The current code only associates with the existing blkcg when aio is used
to access the backing file. This patch covers all types of i/o to the
backing file and also associates the memcg so if the backing file is on
tmpfs, memory is charged appropriately.
This patch also exports cgroup_get_e_css and int_active_memcg so it can be
used by the loop module.
Link: https://lkml.kernel.org/r/20210610173944.1203706-4-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
Add a new function, cgroup_get_from_id(), to retrieve the cgroup associated
with a cgroup id. Also export the function cgroup_get_e_css() as this is
needed in blk-cgroup.h.
Link: https://lore.kernel.org/r/20210608043556.274139-2-muneendra.kumar@broadcom.com
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Muneendra Kumar <muneendra.kumar@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
PSI accounts stalls for each cgroup separately and aggregates it at each
level of the hierarchy. This causes additional overhead with psi_avgs_work
being called for each cgroup in the hierarchy. psi_avgs_work has been
highly optimized, however on systems with large number of cgroups the
overhead becomes noticeable.
Systems which use PSI only at the system level could avoid this overhead
if PSI can be configured to skip per-cgroup stall accounting.
Add "cgroup_disable=pressure" kernel command-line option to allow
requesting system-wide only pressure stall accounting. When set, it
keeps system-wide accounting under /proc/pressure/ but skips accounting
for individual cgroups and does not expose PSI nodes in cgroup hierarchy.
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix function name in cgroup.c and rstat.c kernel-doc comment
to remove these warnings found by clang_w1.
kernel/cgroup/cgroup.c:2401: warning: expecting prototype for
cgroup_taskset_migrate(). Prototype was for cgroup_migrate_execute()
instead.
kernel/cgroup/rstat.c:233: warning: expecting prototype for
cgroup_rstat_flush_begin(). Prototype was for cgroup_rstat_flush_hold()
instead.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Fixes: 'commit e595cd7069 ("cgroup: track migration context in cgroup_mgctx")'
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix some spelling mistakes in comments:
hierarhcy ==> hierarchy
automtically ==> automatically
overriden ==> overridden
In absense of .. or ==> In absence of .. and
assocaited ==> associated
taget ==> target
initate ==> initiate
succeded ==> succeeded
curremt ==> current
udpated ==> updated
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch effectively reverts the commit a3e72739b7 ("cgroup: fix
too early usage of static_branch_disable()"). The commit 6041186a32
("init: initialize jump labels before command line option parsing") has
moved the jump_label_init() before parse_args() which has made the
commit a3e72739b7 unnecessary. On the other hand there are
consequences of disabling the controllers later as there are subsystems
doing the controller checks for different decisions. One such incident
is reported [1] regarding the memory controller and its impact on memory
reclaim code.
[1] https://lore.kernel.org/linux-mm/921e53f3-4b13-aab8-4a9e-e83ff15371e4@nec.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: NOMURA JUNICHI(野村 淳一) <junichi.nomura@nec.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Jun'ichi Nomura <junichi.nomura@nec.com>
After the introduction of the cgroup.kill there is only one call site
of cgroup_task_freeze() left: cgroup_exit(). cgroup_task_freeze() is
currently taking rcu_read_lock() to read task's cgroup flags, but
because it's always called with css_set_lock locked, the rcu protection
is excessive.
Simplify the code by inlining cgroup_task_freeze().
v2: fix build
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Introduce the cgroup.kill file. It does what it says on the tin and
allows a caller to kill a cgroup by writing "1" into cgroup.kill.
The file is available in non-root cgroups.
Killing cgroups is a process directed operation, i.e. the whole
thread-group is affected. Consequently trying to write to cgroup.kill in
threaded cgroups will be rejected and EOPNOTSUPP returned. This behavior
aligns with cgroup.procs where reads in threaded-cgroups are rejected
with EOPNOTSUPP.
The cgroup.kill file is write-only since killing a cgroup is an event
not which makes it different from e.g. freezer where a cgroup
transitions between the two states.
As with all new cgroup features cgroup.kill is recursive by default.
Killing a cgroup is protected against concurrent migrations through the
cgroup mutex. To protect against forkbombs and to mitigate the effect of
racing forks a new CGRP_KILL css set lock protected flag is introduced
that is set prior to killing a cgroup and unset after the cgroup has
been killed. We can then check in cgroup_post_fork() where we hold the
css set lock already whether the cgroup is currently being killed. If so
we send the child a SIGKILL signal immediately taking it down as soon as
it returns to userspace. To make the killing of the child semantically
clean it is killed after all cgroup attachment operations have been
finalized.
There are various use-cases of this interface:
- Containers usually have a conservative layout where each container
usually has a delegated cgroup. For such layouts there is a 1:1
mapping between container and cgroup. If the container in addition
uses a separate pid namespace then killing a container usually becomes
a simple kill -9 <container-init-pid> from an ancestor pid namespace.
However, there are quite a few scenarios where that isn't true. For
example, there are containers that share the cgroup with other
processes on purpose that are supposed to be bound to the lifetime of
the container but are not in the same pidns of the container.
Containers that are in a delegated cgroup but share the pid namespace
with the host or other containers.
- Service managers such as systemd use cgroups to group and organize
processes belonging to a service. They usually rely on a recursive
algorithm now to kill a service. With cgroup.kill this becomes a
simple write to cgroup.kill.
- Userspace OOM implementations can make good use of this feature to
efficiently take down whole cgroups quickly.
- The kill program can gain a new
kill --cgroup /sys/fs/cgroup/delegated
flag to take down cgroups.
A few observations about the semantics:
- If parent and child are in the same cgroup and CLONE_INTO_CGROUP is
not specified we are not taking cgroup mutex meaning the cgroup can be
killed while a process in that cgroup is forking.
If the kill request happens right before cgroup_can_fork() and before
the parent grabs its siglock the parent is guaranteed to see the
pending SIGKILL. In addition we perform another check in
cgroup_post_fork() whether the cgroup is being killed and is so take
down the child (see above). This is robust enough and protects gainst
forkbombs. If userspace really really wants to have stricter
protection the simple solution would be to grab the write side of the
cgroup threadgroup rwsem which will force all ongoing forks to
complete before killing starts. We concluded that this is not
necessary as the semantics for concurrent forking should simply align
with freezer where a similar check as cgroup_post_fork() is performed.
For all other cases CLONE_INTO_CGROUP is required. In this case we
will grab the cgroup mutex so the cgroup can't be killed while we
fork. Once we're done with the fork and have dropped cgroup mutex we
are visible and will be found by any subsequent kill request.
- We obviously don't kill kthreads. This means a cgroup that has a
kthread will not become empty after killing and consequently no
unpopulated event will be generated. The assumption is that kthreads
should be in the root cgroup only anyway so this is not an issue.
- We skip killing tasks that already have pending fatal signals.
- Freezer doesn't care about tasks in different pid namespaces, i.e. if
you have two tasks in different pid namespaces the cgroup would still
be frozen. The cgroup.kill mechanism consequently behaves the same
way, i.e. we kill all processes and ignore in which pid namespace they
exist.
- If the caller is located in a cgroup that is killed the caller will
obviously be killed as well.
Link: https://lore.kernel.org/r/20210503143922.3093755-1-brauner@kernel.org
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: cgroups@vger.kernel.org
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current users of the rstat code can source root-level statistics from
the native counters of their respective subsystem, allowing them to
forego aggregation at the root level. This optimization is currently
implemented inside the generic rstat code, which doesn't track the root
cgroup and doesn't invoke the subsystem flush callbacks on it.
However, the memory controller cannot do this optimization, because
cgroup1 breaks out memory specifically for the local level, including at
the root level. In preparation for the memory controller switching to
rstat, move the optimization from rstat core to the controllers.
Afterwards, rstat will always track the root cgroup for changes and
invoke the subsystem callbacks on it; and it's up to the subsystem to
special-case and skip aggregation of the root cgroup if it can source
this information through other, cheaper means.
This is the case for the io controller and the cgroup base stats. In
their respective flush callbacks, check whether the parent is the root
cgroup, and if so, skip the unnecessary upward propagation.
The extra cost of tracking the root cgroup is negligible: on stat
changes, we actually remove a branch that checks for the root. The
queueing for a flush touches only per-cpu data, and only the first stat
change since a flush requires a (per-cpu) lock.
Link: https://lkml.kernel.org/r/20210209163304.77088-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rstat currently only supports the default hierarchy in cgroup2. In
order to replace memcg's private stats infrastructure - used in both
cgroup1 and cgroup2 - with rstat, the latter needs to support cgroup1.
The initialization and destruction callbacks for regular cgroups are
already in place. Remove the cgroup_on_dfl() guards to handle cgroup1.
The initialization of the root cgroup is currently hardcoded to only
handle cgrp_dfl_root.cgrp. Move those callbacks to cgroup_setup_root()
and cgroup_destroy_root() to handle the default root as well as the
various cgroup1 roots we may set up during mounting.
The linking of css to cgroups happens in code shared between cgroup1 and
cgroup2 as well. Simply remove the cgroup_on_dfl() guard.
Linkage of the root css to the root cgroup is a bit trickier: per
default, the root css of a subsystem controller belongs to the default
hierarchy (i.e. the cgroup2 root). When a controller is mounted in its
cgroup1 version, the root css is stolen and moved to the cgroup1 root;
on unmount, the css moves back to the default hierarchy. Annotate
rebind_subsystems() to move the root css linkage along between roots.
Link: https://lkml.kernel.org/r/20210209163304.77088-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If delayacct is disabled, then delayacct_is_task_waiting_on_io()
always returns false, which causes the statistical value to be
wrong. Perhaps tsk->in_iowait is better.
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Change hierachy to hierarchy and unrechable to unreachable,
no functionality changed.
Signed-off-by: Lu Jialin <lujialin4@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Secure Encrypted Virtualization (SEV) and Secure Encrypted
Virtualization - Encrypted State (SEV-ES) ASIDs are used to encrypt KVMs
on AMD platform. These ASIDs are available in the limited quantities on
a host.
Register their capacity and usage to the misc controller for tracking
via cgroups.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The Miscellaneous cgroup provides the resource limiting and tracking
mechanism for the scalar resources which cannot be abstracted like the
other cgroup resources. Controller is enabled by the CONFIG_CGROUP_MISC
config option.
A resource can be added to the controller via enum misc_res_type{} in
the include/linux/misc_cgroup.h file and the corresponding name via
misc_res_name[] in the kernel/cgroup/misc.c file. Provider of the
resource must set its capacity prior to using the resource by calling
misc_cg_set_capacity().
Once a capacity is set then the resource usage can be updated using
charge and uncharge APIs. All of the APIs to interact with misc
controller are in include/linux/misc_cgroup.h.
Miscellaneous controller provides 3 interface files. If two misc
resources (res_a and res_b) are registered then:
misc.capacity
A read-only flat-keyed file shown only in the root cgroup. It shows
miscellaneous scalar resources available on the platform along with
their quantities::
$ cat misc.capacity
res_a 50
res_b 10
misc.current
A read-only flat-keyed file shown in the non-root cgroups. It shows
the current usage of the resources in the cgroup and its children::
$ cat misc.current
res_a 3
res_b 0
misc.max
A read-write flat-keyed file shown in the non root cgroups. Allowed
maximum usage of the resources in the cgroup and its children.::
$ cat misc.max
res_a max
res_b 4
Limit can be set by::
# echo res_a 1 > misc.max
Limit can be set to max by::
# echo res_a max > misc.max
Limits can be set more than the capacity value in the misc.capacity
file.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
Pull cgroup updates from Tejun Heo:
"Nothing interesting. Just two minor patches"
* 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: fix typos in comments
cgroup: cgroup.{procs,threads} factor out common parts
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Fix NULL pointer dereference when adding new psi monitor to the root
cgroup. PSI files for root cgroup was introduced in df5ba5be74 by using
system wide psi struct when reading, but file write/monitor was not
properly fixed. Since the PSI config for the root cgroup isn't
initialized, the current implementation tries to lock a NULL ptr,
resulting in a crash.
Can be triggered by running this as root:
$ tee /sys/fs/cgroup/cpu.pressure <<< "some 10000 1000000"
Signed-off-by: Odin Ugedal <odin@uged.al>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Dan Schatzberg <dschatzberg@fb.com>
Fixes: df5ba5be74 ("kernel/sched/psi.c: expose pressure metrics on root cgroup")
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org # 5.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
Change hierachy to hierarchy and congifured to configured, no functionality
changed.
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
The functions cgroup_threads_write and cgroup_procs_write are almost
identical. In order to reduce duplication, factor out the common code in
similar fashion we already do for other threadgroup/task functions. No
functional changes are intended.
Suggested-by: Hao Lee <haolee.swjtu@gmail.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When mounting a cgroup hierarchy with disabled controller in cgroup v1,
all available controllers will be attached.
For example, boot with cgroup_no_v1=cpu or cgroup_disable=cpu, and then
mount with "mount -t cgroup -ocpu cpu /sys/fs/cgroup/cpu", then all
enabled controllers will be attached except cpu.
Fix this by adding disabled controller check in cgroup1_parse_param().
If the specified controller is disabled, just return error with information
"Disabled controller xx" rather than attaching all the other enabled
controllers.
Fixes: f5dfb5315d ("cgroup: take options parsing into ->parse_monolithic()")
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Reviewed-by: Zefan Li <lizefan.x@bytedance.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
"These three patches were scheduled for the merge window but I forgot
to send them out. Sorry about that.
None of them are significant and they fit well in a fix pull request
too - two are cosmetic and one fixes a memory leak in the mount option
parsing path"
* 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Fix memory leak when parsing multiple source parameters
cgroup/cgroup.c: replace 'of->kn->priv' with of_cft()
kernel: cgroup: Mundane spelling fixes throughout the file
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
With the deprecation of the non-hierarchical mode of the memory controller
there are no more examples of broken hierarchies left.
Let's remove the cgroup core code which was supposed to print warnings
about creating of broken hierarchies.
Link: https://lkml.kernel.org/r/20201110220800.929549-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1.
The non-hierarchical cgroup v1 mode is a legacy of early days
of the memory controller and doesn't bring any value today.
However, it complicates the code and creates many edge cases
all over the memory controller code.
It's a good time to deprecate it completely. This patchset removes
the internal logic, adjusts the user interface and updates
the documentation. The alt patch removes some bits of the cgroup
core code, which become obsolete.
Michal Hocko said:
"All that we know today is that we have a warning in place to complain
loudly when somebody relies on use_hierarchy=0 with a deeper
hierarchy. For all those years we have seen _zero_ reports that would
describe a sensible usecase.
Moreover we (SUSE) have backported this warning into old distribution
kernels (since 3.0 based kernels) to extend the coverage and didn't
hear even for users who adopt new kernels only very slowly. The only
report we have seen so far was a LTP test suite which doesn't really
reflect any real life usecase"
This patch (of 3):
The non-hierarchical cgroup v1 mode is a legacy of early days of the
memory controller and doesn't bring any value today. However, it
complicates the code and creates many edge cases all over the memory
controller code.
It's a good time to deprecate it completely.
Functionally this patch enabled is by default for all cgroups and forbids
switching it off. Nothing changes if cgroup v2 is used: hierarchical mode
was enforced from scratch.
To protect the ABI memory.use_hierarchy interface is preserved with a
limited functionality: reading always returns "1", writing of "1" passes
silently, writing of any other value fails with -EINVAL and a warning to
dmesg (on the first occasion).
Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCX9daOgAKCRCRxhvAZXjc
ohPkAQChXUB2BAjtIzXlCkZoDBbzHHblm5DZ37oy/4xYFmAcEwEA5sw6dQqyGHnF
GEP9def51HvXLpBV2BzNUGggo1SoGgQ=
=w/cO
-----END PGP SIGNATURE-----
Merge tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull misc fixes from Christian Brauner:
"This contains several fixes which felt worth being combined into a
single branch:
- Use put_nsproxy() instead of open-coding it switch_task_namespaces()
- Kirill's work to unify lifecycle management for all namespaces. The
lifetime counters are used identically for all namespaces types.
Namespaces may of course have additional unrelated counters and
these are not altered. This work allows us to unify the type of the
counters and reduces maintenance cost by moving the counter in one
place and indicating that basic lifetime management is identical
for all namespaces.
- Peilin's fix adding three byte padding to Dmitry's
PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.
- Two smal patches to convert from the /* fall through */ comment
annotation to the fallthrough keyword annotation which I had taken
into my branch and into -next before df561f6688 ("treewide: Use
fallthrough pseudo-keyword") made it upstream which fixed this
tree-wide.
Since I didn't want to invalidate all testing for other commits I
didn't rebase and kept them"
* tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
nsproxy: use put_nsproxy() in switch_task_namespaces()
sys: Convert to the new fallthrough notation
signal: Convert to the new fallthrough notation
time: Use generic ns_common::count
cgroup: Use generic ns_common::count
mnt: Use generic ns_common::count
user: Use generic ns_common::count
pid: Use generic ns_common::count
ipc: Use generic ns_common::count
uts: Use generic ns_common::count
net: Use generic ns_common::count
ns: Add a common refcount into ns_common
ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
we have supplied the inline function: of_cft() in cgroup.h.
So replace the direct use 'of->kn->priv' with inline func
of_cft(), which is more readable.
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
One of our machines keeled over trying to rebuild the scheduler domains.
Mainline produces the same splat:
BUG: unable to handle page fault for address: 0000607f820054db
CPU: 2 PID: 149 Comm: kworker/1:1 Not tainted 5.10.0-rc1-master+ #6
Workqueue: events cpuset_hotplug_workfn
RIP: build_sched_domains
Call Trace:
partition_sched_domains_locked
rebuild_sched_domains_locked
cpuset_hotplug_workfn
It happens with cgroup2 and exclusive cpusets only. This reproducer
triggers it on an 8-cpu vm and works most effectively with no
preexisting child cgroups:
cd $UNIFIED_ROOT
mkdir cg1
echo 4-7 > cg1/cpuset.cpus
echo root > cg1/cpuset.cpus.partition
# with smt/control reading 'on',
echo off > /sys/devices/system/cpu/smt/control
RIP maps to
sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
from sd_init(). sd_id is calculated earlier in the same function:
cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
sd_id = cpumask_first(sched_domain_span(sd));
tl->mask(cpu), which reads cpu_sibling_map on x86, returns an empty mask
and so cpumask_first() returns >= nr_cpu_ids, which leads to the bogus
value from per_cpu_ptr() above.
The problem is a race between cpuset_hotplug_workfn() and a later
offline of CPU N. cpuset_hotplug_workfn() updates the effective masks
when N is still online, the offline clears N from cpu_sibling_map, and
then the worker uses the stale effective masks that still have N to
generate the scheduling domains, leading the worker to read
N's empty cpu_sibling_map in sd_init().
rebuild_sched_domains_locked() prevented the race during the cgroup2
cpuset series up until the Fixes commit changed its check. Make the
check more robust so that it can detect an offline CPU in any exclusive
cpuset's effective mask, not just the top one.
Fixes: 0ccea8feb9 ("cpuset: Make generate_sched_domains() work with partition")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112171711.639541-1-daniel.m.jordan@oracle.com
Fix multiple occurrences of duplicated words in kernel/.
Fix one typo/spello on the same line as a duplicate word. Change one
instance of "the the" to "that the". Otherwise just drop one of the
repeated words.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/98202fa6-8919-ef63-9efe-c0fad5ca7af1@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not report failure on zero sized writes, and handle them as no-op.
There's issues for example in case of writev() when there's iovec
containing zero buffer as a first one. It's expected writev() on below
example to successfully perform the write to specified writable cgroup
file expecting integer value, and to return 2. For now it's returning
value -1, and skipping the write:
int writetest(int fd) {
const char *buf1 = "";
const char *buf2 = "1\n";
struct iovec iov[2] = {
{ .iov_base = (void*)buf1, .iov_len = 0 },
{ .iov_base = (void*)buf2, .iov_len = 2 }
};
return writev(fd, iov, 2);
}
This patch fixes the issue by checking if there's nothing to write,
and handling the write as no-op by just returning 0.
Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This step is already done in rebind_subsystems().
Not necessary to do it again.
Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Switch over cgroup namespaces to use the newly introduced common lifetime
counter.
Currently every namespace type has its own lifetime counter which is stored
in the specific namespace struct. The lifetime counters are used
identically for all namespaces types. Namespaces may of course have
additional unrelated counters and these are not altered.
This introduces a common lifetime counter into struct ns_common. The
ns_common struct encompasses information that all namespaces share. That
should include the lifetime counter since its common for all of them.
It also allows us to unify the type of the counters across all namespaces.
Most of them use refcount_t but one uses atomic_t and at least one uses
kref. Especially the last one doesn't make much sense since it's just a
wrapper around refcount_t since 2016 and actually complicates cleanup
operations by having to use container_of() to cast the correct namespace
struct out of struct ns_common.
Having the lifetime counter for the namespaces in one place reduces
maintenance cost. Not just because after switching all namespaces over we
will have removed more code than we added but also because the logic is
more easily understandable and we indicate to the user that the basic
lifetime requirements for all namespaces are currently identical.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/159644980994.604812.383801057081594972.stgit@localhost.localdomain
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl8m7YwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpt+dEAC7a0HYuX2OrkyawBnsgd1QQR/soC7surec
yDDa7SMM8cOq3935bfzcYHV9FWJszEGIknchiGb9R3/T+vmSohbvDsM5zgwya9u/
FHUIuTq324I6JWXKl30k4rwjiX9wQeMt+WZ5gC8KJYCWA296i2IpJwd0A45aaKuS
x4bTjxqknE+fD4gQiMUSt+bmuOUAp81fEku3EPapCRYDPAj8f5uoY7R2arT/POwB
b+s+AtXqzBymIqx1z0sZ/XcdZKmDuhdurGCWu7BfJFIzw5kQ2Qe3W8rUmrQ3pGut
8a21YfilhUFiBv+B4wptfrzJuzU6Ps0BXHCnBsQjzvXwq5uFcZH495mM/4E4OJvh
SbjL2K4iFj+O1ngFkukG/F8tdEM1zKBYy2ZEkGoWKUpyQanbAaGI6QKKJA+DCdBi
yPEb7yRAa5KfLqMiocm1qCEO1I56HRiNHaJVMqCPOZxLmpXj19Fs71yIRplP1Trv
GGXdWZsccjuY6OljoXWdEfnxAr5zBsO3Yf2yFT95AD+egtGsU1oOzlqAaU1mtflw
ABo452pvh6FFpxGXqz6oK4VqY4Et7WgXOiljA4yIGoPpG/08L1Yle4eVc2EE01Jb
+BL49xNJVeUhGFrvUjPGl9kVMeLmubPFbmgrtipW+VRg9W8+Yirw7DPP6K+gbPAR
RzAUdZFbWw==
=abJG
-----END PGP SIGNATURE-----
Merge tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
"Good amount of cleanups and tech debt removals in here, and as a
result, the diffstat shows a nice net reduction in code.
- Softirq completion cleanups (Christoph)
- Stop using ->queuedata (Christoph)
- Cleanup bd claiming (Christoph)
- Use check_events, moving away from the legacy media change
(Christoph)
- Use inode i_blkbits consistently (Christoph)
- Remove old unused writeback congestion bits (Christoph)
- Cleanup/unify submission path (Christoph)
- Use bio_uninit consistently, instead of bio_disassociate_blkg
(Christoph)
- sbitmap cleared bits handling (John)
- Request merging blktrace event addition (Jan)
- sysfs add/remove race fixes (Luis)
- blk-mq tag fixes/optimizations (Ming)
- Duplicate words in comments (Randy)
- Flush deferral cleanup (Yufen)
- IO context locking/retry fixes (John)
- struct_size() usage (Gustavo)
- blk-iocost fixes (Chengming)
- blk-cgroup IO stats fixes (Boris)
- Various little fixes"
* tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block: (135 commits)
block: blk-timeout: delete duplicated word
block: blk-mq-sched: delete duplicated word
block: blk-mq: delete duplicated word
block: genhd: delete duplicated words
block: elevator: delete duplicated word and fix typos
block: bio: delete duplicated words
block: bfq-iosched: fix duplicated word
iocost_monitor: start from the oldest usage index
iocost: Fix check condition of iocg abs_vdebt
block: Remove callback typedefs for blk_mq_ops
block: Use non _rcu version of list functions for tag_set_list
blk-cgroup: show global disk stats in root cgroup io.stat
blk-cgroup: make iostat functions visible to stat printing
block: improve discard bio alignment in __blkdev_issue_discard()
block: change REQ_OP_ZONE_RESET and REQ_OP_ZONE_RESET_ALL to be odd numbers
block: defer flush request no matter whether we have elevator
block: make blk_timeout_init() static
block: remove retry loop in ioc_release_fn()
block: remove unnecessary ioc nested locking
block: integrate bd_start_claiming into __blkdev_get
...
When we clone a socket in sk_clone_lock(), its sk_cgrp_data is
copied, so the cgroup refcnt must be taken too. And, unlike the
sk_alloc() path, sock_update_netprioidx() is not called here.
Therefore, it is safe and necessary to grab the cgroup refcnt
even when cgroup_sk_alloc is disabled.
sk_clone_lock() is in BH context anyway, the in_interrupt()
would terminate this function if called there. And for sk_alloc()
skcd->val is always zero. So it's safe to factor out the code
to make it more readable.
The global variable 'cgroup_sk_alloc_disabled' is used to determine
whether to take these reference counts. It is impossible to make
the reference counting correct unless we save this bit of information
in skcd->val. So, add a new bit there to record whether the socket
has already taken the reference counts. This obviously relies on
kmalloc() to align cgroup pointers to at least 4 bytes,
ARCH_KMALLOC_MINALIGN is certainly larger than that.
This bug seems to be introduced since the beginning, commit
d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
tried to fix it but not compeletely. It seems not easy to trigger until
the recent commit 090e28b229
("netprio_cgroup: Fix unlimited memory leak of v2 cgroups") was merged.
Fixes: bd1060a1d6 ("sock, cgroup: add sock->sk_cgroup")
Reported-by: Cameron Berkenpas <cam@neo-zeon.de>
Reported-by: Peter Geis <pgwipeout@gmail.com>
Reported-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reported-by: Daniël Sonck <dsonck92@gmail.com>
Reported-by: Zhang Qiang <qiang.zhang@windriver.com>
Tested-by: Cameron Berkenpas <cam@neo-zeon.de>
Tested-by: Peter Geis <pgwipeout@gmail.com>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
cgroup_rstat_updated is only used by core block code, no need to
export it.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull cgroup updates from Tejun Heo:
"Just two patches: one to add system-level cpu.stat to the root cgroup
for convenience and a trivial comment update"
* 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: add cpu.stat file to root cgroup
cgroup: Remove stale comments
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXtYhfgAKCRCRxhvAZXjc
oghSAP9uVX3vxYtEtNvu9WtEn1uYZcSKZoF1YrcgY7UfSmna0gEAruzyZcai4CJL
WKv+4aRq2oYk+hsqZDycAxIsEgWvNg8=
=ZWj3
-----END PGP SIGNATURE-----
Merge tag 'threads-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread updates from Christian Brauner:
"We have been discussing using pidfds to attach to namespaces for quite
a while and the patches have in one form or another already existed
for about a year. But I wanted to wait to see how the general api
would be received and adopted.
This contains the changes to make it possible to use pidfds to attach
to the namespaces of a process, i.e. they can be passed as the first
argument to the setns() syscall.
When only a single namespace type is specified the semantics are
equivalent to passing an nsfd. That means setns(nsfd, CLONE_NEWNET)
equals setns(pidfd, CLONE_NEWNET).
However, when a pidfd is passed, multiple namespace flags can be
specified in the second setns() argument and setns() will attach the
caller to all the specified namespaces all at once or to none of them.
Specifying 0 is not valid together with a pidfd. Here are just two
obvious examples:
setns(pidfd, CLONE_NEWPID | CLONE_NEWNS | CLONE_NEWNET);
setns(pidfd, CLONE_NEWUSER);
Allowing to also attach subsets of namespaces supports various
use-cases where callers setns to a subset of namespaces to retain
privilege, perform an action and then re-attach another subset of
namespaces.
Apart from significantly reducing the number of syscalls needed to
attach to all currently supported namespaces (eight "open+setns"
sequences vs just a single "setns()"), this also allows atomic setns
to a set of namespaces, i.e. either attaching to all namespaces
succeeds or we fail without having changed anything.
This is centered around a new internal struct nsset which holds all
information necessary for a task to switch to a new set of namespaces
atomically. Fwiw, with this change a pidfd becomes the only token
needed to interact with a container. I'm expecting this to be
picked-up by util-linux for nsenter rather soon.
Associated with this change is a shiny new test-suite dedicated to
setns() (for pidfds and nsfds alike)"
* tag 'threads-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
selftests/pidfd: add pidfd setns tests
nsproxy: attach to namespaces via pidfds
nsproxy: add struct nsset
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the root cgroup does not have a cpu.stat file. Add one which
is consistent with /proc/stat to capture global cpu statistics that
might not fall under cgroup accounting.
We haven't done this in the past because the data are already presented
in /proc/stat and we didn't want to add overhead from collecting root
cgroup stats when cgroups are configured, but no cgroups have been
created.
By keeping the data consistent with /proc/stat, I think we avoid the
first problem, while improving the usability of cgroups stats.
We avoid the second problem by computing the contents of cpu.stat from
existing data collected for /proc/stat anyway.
Signed-off-by: Boris Burkov <boris@bur.io>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
- The default root is where we can create v2 cgroups.
- The __DEVEL__sane_behavior mount option has been removed long long ago.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add a simple struct nsset. It holds all necessary pieces to switch to a new
set of namespaces without leaving a task in a half-switched state which we
will make use of in the next patch. This patch switches the existing setns
logic over without causing a change in setns() behavior. This brings
setns() closer to how unshare() works(). The prepare_ns() function is
responsible to prepare all necessary information. This has two reasons.
First it minimizes dependencies between individual namespaces, i.e. all
install handler can expect that all fields are properly initialized
independent in what order they are called in. Second, this makes the code
easier to maintain and easier to follow if it needs to be changed.
The prepare_ns() helper will only be switched over to use a flags argument
in the next patch. Here it will still use nstype as a simple integer
argument which was argued would be clearer. I'm not particularly
opinionated about this if it really helps or not. The struct nsset itself
already contains the flags field since its name already indicates that it
can contain information required by different namespaces. None of this
should have functional consequences.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Jann Horn <jannh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Link: https://lore.kernel.org/r/20200505140432.181565-2-christian.brauner@ubuntu.com
Make bpf_link update support more generic by making it into another
bpf_link_ops methods. This allows generic syscall handling code to be agnostic
to various conditionally compiled features (e.g., the case of
CONFIG_CGROUP_BPF). This also allows to keep link type-specific code to remain
static within respective code base. Refactor existing bpf_cgroup_link code and
take advantage of this.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-2-andriin@fb.com
This reverts commit 9a9e97b2f1 ("cgroup: Add memory barriers to plug
cgroup_rstat_updated() race window").
The commit was added in anticipation of memcg rstat conversion which needed
synchronous accounting for the event counters (e.g. oom kill count). However,
the conversion didn't get merged due to percpu memory overhead concern which
couldn't be addressed at the time.
Unfortunately, the patch's addition of smp_mb() to cgroup_rstat_updated()
meant that every scheduling event now had to go through an additional full
barrier and Mel Gorman noticed it as 1% regression in netperf UDP_STREAM test.
There's no need to have this barrier in tree now and even if we need
synchronous accounting in the future, the right thing to do is separating that
out to a separate function so that hot paths which don't care about
synchronous behavior don't have to pay the overhead of the full barrier. Let's
revert.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200409154413.GK3818@techsingularity.net
Cc: v4.18+
Pull cgroup updates from Tejun Heo:
- Christian extended clone3 so that processes can be spawned into
cgroups directly.
This is not only neat in terms of semantics but also avoids grabbing
the global cgroup_threadgroup_rwsem for migration.
- Daniel added !root xattr support to cgroupfs.
Userland already uses xattrs on cgroupfs for bookkeeping. This will
allow delegated cgroups to support such usages.
- Prateek tried to make cpuset hotplug handling synchronous but that
led to possible deadlock scenarios. Reverted.
- Other minor changes including release_agent_path handling cleanup.
* 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1: Document the cpuset_v2_mode mount option
Revert "cpuset: Make cpuset hotplug synchronous"
cgroupfs: Support user xattrs
kernfs: Add option to enable user xattrs
kernfs: Add removed_size out param for simple_xattr_set
kernfs: kvmalloc xattr value instead of kmalloc
cgroup: Restructure release_agent_path handling
selftests/cgroup: add tests for cloning into cgroups
clone3: allow spawning processes into cgroups
cgroup: add cgroup_may_write() helper
cgroup: refactor fork helpers
cgroup: add cgroup_get_from_file() helper
cgroup: unify attach permission checking
cpuset: Make cpuset hotplug synchronous
cgroup.c: Use built-in RCU list checking
kselftest/cgroup: add cgroup destruction test
cgroup: Clean up css_set task traversal
The cpuset in cgroup v1 accepts a special "cpuset_v2_mode" mount
option that make cpuset.cpus and cpuset.mems behave more like those in
cgroup v2. Document it to make other people more aware of this feature
that can be useful in some circumstances.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Right now, the effective protection of any given cgroup is capped by its
own explicit memory.low setting, regardless of what the parent says. The
reasons for this are mostly historical and ease of implementation: to make
delegation of memory.low safe, effective protection is the min() of all
memory.low up the tree.
Unfortunately, this limitation makes it impossible to protect an entire
subtree from another without forcing the user to make explicit protection
allocations all the way to the leaf cgroups - something that is highly
undesirable in real life scenarios.
Consider memory in a data center host. At the cgroup top level, we have a
distinction between system management software and the actual workload the
system is executing. Both branches are further subdivided into individual
services, job components etc.
We want to protect the workload as a whole from the system management
software, but that doesn't mean we want to protect and prioritize
individual workload wrt each other. Their memory demand can vary over
time, and we'd want the VM to simply cache the hottest data within the
workload subtree. Yet, the current memory.low limitations force us to
allocate a fixed amount of protection to each workload component in order
to get protection from system management software in general. This
results in very inefficient resource distribution.
Another concern with mandating downward allocation is that, as the
complexity of the cgroup tree grows, it gets harder for the lower levels
to be informed about decisions made at the host-level. Consider a
container inside a namespace that in turn creates its own nested tree of
cgroups to run multiple workloads. It'd be extremely difficult to
configure memory.low parameters in those leaf cgroups that on one hand
balance pressure among siblings as the container desires, while also
reflecting the host-level protection from e.g. rpm upgrades, that lie
beyond one or more delegation and namespacing points in the tree.
It's highly unusual from a cgroup interface POV that nested levels have to
be aware of and reflect decisions made at higher levels for them to be
effective.
To enable such use cases and scale configurability for complex trees, this
patch implements a resource inheritance model for memory that is similar
to how the CPU and the IO controller implement work-conserving resource
allocations: a share of a resource allocated to a subree always applies to
the entire subtree recursively, while allowing, but not mandating,
children to further specify distribution rules.
That means that if protection is explicitly allocated among siblings,
those configured shares are being followed during page reclaim just like
they are now. However, if the memory.low set at a higher level is not
fully claimed by the children in that subtree, the "floating" remainder is
applied to each cgroup in the tree in proportion to its size. Since
reclaim pressure is applied in proportion to size as well, each child in
that tree gets the same boost, and the effect is neutral among siblings -
with respect to each other, they behave as if no memory control was
enabled at all, and the VM simply balances the memory demands optimally
within the subtree. But collectively those cgroups enjoy a boost over the
cgroups in neighboring trees.
E.g. a leaf cgroup with a memory.low setting of 0 no longer means that
it's not getting a share of the hierarchically assigned resource, just
that it doesn't claim a fixed amount of it to protect from its siblings.
This allows us to recursively protect one subtree (workload) from another
(system management), while letting subgroups compete freely among each
other - without having to assign fixed shares to each leaf, and without
nested groups having to echo higher-level settings.
The floating protection composes naturally with fixed protection.
Consider the following example tree:
A A: low = 2G
/ \ A1: low = 1G
A1 A2 A2: low = 0G
As outside pressure is applied to this tree, A1 will enjoy a fixed
protection from A2 of 1G, but the remaining, unclaimed 1G from A is split
evenly among A1 and A2, coming out to 1.5G and 0.5G.
There is a slight risk of regressing theoretical setups where the
top-level cgroups don't know about the true budgeting and set bogusly high
"bypass" values that are meaningfully allocated down the tree. Such
setups would rely on unclaimed protection to be discarded, and
distributing it would change the intended behavior. Be safe and hide the
new behavior behind a mount option, 'memory_recursiveprot'.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add new operation (LINK_UPDATE), which allows to replace active bpf_prog from
under given bpf_link. Currently this is only supported for bpf_cgroup_link,
but will be extended to other kinds of bpf_links in follow-up patches.
For bpf_cgroup_link, implemented functionality matches existing semantics for
direct bpf_prog attachment (including BPF_F_REPLACE flag). User can either
unconditionally set new bpf_prog regardless of which bpf_prog is currently
active under given bpf_link, or, optionally, can specify expected active
bpf_prog. If active bpf_prog doesn't match expected one, no changes are
performed, old bpf_link stays intact and attached, operation returns
a failure.
cgroup_bpf_replace() operation is resolving race between auto-detachment and
bpf_prog update in the same fashion as it's done for bpf_link detachment,
except in this case update has no way of succeeding because of target cgroup
marked as dying. So in this case error is returned.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-3-andriin@fb.com
Implement new sub-command to attach cgroup BPF programs and return FD-based
bpf_link back on success. bpf_link, once attached to cgroup, cannot be
replaced, except by owner having its FD. Cgroup bpf_link supports only
BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI
attachments can be freely intermixed.
To prevent bpf_cgroup_link from keeping cgroup alive past the point when no
BPF program can be executed, implement auto-detachment of link. When
cgroup_bpf_release() is called, all attached bpf_links are forced to release
cgroup refcounts, but they leave bpf_link otherwise active and allocated, as
well as still owning underlying bpf_prog. This is because user-space might
still have FDs open and active, so bpf_link as a user-referenced object can't
be freed yet. Once last active FD is closed, bpf_link will be freed and
underlying bpf_prog refcount will be dropped. But cgroup refcount won't be
touched, because cgroup is released already.
The inherent race between bpf_cgroup_link release (from closing last FD) and
cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So
the only additional check required is when bpf_cgroup_link attempts to detach
itself from cgroup. At that time we need to check whether there is still
cgroup associated with that link. And if not, exit with success, because
bpf_cgroup_link was already successfully detached.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com
This patch turns on xattr support for cgroupfs. This is useful for
letting non-root owners of delegated subtrees attach metadata to
cgroups.
One use case is for subtree owners to tell a userspace out of memory
killer to bias away from killing specific subtrees.
Tests:
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice -n user.name$i -v wow; done
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice --remove user.name$i; done
setfattr: workload.slice: No such attribute
setfattr: workload.slice: No such attribute
setfattr: workload.slice: No such attribute
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice -n user.name$i -v wow; done
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
`seq 0 130` is inclusive, and 131 - 128 = 3, which is the number of
errors we expect to see.
[/data]# cat testxattr.c
#include <sys/types.h>
#include <sys/xattr.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
char name[256];
char *buf = malloc(64 << 10);
if (!buf) {
perror("malloc");
return 1;
}
for (int i = 0; i < 4; ++i) {
snprintf(name, 256, "user.bigone%d", i);
if (setxattr("/sys/fs/cgroup/system.slice", name, buf,
64 << 10, 0)) {
printf("setxattr failed on iteration=%d\n", i);
return 1;
}
}
return 0;
}
[/data]# ./a.out
setxattr failed on iteration=2
[/data]# ./a.out
setxattr failed on iteration=0
[/sys/fs/cgroup]# setfattr -x user.bigone0 system.slice/
[/sys/fs/cgroup]# setfattr -x user.bigone1 system.slice/
[/data]# ./a.out
setxattr failed on iteration=2
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull networking fixes from David Miller:
"It looks like a decent sized set of fixes, but a lot of these are one
liner off-by-one and similar type changes:
1) Fix netlink header pointer to calcular bad attribute offset
reported to user. From Pablo Neira Ayuso.
2) Don't double clear PHY interrupts when ->did_interrupt is set,
from Heiner Kallweit.
3) Add missing validation of various (devlink, nl802154, fib, etc.)
attributes, from Jakub Kicinski.
4) Missing *pos increments in various netfilter seq_next ops, from
Vasily Averin.
5) Missing break in of_mdiobus_register() loop, from Dajun Jin.
6) Don't double bump tx_dropped in veth driver, from Jiang Lidong.
7) Work around FMAN erratum A050385, from Madalin Bucur.
8) Make sure ARP header is pulled early enough in bonding driver,
from Eric Dumazet.
9) Do a cond_resched() during multicast processing of ipvlan and
macvlan, from Mahesh Bandewar.
10) Don't attach cgroups to unrelated sockets when in interrupt
context, from Shakeel Butt.
11) Fix tpacket ring state management when encountering unknown GSO
types. From Willem de Bruijn.
12) Fix MDIO bus PHY resume by checking mdio_bus_phy_may_suspend()
only in the suspend context. From Heiner Kallweit"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (112 commits)
net: systemport: fix index check to avoid an array out of bounds access
tc-testing: add ETS scheduler to tdc build configuration
net: phy: fix MDIO bus PM PHY resuming
net: hns3: clear port base VLAN when unload PF
net: hns3: fix RMW issue for VLAN filter switch
net: hns3: fix VF VLAN table entries inconsistent issue
net: hns3: fix "tc qdisc del" failed issue
taprio: Fix sending packets without dequeueing them
net: mvmdio: avoid error message for optional IRQ
net: dsa: mv88e6xxx: Add missing mask of ATU occupancy register
net: memcg: fix lockdep splat in inet_csk_accept()
s390/qeth: implement smarter resizing of the RX buffer pool
s390/qeth: refactor buffer pool code
s390/qeth: use page pointers to manage RX buffer pool
seg6: fix SRv6 L2 tunnels to use IANA-assigned protocol number
net: dsa: Don't instantiate phylink for CPU/DSA ports unless needed
net/packet: tpacket_rcv: do not increment ring index on drop
sxgbe: Fix off by one in samsung driver strncpy size arg
net: caif: Add lockdep expression to RCU traversal primitive
MAINTAINERS: remove Sathya Perla as Emulex NIC maintainer
...
cgrp->root->release_agent_path is protected by both cgroup_mutex and
release_agent_path_lock and readers can hold either one. The
dual-locking scheme was introduced while breaking a locking dependency
issue around cgroup_mutex but doesn't make sense anymore given that
the only remaining reader which uses cgroup_mutex is
cgroup1_releaes_agent().
This patch updates cgroup1_release_agent() to use
release_agent_path_lock so that release_agent_path is always protected
only by release_agent_path_lock.
While at it, convert strlen() based empty string checks to direct
tests on the first character as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.
mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.
Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.
WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
<IRQ>
dump_stack+0x57/0x75
mem_cgroup_sk_alloc+0xe9/0xf0
sk_clone_lock+0x2a7/0x420
inet_csk_clone_lock+0x1b/0x110
tcp_create_openreq_child+0x23/0x3b0
tcp_v6_syn_recv_sock+0x88/0x730
tcp_check_req+0x429/0x560
tcp_v6_rcv+0x72d/0xa40
ip6_protocol_deliver_rcu+0xc9/0x400
ip6_input+0x44/0xd0
? ip6_protocol_deliver_rcu+0x400/0x400
ip6_rcv_finish+0x71/0x80
ipv6_rcv+0x5b/0xe0
? ip6_sublist_rcv+0x2e0/0x2e0
process_backlog+0x108/0x1e0
net_rx_action+0x26b/0x460
__do_softirq+0x104/0x2a6
do_softirq_own_stack+0x2a/0x40
</IRQ>
do_softirq.part.19+0x40/0x50
__local_bh_enable_ip+0x51/0x60
ip6_finish_output2+0x23d/0x520
? ip6table_mangle_hook+0x55/0x160
__ip6_finish_output+0xa1/0x100
ip6_finish_output+0x30/0xd0
ip6_output+0x73/0x120
? __ip6_finish_output+0x100/0x100
ip6_xmit+0x2e3/0x600
? ipv6_anycast_cleanup+0x50/0x50
? inet6_csk_route_socket+0x136/0x1e0
? skb_free_head+0x1e/0x30
inet6_csk_xmit+0x95/0xf0
__tcp_transmit_skb+0x5b4/0xb20
__tcp_send_ack.part.60+0xa3/0x110
tcp_send_ack+0x1d/0x20
tcp_rcv_state_process+0xe64/0xe80
? tcp_v6_connect+0x5d1/0x5f0
tcp_v6_do_rcv+0x1b1/0x3f0
? tcp_v6_do_rcv+0x1b1/0x3f0
__release_sock+0x7f/0xd0
release_sock+0x30/0xa0
__inet_stream_connect+0x1c3/0x3b0
? prepare_to_wait+0xb0/0xb0
inet_stream_connect+0x3b/0x60
__sys_connect+0x101/0x120
? __sys_getsockopt+0x11b/0x140
__x64_sys_connect+0x1a/0x20
do_syscall_64+0x51/0x200
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Older (and maybe current) versions of systemd set release_agent to "" when
shutting down, but do not set notify_on_release to 0.
Since 64e90a8acb ("Introduce STATIC_USERMODEHELPER to mediate
call_usermodehelper()"), we filter out such calls when the user mode helper
path is "". However, when used in conjunction with an actual (i.e. non "")
STATIC_USERMODEHELPER, the path is never "", so the real usermode helper
will be called with argv[0] == "".
Let's avoid this by not invoking the release_agent when it is "".
Signed-off-by: Tycho Andersen <tycho@tycho.ws>
Signed-off-by: Tejun Heo <tj@kernel.org>
Similar to the commit d749534322 ("cgroup: fix incorrect
WARN_ON_ONCE() in cgroup_setup_root()"), cgroup_id(root_cgrp) does not
equal to 1 on 32bit ino archs which triggers all sorts of issues with
psi_show() on s390x. For example,
BUG: KASAN: slab-out-of-bounds in collect_percpu_times+0x2d0/
Read of size 4 at addr 000000001e0ce000 by task read_all/3667
collect_percpu_times+0x2d0/0x798
psi_show+0x7c/0x2a8
seq_read+0x2ac/0x830
vfs_read+0x92/0x150
ksys_read+0xe2/0x188
system_call+0xd8/0x2b4
Fix it by using cgroup_ino().
Fixes: 743210386c ("cgroup: use cgrp->kn->id as the cgroup ID")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org # v5.5
This adds support for creating a process in a different cgroup than its
parent. Callers can limit and account processes and threads right from
the moment they are spawned:
- A service manager can directly spawn new services into dedicated
cgroups.
- A process can be directly created in a frozen cgroup and will be
frozen as well.
- The initial accounting jitter experienced by process supervisors and
daemons is eliminated with this.
- Threaded applications or even thread implementations can choose to
create a specific cgroup layout where each thread is spawned
directly into a dedicated cgroup.
This feature is limited to the unified hierarchy. Callers need to pass
a directory file descriptor for the target cgroup. The caller can
choose to pass an O_PATH file descriptor. All usual migration
restrictions apply, i.e. there can be no processes in inner nodes. In
general, creating a process directly in a target cgroup adheres to all
migration restrictions.
One of the biggest advantages of this feature is that CLONE_INTO_GROUP does
not need to grab the write side of the cgroup cgroup_threadgroup_rwsem.
This global lock makes moving tasks/threads around super expensive. With
clone3() this lock is avoided.
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add a cgroup_may_write() helper which we can use in the
CLONE_INTO_CGROUP patch series to verify that we can write to the
destination cgroup.
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This refactors the fork helpers so they can be easily modified in the
next patches. The patch just moves the cgroup threadgroup rwsem grab and
release into the helpers. They don't need to be directly exposed in fork.c.
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Acked-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add a helper cgroup_get_from_file(). The helper will be used in
subsequent patches to retrieve a cgroup while holding a reference to the
struct file it was taken from.
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Acked-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The core codepaths to check whether a process can be attached to a
cgroup are the same for threads and thread-group leaders. Only a small
piece of code verifying that source and destination cgroup are in the
same domain differentiates the thread permission checking from
thread-group leader permission checking.
Since cgroup_migrate_vet_dst() only matters cgroup2 - it is a noop on
cgroup1 - we can move it out of cgroup_attach_task().
All checks can now be consolidated into a new helper
cgroup_attach_permissions() callable from both cgroup_procs_write() and
cgroup_threads_write().
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Acked-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert cpuset_hotplug_workfn() into synchronous call for cpu hotplug
path. For memory hotplug path it still gets queued as a work item.
Since cpuset_hotplug_workfn() can be made synchronous for cpu hotplug
path, it is not required to wait for cpuset hotplug while thawing
processes.
Signed-off-by: Prateek Sood <prsood@codeaurora.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
list_for_each_entry_rcu has built-in RCU and lock checking.
Pass cond argument to list_for_each_entry_rcu() to silence
false lockdep warning when CONFIG_PROVE_RCU_LIST is enabled
by default.
Even though the function css_next_child() already checks if
cgroup_mutex or rcu_read_lock() is held using
cgroup_assert_mutex_or_rcu_locked(), there is a need to pass
cond to list_for_each_entry_rcu() to avoid false positive
lockdep warning.
Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik10@gmail.com>
Acked-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
css_task_iter stores pointer to head of each iterable list, this dates
back to commit 0f0a2b4fa6 ("cgroup: reorganize css_task_iter") when we
did not store cur_cset. Let us utilize list heads directly in cur_cset
and streamline css_task_iter_advance_css_set a bit. This is no
intentional function change.
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
PF_EXITING is set earlier than actual removal from css_set when a task
is exitting. This can confuse cgroup.procs readers who see no PF_EXITING
tasks, however, rmdir is checking against css_set membership so it can
transitionally fail with EBUSY.
Fix this by listing tasks that weren't unlinked from css_set active
lists.
It may happen that other users of the task iterator (without
CSS_TASK_ITER_PROCS) spot a PF_EXITING task before cgroup_exit(). This
is equal to the state before commit c03cd7738a ("cgroup: Include dying
leaders with live threads in PROCS iterations") but it may be reviewed
later.
Reported-by: Suren Baghdasaryan <surenb@google.com>
Fixes: c03cd7738a ("cgroup: Include dying leaders with live threads in PROCS iterations")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output:
1) dd bs=1 skip output of each 2nd elements
$ dd if=/sys/fs/cgroup/cgroup.procs bs=8 count=1
2
3
4
5
1+0 records in
1+0 records out
8 bytes copied, 0,000267297 s, 29,9 kB/s
[test@localhost ~]$ dd if=/sys/fs/cgroup/cgroup.procs bs=1 count=8
2
4 <<< NB! 3 was skipped
6 <<< ... and 5 too
8 <<< ... and 7
8+0 records in
8+0 records out
8 bytes copied, 5,2123e-05 s, 153 kB/s
This happen because __cgroup_procs_start() makes an extra
extra cgroup_procs_next() call
2) read after lseek beyond end of file generates whole last line.
3) read after lseek into middle of last line generates
expected rest of last line and unexpected whole line once again.
Additionally patch removes an extra position index changes in
__cgroup_procs_start()
Cc: stable@vger.kernel.orghttps://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.
# mount | grep cgroup
# dd if=/mnt/cgroup.procs bs=1 # normal output
...
1294
1295
1296
1304
1382
584+0 records in
584+0 records out
584 bytes copied
dd: /mnt/cgroup.procs: cannot skip to specified offset
83 <<< generates end of last line
1383 <<< ... and whole last line once again
0+1 records in
0+1 records out
8 bytes copied
dd: /mnt/cgroup.procs: cannot skip to specified offset
1386 <<< generates last line anyway
0+1 records in
0+1 records out
5 bytes copied
https://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup fix from Tejun Heo:
"I made a mistake while removing cgroup task list lazy init
optimization making the root cgroup.procs show entries for the
init_tasks. The zero entries doesn't cause critical failures but does
make systemd print out warning messages during boot.
Fix it by omitting init_tasks as they should be"
* 'for-5.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: init_tasks shouldn't be linked to the root cgroup
Pull vfs file system parameter updates from Al Viro:
"Saner fs_parser.c guts and data structures. The system-wide registry
of syntax types (string/enum/int32/oct32/.../etc.) is gone and so is
the horror switch() in fs_parse() that would have to grow another case
every time something got added to that system-wide registry.
New syntax types can be added by filesystems easily now, and their
namespace is that of functions - not of system-wide enum members. IOW,
they can be shared or kept private and if some turn out to be widely
useful, we can make them common library helpers, etc., without having
to do anything whatsoever to fs_parse() itself.
And we already get that kind of requests - the thing that finally
pushed me into doing that was "oh, and let's add one for timeouts -
things like 15s or 2h". If some filesystem really wants that, let them
do it. Without somebody having to play gatekeeper for the variants
blessed by direct support in fs_parse(), TYVM.
Quite a bit of boilerplate is gone. And IMO the data structures make a
lot more sense now. -200LoC, while we are at it"
* 'merge.nfs-fs_parse.1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (25 commits)
tmpfs: switch to use of invalfc()
cgroup1: switch to use of errorfc() et.al.
procfs: switch to use of invalfc()
hugetlbfs: switch to use of invalfc()
cramfs: switch to use of errofc() et.al.
gfs2: switch to use of errorfc() et.al.
fuse: switch to use errorfc() et.al.
ceph: use errorfc() and friends instead of spelling the prefix out
prefix-handling analogues of errorf() and friends
turn fs_param_is_... into functions
fs_parse: handle optional arguments sanely
fs_parse: fold fs_parameter_desc/fs_parameter_spec
fs_parser: remove fs_parameter_description name field
add prefix to fs_context->log
ceph_parse_param(), ceph_parse_mon_ips(): switch to passing fc_log
new primitive: __fs_parse()
switch rbd and libceph to p_log-based primitives
struct p_log, variants of warnf() et.al. taking that one instead
teach logfc() to handle prefices, give it saner calling conventions
get rid of cg_invalf()
...
Unused now.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
5153faac18 ("cgroup: remove cgroup_enable_task_cg_lists()
optimization") removed lazy initialization of css_sets so that new
tasks are always lniked to its css_set. In the process, it incorrectly
ended up adding init_tasks to root css_set. They show up as PID 0's in
root's cgroup.procs triggering warnings in systemd and generally
confusing people.
Fix it by skip css_set linking for init_tasks.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: https://github.com/joanbm
Link: https://github.com/systemd/systemd/issues/14682
Fixes: 5153faac18 ("cgroup: remove cgroup_enable_task_cg_lists() optimization")
Cc: stable@vger.kernel.org # v5.5+
Pull networking updates from David Miller:
1) Add WireGuard
2) Add HE and TWT support to ath11k driver, from John Crispin.
3) Add ESP in TCP encapsulation support, from Sabrina Dubroca.
4) Add variable window congestion control to TIPC, from Jon Maloy.
5) Add BCM84881 PHY driver, from Russell King.
6) Start adding netlink support for ethtool operations, from Michal
Kubecek.
7) Add XDP drop and TX action support to ena driver, from Sameeh
Jubran.
8) Add new ipv4 route notifications so that mlxsw driver does not have
to handle identical routes itself. From Ido Schimmel.
9) Add BPF dynamic program extensions, from Alexei Starovoitov.
10) Support RX and TX timestamping in igc, from Vinicius Costa Gomes.
11) Add support for macsec HW offloading, from Antoine Tenart.
12) Add initial support for MPTCP protocol, from Christoph Paasch,
Matthieu Baerts, Florian Westphal, Peter Krystad, and many others.
13) Add Octeontx2 PF support, from Sunil Goutham, Geetha sowjanya, Linu
Cherian, and others.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1469 commits)
net: phy: add default ARCH_BCM_IPROC for MDIO_BCM_IPROC
udp: segment looped gso packets correctly
netem: change mailing list
qed: FW 8.42.2.0 debug features
qed: rt init valid initialization changed
qed: Debug feature: ilt and mdump
qed: FW 8.42.2.0 Add fw overlay feature
qed: FW 8.42.2.0 HSI changes
qed: FW 8.42.2.0 iscsi/fcoe changes
qed: Add abstraction for different hsi values per chip
qed: FW 8.42.2.0 Additional ll2 type
qed: Use dmae to write to widebus registers in fw_funcs
qed: FW 8.42.2.0 Parser offsets modified
qed: FW 8.42.2.0 Queue Manager changes
qed: FW 8.42.2.0 Expose new registers and change windows
qed: FW 8.42.2.0 Internal ram offsets modifications
MAINTAINERS: Add entry for Marvell OcteonTX2 Physical Function driver
Documentation: net: octeontx2: Add RVU HW and drivers overview
octeontx2-pf: ethtool RSS config support
octeontx2-pf: Add basic ethtool support
...
The test_cgcore_no_internal_process_constraint_on_threads selftest when
running with subsystem controlling noise triggers two warnings:
> [ 597.443115] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3131 cgroup_apply_control_enable+0xe0/0x3f0
> [ 597.443413] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3177 cgroup_apply_control_disable+0xa6/0x160
Both stem from a call to cgroup_type_write. The first warning was also
triggered by syzkaller.
When we're switching cgroup to threaded mode shortly after a subsystem
was disabled on it, we can see the respective subsystem css dying there.
The warning in cgroup_apply_control_enable is harmless in this case
since we're not adding new subsys anyway.
The warning in cgroup_apply_control_disable indicates an attempt to kill
css of recently disabled subsystem repeatedly.
The commit prevents these situations by making cgroup_type_write wait
for all dying csses to go away before re-applying subtree controls.
When at it, the locations of WARN_ON_ONCE calls are moved so that
warning is triggered only when we are about to misuse the dying css.
Reported-by: syzbot+5493b2a54d31d6aea629@syzkaller.appspotmail.com
Reported-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Function name cgroup_rstat_cpu_pop_upated() in comment should be
cgroup_rstat_cpu_pop_updated().
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The common use-case in production is to have multiple cgroup-bpf
programs per attach type that cover multiple use-cases. Such programs
are attached with BPF_F_ALLOW_MULTI and can be maintained by different
people.
Order of programs usually matters, for example imagine two egress
programs: the first one drops packets and the second one counts packets.
If they're swapped the result of counting program will be different.
It brings operational challenges with updating cgroup-bpf program(s)
attached with BPF_F_ALLOW_MULTI since there is no way to replace a
program:
* One way to update is to detach all programs first and then attach the
new version(s) again in the right order. This introduces an
interruption in the work a program is doing and may not be acceptable
(e.g. if it's egress firewall);
* Another way is attach the new version of a program first and only then
detach the old version. This introduces the time interval when two
versions of same program are working, what may not be acceptable if a
program is not idempotent. It also imposes additional burden on
program developers to make sure that two versions of their program can
co-exist.
Solve the problem by introducing a "replace" mode in BPF_PROG_ATTACH
command for cgroup-bpf programs being attached with BPF_F_ALLOW_MULTI
flag. This mode is enabled by newly introduced BPF_F_REPLACE attach flag
and bpf_attr.replace_bpf_fd attribute to pass fd of the old program to
replace
That way user can replace any program among those attached with
BPF_F_ALLOW_MULTI flag without the problems described above.
Details of the new API:
* If BPF_F_REPLACE is set but replace_bpf_fd doesn't have valid
descriptor of BPF program, BPF_PROG_ATTACH will return corresponding
error (EINVAL or EBADF).
* If replace_bpf_fd has valid descriptor of BPF program but such a
program is not attached to specified cgroup, BPF_PROG_ATTACH will
return ENOENT.
BPF_F_REPLACE is introduced to make the user intent clear, since
replace_bpf_fd alone can't be used for this (its default value, 0, is a
valid fd). BPF_F_REPLACE also makes it possible to extend the API in the
future (e.g. add BPF_F_BEFORE and BPF_F_AFTER if needed).
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Narkyiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/30cd850044a0057bdfcaaf154b7d2f39850ba813.1576741281.git.rdna@fb.com
Pull cgroup updates from Tejun Heo:
"There are several notable changes here:
- Single thread migrating itself has been optimized so that it
doesn't need threadgroup rwsem anymore.
- Freezer optimization to avoid unnecessary frozen state changes.
- cgroup ID unification so that cgroup fs ino is the only unique ID
used for the cgroup and can be used to directly look up live
cgroups through filehandle interface on 64bit ino archs. On 32bit
archs, cgroup fs ino is still the only ID in use but it is only
unique when combined with gen.
- selftest and other changes"
* 'for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits)
writeback: fix -Wformat compilation warnings
docs: cgroup: mm: Fix spelling of "list"
cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root()
cgroup: use cgrp->kn->id as the cgroup ID
kernfs: use 64bit inos if ino_t is 64bit
kernfs: implement custom exportfs ops and fid type
kernfs: combine ino/id lookup functions into kernfs_find_and_get_node_by_id()
kernfs: convert kernfs_node->id from union kernfs_node_id to u64
kernfs: kernfs_find_and_get_node_by_ino() should only look up activated nodes
kernfs: use dumber locking for kernfs_find_and_get_node_by_ino()
netprio: use css ID instead of cgroup ID
writeback: use ino_t for inodes in tracepoints
kernfs: fix ino wrap-around detection
kselftests: cgroup: Avoid the reuse of fd after it is deallocated
cgroup: freezer: don't change task and cgroups status unnecessarily
cgroup: use cgroup->last_bstat instead of cgroup->bstat_pending for consistency
cgroup: remove cgroup_enable_task_cg_lists() optimization
cgroup: pids: use atomic64_t for pids->limit
selftests: cgroup: Run test_core under interfering stress
selftests: cgroup: Add task migration tests
...
Pull misc vfs fixes from Al Viro:
"Assorted fixes all over the place; some of that is -stable fodder,
some regressions from the last window"
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ecryptfs_lookup_interpose(): lower_dentry->d_parent is not stable either
ecryptfs_lookup_interpose(): lower_dentry->d_inode is not stable
ecryptfs: fix unlink and rmdir in face of underlying fs modifications
audit_get_nd(): don't unlock parent too early
exportfs_decode_fh(): negative pinned may become positive without the parent locked
cgroup: don't put ERR_PTR() into fc->root
autofs: fix a leak in autofs_expire_indirect()
aio: Fix io_pgetevents() struct __compat_aio_sigset layout
fs/namespace.c: fix use-after-free of mount in mnt_warn_timestamp_expiry()
743210386c ("cgroup: use cgrp->kn->id as the cgroup ID") added WARN
which triggers if cgroup_id(root_cgrp) is not 1. This is fine on
64bit ino archs but on 32bit archs cgroup ID is ((gen << 32) | ino)
and gen starts at 1, so the root id is 0x1_0000_0001 instead of 1
always triggering the WARN.
What we wanna make sure is that the ino part is 1. Fix it.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: 743210386c ("cgroup: use cgrp->kn->id as the cgroup ID")
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup ID is currently allocated using a dedicated per-hierarchy idr
and used internally and exposed through tracepoints and bpf. This is
confusing because there are tracepoints and other interfaces which use
the cgroupfs ino as IDs.
The preceding changes made kn->id exposed as ino as 64bit ino on
supported archs or ino+gen (low 32bits as ino, high gen). There's no
reason for cgroup to use different IDs. The kernfs IDs are unique and
userland can easily discover them and map them back to paths using
standard file operations.
This patch replaces cgroup IDs with kernfs IDs.
* cgroup_id() is added and all cgroup ID users are converted to use it.
* kernfs_node creation is moved to earlier during cgroup init so that
cgroup_id() is available during init.
* While at it, s/cgroup/cgrp/ in psi helpers for consistency.
* Fallback ID value is changed to 1 to be consistent with root cgroup
ID.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
kernfs_find_and_get_node_by_ino() looks the kernfs_node matching the
specified ino. On top of that, kernfs_get_node_by_id() and
kernfs_fh_get_inode() implement full ID matching by testing the rest
of ID.
On surface, confusingly, the two are slightly different in that the
latter uses 0 gen as wildcard while the former doesn't - does it mean
that the latter can't uniquely identify inodes w/ 0 gen? In practice,
this is a distinction without a difference because generation number
starts at 1. There are no actual IDs with 0 gen, so it can always
safely used as wildcard.
Let's simplify the code by renaming kernfs_find_and_get_node_by_ino()
to kernfs_find_and_get_node_by_id(), moving all lookup logics into it,
and removing now unnecessary kernfs_get_node_by_id().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
kernfs_node->id is currently a union kernfs_node_id which represents
either a 32bit (ino, gen) pair or u64 value. I can't see much value
in the usage of the union - all that's needed is a 64bit ID which the
current code is already limited to. Using a union makes the code
unnecessarily complicated and prevents using 64bit ino without adding
practical benefits.
This patch drops union kernfs_node_id and makes kernfs_node->id a u64.
ino is stored in the lower 32bits and gen upper. Accessors -
kernfs[_id]_ino() and kernfs[_id]_gen() - are added to retrieve the
ino and gen. This simplifies ID handling less cumbersome and will
allow using 64bit inos on supported archs.
This patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexei Starovoitov <ast@kernel.org>
the caller of ->get_tree() expects NULL left there on error...
Reported-by: Thibaut Sautereau <thibaut@sautereau.fr>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It's not necessary to adjust the task state and revisit the state
of source and destination cgroups if the cgroups are not in freeze
state and the task itself is not frozen.
And in this scenario, it wakes up the task who's not supposed to be
ready to run.
Don't do the unnecessary task state adjustment can help stop waking
up the task without a reason.
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup->bstat_pending is used to determine the base stat delta to
propagate to the parent. While correct, this is different from how
percpu delta is determined for no good reason and the inconsistency
makes the code more difficult to understand.
This patch makes parent propagation delta calculation use the same
method as percpu to global propagation.
* cgroup_base_stat_accumulate() is renamed to cgroup_base_stat_add()
and cgroup_base_stat_sub() is added.
* percpu propagation calculation is updated to use the above helpers.
* cgroup->bstat_pending is replaced with cgroup->last_bstat and
updated to use the same calculation as percpu propagation.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_enable_task_cg_lists() is used to lazyily initialize task
cgroup associations on the first use to reduce fork / exit overheads
on systems which don't use cgroup. Unfortunately, locking around it
has never been actually correct and its value is dubious given how the
vast majority of systems use cgroup right away from boot.
This patch removes the optimization. For now, replace the cg_list
based branches with WARN_ON_ONCE()'s to be on the safe side. We can
simplify the logic further in the future.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Because pids->limit can be changed concurrently (but we don't want to
take a lock because it would be needlessly expensive), use atomic64_ts
instead.
Fixes: commit 49b786ea14 ("cgroup: implement the PIDs subsystem")
Cc: stable@vger.kernel.org # v4.3+
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
There are reports of users who use thread migrations between cgroups and
they report performance drop after d59cfc09c3 ("sched, cgroup: replace
signal_struct->group_rwsem with a global percpu_rwsem"). The effect is
pronounced on machines with more CPUs.
The migration is affected by forking noise happening in the background,
after the mentioned commit a migrating thread must wait for all
(forking) processes on the system, not only of its threadgroup.
There are several places that need to synchronize with migration:
a) do_exit,
b) de_thread,
c) copy_process,
d) cgroup_update_dfl_csses,
e) parallel migration (cgroup_{proc,thread}s_write).
In the case of self-migrating thread, we relax the synchronization on
cgroup_threadgroup_rwsem to avoid the cost of waiting. d) and e) are
excluded with cgroup_mutex, c) does not matter in case of single thread
migration and the executing thread cannot exec(2) or exit(2) while it is
writing into cgroup.threads. In case of do_exit because of signal
delivery, we either exit before the migration or finish the migration
(of not yet PF_EXITING thread) and die afterwards.
This patch handles only the case of self-migration by writing "0" into
cgroup.threads. For simplicity, we always take cgroup_threadgroup_rwsem
with numeric PIDs.
This change improves migration dependent workload performance similar
to per-signal_struct state.
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We no longer take cgroup_mutex in cgroup_exit and the exiting tasks are
not moved to init_css_set, reflect that in several comments to prevent
confusion.
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Like commit 13d82fb77a ("cgroup: short-circuit cset_cgroup_from_root() on
the default hierarchy"), short-circuit current_cgns_cgroup_from_root() on
the default hierarchy.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
"Three minor cleanup patches"
* 'for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
Use kvmalloc in cgroups-v1
cgroup: minor tweak for logic to get cgroup css
cgroup: Replace a seq_printf() call by seq_puts() in cgroup_print_ss_mask()
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
If a new child cgroup is created in the frozen cgroup hierarchy
(one or more of ancestor cgroups is frozen), the CGRP_FREEZE cgroup
flag should be set. Otherwise if a process will be attached to the
child cgroup, it won't become frozen.
The problem can be reproduced with the test_cgfreezer_mkdir test.
This is the output before this patch:
~/test_freezer
ok 1 test_cgfreezer_simple
ok 2 test_cgfreezer_tree
ok 3 test_cgfreezer_forkbomb
Cgroup /sys/fs/cgroup/cg_test_mkdir_A/cg_test_mkdir_B isn't frozen
not ok 4 test_cgfreezer_mkdir
ok 5 test_cgfreezer_rmdir
ok 6 test_cgfreezer_migrate
ok 7 test_cgfreezer_ptrace
ok 8 test_cgfreezer_stopped
ok 9 test_cgfreezer_ptraced
ok 10 test_cgfreezer_vfork
And with this patch:
~/test_freezer
ok 1 test_cgfreezer_simple
ok 2 test_cgfreezer_tree
ok 3 test_cgfreezer_forkbomb
ok 4 test_cgfreezer_mkdir
ok 5 test_cgfreezer_rmdir
ok 6 test_cgfreezer_migrate
ok 7 test_cgfreezer_ptrace
ok 8 test_cgfreezer_stopped
ok 9 test_cgfreezer_ptraced
ok 10 test_cgfreezer_vfork
Reported-by: Mark Crossen <mcrossen@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Fixes: 76f969e894 ("cgroup: cgroup v2 freezer")
Cc: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
Instead of using its own logic for k-/vmalloc rely on
kvmalloc which is actually doing quite the same.
Signed-off-by: Marc Koderer <marc@koderer.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
No synchronisation mechanism exists between the cpuset subsystem and
calls to function __sched_setscheduler(). As such, it is possible that
new root domains are created on the cpuset side while a deadline
acceptance test is carried out in __sched_setscheduler(), leading to a
potential oversell of CPU bandwidth.
Grab cpuset_rwsem read lock from core scheduler, so to prevent
situations such as the one described above from happening.
The only exception is normalize_rt_tasks() which needs to work under
tasklist_lock and can't therefore grab cpuset_rwsem. We are fine with
this, as this function is only called by sysrq and, if that gets
triggered, DEADLINE guarantees are already gone out of the window
anyway.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-9-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpuset_rwsem is going to be acquired from sched_setscheduler() with a
following patch. There are however paths (e.g., spawn_ksoftirqd) in
which sched_scheduler() is eventually called while holding hotplug lock;
this creates a dependecy between hotplug lock (to be always acquired
first) and cpuset_rwsem (to be always acquired after hotplug lock).
Fix paths which currently take the two locks in the wrong order (after
a following patch is applied).
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-7-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Holding cpuset_mutex means that cpusets are stable (only the holder can
make changes) and this is required for fixing a synchronization issue
between cpusets and scheduler core. However, grabbing cpuset_mutex from
setscheduler() hotpath (as implemented in a later patch) is a no-go, as
it would create a bottleneck for tasks concurrently calling
setscheduler().
Convert cpuset_mutex to be a percpu_rwsem (cpuset_rwsem), so that
setscheduler() will then be able to read lock it and avoid concurrency
issues.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-6-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the topology of root domains is modified by CPUset or CPUhotplug
operations information about the current deadline bandwidth held in the
root domain is lost.
This patch addresses the issue by recalculating the lost deadline
bandwidth information by circling through the deadline tasks held in
CPUsets and adding their current load to the root domain they are
associated with.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
[ Various additional modifications. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We could only handle the case that css exists
and css_try_get_online() fails.
Signed-off-by: Peng Wang <rocking@whu.edu.cn>
Signed-off-by: Tejun Heo <tj@kernel.org>
A string which did not contain a data format specification should be put
into a sequence. Thus use the corresponding function “seq_puts”.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull vfs mount updates from Al Viro:
"The first part of mount updates.
Convert filesystems to use the new mount API"
* 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
mnt_init(): call shmem_init() unconditionally
constify ksys_mount() string arguments
don't bother with registering rootfs
init_rootfs(): don't bother with init_ramfs_fs()
vfs: Convert smackfs to use the new mount API
vfs: Convert selinuxfs to use the new mount API
vfs: Convert securityfs to use the new mount API
vfs: Convert apparmorfs to use the new mount API
vfs: Convert openpromfs to use the new mount API
vfs: Convert xenfs to use the new mount API
vfs: Convert gadgetfs to use the new mount API
vfs: Convert oprofilefs to use the new mount API
vfs: Convert ibmasmfs to use the new mount API
vfs: Convert qib_fs/ipathfs to use the new mount API
vfs: Convert efivarfs to use the new mount API
vfs: Convert configfs to use the new mount API
vfs: Convert binfmt_misc to use the new mount API
convenience helper: get_tree_single()
convenience helper get_tree_nodev()
vfs: Kill sget_userns()
...
Pull networking updates from David Miller:
"Some highlights from this development cycle:
1) Big refactoring of ipv6 route and neigh handling to support
nexthop objects configurable as units from userspace. From David
Ahern.
2) Convert explored_states in BPF verifier into a hash table,
significantly decreased state held for programs with bpf2bpf
calls, from Alexei Starovoitov.
3) Implement bpf_send_signal() helper, from Yonghong Song.
4) Various classifier enhancements to mvpp2 driver, from Maxime
Chevallier.
5) Add aRFS support to hns3 driver, from Jian Shen.
6) Fix use after free in inet frags by allocating fqdirs dynamically
and reworking how rhashtable dismantle occurs, from Eric Dumazet.
7) Add act_ctinfo packet classifier action, from Kevin
Darbyshire-Bryant.
8) Add TFO key backup infrastructure, from Jason Baron.
9) Remove several old and unused ISDN drivers, from Arnd Bergmann.
10) Add devlink notifications for flash update status to mlxsw driver,
from Jiri Pirko.
11) Lots of kTLS offload infrastructure fixes, from Jakub Kicinski.
12) Add support for mv88e6250 DSA chips, from Rasmus Villemoes.
13) Various enhancements to ipv6 flow label handling, from Eric
Dumazet and Willem de Bruijn.
14) Support TLS offload in nfp driver, from Jakub Kicinski, Dirk van
der Merwe, and others.
15) Various improvements to axienet driver including converting it to
phylink, from Robert Hancock.
16) Add PTP support to sja1105 DSA driver, from Vladimir Oltean.
17) Add mqprio qdisc offload support to dpaa2-eth, from Ioana
Radulescu.
18) Add devlink health reporting to mlx5, from Moshe Shemesh.
19) Convert stmmac over to phylink, from Jose Abreu.
20) Add PTP PHC (Physical Hardware Clock) support to mlxsw, from
Shalom Toledo.
21) Add nftables SYNPROXY support, from Fernando Fernandez Mancera.
22) Convert tcp_fastopen over to use SipHash, from Ard Biesheuvel.
23) Track spill/fill of constants in BPF verifier, from Alexei
Starovoitov.
24) Support bounded loops in BPF, from Alexei Starovoitov.
25) Various page_pool API fixes and improvements, from Jesper Dangaard
Brouer.
26) Just like ipv4, support ref-countless ipv6 route handling. From
Wei Wang.
27) Support VLAN offloading in aquantia driver, from Igor Russkikh.
28) Add AF_XDP zero-copy support to mlx5, from Maxim Mikityanskiy.
29) Add flower GRE encap/decap support to nfp driver, from Pieter
Jansen van Vuuren.
30) Protect against stack overflow when using act_mirred, from John
Hurley.
31) Allow devmap map lookups from eBPF, from Toke Høiland-Jørgensen.
32) Use page_pool API in netsec driver, Ilias Apalodimas.
33) Add Google gve network driver, from Catherine Sullivan.
34) More indirect call avoidance, from Paolo Abeni.
35) Add kTLS TX HW offload support to mlx5, from Tariq Toukan.
36) Add XDP_REDIRECT support to bnxt_en, from Andy Gospodarek.
37) Add MPLS manipulation actions to TC, from John Hurley.
38) Add sending a packet to connection tracking from TC actions, and
then allow flower classifier matching on conntrack state. From
Paul Blakey.
39) Netfilter hw offload support, from Pablo Neira Ayuso"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2080 commits)
net/mlx5e: Return in default case statement in tx_post_resync_params
mlx5: Return -EINVAL when WARN_ON_ONCE triggers in mlx5e_tls_resync().
net: dsa: add support for BRIDGE_MROUTER attribute
pkt_sched: Include const.h
net: netsec: remove static declaration for netsec_set_tx_de()
net: netsec: remove superfluous if statement
netfilter: nf_tables: add hardware offload support
net: flow_offload: rename tc_cls_flower_offload to flow_cls_offload
net: flow_offload: add flow_block_cb_is_busy() and use it
net: sched: remove tcf block API
drivers: net: use flow block API
net: sched: use flow block API
net: flow_offload: add flow_block_cb_{priv, incref, decref}()
net: flow_offload: add list handling functions
net: flow_offload: add flow_block_cb_alloc() and flow_block_cb_free()
net: flow_offload: rename TCF_BLOCK_BINDER_TYPE_* to FLOW_BLOCK_BINDER_TYPE_*
net: flow_offload: rename TC_BLOCK_{UN}BIND to FLOW_BLOCK_{UN}BIND
net: flow_offload: add flow_block_cb_setup_simple()
net: hisilicon: Add an tx_desc to adapt HI13X1_GMAC
net: hisilicon: Add an rx_desc to adapt HI13X1_GMAC
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl0jrIMQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgptlFD/9CNsBX+Aap2lO6wKNr6QISwNAK76GMzEay
s4LSY2kGkXvzv8i89mCuY+8UVNI8WH2/22WnU+8CBAJOjWyFQMsIwH/mrq0oZWRD
J6STJE8rTr6Fc2MvJUWryp/xdBh3+eDIsAdIZVHVAkIzqYPBnpIAwEIeIw8t0xsm
v9ngpQ3WD6ep8tOj9pnG1DGKFg1CmukZCC/Y4CQV1vZtmm2I935zUwNV/TB+Egfx
G8JSC0cSV02LMK88HCnA6MnC/XSUC0qgfXbnmP+TpKlgjVX+P/fuB3oIYcZEu2Rk
3YBpIkhsQytKYbF42KRLsmBH72u6oB9G+tNZTgB1STUDrZqdtD9xwX1rjDlY0ZzP
EUDnk48jl/cxbs+VZrHoE2TcNonLiymV7Kb92juHXdIYmKFQStprGcQUbMaTkMfB
6BYrYLifWx0leu1JJ1i7qhNmug94BYCSCxcRmH0p6kPazPcY9LXNmDWMfMuBPZT7
z79VLZnHF2wNXJyT1cBluwRYYJRT4osWZ3XUaBWFKDgf1qyvXJfrN/4zmgkEIyW7
ivXC+KLlGkhntDlWo2pLKbbyOIKY1HmU6aROaI11k5Zyh0ixKB7tHKavK39l+NOo
YB41+4l6VEpQEyxyRk8tO0sbHpKaKB+evVIK3tTwbY+Q0qTExErxjfWUtOgRWhjx
iXJssPRo4w==
=VSYT
-----END PGP SIGNATURE-----
Merge tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main block updates for 5.3. Nothing earth shattering or
major in here, just fixes, additions, and improvements all over the
map. This contains:
- Series of documentation fixes (Bart)
- Optimization of the blk-mq ctx get/put (Bart)
- null_blk removal race condition fix (Bob)
- req/bio_op() cleanups (Chaitanya)
- Series cleaning up the segment accounting, and request/bio mapping
(Christoph)
- Series cleaning up the page getting/putting for bios (Christoph)
- block cgroup cleanups and moving it to where it is used (Christoph)
- block cgroup fixes (Tejun)
- Series of fixes and improvements to bcache, most notably a write
deadlock fix (Coly)
- blk-iolatency STS_AGAIN and accounting fixes (Dennis)
- Series of improvements and fixes to BFQ (Douglas, Paolo)
- debugfs_create() return value check removal for drbd (Greg)
- Use struct_size(), where appropriate (Gustavo)
- Two lighnvm fixes (Heiner, Geert)
- MD fixes, including a read balance and corruption fix (Guoqing,
Marcos, Xiao, Yufen)
- block opal shadow mbr additions (Jonas, Revanth)
- sbitmap compare-and-exhange improvemnts (Pavel)
- Fix for potential bio->bi_size overflow (Ming)
- NVMe pull requests:
- improved PCIe suspent support (Keith Busch)
- error injection support for the admin queue (Akinobu Mita)
- Fibre Channel discovery improvements (James Smart)
- tracing improvements including nvmetc tracing support (Minwoo Im)
- misc fixes and cleanups (Anton Eidelman, Minwoo Im, Chaitanya
Kulkarni)"
- Various little fixes and improvements to drivers and core"
* tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block: (153 commits)
blk-iolatency: fix STS_AGAIN handling
block: nr_phys_segments needs to be zero for REQ_OP_WRITE_ZEROES
blk-mq: simplify blk_mq_make_request()
blk-mq: remove blk_mq_put_ctx()
sbitmap: Replace cmpxchg with xchg
block: fix .bi_size overflow
block: sed-opal: check size of shadow mbr
block: sed-opal: ioctl for writing to shadow mbr
block: sed-opal: add ioctl for done-mark of shadow mbr
block: never take page references for ITER_BVEC
direct-io: use bio_release_pages in dio_bio_complete
block_dev: use bio_release_pages in bio_unmap_user
block_dev: use bio_release_pages in blkdev_bio_end_io
iomap: use bio_release_pages in iomap_dio_bio_end_io
block: use bio_release_pages in bio_map_user_iov
block: use bio_release_pages in bio_unmap_user
block: optionally mark pages dirty in bio_release_pages
block: move the BIO_NO_PAGE_REF check into bio_release_pages
block: skd_main.c: Remove call to memset after dma_alloc_coherent
block: mtip32xx: Remove call to memset after dma_alloc_coherent
...
Pull cgroup updates from Tejun Heo:
"Documentation updates and the addition of cgroup_parse_float() which
will be used by new controllers including blk-iocost"
* 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1: convert docs to ReST and rename to *.rst
cgroup: Move cgroup_parse_float() implementation out of CONFIG_SYSFS
cgroup: add cgroup_parse_float()
Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl0Os1seHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGtx4H/j6i482XzcGFKTBm
A7mBoQpy+kLtoUov4EtBAR62OuwI8rsahW9di37QKndPoQrczWaKBmr3De6LCdPe
v3pl3O6wBbvH5ru+qBPFX9PdNbDvimEChh7LHxmMxNQq3M+AjZAZVJyfpoiFnx35
Fbge+LZaH/k8HMwZmkMr5t9Mpkip715qKg2o9Bua6dkH0AqlcpLlC8d9a+HIVw/z
aAsyGSU8jRwhoAOJsE9bJf0acQ/pZSqmFp0rDKqeFTSDMsbDRKLGq/dgv4nW0RiW
s7xqsjb/rdcvirRj3rv9+lcTVkOtEqwk0PVdL9WOf7g4iYrb3SOIZh8ZyViaDSeH
VTS5zps=
=huBY
-----END PGP SIGNATURE-----
Merge tag 'v5.2-rc6' into for-5.3/block
Merge 5.2-rc6 into for-5.3/block, so we get the same page merge leak
fix. Otherwise we end up having conflicts with future patches between
for-5.3/block and master that touch this area. In particular, it makes
the bio_full() fix hard to backport to stable.
* tag 'v5.2-rc6': (482 commits)
Linux 5.2-rc6
Revert "iommu/vt-d: Fix lock inversion between iommu->lock and device_domain_lock"
Bluetooth: Fix regression with minimum encryption key size alignment
tcp: refine memory limit test in tcp_fragment()
x86/vdso: Prevent segfaults due to hoisted vclock reads
SUNRPC: Fix a credential refcount leak
Revert "SUNRPC: Declare RPC timers as TIMER_DEFERRABLE"
net :sunrpc :clnt :Fix xps refcount imbalance on the error path
NFS4: Only set creation opendata if O_CREAT
ARM: 8867/1: vdso: pass --be8 to linker if necessary
KVM: nVMX: reorganize initial steps of vmx_set_nested_state
KVM: PPC: Book3S HV: Invalidate ERAT when flushing guest TLB entries
habanalabs: use u64_to_user_ptr() for reading user pointers
nfsd: replace Jeff by Chuck as nfsd co-maintainer
inet: clear num_timeout reqsk_alloc()
PCI/P2PDMA: Ignore root complex whitelist when an IOMMU is present
net: mvpp2: debugfs: Add pmap to fs dump
ipv6: Default fib6_type to RTN_UNICAST when not set
net: hns3: Fix inconsistent indenting
net/af_iucv: always register net_device notifier
...
The bfq schedule now uses css_next_descendant_pre directly after
the stats functionality depending on it has been from the core
blk-cgroup code to bfq. Export the symbol so that bfq can still
be build modular.
Fixes: d6258980da ("bfq-iosched: move bfq_stat_recursive_sum into the only caller")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Based on 1 normalized pattern(s):
this file is subject to the terms and conditions of version 2 of the
gnu general public license see the file copying in the main
directory of the linux distribution for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 5 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081200.872755311@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull cgroup fixes from Tejun Heo:
"This has an unusually high density of tricky fixes:
- task_get_css() could deadlock when it races against a dying cgroup.
- cgroup.procs didn't list thread group leaders with live threads.
This could mislead readers to think that a cgroup is empty when
it's not. Fixed by making PROCS iterator include dead tasks. I made
a couple mistakes making this change and this pull request contains
a couple follow-up patches.
- When cpusets run out of online cpus, it updates cpusmasks of member
tasks in bizarre ways. Joel improved the behavior significantly"
* 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: restore sanity to cpuset_cpus_allowed_fallback()
cgroup: Fix css_task_iter_advance_css_set() cset skip condition
cgroup: css_task_iter_skip()'d iterators must be advanced before accessed
cgroup: Include dying leaders with live threads in PROCS iterations
cgroup: Implement css_task_iter_skip()
cgroup: Call cgroup_release() before __exit_signal()
docs cgroups: add another example size for hugetlb
cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()
Convert the cgroup-v1 files to ReST format, in order to
allow a later addition to the admin-guide.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
In the case that a process is constrained by taskset(1) (i.e.
sched_setaffinity(2)) to a subset of available cpus, and all of those are
subsequently offlined, the scheduler will set tsk->cpus_allowed to
the current value of task_cs(tsk)->effective_cpus.
This is done via a call to do_set_cpus_allowed() in the context of
cpuset_cpus_allowed_fallback() made by the scheduler when this case is
detected. This is the only call made to cpuset_cpus_allowed_fallback()
in the latest mainline kernel.
However, this is not sane behavior.
I will demonstrate this on a system running the latest upstream kernel
with the following initial configuration:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,fffffff
Cpus_allowed_list: 0-63
(Where cpus 32-63 are provided via smt.)
If we limit our current shell process to cpu2 only and then offline it
and reonline it:
# taskset -p 4 $$
pid 2272's current affinity mask: ffffffffffffffff
pid 2272's new affinity mask: 4
# echo off > /sys/devices/system/cpu/cpu2/online
# dmesg | tail -3
[ 2195.866089] process 2272 (bash) no longer affine to cpu2
[ 2195.872700] IRQ 114: no longer affine to CPU2
[ 2195.879128] smpboot: CPU 2 is now offline
# echo on > /sys/devices/system/cpu/cpu2/online
# dmesg | tail -1
[ 2617.043572] smpboot: Booting Node 0 Processor 2 APIC 0x4
We see that our current process now has an affinity mask containing
every cpu available on the system _except_ the one we originally
constrained it to:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,fffffffb
Cpus_allowed_list: 0-1,3-63
This is not sane behavior, as the scheduler can now not only place the
process on previously forbidden cpus, it can't even schedule it on
the cpu it was originally constrained to!
Other cases result in even more exotic affinity masks. Take for instance
a process with an affinity mask containing only cpus provided by smt at
the moment that smt is toggled, in a configuration such as the following:
# taskset -p f000000000 $$
# grep -i cpu /proc/$$/status
Cpus_allowed: 000000f0,00000000
Cpus_allowed_list: 36-39
A double toggle of smt results in the following behavior:
# echo off > /sys/devices/system/cpu/smt/control
# echo on > /sys/devices/system/cpu/smt/control
# grep -i cpus /proc/$$/status
Cpus_allowed: ffffff00,ffffffff
Cpus_allowed_list: 0-31,40-63
This is even less sane than the previous case, as the new affinity mask
excludes all smt-provided cpus with ids less than those that were
previously in the affinity mask, as well as those that were actually in
the mask.
With this patch applied, both of these cases end in the following state:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,ffffffff
Cpus_allowed_list: 0-63
The original policy is discarded. Though not ideal, it is the simplest way
to restore sanity to this fallback case without reinventing the cpuset
wheel that rolls down the kernel just fine in cgroup v2. A user who wishes
for the previous affinity mask to be restored in this fallback case can use
that mechanism instead.
This patch modifies scheduler behavior by instead resetting the mask to
task_cs(tsk)->cpus_allowed by default, and cpu_possible mask in legacy
mode. I tested the cases above on both modes.
Note that the scheduler uses this fallback mechanism if and only if
_every_ other valid avenue has been traveled, and it is the last resort
before calling BUG().
Suggested-by: Waiman Long <longman@redhat.com>
Suggested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Acked-by: Phil Auld <pauld@redhat.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
While adding handling for dying task group leaders c03cd7738a
("cgroup: Include dying leaders with live threads in PROCS
iterations") added an inverted cset skip condition to
css_task_iter_advance_css_set(). It should skip cset if it's
completely empty but was incorrectly testing for the inverse condition
for the dying_tasks list. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c03cd7738a ("cgroup: Include dying leaders with live threads in PROCS iterations")
Reported-by: syzbot+d4bba5ccd4f9a2a68681@syzkaller.appspotmail.com
There's some discussion on how to do this the best, and Tejun prefers
that BFQ just create the file itself instead of having cgroups support
a symlink feature.
Hence revert commit 54b7b868e8 and 19e9da9e86 for 5.2, and this
can be done properly for 5.3.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Some ISDN files that got removed in net-next had some changes
done in mainline, take the removals.
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit enables a cftype to have a symlink (of any name) that
points to the file associated with the cftype.
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
b636fd38dc ("cgroup: Implement css_task_iter_skip()") introduced
css_task_iter_skip() which is used to fix task iterations skipping
dying threadgroup leaders with live threads. Skipping is implemented
as a subportion of full advancing but css_task_iter_next() forgot to
fully advance a skipped iterator before determining the next task to
visit causing it to return invalid task pointers.
Fix it by making css_task_iter_next() fully advance the iterator if it
has been skipped since the previous iteration.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: syzbot
Link: http://lkml.kernel.org/r/00000000000097025d058a7fd785@google.com
Fixes: b636fd38dc ("cgroup: Implement css_task_iter_skip()")
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
memory.stat and other files already consider subtrees in their output, and
we should too in order to not present an inconsistent interface.
The current situation is fairly confusing, because people interacting with
cgroups expect hierarchical behaviour in the vein of memory.stat,
cgroup.events, and other files. For example, this causes confusion when
debugging reclaim events under low, as currently these always read "0" at
non-leaf memcg nodes, which frequently causes people to misdiagnose breach
behaviour. The same confusion applies to other counters in this file when
debugging issues.
Aggregation is done at write time instead of at read-time since these
counters aren't hot (unlike memory.stat which is per-page, so it does it
at read time), and it makes sense to bundle this with the file
notifications.
After this patch, events are propagated up the hierarchy:
[root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events
low 0
high 0
max 0
oom 0
oom_kill 0
[root@ktst ~]# systemd-run -p MemoryMax=1 true
Running as unit: run-r251162a189fb4562b9dabfdc9b0422f5.service
[root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events
low 0
high 0
max 7
oom 1
oom_kill 1
As this is a change in behaviour, this can be reverted to the old
behaviour by mounting with the `memory_localevents' flag set. However, we
use the new behaviour by default as there's a lack of evidence that there
are any current users of memory.events that would find this change
undesirable.
akpm: this is a behaviour change, so Cc:stable. THis is so that
forthcoming distros which use cgroup v2 are more likely to pick up the
revised behaviour.
Link: http://lkml.kernel.org/r/20190208224419.GA24772@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup already uses floating point for percent[ile] numbers and there
are several controllers which want to take them as input. Add a
generic parse helper to handle inputs.
Update the interface convention documentation about the use of
percentage numbers. While at it, also clarify the default time unit.
Signed-off-by: Tejun Heo <tj@kernel.org>
CSS_TASK_ITER_PROCS currently iterates live group leaders; however,
this means that a process with dying leader and live threads will be
skipped. IOW, cgroup.procs might be empty while cgroup.threads isn't,
which is confusing to say the least.
Fix it by making cset track dying tasks and include dying leaders with
live threads in PROCS iteration.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Topi Miettinen <toiwoton@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
When a task is moved out of a cset, task iterators pointing to the
task are advanced using the normal css_task_iter_advance() call. This
is fine but we'll be tracking dying tasks on csets and thus moving
tasks from cset->tasks to (to be added) cset->dying_tasks. When we
remove a task from cset->tasks, if we advance the iterators, they may
move over to the next cset before we had the chance to add the task
back on the dying list, which can allow the task to escape iteration.
This patch separates out skipping from advancing. Skipping only moves
the affected iterators to the next pointer rather than fully advancing
it and the following advancing will recognize that the cursor has
already been moved forward and do the rest of advancing. This ensures
that when a task moves from one list to another in its cset, as long
as it moves in the right direction, it's always visible to iteration.
This doesn't cause any visible behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently the lifetime of bpf programs attached to a cgroup is bound
to the lifetime of the cgroup itself. It means that if a user
forgets (or intentionally avoids) to detach a bpf program before
removing the cgroup, it will stay attached up to the release of the
cgroup. Since the cgroup can stay in the dying state (the state
between being rmdir()'ed and being released) for a very long time, it
leads to a waste of memory. Also, it blocks a possibility to implement
the memcg-based memory accounting for bpf objects, because a circular
reference dependency will occur. Charged memory pages are pinning the
corresponding memory cgroup, and if the memory cgroup is pinning
the attached bpf program, nothing will be ever released.
A dying cgroup can not contain any processes, so the only chance for
an attached bpf program to be executed is a live socket associated
with the cgroup. So in order to release all bpf data early, let's
count associated sockets using a new percpu refcounter. On cgroup
removal the counter is transitioned to the atomic mode, and as soon
as it reaches 0, all bpf programs are detached.
Because cgroup_bpf_release() can block, it can't be called from
the percpu ref counter callback directly, so instead an asynchronous
work is scheduled.
The reference counter is not socket specific, and can be used for any
other types of programs, which can be executed from a cgroup-bpf hook
outside of the process context, had such a need arise in the future.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: jolsa@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Turn DEFINE_STATIC_PERCPU_RWSEM() into __DEFINE_PERCPU_RWSEM() with the
additional "is_static" argument to introduce DEFINE_PERCPU_RWSEM().
Change cgroup.c to use DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem).
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
... and get rid of the weird dances in ->get_tree() - that logics
can be easily handled in ->init_fs_context().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pressure metrics are already recorded and exposed in procfs for the
entire system, but any tool which monitors cgroup pressure has to
special case the root cgroup to read from procfs. This patch exposes
the already recorded pressure metrics on the root cgroup.
Link: http://lkml.kernel.org/r/20190510174938.3361741-1-dschatzberg@fb.com
Signed-off-by: Dan Schatzberg <dschatzberg@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Psi monitor aims to provide a low-latency short-term pressure detection
mechanism configurable by users. It allows users to monitor psi metrics
growth and trigger events whenever a metric raises above user-defined
threshold within user-defined time window.
Time window and threshold are both expressed in usecs. Multiple psi
resources with different thresholds and window sizes can be monitored
concurrently.
Psi monitors activate when system enters stall state for the monitored
psi metric and deactivate upon exit from the stall state. While system
is in the stall state psi signal growth is monitored at a rate of 10
times per tracking window. Min window size is 500ms, therefore the min
monitoring interval is 50ms. Max window size is 10s with monitoring
interval of 1s.
When activated psi monitor stays active for at least the duration of one
tracking window to avoid repeated activations/deactivations when psi
signal is bouncing.
Notifications to the users are rate-limited to one per tracking window.
Link: http://lkml.kernel.org/r/20190319235619.260832-8-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"This includes Roman's cgroup2 freezer implementation.
It's a separate machanism from cgroup1 freezer. Instead of blocking
user tasks in arbitrary uninterruptible sleeps, the new implementation
extends jobctl stop - frozen tasks are trapped in jobctl stop until
thawed and can be killed and ptraced. Lots of thanks to Oleg for
sheperding the effort.
Other than that, there are a few trivial changes"
* 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: never call do_group_exit() with task->frozen bit set
kernel: cgroup: fix misuse of %x
cgroup: get rid of cgroup_freezer_frozen_exit()
cgroup: prevent spurious transition into non-frozen state
cgroup: Remove unused cgrp variable
cgroup: document cgroup v2 freezer interface
cgroup: add tracing points for cgroup v2 freezer
cgroup: make TRACE_CGROUP_PATH irq-safe
kselftests: cgroup: add freezer controller self-tests
kselftests: cgroup: don't fail on cg_kill_all() error in cg_destroy()
cgroup: cgroup v2 freezer
cgroup: protect cgroup->nr_(dying_)descendants by css_set_lock
cgroup: implement __cgroup_task_count() helper
cgroup: rename freezer.c into legacy_freezer.c
cgroup: remove extra cgroup_migrate_finish() call
Pointers should be printed with %p or %px rather than
cast to unsigned long type and printed with %lx.
Change %lx to %p to print the pointers.
Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
A task should never enter the exit path with the task->frozen bit set.
Any frozen task must enter the signal handling loop and the only
way to escape is through cgroup_leave_frozen(true), which
unconditionally drops the task->frozen bit. So it means that
cgroyp_freezer_frozen_exit() has zero chances to be called and
has to be removed.
Let's put a WARN_ON_ONCE() instead of the cgroup_freezer_frozen_exit()
call to catch any potential leak of the task's frozen bit.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If freezing of a cgroup races with waking of a task from
the frozen state (like waiting in vfork() or in do_signal_stop()),
a spurious transition of the cgroup state can happen.
The task enters cgroup_leave_frozen(true), the cgroup->nr_frozen_tasks
counter decrements, and the cgroup is switched to the unfrozen state.
To prevent it, let's reserve cgroup_leave_frozen(true) for
terminating processes and use cgroup_leave_frozen(false) otherwise.
To avoid busy-looping in the signal handling loop waiting
for JOBCTL_TRAP_FREEZE set from the cgroup freezing path,
let's do it explicitly in cgroup_leave_frozen(), if the task
is going to stay frozen.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The 'cgrp' is set but not used in commit <76f969e8948d8>
("cgroup: cgroup v2 freezer").
Remove it to avoid [-Wunused-but-set-variable] warning.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add cgroup:cgroup_freeze and cgroup:cgroup_unfreeze events,
which are using the existing cgroup tracing infrastructure.
Add the cgroup_event event class, which is similar to the cgroup
class, but contains an additional integer field to store a new
value (the level field is dropped).
Also add two tracing events: cgroup_notify_populated and
cgroup_notify_frozen, which are raised in a generic way using
the TRACE_CGROUP_PATH() macro.
This allows to trace cgroup state transitions and is generally
helpful for debugging the cgroup freezer code.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To use the TRACE_CGROUP_PATH() macro with css_set_lock
locked, let's make the macro irq-safe.
It's necessary in order to trace cgroup freezer state
transitions (frozen/not frozen), which are happening
with css_set_lock locked.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cgroup v1 implements the freezer controller, which provides an ability
to stop the workload in a cgroup and temporarily free up some
resources (cpu, io, network bandwidth and, potentially, memory)
for some other tasks. Cgroup v2 lacks this functionality.
This patch implements freezer for cgroup v2.
Cgroup v2 freezer tries to put tasks into a state similar to jobctl
stop. This means that tasks can be killed, ptraced (using
PTRACE_SEIZE*), and interrupted. It is possible to attach to
a frozen task, get some information (e.g. read registers) and detach.
It's also possible to migrate a frozen tasks to another cgroup.
This differs cgroup v2 freezer from cgroup v1 freezer, which mostly
tried to imitate the system-wide freezer. However uninterruptible
sleep is fine when all tasks are going to be frozen (hibernation case),
it's not the acceptable state for some subset of the system.
Cgroup v2 freezer is not supporting freezing kthreads.
If a non-root cgroup contains kthread, the cgroup still can be frozen,
but the kthread will remain running, the cgroup will be shown
as non-frozen, and the notification will not be delivered.
* PTRACE_ATTACH is not working because non-fatal signal delivery
is blocked in frozen state.
There are some interface differences between cgroup v1 and cgroup v2
freezer too, which are required to conform the cgroup v2 interface
design principles:
1) There is no separate controller, which has to be turned on:
the functionality is always available and is represented by
cgroup.freeze and cgroup.events cgroup control files.
2) The desired state is defined by the cgroup.freeze control file.
Any hierarchical configuration is allowed.
3) The interface is asynchronous. The actual state is available
using cgroup.events control file ("frozen" field). There are no
dedicated transitional states.
4) It's allowed to make any changes with the cgroup hierarchy
(create new cgroups, remove old cgroups, move tasks between cgroups)
no matter if some cgroups are frozen.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com>
Cc: kernel-team@fb.com
The number of descendant cgroups and the number of dying
descendant cgroups are currently synchronized using the cgroup_mutex.
The number of descendant cgroups will be required by the cgroup v2
freezer, which will use it to determine if a cgroup is frozen
(depending on total number of descendants and number of frozen
descendants). It's not always acceptable to grab the cgroup_mutex,
especially from quite hot paths (e.g. exit()).
To avoid this, let's additionally synchronize these counters using
the css_set_lock.
So, it's safe to read these counters with either cgroup_mutex or
css_set_lock locked, and for changing both locks should be acquired.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
The helper is identical to the existing cgroup_task_count()
except it doesn't take the css_set_lock by itself, assuming
that the caller does.
Also, move cgroup_task_count() implementation into
kernel/cgroup/cgroup.c, as there is nothing specific to cgroup v1.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Freezer.c will contain an implementation of cgroup v2 freezer,
so let's rename the v1 freezer to avoid naming conflicts.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Commit:
fc560a26ac ("cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()")
removed the local list (q) that was used to perform a top-down scan
of all cpusets; however, comments mentioning it were not updated.
Update comments to reflect current implementation.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cgroups@vger.kernel.org
Cc: lizefan@huawei.com
Link: http://lkml.kernel.org/r/20181219133445.31982-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The callers of cgroup_migrate_prepare_dst() correctly call
cgroup_migrate_finish() for success and failure cases both. No need to
call it in cgroup_migrate_prepare_dst() in failure case.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull vfs mount infrastructure updates from Al Viro:
"The rest of core infrastructure; no new syscalls in that pile, but the
old parts are switched to new infrastructure. At that point
conversions of individual filesystems can happen independently; some
are done here (afs, cgroup, procfs, etc.), there's also a large series
outside of that pile dealing with NFS (quite a bit of option-parsing
stuff is getting used there - it's one of the most convoluted
filesystems in terms of mount-related logics), but NFS bits are the
next cycle fodder.
It got seriously simplified since the last cycle; documentation is
probably the weakest bit at the moment - I considered dropping the
commit introducing Documentation/filesystems/mount_api.txt (cutting
the size increase by quarter ;-), but decided that it would be better
to fix it up after -rc1 instead.
That pile allows to do followup work in independent branches, which
should make life much easier for the next cycle. fs/super.c size
increase is unpleasant; there's a followup series that allows to
shrink it considerably, but I decided to leave that until the next
cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
afs: Use fs_context to pass parameters over automount
afs: Add fs_context support
vfs: Add some logging to the core users of the fs_context log
vfs: Implement logging through fs_context
vfs: Provide documentation for new mount API
vfs: Remove kern_mount_data()
hugetlbfs: Convert to fs_context
cpuset: Use fs_context
kernfs, sysfs, cgroup, intel_rdt: Support fs_context
cgroup: store a reference to cgroup_ns into cgroup_fs_context
cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
cgroup_do_mount(): massage calling conventions
cgroup: stash cgroup_root reference into cgroup_fs_context
cgroup2: switch to option-by-option parsing
cgroup1: switch to option-by-option parsing
cgroup: take options parsing into ->parse_monolithic()
cgroup: fold cgroup1_mount() into cgroup1_get_tree()
cgroup: start switching to fs_context
ipc: Convert mqueue fs to fs_context
proc: Add fs_context support to procfs
...
This has been a slightly more active cycle than normal with ongoing core
changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5 On-Demand-Paging MR
feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and fixing
the various unregistration race conditions in rxe's unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
* Drivers should not assume umem SGLs are in PAGE_SIZE chunks
* ucontext is accessed via udata not other means
* Start to make the core code responsible for object memory
allocation
* Drivers should convert struct device to struct ib_device
via a helper
* Drivers have more tools to avoid use after unregister problems
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAlyAJYYACgkQOG33FX4g
mxrWwQ/+OyAx4Moru7Aix0C6GWxTJp/wKgw21CS3reZxgLai6x81xNYG/s2wCNjo
IccObVd7mvzyqPdxOeyHBsJBbQDqWvoD6O2duH8cqGMgBRgh3CSdUep2zLvPpSAx
2W1SvWYCLDnCuarboFrCA8c4AN3eCZiqD7z9lHyFQGjy3nTUWzk1uBaOP46uaiMv
w89N8EMdXJ/iY6ONzihvE05NEYbMA8fuvosKLLNdghRiHIjbMQU8SneY23pvyPDd
ZziPu9NcO3Hw9OVbkwtJp47U3KCBgvKHmnixyZKkikjiD+HVoABw2IMwcYwyBZwP
Bic/ddONJUvAxMHpKRnQaW7znAiHARk21nDG28UAI7FWXH/wMXgicMp6LRcNKqKF
vqXdxHTKJb0QUR4xrYI+eA8ihstss7UUpgSgByuANJ0X729xHiJtlEvPb1DPo1Dz
9CB4OHOVRl5O8sA5Jc6PSusZiKEpvWoyWbdmw0IiwDF5pe922VLl5Nv88ta+sJ38
v2Ll5AgYcluk7F3599Uh9D7gwp5hxW2Ph3bNYyg2j3HP4/dKsL9XvIJPXqEthgCr
3KQS9rOZfI/7URieT+H+Mlf+OWZhXsZilJG7No0fYgIVjgJ00h3SF1/299YIq6Qp
9W7ZXBfVSwLYA2AEVSvGFeZPUxgBwHrSZ62wya4uFeB1jyoodPk=
=p12E
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull rdma updates from Jason Gunthorpe:
"This has been a slightly more active cycle than normal with ongoing
core changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5
On-Demand-Paging MR feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and
fixing the various unregistration race conditions in rxe's
unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
- drivers should not assume umem SGLs are in PAGE_SIZE chunks
- ucontext is accessed via udata not other means
- start to make the core code responsible for object memory
allocation
- drivers should convert struct device to struct ib_device via a
helper
- drivers have more tools to avoid use after unregister problems"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits)
net/mlx5: ODP support for XRC transport is not enabled by default in FW
IB/hfi1: Close race condition on user context disable and close
RDMA/umem: Revert broken 'off by one' fix
RDMA/umem: minor bug fix in error handling path
RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp
cxgb4: kfree mhp after the debug print
IB/rdmavt: Fix concurrency panics in QP post_send and modify to error
IB/rdmavt: Fix loopback send with invalidate ordering
IB/iser: Fix dma_nents type definition
IB/mlx5: Set correct write permissions for implicit ODP MR
bnxt_re: Clean cq for kernel consumers only
RDMA/uverbs: Don't do double free of allocated PD
RDMA: Handle ucontext allocations by IB/core
RDMA/core: Fix a WARN() message
bnxt_re: fix the regression due to changes in alloc_pbl
IB/mlx4: Increase the timeout for CM cache
IB/core: Abort page fault handler silently during owning process exit
IB/mlx5: Validate correct PD before prefetch MR
IB/mlx5: Protect against prefetch of invalid MR
RDMA/uverbs: Store PR pointer before it is overwritten
...
Cgroup has a standardized poll/notification mechanism for waking all
pollers on all fds when a filesystem node changes. To allow polling for
custom events, add a .poll callback that can override the default.
This is in preparation for pollable cgroup pressure files which have
per-fd trigger configurations.
Link: http://lkml.kernel.org/r/20190124211518.244221-3-surenb@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
"Here we go, another merge window full of networking and #ebpf changes:
1) Snoop DHCPACKS in batman-adv to learn MAC/IP pairs in the DHCP
range without dealing with floods of ARP traffic, from Linus
Lüssing.
2) Throttle buffered multicast packet transmission in mt76, from
Felix Fietkau.
3) Support adaptive interrupt moderation in ice, from Brett Creeley.
4) A lot of struct_size conversions, from Gustavo A. R. Silva.
5) Add peek/push/pop commands to bpftool, as well as bash completion,
from Stanislav Fomichev.
6) Optimize sk_msg_clone(), from Vakul Garg.
7) Add SO_BINDTOIFINDEX, from David Herrmann.
8) Be more conservative with local resends due to local congestion,
from Yuchung Cheng.
9) Allow vetoing of unsupported VXLAN FDBs, from Petr Machata.
10) Add health buffer support to devlink, from Eran Ben Elisha.
11) Add TXQ scheduling API to mac80211, from Toke Høiland-Jørgensen.
12) Add statistics to basic packet scheduler filter, from Cong Wang.
13) Add GRE tunnel support for mlxsw Spectrum-2, from Nir Dotan.
14) Lots of new IP tunneling forwarding tests, also from Nir Dotan.
15) Add 3ad stats to bonding, from Nikolay Aleksandrov.
16) Lots of probing improvements for bpftool, from Quentin Monnet.
17) Various nfp drive #ebpf JIT improvements from Jakub Kicinski.
18) Allow #ebpf programs to access gso_segs from skb shared info, from
Eric Dumazet.
19) Add sock_diag support for AF_XDP sockets, from Björn Töpel.
20) Support 22260 iwlwifi devices, from Luca Coelho.
21) Use rbtree for ipv6 defragmentation, from Peter Oskolkov.
22) Add JMP32 instruction class support to #ebpf, from Jiong Wang.
23) Add spinlock support to #ebpf, from Alexei Starovoitov.
24) Support 256-bit keys and TLS 1.3 in ktls, from Dave Watson.
25) Add device infomation API to devlink, from Jakub Kicinski.
26) Add new timestamping socket options which are y2038 safe, from
Deepa Dinamani.
27) Add RX checksum offloading for various sh_eth chips, from Sergei
Shtylyov.
28) Flow offload infrastructure, from Pablo Neira Ayuso.
29) Numerous cleanups, improvements, and bug fixes to the PHY layer
and many drivers from Heiner Kallweit.
30) Lots of changes to try and make packet scheduler classifiers run
lockless as much as possible, from Vlad Buslov.
31) Support BCM957504 chip in bnxt_en driver, from Erik Burrows.
32) Add concurrency tests to tc-tests infrastructure, from Vlad
Buslov.
33) Add hwmon support to aquantia, from Heiner Kallweit.
34) Allow 64-bit values for SO_MAX_PACING_RATE, from Eric Dumazet.
And I would be remiss if I didn't thank the various major networking
subsystem maintainers for integrating much of this work before I even
saw it. Alexei Starovoitov, Daniel Borkmann, Pablo Neira Ayuso,
Johannes Berg, Kalle Valo, and many others. Thank you!"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2207 commits)
net/sched: avoid unused-label warning
net: ignore sysctl_devconf_inherit_init_net without SYSCTL
phy: mdio-mux: fix Kconfig dependencies
net: phy: use phy_modify_mmd_changed in genphy_c45_an_config_aneg
net: dsa: mv88e6xxx: add call to mv88e6xxx_ports_cmode_init to probe for new DSA framework
selftest/net: Remove duplicate header
sky2: Disable MSI on Dell Inspiron 1545 and Gateway P-79
net/mlx5e: Update tx reporter status in case channels were successfully opened
devlink: Add support for direct reporter health state update
devlink: Update reporter state to error even if recover aborted
sctp: call iov_iter_revert() after sending ABORT
team: Free BPF filter when unregistering netdev
ip6mr: Do not call __IP6_INC_STATS() from preemptible context
isdn: mISDN: Fix potential NULL pointer dereference of kzalloc
net: dsa: mv88e6xxx: support in-band signalling on SGMII ports with external PHYs
cxgb4/chtls: Prefix adapter flags with CXGB4
net-sysfs: Switch to bitmap_zalloc()
mellanox: Switch to bitmap_zalloc()
bpf: add test cases for non-pointer sanitiation logic
mlxsw: i2c: Extend initialization by querying resources data
...
Add some logging to the core users of the fs_context log so that
information can be extracted from them as to the reason for failure.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make the cpuset filesystem use the filesystem context. This is potentially
tricky as the cpuset fs is almost an alias for the cgroup filesystem, but
with some special parameters.
This can, however, be handled by setting up an appropriate cgroup
filesystem and returning the root directory of that as the root dir of this
one.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make kernfs support superblock creation/mount/remount with fs_context.
This requires that sysfs, cgroup and intel_rdt, which are built on kernfs,
be made to support fs_context also.
Notes:
(1) A kernfs_fs_context struct is created to wrap fs_context and the
kernfs mount parameters are moved in here (or are in fs_context).
(2) kernfs_mount{,_ns}() are made into kernfs_get_tree(). The extra
namespace tag parameter is passed in the context if desired
(3) kernfs_free_fs_context() is provided as a destructor for the
kernfs_fs_context struct, but for the moment it does nothing except
get called in the right places.
(4) sysfs doesn't wrap kernfs_fs_context since it has no parameters to
pass, but possibly this should be done anyway in case someone wants to
add a parameter in future.
(5) A cgroup_fs_context struct is created to wrap kernfs_fs_context and
the cgroup v1 and v2 mount parameters are all moved there.
(6) cgroup1 parameter parsing error messages are now handled by invalf(),
which allows userspace to collect them directly.
(7) cgroup1 parameter cleanup is now done in the context destructor rather
than in the mount/get_tree and remount functions.
Weirdies:
(*) cgroup_do_get_tree() calls cset_cgroup_from_root() with locks held,
but then uses the resulting pointer after dropping the locks. I'm
told this is okay and needs commenting.
(*) The cgroup refcount web. This really needs documenting.
(*) cgroup2 only has one root?
Add a suggestion from Thomas Gleixner in which the RDT enablement code is
placed into its own function.
[folded a leak fix from Andrey Vagin]
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Tejun Heo <tj@kernel.org>
cc: Li Zefan <lizefan@huawei.com>
cc: Johannes Weiner <hannes@cmpxchg.org>
cc: cgroups@vger.kernel.org
cc: fenghua.yu@intel.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
pass it fs_context instead of fs_type/flags/root triple, have
it return int instead of dentry and make it deal with setting
fc->root.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note that this reference is *NOT* contributing to refcount of
cgroup_root in question and is valid only until cgroup_do_mount()
returns.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[again, carved out of patch by dhowells]
[NB: we probably want to handle "source" in parse_param here]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Store the results in cgroup_fs_context. There's a nasty twist caused
by the enabling/disabling subsystems - we can't do the checks sensitive
to that until cgroup_mutex gets grabbed. Frankly, these checks are
complete bullshit (e.g. all,none combination is accepted if all subsystems
are disabled; so's cpusets,none and all,cpusets when cpusets is disabled,
etc.), but touching that would be a userland-visible behaviour change ;-/
So we do parsing in ->parse_monolithic() and have the consistency checks
done in check_cgroupfs_options(), with the latter called (on already parsed
options) from cgroup1_get_tree() and cgroup1_reconfigure().
Freeing the strdup'ed strings is done from fs_context destructor, which
somewhat simplifies the life for cgroup1_{get_tree,reconfigure}().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Unfortunately, cgroup is tangled into kernfs infrastructure.
To avoid converting all kernfs-based filesystems at once,
we need to untangle the remount part of things, instead of
having it go through kernfs_sop_remount_fs(). Fortunately,
it's not hard to do.
This commit just gets cgroup/cgroup1 to use fs_context to
deliver options on mount and remount paths. Parsing those
is going to be done in the next commits; for now we do
pretty much what legacy case does.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is a remnant of commit 5f155f27cb ("mm, cpuset: always use
seqlock when changing task's nodemask").
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_rstat_cpu_pop_updated() is used to traverse the updated cgroups
on flush. While it was only visiting updated ones in the subtree, it
was visiting @root unconditionally. We can easily check whether @root
is updated or not by looking at its ->updated_next just as with the
cgroups in the subtree.
* Remove the unnecessary cgroup_parent() test. The system root cgroup
is never updated and thus its ->updated_next is always NULL. No
need to test whether cgroup_parent() exists in addition to
->updated_next.
* Terminate traverse if ->updated_next is NULL. This can only happen
for subtree @root and there's no reason to visit it if it's not
marked updated.
This reduces cpu consumption when reading a lot of rstat backed files.
In a micro benchmark reading stat from ~1600 cgroups, the sys time was
lowered by >40%.
Signed-off-by: Tejun Heo <tj@kernel.org>
The only user of cgroup_subsys->free() callback is pids_cgrp_subsys which
needs pids_free() to uncharge the pid.
However, ->free() is called from __put_task_struct()->cgroup_free() and this
is too late. Even the trivial program which does
for (;;) {
int pid = fork();
assert(pid >= 0);
if (pid)
wait(NULL);
else
exit(0);
}
can run out of limits because release_task()->call_rcu(delayed_put_task_struct)
implies an RCU gp after the task/pid goes away and before the final put().
Test-case:
mkdir -p /tmp/CG
mount -t cgroup2 none /tmp/CG
echo '+pids' > /tmp/CG/cgroup.subtree_control
mkdir /tmp/CG/PID
echo 2 > /tmp/CG/PID/pids.max
perl -e 'while ($p = fork) { wait; } $p // die "fork failed: $!\n"' &
echo $! > /tmp/CG/PID/cgroup.procs
Without this patch the forking process fails soon after migration.
Rename cgroup_subsys->free() to cgroup_subsys->release() and move the callsite
into the new helper, cgroup_release(), called by release_task() which actually
frees the pid(s).
Reported-by: Herton R. Krzesinski <hkrzesin@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Building with W=1 reveals some bitrot:
CC kernel/bpf/cgroup.o
kernel/bpf/cgroup.c:238: warning: Function parameter or member 'flags' not described in '__cgroup_bpf_attach'
kernel/bpf/cgroup.c:367: warning: Function parameter or member 'unused_flags' not described in '__cgroup_bpf_detach'
Add a kerneldoc line for 'flags'.
Fixing the warning for 'unused_flags' is best approached by
removing the unused parameter on the function call.
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
RDMA cgroup registration routine always returns success, so simplify
function to be void and run clang formatter over whole CONFIG_CGROUP_RDMA
art of core_priv.h.
This reduces unwinding error path for regular registration and future net
namespace change functionality for rdma device.
Signed-off-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
* make the reference from superblock to cgroup_root counting -
do cgroup_put() in cgroup_kill_sb() whether we'd done
percpu_ref_kill() or not; matching grab is done when we allocate
a new root. That gives the same refcounting rules for all callers
of cgroup_do_mount() - a reference to cgroup_root has been grabbed
by caller and it either is transferred to new superblock or dropped.
* have cgroup_kill_sb() treat an already killed refcount as "just
don't bother killing it, then".
* after successful cgroup_do_mount() have cgroup1_mount() recheck
if we'd raced with mount/umount from somebody else and cgroup_root
got killed. In that case we drop the superblock and bugger off
with -ERESTARTSYS, same as if we'd found it in the list already
dying.
* don't bother with delayed initialization of refcount - it's
unreliable and not needed. No need to prevent attempts to bump
the refcount if we find cgroup_root of another mount in progress -
sget will reuse an existing superblock just fine and if the
other sb manages to die before we get there, we'll catch
that immediately after cgroup_do_mount().
* don't bother with kernfs_pin_sb() - no need for doing that
either.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
same story as with last May fixes in sysfs (7b745a4e40
"unfuck sysfs_mount()"); new_sb is left uninitialized
in case of early errors in kernfs_mount_ns() and papering
over it by treating any error from kernfs_mount_ns() as
equivalent to !new_ns ends up conflating the cases when
objects had never been transferred to a superblock with
ones when that has happened and resulting new superblock
had been dropped. Easily fixed (same way as in sysfs
case). Additionally, there's a superblock leak on
kernfs_node_dentry() failure *and* a dentry leak inside
kernfs_node_dentry() itself - the latter on probably
impossible errors, but the former not impossible to trigger
(as the matter of fact, injecting allocation failures
at that point *does* trigger it).
Cc: stable@kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull cgroup updates from Tejun Heo:
- Waiman's cgroup2 cpuset support has been finally merged closing one
of the last remaining feature gaps.
- cgroup.procs could show non-leader threads when cgroup2 threaded mode
was used in certain ways. I forgot to push the fix during the last
cycle.
- A patch to fix mount option parsing when all mount options have been
consumed by someone else (LSM).
- cgroup_no_v1 boot param can now block named cgroup1 hierarchies too.
* 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Add named hierarchy disabling to cgroup_no_v1 boot param
cgroup: fix parsing empty mount option string
cpuset: Remove set but not used variable 'cs'
cgroup: fix CSS_TASK_ITER_PROCS
cgroup: Add .__DEBUG__. prefix to debug file names
cpuset: Minor cgroup2 interface updates
cpuset: Expose cpuset.cpus.subpartitions with cgroup_debug
cpuset: Add documentation about the new "cpuset.sched.partition" flag
cpuset: Use descriptive text when reading/writing cpuset.sched.partition
cpuset: Expose cpus.effective and mems.effective on cgroup v2 root
cpuset: Make generate_sched_domains() work with partition
cpuset: Make CPU hotplug work with partition
cpuset: Track cpusets that use parent's effective_cpus
cpuset: Add an error state to cpuset.sched.partition
cpuset: Add new v2 cpuset.sched.partition flag
cpuset: Simply allocation and freeing of cpumasks
cpuset: Define data structures to support scheduling partition
cpuset: Enable cpuset controller in default hierarchy
cgroup: remove unnecessary unlikely()
Merge misc updates from Andrew Morton:
- large KASAN update to use arm's "software tag-based mode"
- a few misc things
- sh updates
- ocfs2 updates
- just about all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (167 commits)
kernel/fork.c: mark 'stack_vm_area' with __maybe_unused
memcg, oom: notify on oom killer invocation from the charge path
mm, swap: fix swapoff with KSM pages
include/linux/gfp.h: fix typo
mm/hmm: fix memremap.h, move dev_page_fault_t callback to hmm
hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
memory_hotplug: add missing newlines to debugging output
mm: remove __hugepage_set_anon_rmap()
include/linux/vmstat.h: remove unused page state adjustment macro
mm/page_alloc.c: allow error injection
mm: migrate: drop unused argument of migrate_page_move_mapping()
blkdev: avoid migration stalls for blkdev pages
mm: migrate: provide buffer_migrate_page_norefs()
mm: migrate: move migrate_page_lock_buffers()
mm: migrate: lock buffers before migrate_page_move_mapping()
mm: migration: factor out code to compute expected number of page references
mm, page_alloc: enable pcpu_drain with zone capability
kmemleak: add config to select auto scan
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlwb7R8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjiID/97oDjMhNT7rwpuMbHw855h62j1hEN/m+N3
FI0uxivYoYZLD+eJRnMcBwHlKjrCX8iJQAcv9ffI3ThtFW7dnZT3atUacaZVR/Dt
IrxdymdBP3qsmuaId5NYBug7rJ+AiqFJKjEvCcSPu5X397J4I3SEbzhfvYLJ/aZX
16o0HJlVVIrcbmq1IP4HwiIIOaKXvPaw04L4z4fpeynRSWG7EAi8NLSnhlR4Rxbb
BTiMkCTsjRCFdyO6da4fvNQKWmPGPa3bJkYy3qR99cvJCeIbQjRyCloQlWNJRRgi
3eJpCHVxqFmN0/+DNTJVQEEr4H8o0AVucrLVct1Jc4pessenkpoUniP8vELqwlng
Z2VHLkhTfCEmvFlk82grrYdNvGATRsrbswt/PlP4T7rBfr1IpDk8kXDWF59EL2dy
ly35Sk3wJGHBl8qa+vEPXOAnaWdqJXuVGpwB4ifOIatOls8mOxwfZjiRc7x05/fC
1O4rR2IfLwRqwoYHs0AJ+h6ohOSn1mkGezl2Tch1VSFcJUOHmuYvraTaUi6hblpA
SslaAoEhO39hRBL0HsvsMeqVWM9uzqvFkLDCfNPdiA81H1258CIbo4vF8z6czCIS
eeXnTJxVhPVbZgb3a1a93SPwM6KIDZFoIijyd+NqjpU94thlnhYD0QEcKJIKH7os
2p4aHs6ktw==
=TRdW
-----END PGP SIGNATURE-----
Merge tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main pull request for block/storage for 4.21.
Larger than usual, it was a busy round with lots of goodies queued up.
Most notable is the removal of the old IO stack, which has been a long
time coming. No new features for a while, everything coming in this
week has all been fixes for things that were previously merged.
This contains:
- Use atomic counters instead of semaphores for mtip32xx (Arnd)
- Cleanup of the mtip32xx request setup (Christoph)
- Fix for circular locking dependency in loop (Jan, Tetsuo)
- bcache (Coly, Guoju, Shenghui)
* Optimizations for writeback caching
* Various fixes and improvements
- nvme (Chaitanya, Christoph, Sagi, Jay, me, Keith)
* host and target support for NVMe over TCP
* Error log page support
* Support for separate read/write/poll queues
* Much improved polling
* discard OOM fallback
* Tracepoint improvements
- lightnvm (Hans, Hua, Igor, Matias, Javier)
* Igor added packed metadata to pblk. Now drives without metadata
per LBA can be used as well.
* Fix from Geert on uninitialized value on chunk metadata reads.
* Fixes from Hans and Javier to pblk recovery and write path.
* Fix from Hua Su to fix a race condition in the pblk recovery
code.
* Scan optimization added to pblk recovery from Zhoujie.
* Small geometry cleanup from me.
- Conversion of the last few drivers that used the legacy path to
blk-mq (me)
- Removal of legacy IO path in SCSI (me, Christoph)
- Removal of legacy IO stack and schedulers (me)
- Support for much better polling, now without interrupts at all.
blk-mq adds support for multiple queue maps, which enables us to
have a map per type. This in turn enables nvme to have separate
completion queues for polling, which can then be interrupt-less.
Also means we're ready for async polled IO, which is hopefully
coming in the next release.
- Killing of (now) unused block exports (Christoph)
- Unification of the blk-rq-qos and blk-wbt wait handling (Josef)
- Support for zoned testing with null_blk (Masato)
- sx8 conversion to per-host tag sets (Christoph)
- IO priority improvements (Damien)
- mq-deadline zoned fix (Damien)
- Ref count blkcg series (Dennis)
- Lots of blk-mq improvements and speedups (me)
- sbitmap scalability improvements (me)
- Make core inflight IO accounting per-cpu (Mikulas)
- Export timeout setting in sysfs (Weiping)
- Cleanup the direct issue path (Jianchao)
- Export blk-wbt internals in block debugfs for easier debugging
(Ming)
- Lots of other fixes and improvements"
* tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block: (364 commits)
kyber: use sbitmap add_wait_queue/list_del wait helpers
sbitmap: add helpers for add/del wait queue handling
block: save irq state in blkg_lookup_create()
dm: don't reuse bio for flushes
nvme-pci: trace SQ status on completions
nvme-rdma: implement polling queue map
nvme-fabrics: allow user to pass in nr_poll_queues
nvme-fabrics: allow nvmf_connect_io_queue to poll
nvme-core: optionally poll sync commands
block: make request_to_qc_t public
nvme-tcp: fix spelling mistake "attepmpt" -> "attempt"
nvme-tcp: fix endianess annotations
nvmet-tcp: fix endianess annotations
nvme-pci: refactor nvme_poll_irqdisable to make sparse happy
nvme-pci: only set nr_maps to 2 if poll queues are supported
nvmet: use a macro for default error location
nvmet: fix comparison of a u16 with -1
blk-mq: enable IO poll if .nr_queues of type poll > 0
blk-mq: change blk_mq_queue_busy() to blk_mq_queue_inflight()
blk-mq: skip zero-queue maps in blk_mq_map_swqueue
...
It can be useful to inhibit all cgroup1 hierarchies especially during
transition and for debugging. cgroup_no_v1 can block hierarchies with
controllers which leaves out the named hierarchies. Expand it to
cover the named hierarchies so that "cgroup_no_v1=all,named" disables
all cgroup1 hierarchies.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Marcin Pawlowski <mpawlowski@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This fixes the case where all mount options specified are consumed by an
LSM and all that's left is an empty string. In this case cgroupfs should
accept the string and not fail.
How to reproduce (with SELinux enabled):
# umount /sys/fs/cgroup/unified
# mount -o context=system_u:object_r:cgroup_t:s0 -t cgroup2 cgroup2 /sys/fs/cgroup/unified
mount: /sys/fs/cgroup/unified: wrong fs type, bad option, bad superblock on cgroup2, missing codepage or helper program, or other error.
# dmesg | tail -n 1
[ 31.575952] cgroup: cgroup2: unknown option ""
Fixes: 67e9c74b8a ("cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type")
[NOTE: should apply on top of commit 5136f6365c ("cgroup: implement "nsdelegate" mount option"), older versions need manual rebase]
Suggested-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The previous patch in this series removed carrying around a pointer to
the css in blkg. However, the blkg association logic still relied on
taking a reference on the css to ensure we wouldn't fail in getting a
reference for the blkg.
Here the implicit dependency on the css is removed. The association
continues to rely on the tryget logic walking up the blkg tree. This
streamlines the three ways that association can happen: normal, swap,
and writeback.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fixes gcc '-Wunused-but-set-variable' warning:
kernel/cgroup/cpuset.c: In function 'cpuset_cancel_attach':
kernel/cgroup/cpuset.c:2167:17: warning:
variable 'cs' set but not used [-Wunused-but-set-variable]
It never used since introduction in commit 1f7dd3e5a6 ("cgroup: fix handling
of multi-destination migration from subtree_control enabling")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that synchronize_rcu() waits for preempt-disable regions of code
as well as RCU read-side critical sections, synchronize_sched() can be
replaced by synchronize_rcu(). This commit therefore makes this change,
even though it is but a comment.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dennis Zhou (Facebook)" <dennisszhou@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
CSS_TASK_ITER_PROCS implements process-only iteration by making
css_task_iter_advance() skip tasks which aren't threadgroup leaders;
however, when an iteration is started css_task_iter_start() calls the
inner helper function css_task_iter_advance_css_set() instead of
css_task_iter_advance(). As the helper doesn't have the skip logic,
when the first task to visit is a non-leader thread, it doesn't get
skipped correctly as shown in the following example.
# ps -L 2030
PID LWP TTY STAT TIME COMMAND
2030 2030 pts/0 Sl+ 0:00 ./test-thread
2030 2031 pts/0 Sl+ 0:00 ./test-thread
# mkdir -p /sys/fs/cgroup/x/a/b
# echo threaded > /sys/fs/cgroup/x/a/cgroup.type
# echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type
# echo 2030 > /sys/fs/cgroup/x/a/cgroup.procs
# cat /sys/fs/cgroup/x/a/cgroup.threads
2030
2031
# cat /sys/fs/cgroup/x/cgroup.procs
2030
# echo 2030 > /sys/fs/cgroup/x/a/b/cgroup.threads
# cat /sys/fs/cgroup/x/cgroup.procs
2031
2030
The last read of cgroup.procs is incorrectly showing non-leader 2031
in cgroup.procs output.
This can be fixed by updating css_task_iter_advance() to handle the
first advance and css_task_iters_tart() to call
css_task_iter_advance() instead of the inner helper. After the fix,
the same commands result in the following (correct) result:
# ps -L 2062
PID LWP TTY STAT TIME COMMAND
2062 2062 pts/0 Sl+ 0:00 ./test-thread
2062 2063 pts/0 Sl+ 0:00 ./test-thread
# mkdir -p /sys/fs/cgroup/x/a/b
# echo threaded > /sys/fs/cgroup/x/a/cgroup.type
# echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type
# echo 2062 > /sys/fs/cgroup/x/a/cgroup.procs
# cat /sys/fs/cgroup/x/a/cgroup.threads
2062
2063
# cat /sys/fs/cgroup/x/cgroup.procs
2062
# echo 2062 > /sys/fs/cgroup/x/a/b/cgroup.threads
# cat /sys/fs/cgroup/x/cgroup.procs
2062
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Fixes: 8cfd8147df ("cgroup: implement cgroup v2 thread support")
Cc: stable@vger.kernel.org # v4.14+
Clearly mark the debug files and hide them by default by prefixing
".__DEBUG__.".
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Waiman Long <longman@redhat.com>
* Rename the partition file from "cpuset.sched.partition" to
"cpuset.cpus.partition".
* When writing to the partition file, drop "0" and "1" and only accept
"member" and "root".
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Waiman Long <longman@redhat.com>
For debugging purpose, it will be useful to expose the content of the
subparts_cpus as a read-only file to see if the code work correctly.
However, subparts_cpus will not be used at all in most use cases. So
adding a new cpuset file that clutters the cgroup directory may not be
desirable. This is now being done by using the hidden "cgroup_debug"
kernel command line option to expose a new "cpuset.cpus.subpartitions"
file.
That option was originally used by the debug controller to expose
itself when configured into the kernel. This is now extended to set an
internal flag used by cgroup_addrm_files(). A new CFTYPE_DEBUG flag
can now be used to specify that a cgroup file should only be created
when the "cgroup_debug" option is specified.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, cpuset.sched.partition returns the values, 0, 1 or -1 on
read. A person who is not familiar with the partition code may not
understand what they mean.
In order to make cpuset.sched.partition more user-friendly, it will
now display the following descriptive text on read:
"root" - A partition root (top cpuset of a partition)
"member" - A non-root member of a partition
"root invalid" - An invalid partition root
Note that there is at least one partition in the whole cgroup hierarchy.
The top cpuset is the root of that partition. The rests are either a
root if it starts a new partition or a member of a partition.
The cpuset.sched.partition file will now also accept "root" and
"member" besides 1 and 0 as valid input values. The "root invalid"
value is internal only and cannot be written to the file.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Because of the fact that setting the "cpuset.sched.partition" in
a direct child of root can remove CPUs from the root's effective CPU
list, it makes sense to know what CPUs are left in the root cgroup for
scheduling purpose. So the "cpuset.cpus.effective" control file is now
exposed in the v2 cgroup root.
For consistency, the "cpuset.mems.effective" control file is exposed
as well.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>