This patch adds the missing call to list_lru_destroy (spotted by Li Zhong)
and moves the deletion to after the shrinker is unregistered, as correctly
spotted by Dave
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We currently use a compile-time constant to size the node array for the
list_lru structure. Due to this, we don't need to allocate any memory at
initialization time. But as a consequence, the structures that contain
embedded list_lru lists can become way too big (the superblock for
instance contains two of them).
This patch aims at ameliorating this situation by dynamically allocating
the node arrays with the firmware provided nr_node_ids.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In converting the buffer lru lists to use the generic code, the locking
for marking the buffers as on the dispose list was lost. This results in
confusion in LRU buffer tracking and acocunting, resulting in reference
counts being mucked up and filesystem beig unmountable.
To fix this, introduce an internal buffer spinlock to protect the state
field that holds the dispose list information. Because there is now
locking needed around xfs_buf_lru_add/del, and they are used in exactly
one place each two lines apart, get rid of the wrappers and code the logic
directly in place.
Further, the LRU emptying code used on unmount is less than optimal.
Convert it to use a dispose list as per a normal shrinker walk, and repeat
the walk that fills the dispose list until the LRU is empty. Thi avoids
needing to drop and regain the LRU lock for every item being freed, and
allows the same logic as the shrinker isolate call to be used. Simpler,
easier to understand.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fix warnings
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert the buftarg LRU to use the new generic LRU list and take advantage
of the functionality it supplies to make the buffer cache shrinker node
aware.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The transaction reservation size calculations is used by both kernel
and userspace, but most of the transaction code in xfs_trans.c is
kernel specific. Split all the transaction reservation code out into
it's own files to make sharing with userspace simpler. This just
leaves kernel-only definitions in xfs_trans.h, so it doesn't need to
be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Note: this changes the on-disk remote attribute format. I assert
that this is OK to do as CRCs are marked experimental and the first
kernel it is included in has not yet reached release yet. Further,
the userspace utilities are still evolving and so anyone using this
stuff right now is a developer or tester using volatile filesystems
for testing this feature. Hence changing the format right now to
save longer term pain is the right thing to do.
The fundamental change is to move from a header per extent in the
attribute to a header per filesytem block in the attribute. This
means there are more header blocks and the parsing of the attribute
data is slightly more complex, but it has the advantage that we
always know the size of the attribute on disk based on the length of
the data it contains.
This is where the header-per-extent method has problems. We don't
know the size of the attribute on disk without first knowing how
many extents are used to hold it. And we can't tell from a
mapping lookup, either, because remote attributes can be allocated
contiguously with other attribute blocks and so there is no obvious
way of determining the actual size of the atribute on disk short of
walking and mapping buffers.
The problem with this approach is that if we map a buffer
incorrectly (e.g. we make the last buffer for the attribute data too
long), we then get buffer cache lookup failure when we map it
correctly. i.e. we get a size mismatch on lookup. This is not
necessarily fatal, but it's a cache coherency problem that can lead
to returning the wrong data to userspace or writing the wrong data
to disk. And debug kernels will assert fail if this occurs.
I found lots of niggly little problems trying to fix this issue on a
4k block size filesystem, finally getting it to pass with lots of
fixes. The thing is, 1024 byte filesystems still failed, and it was
getting really complex handling all the corner cases that were
showing up. And there were clearly more that I hadn't found yet.
It is complex, fragile code, and if we don't fix it now, it will be
complex, fragile code forever more.
Hence the simple fix is to add a header to each filesystem block.
This gives us the same relationship between the attribute data
length and the number of blocks on disk as we have without CRCs -
it's a linear mapping and doesn't require us to guess anything. It
is simple to implement, too - the remote block count calculated at
lookup time can be used by the remote attribute set/get/remove code
without modification for both CRC and non-CRC filesystems. The world
becomes sane again.
Because the copy-in and copy-out now need to iterate over each
filesystem block, I moved them into helper functions so we separate
the block mapping and buffer manupulations from the attribute data
and CRC header manipulations. The code becomes much clearer as a
result, and it is a lot easier to understand and debug. It also
appears to be much more robust - once it worked on 4k block size
filesystems, it has worked without failure on 1k block size
filesystems, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit ad1858d777)
There are several places where we use KM_SLEEP allocation contexts
and use the fact that they are called from transaction context to
add KM_NOFS where appropriate. Unfortunately, there are several
places where the code makes this assumption but can be called from
outside transaction context but with filesystem locks held. These
places need explicit KM_NOFS annotations to avoid lockdep
complaining about reclaim contexts.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit ac14876cf9)
Failed buffer readahead can leave the buffer in the cache marked
with an error. Most callers that then issue a subsequent read on the
buffer do not zero the b_error field out, and so we may incorectly
detect an error during IO completion due to the stale error value
left on the buffer.
Avoid this problem by zeroing the error before IO submission. This
ensures that the only IO errors that are detected those captured
from are those captured from bio submission or completion.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When we read a buffer, we might get an error from the underlying
block device and not the real data. Hence if we get an IO error, we
shouldn't run the verifier but instead just pass the IO error
straight through.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The trylock log force invoked via xfs_buf_item_push() can attempt
to acquire xa_lock, thus leading to a recursion bug when called
with xa_lock held.
This log force was originally added to xfs_buf_trylock() to address
xfsaild stalls due to pinned and stale buffers. Since the addition
of this behavior, the log item pushing code had been reworked to
detect and track pinned items to inform xfsaild to issue a log
force itself when necessary. As such, the log force on trylock
failure is redundant and safe to remove.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When the new inode verify in xfs_iread() fails, the create
transaction is aborted and a shutdown occurs. The subsequent unmount
then hangs in xfs_wait_buftarg() on a buffer that has an elevated
hold count. Debug showed that it was an AGI buffer getting stuck:
[ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
The trace of this buffer leading up to the shutdown (trimmed for
brevity) looks like:
xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map
xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest
xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io
xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend
xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find
xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map
xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
And that is the AGI buffer from cold cache read into memory to
transaction abort. You can see at transaction abort the bli is dirty
and only has a single reference. The item is not pinned, and it's
not in the AIL. Hence the only reference to it is this transaction.
The problem is that the xfs_buf_item_unlock() call is dropping the
last reference to the xfs_buf_log_item attached to the buffer (which
holds a reference to the buffer), but it is not freeing the
xfs_buf_log_item. Hence nothing will ever release the buffer, and
the unmount hangs waiting for this reference to go away.
The fix is simple - xfs_buf_item_unlock needs to detect the last
reference going away in this case and free the xfs_buf_log_item to
release the reference it holds on the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When _xfs_buf_find is passed an out of range address, it will fail
to find a relevant struct xfs_perag and oops with a null
dereference. This can happen when trying to walk a filesystem with a
metadata inode that has a partially corrupted extent map (i.e. the
block number returned is corrupt, but is otherwise intact) and we
try to read from the corrupted block address.
In this case, just fail the lookup. If it is readahead being issued,
it will simply not be done, but if it is real read that fails we
will get an error being reported. Ideally this case should result
in an EFSCORRUPTED error being reported, but we cannot return an
error through xfs_buf_read() or xfs_buf_get() so this lookup failure
may result in ENOMEM or EIO errors being reported instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commits starting at 77c1a08 introduced a multiple segment support
to xfs_buf. xfs_trans_buf_item_match() could not find a multi-segment
buffer in the transaction because it was looking at the single segment
block number rather than the multi-segment b_maps[0].bm.bn. This
results on a recursive buffer lock that can never be satisfied.
This patch:
1) Changed the remaining b_map accesses to be b_maps[0] accesses.
2) Renames the single segment b_map structure to __b_map to avoid
future confusion.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a callback to the buffer write path to enable verification of
the buffer and CRC calculation prior to issuing the write to the
underlying storage.
If the callback function detects some kind of failure or error
condition, it must mark the buffer with an error so that the caller
can take appropriate action. In the case of xfs_buf_ioapply(), a
corrupt metadta buffer willt rigger a shutdown of the filesystem,
because something is clearly wrong and we can't allow corrupt
metadata to be written to disk.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With verification being done as an IO completion callback, different
errors can be returned from a read. Uncached reads only return a
buffer or NULL on failure, which means the verification error cannot
be returned to the caller.
Split the error handling for these reads into two - a failure to get
a buffer will still return NULL, but a read error will return a
referenced buffer with b_error set rather than NULL. The caller is
responsible for checking the error state of the buffer returned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a verifier function callback capability to the buffer read
interfaces. This will be used by the callers to supply a function
that verifies the contents of the buffer when it is read from disk.
This patch does not provide callback functions, but simply modifies
the interfaces to allow them to be called.
The reason for adding this to the read interfaces is that it is very
difficult to tell fom the outside is a buffer was just read from
disk or whether we just pulled it out of cache. Supplying a callbck
allows the buffer cache to use it's internal knowledge of the buffer
to execute it only when the buffer is read from disk.
It is intended that the verifier functions will mark the buffer with
an EFSCORRUPTED error when verification fails. This allows the
reading context to distinguish a verification error from an IO
error, and potentially take further actions on the buffer (e.g.
attempt repair) based on the error reported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Error handling in xfs_buf_ioapply_map() does not handle IO reference
counts correctly. We increment the b_io_remaining count before
building the bio, but then fail to decrement it in the failure case.
This leads to the buffer never running IO completion and releasing
the reference that the IO holds, so at unmount we can leak the
buffer. This leak is captured by this assert failure during unmount:
XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 273
This is not a new bug - the b_io_remaining accounting has had this
problem for a long, long time - it's just very hard to get a
zero length bio being built by this code...
Further, the buffer IO error can be overwritten on a multi-segment
buffer by subsequent bio completions for partial sections of the
buffer. Hence we should only set the buffer error status if the
buffer is not already carrying an error status. This ensures that a
partial IO error on a multi-segment buffer will not be lost. This
part of the problem is a regression, however.
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
While xfs_buftarg_shrink() is freeing buffers from the dispose list (filled with
buffers from lru list), there is a possibility to have xfs_buf_stale() racing
with it, and removing buffers from dispose list before xfs_buftarg_shrink() does
it.
This happens because xfs_buftarg_shrink() handle the dispose list without
locking and the test condition in xfs_buf_stale() checks for the buffer being in
*any* list:
if (!list_empty(&bp->b_lru))
If the buffer happens to be on dispose list, this causes the buffer counter of
lru list (btp->bt_lru_nr) to be decremented twice (once in xfs_buftarg_shrink()
and another in xfs_buf_stale()) causing a wrong account usage of the lru list.
This may cause xfs_buftarg_shrink() to return a wrong value to the memory
shrinker shrink_slab(), and such account error may also cause an underflowed
value to be returned; since the counter is lower than the current number of
items in the lru list, a decrement may happen when the counter is 0, causing
an underflow on the counter.
The fix uses a new flag field (and a new buffer flag) to serialize buffer
handling during the shrink process. The new flag field has been designed to use
btp->bt_lru_lock/unlock instead of xfs_buf_lock/unlock mechanism.
dchinner, sandeen, aquini and aris also deserve credits for this.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_bdstrat_cb only adds a check for a shutdown filesystem over
xfs_buf_iorequest, but xfs_buf_iodone_callbacks just checked for a shut down
filesystem a little earlier. In addition the shutdown handling in
xfs_bdstrat_cb is not very suitable for this caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
If the b_iodone handler is run in calling context in xfs_buf_iorequest we
can run into a recursion where xfs_buf_iodone_callbacks keeps calling back
into xfs_buf_iorequest because an I/O error happened, which keeps calling
back into xfs_buf_iorequest. This chain will usually not take long
because the filesystem gets shut down because of log I/O errors, but even
over a short time it can cause stack overflows if run on the same context.
As a short term workaround make sure we always call the iodone handler in
workqueue context.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the internal interfaces supporting discontiguous buffer maps,
add external lookup, read and get interfaces so they can start to be
used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
While the external interface currently uses separate blockno/length
variables, we need to move internal interfaces to passing and
parsing vector maps. This will then allow us to add external
interfaces to support discontiguous buffer maps as the internal code
will already support them.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
To support discontiguous buffers in the buffer cache, we need to
separate the cache index variables from the I/O map. While this is
currently a 1:1 mapping, discontiguous buffer support will break
this relationship.
However, for caching purposes, we can still treat them the same as a
contiguous buffer - the block number of the first block and the
length of the buffer - as that is still a unique representation.
Also, the only way we will ever access the discontiguous regions of
buffers is via bulding the complete buffer in the first place, so
using the initial block number and entire buffer length is a sane
way to index the buffers.
Add a block mapping vector construct to the xfs_buf and use it in
the places where we are doing IO instead of the current
b_bn/b_length variables.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commit de1cbee which removed b_file_offset in favor of b_bn introduced a bug
causing xfs_buf_allocate_memory() to overestimate the number of necessary
pages. The problem is that xfs_buf_alloc() sets b_bn to -1 and thus effectively
every buffer is straddling a page boundary which causes
xfs_buf_allocate_memory() to allocate two pages and use vmalloc() for access
which is unnecessary.
Dave says xfs_buf_alloc() doesn't need to set b_bn to -1 anymore since the
buffer is inserted into the cache only after being fully initialized now.
So just make xfs_buf_alloc() fill in proper block number from the beginning.
CC: David Chinner <dchinner@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Rather than specifying XBF_MAPPED for almost all buffers, introduce
XBF_UNMAPPED for the couple of users that use unmapped buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Recent event tracing during a debugging session showed that flags
that define the IO type for a buffer are leaking into the flags on
the buffer incorrectly. Fix the flag exclusion mask in
xfs_buf_alloc() to avoid problems that may be caused by such
leakage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Just about all callers of xfs_buf_read() and xfs_buf_get() use XBF_DONTBLOCK.
This is used to make memory allocation use GFP_NOFS rather than GFP_KERNEL to
avoid recursion through memory reclaim back into the filesystem.
All the blocking get calls in growfs occur inside a transaction, even though
they are no part of the transaction, so all allocation will be GFP_NOFS due to
the task flag PF_TRANS being set. The blocking read calls occur during log
recovery, so they will probably be unaffected by converting to GFP_NOFS
allocations.
Hence make XBF_DONTBLOCK behaviour always occur for buffers and kill the flag.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Buffers are always returned locked from the lookup routines. Hence
we don't need to tell the lookup routines to return locked buffers,
on to try and lock them. Remove XBF_LOCK from all the callers and
from internal buffer cache usage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_buf_btoc and friends are simple macros that do basic block
to page index conversion and vice versa. These aren't widely used,
and we use open coded masking and shifting everywhere else. Hence
remove the macros and open code the work they do.
Also, use of PAGE_CACHE_{SIZE|SHIFT|MASK} for these macros is now
incorrect - we are using pages directly and not the page cache, so
use PAGE_{SIZE|MASK|SHIFT} instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we pass block counts everywhere, and index buffers by block
number and length in units of blocks, convert the desired IO size
into block counts rather than bytes. Convert the code to use block
counts, and those that need byte counts get converted at the time of
use.
Rename the b_desired_count variable to something closer to it's
purpose - b_io_length - as it is only used to specify the length of
an IO for a subset of the buffer. The only time this is used is for
log IO - both writing iclogs and during log recovery. In all other
cases, the b_io_length matches b_length, and hence a lot of code
confuses the two. e.g. the buf item code uses the io count
exclusively when it should be using the buffer length. Fix these
apprpriately as they are found.
Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers
around the desired IO length. They only serve to make the code
shouty loud, don't actually add any real value, and are often used
incorrectly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we pass block counts everywhere, and index buffers by block
number, track the length of the buffer in units of blocks rather
than bytes. Convert the code to use block counts, and those that
need byte counts get converted at the time of use.
Also, remove the XFS_BUF_{SET_}SIZE() macros that are just wrappers
around the buffer length. They only serve to make the code shouty
loud and don't actually add any real value.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Seeing as we pass block numbers around everywhere in the buffer
cache now, it makes no sense to index everything by byte offset.
Replace all the byte offset indexing with block number based
indexing, and replace all uses of the byte offset with direct
conversion from the block index.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The xfs_buf_get/read API is not consistent in the units it uses, and
does not use appropriate or consistent units/types for the
variables.
Convert the API to use disk addresses and block counts for all
buffer get and read calls. Use consistent naming for all the
functions and their declarations, and convert the internal functions
to use disk addresses and block counts to avoid need to convert them
from one type to another and back again.
Fix all the callers to use disk addresses and block counts. In many
cases, this removes an additional conversion from the function call
as the callers already have a block count.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To replace the alloc/memset pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Because we no longer use the page cache for buffering, there is no
direct block number to page offset relationship anymore.
xfs_buf_get_pages is still setting up b_offset as if there was some
relationship, and that is leading to incorrectly setting up
*uncached* buffers that don't overwrite b_offset once they've had
pages allocated.
For cached buffers, the first block of the buffer is always at offset
zero into the allocated memory. This is true for sub-page sized
buffers, as well as for multiple-page buffers.
For uncached buffers, b_offset is only non-zero when we are
associating specific memory to the buffers, and that is set
correctly by the code setting up the buffer.
Hence remove the setting of b_offset in xfs_buf_get_pages, because
it is now always the wrong thing to do.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
If we call xfs_buf_iowait() on a buffer that failed dispatch due to
an IO error, it will wait forever for an Io that does not exist.
This is hndled in xfs_buf_read, but there is other code that calls
xfs_buf_iowait directly that doesn't.
Rather than make the call sites have to handle checking for dispatch
errors and then checking for completion errors, make
xfs_buf_iowait() check for dispatch errors on the buffer before
waiting. This means we handle both dispatch and completion errors
with one set of error handling at the caller sites.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When memory allocation fails to add the page array or tht epages to
a buffer during xfs_buf_get(), the buffer is left in the cache in a
partially initialised state. There is enough state left for the next
lookup on that buffer to find the buffer, and for the buffer to then
be used without finishing the initialisation. As a result, when an
attempt to do IO on the buffer occurs, it fails with EIO because
there are no pages attached to the buffer.
We cannot remove the buffer from the cache immediately and free it,
because there may already be a racing lookup that is blocked on the
buffer lock. Hence the moment we unlock the buffer to then free it,
the other user is woken and we have a use-after-free situation.
To avoid this race condition altogether, allocate the pages for the
buffer before we insert it into the cache. This then means that we
don't have an allocation failure case to deal after the buffer is
already present in the cache, and hence avoid the problem
altogether. In most cases we won't have racing inserts for the same
buffer, and so won't increase the memory pressure allocation before
insertion may entail.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The new concurrency managed workqueues are cheap enough that we can create
per-filesystem instead of global workqueues. This allows us to remove the
trylock or defer scheme on the ilock, which is not helpful once we have
outstanding log reservations until finishing a size update.
Also allow the default concurrency on this workqueues so that I/O completions
blocking on the ilock for one inode do not block process for another inode.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (53 commits)
Kconfig: acpi: Fix typo in comment.
misc latin1 to utf8 conversions
devres: Fix a typo in devm_kfree comment
btrfs: free-space-cache.c: remove extra semicolon.
fat: Spelling s/obsolate/obsolete/g
SCSI, pmcraid: Fix spelling error in a pmcraid_err() call
tools/power turbostat: update fields in manpage
mac80211: drop spelling fix
types.h: fix comment spelling for 'architectures'
typo fixes: aera -> area, exntension -> extension
devices.txt: Fix typo of 'VMware'.
sis900: Fix enum typo 'sis900_rx_bufer_status'
decompress_bunzip2: remove invalid vi modeline
treewide: Fix comment and string typo 'bufer'
hyper-v: Update MAINTAINERS
treewide: Fix typos in various parts of the kernel, and fix some comments.
clockevents: drop unknown Kconfig symbol GENERIC_CLOCKEVENTS_MIGR
gpio: Kconfig: drop unknown symbol 'CS5535_GPIO'
leds: Kconfig: Fix typo 'D2NET_V2'
sound: Kconfig: drop unknown symbol ARCH_CLPS7500
...
Fix up trivial conflicts in arch/powerpc/platforms/40x/Kconfig (some new
kconfig additions, close to removed commented-out old ones)
* 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
PM / Hibernate: Implement compat_ioctl for /dev/snapshot
PM / Freezer: fix return value of freezable_schedule_timeout_killable()
PM / shmobile: Allow the A4R domain to be turned off at run time
PM / input / touchscreen: Make st1232 use device PM QoS constraints
PM / QoS: Introduce dev_pm_qos_add_ancestor_request()
PM / shmobile: Remove the stay_on flag from SH7372's PM domains
PM / shmobile: Don't include SH7372's INTCS in syscore suspend/resume
PM / shmobile: Add support for the sh7372 A4S power domain / sleep mode
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM/Devfreq: Add Exynos4-bus device DVFS driver for Exynos4210/4212/4412.
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
ARM: S3C64XX: Implement basic power domain support
PM / shmobile: Use common always on power domain governor
...
Fix up trivial conflict in fs/xfs/xfs_buf.c due to removal of unused
XBT_FORCE_SLEEP bit
XBT_FORCE_SLEEP is no longer ever tested; it is only set
and cleared. Remove it.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no reason to export two functions for entering the
refrigerator. Calling refrigerator() instead of try_to_freeze()
doesn't save anything noticeable or removes any race condition.
* Rename refrigerator() to __refrigerator() and make it return bool
indicating whether it scheduled out for freezing.
* Update try_to_freeze() to return bool and relay the return value of
__refrigerator() if freezing().
* Convert all refrigerator() users to try_to_freeze().
* Update documentation accordingly.
* While at it, add might_sleep() to try_to_freeze().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Samuel Ortiz <samuel@sortiz.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Christoph Hellwig <hch@infradead.org>
When we call xfs_flush_buftarg (generally from sync or umount) it already
is too late to flush the data workqueues, as I/O completion is signalled
for them and we are thus already done with the data we would flush here.
There are places where flushing them might be useful, but the current
sync interface doesn't give us that opportunity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>