache track VMCS data, i.e. they're stale every time we
switch to a new VMCS regardless of reason.

This fixes a bug where stale control shadows would be consumed after
a nested VMExit due to a failed consistency check.

Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:50 +02:00
Sean Christopherson
1abf23fb42 KVM: nVMX: use vm_exit_controls_init() to write exit controls for vmcs02
Write VM_EXIT_CONTROLS using vm_exit_controls_init() when configuring
vmcs02, otherwise vm_exit_controls_shadow will be stale.  EFER in
particular can be corrupted if VM_EXIT_LOAD_IA32_EFER is not updated
due to an incorrect shadow optimization, which can crash L0 due to
EFER not being loaded on exit.  This does not occur with the current
code base simply because update_transition_efer() unconditionally
clears VM_EXIT_LOAD_IA32_EFER before conditionally setting it, and
because a nested guest always starts with VM_EXIT_LOAD_IA32_EFER
clear, i.e. we'll only ever unnecessarily clear the bit.  That is,
until someone optimizes update_transition_efer()...

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:50 +02:00
Sean Christopherson
5b8ba41daf KVM: nVMX: move vmcs12 EPTP consistency check to check_vmentry_prereqs()
An invalid EPTP causes a VMFail(VMXERR_ENTRY_INVALID_CONTROL_FIELD),
not a VMExit.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:49 +02:00
Sean Christopherson
64a919f7b5 KVM: nVMX: move host EFER consistency checks to VMFail path
Invalid host state related to loading EFER on VMExit causes a
VMFail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD), not a VMExit.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:49 +02:00
Jim Mattson
3c6e099fa1 KVM: nVMX: Always reflect #NM VM-exits to L1
When bit 3 (corresponding to CR0.TS) of the VMCS12 cr0_guest_host_mask
field is clear, the VMCS12 guest_cr0 field does not necessarily hold
the current value of the L2 CR0.TS bit, so the code that checked for
L2's CR0.TS bit being set was incorrect. Moreover, I'm not sure that
the CR0.TS check was adequate. (What if L2's CR0.EM was set, for
instance?)

Fortunately, lazy FPU has gone away, so L0 has lost all interest in
intercepting #NM exceptions. See commit bd7e5b0899 ("KVM: x86:
remove code for lazy FPU handling"). Therefore, there is no longer any
question of which hypervisor gets first dibs. The #NM VM-exit should
always be reflected to L1. (Note that the corresponding bit must be
set in the VMCS12 exception_bitmap field for there to be an #NM
VM-exit at all.)

Fixes: ccf9844e5d ("kvm, vmx: Really fix lazy FPU on nested guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Tested-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:47 +02:00
Vitaly Kuznetsov
214ff83d44 KVM: x86: hyperv: implement PV IPI send hypercalls
Using hypercall for sending IPIs is faster because this allows to specify
any number of vCPUs (even > 64 with sparse CPU set), the whole procedure
will take only one VMEXIT.

Current Hyper-V TLFS (v5.0b) claims that HvCallSendSyntheticClusterIpi
hypercall can't be 'fast' (passing parameters through registers) but
apparently this is not true, Windows always uses it as 'fast' so we need
to support that.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:47 +02:00
Vitaly Kuznetsov
2cefc5feb8 KVM: x86: hyperv: optimize kvm_hv_flush_tlb() for vp_index == vcpu_idx case
VP inedx almost always matches VCPU and when it does it's faster to walk
the sparse set instead of all vcpus.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:46 +02:00
Vitaly Kuznetsov
0b0a31badb KVM: x86: hyperv: valid_bank_mask should be 'u64'
This probably doesn't matter much (KVM_MAX_VCPUS is much lower nowadays)
but valid_bank_mask is really u64 and not unsigned long.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:46 +02:00
Vitaly Kuznetsov
87ee613d07 KVM: x86: hyperv: keep track of mismatched VP indexes
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:45 +02:00
Vitaly Kuznetsov
1779a39f78 KVM: x86: hyperv: consistently use 'hv_vcpu' for 'struct kvm_vcpu_hv' variables
Rename 'hv' to 'hv_vcpu' in kvm_hv_set_msr/kvm_hv_get_msr(); 'hv' is
'reserved' for 'struct kvm_hv' variables across the file.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:45 +02:00
Vitaly Kuznetsov
a812297c4f KVM: x86: hyperv: optimize 'all cpus' case in kvm_hv_flush_tlb()
We can use 'NULL' to represent 'all cpus' case in
kvm_make_vcpus_request_mask() and avoid building vCPU mask with
all vCPUs.

Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:44 +02:00
Vitaly Kuznetsov
9170200ec0 KVM: x86: hyperv: enforce vp_index < KVM_MAX_VCPUS
Hyper-V TLFS (5.0b) states:

> Virtual processors are identified by using an index (VP index). The
> maximum number of virtual processors per partition supported by the
> current implementation of the hypervisor can be obtained through CPUID
> leaf 0x40000005. A virtual processor index must be less than the
> maximum number of virtual processors per partition.

Forbid userspace to set VP_INDEX above KVM_MAX_VCPUS. get_vcpu_by_vpidx()
can now be optimized to bail early when supplied vpidx is >= KVM_MAX_VCPUS.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:43 +02:00
Paolo Bonzini
0624fca951 kvm/x86: return meaningful value from KVM_SIGNAL_MSI
If kvm_apic_map_get_dest_lapic() finds a disabled LAPIC,
it will return with bitmap==0 and (*r == -1) will be returned to
userspace.

QEMU may then record "KVM: injection failed, MSI lost
(Operation not permitted)" in its log, which is quite puzzling.

Reported-by: Peng Hao <penghao122@sina.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:43 +02:00
Wei Yang
4fef0f4913 KVM: x86: move definition PT_MAX_HUGEPAGE_LEVEL and KVM_NR_PAGE_SIZES together
Currently, there are two definitions related to huge page, but a little bit
far from each other and seems loosely connected:

 * KVM_NR_PAGE_SIZES defines the number of different size a page could map
 * PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page

The number of different size a page could map equals the maximum level
of huge page, which is implied by current definition.

While current implementation may not be kind to readers and further
developers:

 * KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight
 * in case we need to support more level, two places need to change

This patch tries to make these two definition more close, so that reader
and developer would feel more comfortable to manipulate.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:42 +02:00
Tianyu Lan
aaa45da24e KVM/VMX: Remve unused function is_external_interrupt().
is_external_interrupt() is not used now and so remove it.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:42 +02:00
Wei Yang
daefb7949e KVM: x86: return 0 in case kvm_mmu_memory_cache has min number of objects
The code tries to pre-allocate *min* number of objects, so it is ok to
return 0 when the kvm_mmu_memory_cache meets the requirement.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:41 +02:00
Krish Sadhukhan
55c1dcd80b nVMX x86: Make nested_vmx_check_pml_controls() concise
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:41 +02:00
Sean Christopherson
bd18bffca3 KVM: nVMX: restore host state in nested_vmx_vmexit for VMFail
A VMEnter that VMFails (as opposed to VMExits) does not touch host
state beyond registers that are explicitly noted in the VMFail path,
e.g. EFLAGS.  Host state does not need to be loaded because VMFail
is only signaled for consistency checks that occur before the CPU
starts to load guest state, i.e. there is no need to restore any
state as nothing has been modified.  But in the case where a VMFail
is detected by hardware and not by KVM (due to deferring consistency
checks to hardware), KVM has already loaded some amount of guest
state.  Luckily, "loaded" only means loaded to KVM's software model,
i.e. vmcs01 has not been modified.  So, unwind our software model to
the pre-VMEntry host state.

Not restoring host state in this VMFail path leads to a variety of
failures because we end up with stale data in vcpu->arch, e.g. CR0,
CR4, EFER, etc... will all be out of sync relative to vmcs01.  Any
significant delta in the stale data is all but guaranteed to crash
L1, e.g. emulation of SMEP, SMAP, UMIP, WP, etc... will be wrong.

An alternative to this "soft" reload would be to load host state from
vmcs12 as if we triggered a VMExit (as opposed to VMFail), but that is
wildly inconsistent with respect to the VMX architecture, e.g. an L1
VMM with separate VMExit and VMFail paths would explode.

Note that this approach does not mean KVM is 100% accurate with
respect to VMX hardware behavior, even at an architectural level
(the exact order of consistency checks is microarchitecture specific).
But 100% emulation accuracy isn't the goal (with this patch), rather
the goal is to be consistent in the information delivered to L1, e.g.
a VMExit should not fall-through VMENTER, and a VMFail should not jump
to HOST_RIP.

This technically reverts commit "5af4157388ad (KVM: nVMX: Fix mmu
context after VMLAUNCH/VMRESUME failure)", but retains the core
aspects of that patch, just in an open coded form due to the need to
pull state from vmcs01 instead of vmcs12.  Restoring host state
resolves a variety of issues introduced by commit "4f350c6dbcb9
(kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)",
which remedied the incorrect behavior of treating VMFail like VMExit
but in doing so neglected to restore arch state that had been modified
prior to attempting nested VMEnter.

A sample failure that occurs due to stale vcpu.arch state is a fault
of some form while emulating an LGDT (due to emulated UMIP) from L1
after a failed VMEntry to L3, in this case when running the KVM unit
test test_tpr_threshold_values in L1.  L0 also hits a WARN in this
case due to a stale arch.cr4.UMIP.

L1:
  BUG: unable to handle kernel paging request at ffffc90000663b9e
  PGD 276512067 P4D 276512067 PUD 276513067 PMD 274efa067 PTE 8000000271de2163
  Oops: 0009 [#1] SMP
  CPU: 5 PID: 12495 Comm: qemu-system-x86 Tainted: G        W         4.18.0-rc2+ #2
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:native_load_gdt+0x0/0x10

  ...

  Call Trace:
   load_fixmap_gdt+0x22/0x30
   __vmx_load_host_state+0x10e/0x1c0 [kvm_intel]
   vmx_switch_vmcs+0x2d/0x50 [kvm_intel]
   nested_vmx_vmexit+0x222/0x9c0 [kvm_intel]
   vmx_handle_exit+0x246/0x15a0 [kvm_intel]
   kvm_arch_vcpu_ioctl_run+0x850/0x1830 [kvm]
   kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
   do_vfs_ioctl+0x9f/0x600
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x4f/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

L0:
  WARNING: CPU: 2 PID: 3529 at arch/x86/kvm/vmx.c:6618 handle_desc+0x28/0x30 [kvm_intel]
  ...
  CPU: 2 PID: 3529 Comm: qemu-system-x86 Not tainted 4.17.2-coffee+ #76
  Hardware name: Intel Corporation Kabylake Client platform/KBL S
  RIP: 0010:handle_desc+0x28/0x30 [kvm_intel]

  ...

  Call Trace:
   kvm_arch_vcpu_ioctl_run+0x863/0x1840 [kvm]
   kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
   do_vfs_ioctl+0x9f/0x5e0
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x49/0xf0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: 5af4157388 (KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure)
Fixes: 4f350c6dbc (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)
Cc: Jim Mattson <jmattson@google.com>
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:39 +02:00
Jim Mattson
cfb634fe30 KVM: nVMX: Clear reserved bits of #DB exit qualification
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."

There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception.  DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.

Fixes: b96fb43977 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:39 +02:00
Wanpeng Li
3b8a5df6c4 KVM: LAPIC: Tune lapic_timer_advance_ns automatically
In cloud environment, lapic_timer_advance_ns is needed to be tuned for every CPU
generations, and every host kernel versions(the kvm-unit-tests/tscdeadline_latency.flat
is 5700 cycles for upstream kernel and 9600 cycles for our 3.10 product kernel,
both preemption_timer=N, Skylake server).

This patch adds the capability to automatically tune lapic_timer_advance_ns
step by step, the initial value is 1000ns as 'commit d0659d946b ("KVM: x86:
add option to advance tscdeadline hrtimer expiration")' recommended, it will be
reduced when it is too early, and increased when it is too late. The guest_tsc
and tsc_deadline are hard to equal, so we assume we are done when the delta
is within a small scope e.g. 100 cycles. This patch reduces latency
(kvm-unit-tests/tscdeadline_latency, busy waits, preemption_timer enabled)
from ~2600 cyles to ~1200 cyles on our Skylake server.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:25:54 +02:00
Liran Alon
efebf0aaec KVM: nVMX: Do not flush TLB on L1<->L2 transitions if L1 uses VPID and EPT
If L1 uses VPID, it expects TLB to not be flushed on L1<->L2
transitions. However, code currently flushes TLB nonetheless if we
didn't allocate a vpid02 for L2. As in this case,
vmcs02->vpid == vmcs01->vpid == vmx->vpid.

But, if L1 uses EPT, TLB entires populated by L2 are tagged with EPTP02
while TLB entries populated by L1 are tagged with EPTP01.
Therefore, we can also avoid TLB flush if L1 uses VPID and EPT.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:55 +02:00
Liran Alon
327c072187 KVM: nVMX: Flush linear and combined mappings on VPID02 related flushes
All VPID12s used on a given L1 vCPU is translated to a single
VPID02 (vmx->nested.vpid02 or vmx->vpid). Therefore, on L1->L2 VMEntry,
we need to invalidate linear and combined mappings tagged by
VPID02 in case L1 uses VPID and vmcs12->vpid was changed since
last L1->L2 VMEntry.

However, current code invalidates the wrong mappings as it calls
__vmx_flush_tlb() with invalidate_gpa parameter set to true which will
result in invalidating combined and guest-physical mappings tagged with
active EPTP which is EPTP01.

Similarly, INVVPID emulation have the exact same issue.

Fix both issues by just setting invalidate_gpa parameter to false which
will result in invalidating linear and combined mappings tagged with
given VPID02 as required.

Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:54 +02:00
Liran Alon
3d5bdae8b1 KVM: nVMX: Use correct VPID02 when emulating L1 INVVPID
In case L0 didn't allocate vmx->nested.vpid02 for L2,
vmcs02->vpid is set to vmx->vpid.
Consider this case when emulating L1 INVVPID in L0.

Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:54 +02:00
Liran Alon
1438921c6d KVM: nVMX: Flush TLB entries tagged by dest EPTP on L1<->L2 transitions
If L1 and L2 share VPID (because L1 don't use VPID or we haven't allocated
a vpid02), we need to flush TLB on L1<->L2 transitions.

Before this patch, this TLB flushing was done by vmx_flush_tlb().
If L0 use EPT, this will translate into INVEPT(active_eptp);
However, if L1 use EPT, in L1->L2 VMEntry, active EPTP is EPTP01 but
TLB entries populated by L2 are tagged with EPTP02.
Therefore we should delay vmx_flush_tlb() until active_eptp is EPTP02.

To achieve this, instead of directly calling vmx_flush_tlb() we request
it to be called by KVM_REQ_TLB_FLUSH which is evaluated after
KVM_REQ_LOAD_CR3 which sets the active_eptp to EPTP02 as required.

Similarly, on L2->L1 VMExit, active EPTP is EPTP02 but TLB entries
populated by L1 are tagged with EPTP01 and therefore we should delay
vmx_flush_tlb() until active_eptp is EPTP01.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:53 +02:00
Sean Christopherson
3de6347bf9 KVM: vmx: rename KVM_GUEST_CR0_MASK tp KVM_VM_CR0_ALWAYS_OFF
The KVM_GUEST_CR0_MASK macro tracks CR0 bits that are forced to zero
by the VMX architecture, i.e. CR0.{NW,CD} must always be zero in the
hardware CR0 post-VMXON.  Rename the macro to clarify its purpose,
be consistent with KVM_VM_CR0_ALWAYS_ON and avoid confusion with the
CR0_GUEST_HOST_MASK field.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 12:00:53 +02:00
Vitaly Kuznetsov
5f8bb004bc KVM: vmx: hyper-v: don't pass EPT configuration info to vmx_hv_remote_flush_tlb()
I'm observing random crashes in multi-vCPU L2 guests running on KVM on
Hyper-V. I bisected the issue to the commit 877ad952be ("KVM: vmx: Add
tlb_remote_flush callback support"). Hyper-V TLFS states:

"AddressSpace specifies an address space ID (an EPT PML4 table pointer)"

So apparently, Hyper-V doesn't expect us to pass naked EPTP, only PML4
pointer should be used. Strip off EPT configuration information before
calling into vmx_hv_remote_flush_tlb().

Fixes: 877ad952be ("KVM: vmx: Add tlb_remote_flush callback support")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-13 11:38:54 +02:00
Paolo Bonzini
853c110982 KVM: x86: support CONFIG_KVM_AMD=y with CONFIG_CRYPTO_DEV_CCP_DD=m
SEV requires access to the AMD cryptographic device APIs, and this
does not work when KVM is builtin and the crypto driver is a module.
Actually the Kconfig conditions for CONFIG_KVM_AMD_SEV try to disable
SEV in that case, but it does not work because the actual crypto
calls are not culled, only sev_hardware_setup() is.

This patch adds two CONFIG_KVM_AMD_SEV checks that gate all the remaining
SEV code; it fixes this particular configuration, and drops 5 KiB of
code when CONFIG_KVM_AMD_SEV=n.

Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-09 18:38:42 +02:00
Paolo Bonzini
7e7126846c kvm: nVMX: fix entry with pending interrupt if APICv is enabled
Commit b5861e5cf2 introduced a check on
the interrupt-window and NMI-window CPU execution controls in order to
inject an external interrupt vmexit before the first guest instruction
executes.  However, when APIC virtualization is enabled the host does not
need a vmexit in order to inject an interrupt at the next interrupt window;
instead, it just places the interrupt vector in RVI and the processor will
inject it as soon as possible.  Therefore, on machines with APICv it is
not enough to check the CPU execution controls: the same scenario can also
happen if RVI>vPPR.

Fixes: b5861e5cf2
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-04 17:10:40 +02:00
Paolo Bonzini
2cf7ea9f40 KVM: VMX: hide flexpriority from guest when disabled at the module level
As of commit 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls
have three settings"), KVM will disable VIRTUALIZE_APIC_ACCESSES when
a nested guest writes APIC_BASE MSR and kvm-intel.flexpriority=0,
whereas previously KVM would allow a nested guest to enable
VIRTUALIZE_APIC_ACCESSES so long as it's supported in hardware.  That is,
KVM now advertises VIRTUALIZE_APIC_ACCESSES to a guest but doesn't
(always) allow setting it when kvm-intel.flexpriority=0, and may even
initially allow the control and then clear it when the nested guest
writes APIC_BASE MSR, which is decidedly odd even if it doesn't cause
functional issues.

Hide the control completely when the module parameter is cleared.

reported-by: Sean Christopherson <sean.j.christopherson@intel.com>
Fixes: 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-04 13:40:44 +02:00
Sean Christopherson
fd6b6d9b82 KVM: VMX: check for existence of secondary exec controls before accessing
Return early from vmx_set_virtual_apic_mode() if the processor doesn't
support VIRTUALIZE_APIC_ACCESSES or VIRTUALIZE_X2APIC_MODE, both of
which reside in SECONDARY_VM_EXEC_CONTROL.  This eliminates warnings
due to VMWRITEs to SECONDARY_VM_EXEC_CONTROL (VMCS field 401e) failing
on processors without secondary exec controls.

Remove the similar check for TPR shadowing as it is incorporated in the
flexpriority_enabled check and the APIC-related code in
vmx_update_msr_bitmap() is further gated by VIRTUALIZE_X2APIC_MODE.

Reported-by: Gerhard Wiesinger <redhat@wiesinger.com>
Fixes: 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-04 13:40:21 +02:00
Sean Christopherson
daa07cbc9a KVM: x86: fix L1TF's MMIO GFN calculation
One defense against L1TF in KVM is to always set the upper five bits
of the *legal* physical address in the SPTEs for non-present and
reserved SPTEs, e.g. MMIO SPTEs.  In the MMIO case, the GFN of the
MMIO SPTE may overlap with the upper five bits that are being usurped
to defend against L1TF.  To preserve the GFN, the bits of the GFN that
overlap with the repurposed bits are shifted left into the reserved
bits, i.e. the GFN in the SPTE will be split into high and low parts.
When retrieving the GFN from the MMIO SPTE, e.g. to check for an MMIO
access, get_mmio_spte_gfn() unshifts the affected bits and restores
the original GFN for comparison.  Unfortunately, get_mmio_spte_gfn()
neglects to mask off the reserved bits in the SPTE that were used to
store the upper chunk of the GFN.  As a result, KVM fails to detect
MMIO accesses whose GPA overlaps the repurprosed bits, which in turn
causes guest panics and hangs.

Fix the bug by generating a mask that covers the lower chunk of the
GFN, i.e. the bits that aren't shifted by the L1TF mitigation.  The
alternative approach would be to explicitly zero the five reserved
bits that are used to store the upper chunk of the GFN, but that
requires additional run-time computation and makes an already-ugly
bit of code even more inscrutable.

I considered adding a WARN_ON_ONCE(low_phys_bits-1 <= PAGE_SHIFT) to
warn if GENMASK_ULL() generated a nonsensical value, but that seemed
silly since that would mean a system that supports VMX has less than
18 bits of physical address space...

Reported-by: Sakari Ailus <sakari.ailus@iki.fi>
Fixes: d9b47449c1a1 ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs")
Cc: Junaid Shahid <junaids@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Tested-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-01 15:41:00 +02:00
Liran Alon
62cf9bd811 KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS
L2 IA32_BNDCFGS should be updated with vmcs12->guest_bndcfgs only
when VM_ENTRY_LOAD_BNDCFGS is specified in vmcs12->vm_entry_controls.

Otherwise, L2 IA32_BNDCFGS should be set to vmcs01->guest_bndcfgs which
is L1 IA32_BNDCFGS.

Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-01 15:40:59 +02:00
Liran Alon
503234b3fd KVM: x86: Do not use kvm_x86_ops->mpx_supported() directly
Commit a87036add0 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features") introduced kvm_mpx_supported() to return true
iff MPX is enabled in the host.

However, that commit seems to have missed replacing some calls to
kvm_x86_ops->mpx_supported() to kvm_mpx_supported().

Complete original commit by replacing remaining calls to
kvm_mpx_supported().

Fixes: a87036add0 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features")

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-01 15:40:57 +02:00
Liran Alon
5f76f6f5ff KVM: nVMX: Do not expose MPX VMX controls when guest MPX disabled
Before this commit, KVM exposes MPX VMX controls to L1 guest only based
on if KVM and host processor supports MPX virtualization.
However, these controls should be exposed to guest only in case guest
vCPU supports MPX.

Without this change, a L1 guest running with kernel which don't have
commit 691bd4340b ("kvm: vmx: allow host to access guest
MSR_IA32_BNDCFGS") asserts in QEMU on the following:
	qemu-kvm: error: failed to set MSR 0xd90 to 0x0
	qemu-kvm: .../qemu-2.10.0/target/i386/kvm.c:1801 kvm_put_msrs:
	Assertion 'ret == cpu->kvm_msr_buf->nmsrs failed'
This is because L1 KVM kvm_init_msr_list() will see that
vmx_mpx_supported() (As it only checks MPX VMX controls support) and
therefore KVM_GET_MSR_INDEX_LIST IOCTL will include MSR_IA32_BNDCFGS.
However, later when L1 will attempt to set this MSR via KVM_SET_MSRS
IOCTL, it will fail because !guest_cpuid_has_mpx(vcpu).

Therefore, fix the issue by exposing MPX VMX controls to L1 guest only
when vCPU supports MPX.

Fixes: 36be0b9deb ("KVM: x86: Add nested virtualization support for MPX")

Reported-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-01 15:40:57 +02:00
Pu Wen
b8f4abb652 x86/kvm: Add Hygon Dhyana support to KVM
The Hygon Dhyana CPU has the SVM feature as AMD family 17h does.
So enable the KVM infrastructure support to it.

Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/654dd12876149fba9561698eaf9fc15d030301f8.1537533369.git.puwen@hygon.cn
2018-09-27 18:28:59 +02:00
Paolo Bonzini
4679b61f26 KVM: x86: never trap MSR_KERNEL_GS_BASE
KVM has an old optimization whereby accesses to the kernel GS base MSR
are trapped when the guest is in 32-bit and not when it is in 64-bit mode.
The idea is that swapgs is not available in 32-bit mode, thus the
guest has no reason to access the MSR unless in 64-bit mode and
32-bit applications need not pay the price of switching the kernel GS
base between the host and the guest values.

However, this optimization adds complexity to the code for little
benefit (these days most guests are going to be 64-bit anyway) and in fact
broke after commit 678e315e78 ("KVM: vmx: add dedicated utility to
access guest's kernel_gs_base", 2018-08-06); the guest kernel GS base
can be corrupted across SMIs and UEFI Secure Boot is therefore broken
(a secure boot Linux guest, for example, fails to reach the login prompt
about half the time).  This patch just removes the optimization; the
kernel GS base MSR is now never trapped by KVM, similarly to the FS and
GS base MSRs.

Fixes: 678e315e78
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-24 18:34:13 +02:00
Liran Alon
26b471c7e2 KVM: nVMX: Fix bad cleanup on error of get/set nested state IOCTLs
The handlers of IOCTLs in kvm_arch_vcpu_ioctl() are expected to set
their return value in "r" local var and break out of switch block
when they encounter some error.
This is because vcpu_load() is called before the switch block which
have a proper cleanup of vcpu_put() afterwards.

However, KVM_{GET,SET}_NESTED_STATE IOCTLs handlers just return
immediately on error without performing above mentioned cleanup.

Thus, change these handlers to behave as expected.

Fixes: 8fcc4b5923 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")

Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Patrick Colp <patrick.colp@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-20 18:54:08 +02:00
Drew Schmitt
6fbbde9a19 KVM: x86: Control guest reads of MSR_PLATFORM_INFO
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.

Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).

Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-20 00:51:46 +02:00
Drew Schmitt
d84f1cff90 KVM: x86: Turbo bits in MSR_PLATFORM_INFO
Allow userspace to set turbo bits in MSR_PLATFORM_INFO. Previously, only
the CPUID faulting bit was settable. But now any bit in
MSR_PLATFORM_INFO would be settable. This can be used, for example, to
convey frequency information about the platform on which the guest is
running.

Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-20 00:51:46 +02:00
Krish Sadhukhan
ba8e23db59 nVMX x86: Check VPID value on vmentry of L2 guests
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check needs to be enforced on vmentry of L2 guests:

    If the 'enable VPID' VM-execution control is 1, the value of the
    of the VPID VM-execution control field must not be 0000H.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-20 00:51:45 +02:00