mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 05:32:00 +00:00
502cc061de
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Daniel Borkmann
|
edfa9af0a7 |
bpf: Handle bpf_mprog_query with NULL entry
Improve consistency for bpf_mprog_query() API and let the latter also handle a NULL entry as can be the case for tcx. Instead of returning -ENOENT, we copy a count of 0 and revision of 1 to user space, so that this can be fed into a subsequent bpf_mprog_attach() call as expected_revision. A BPF self- test as part of this series has been added to assert this case. Suggested-by: Lorenz Bauer <lmb@isovalent.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20231006220655.1653-2-daniel@iogearbox.net Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> |
||
Daniel Borkmann
|
f9b0e1088b |
bpf, mprog: Fix maximum program check on mprog attachment
After Paul's recent improvement to syzkaller to improve coverage for
bpf_mprog and tcx, it hit a splat that the program limit was surpassed.
What happened is that the maximum number of progs got added, followed
by another prog add request which adds with BPF_F_BEFORE flag relative
to the last program in the array. The idx >= bpf_mprog_max() check in
bpf_mprog_attach() still passes because the index is below the maximum
but the maximum will be surpassed. We need to add a check upfront for
insertions to catch this situation.
Fixes:
|
||
Daniel Borkmann
|
d210f9735e |
bpf: Fix mprog detachment for empty mprog entry
syzbot reported an UBSAN array-index-out-of-bounds access in bpf_mprog_read()
upon bpf_mprog_detach(). While it did not have a reproducer, I was able to
manually reproduce through an empty mprog entry which just has miniq present.
The latter is important given otherwise we get an ENOENT error as tcx detaches
the whole mprog entry. The index 4294967295 was triggered via NULL dtuple.prog
which then attempts to detach from the back. bpf_mprog_fetch() in this case
did hit the idx == total and therefore tried to grab the entry at idx -1.
Fix it by adding an explicit bpf_mprog_total() check in bpf_mprog_detach() and
bail out early with ENOENT.
Fixes:
|
||
Daniel Borkmann
|
053c8e1f23 |
bpf: Add generic attach/detach/query API for multi-progs
This adds a generic layer called bpf_mprog which can be reused by different attachment layers to enable multi-program attachment and dependency resolution. In-kernel users of the bpf_mprog don't need to care about the dependency resolution internals, they can just consume it with few API calls. The initial idea of having a generic API sparked out of discussion [0] from an earlier revision of this work where tc's priority was reused and exposed via BPF uapi as a way to coordinate dependencies among tc BPF programs, similar as-is for classic tc BPF. The feedback was that priority provides a bad user experience and is hard to use [1], e.g.: I cannot help but feel that priority logic copy-paste from old tc, netfilter and friends is done because "that's how things were done in the past". [...] Priority gets exposed everywhere in uapi all the way to bpftool when it's right there for users to understand. And that's the main problem with it. The user don't want to and don't need to be aware of it, but uapi forces them to pick the priority. [...] Your cover letter [0] example proves that in real life different service pick the same priority. They simply don't know any better. Priority is an unnecessary magic that apps _have_ to pick, so they just copy-paste and everyone ends up using the same. The course of the discussion showed more and more the need for a generic, reusable API where the "same look and feel" can be applied for various other program types beyond just tc BPF, for example XDP today does not have multi- program support in kernel, but also there was interest around this API for improving management of cgroup program types. Such common multi-program management concept is useful for BPF management daemons or user space BPF applications coordinating internally about their attachments. Both from Cilium and Meta side [2], we've collected the following requirements for a generic attach/detach/query API for multi-progs which has been implemented as part of this work: - Support prog-based attach/detach and link API - Dependency directives (can also be combined): - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none} - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user space application does not need CAP_SYS_ADMIN to retrieve foreign fds via bpf_*_get_fd_by_id() - BPF_F_LINK flag as {prog,link} toggle - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and BPF_F_AFTER will just append for attaching - Enforced only at attach time - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their own infra for replacing their internal prog - If no flags are set, then it's default append behavior for attaching - Internal revision counter and optionally being able to pass expected_revision - User space application can query current state with revision, and pass it along for attachment to assert current state before doing updates - Query also gets extension for link_ids array and link_attach_flags: - prog_ids are always filled with program IDs - link_ids are filled with link IDs when link was used, otherwise 0 - {prog,link}_attach_flags for holding {prog,link}-specific flags - Must be easy to integrate/reuse for in-kernel users The uapi-side changes needed for supporting bpf_mprog are rather minimal, consisting of the additions of the attachment flags, revision counter, and expanding existing union with relative_{fd,id} member. The bpf_mprog framework consists of an bpf_mprog_entry object which holds an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path structure) is part of bpf_mprog_bundle. Both have been separated, so that fast-path gets efficient packing of bpf_prog pointers for maximum cache efficiency. Also, array has been chosen instead of linked list or other structures to remove unnecessary indirections for a fast point-to-entry in tc for BPF. The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of updates the peer bpf_mprog_entry is populated and then just swapped which avoids additional allocations that could otherwise fail, for example, in detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could be converted to dynamic allocation if necessary at a point in future. Locking is deferred to the in-kernel user of bpf_mprog, for example, in case of tcx which uses this API in the next patch, it piggybacks on rtnl. An extensive test suite for checking all aspects of this API for prog-based attach/detach and link API comes as BPF selftests in this series. Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog management. [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org> |