Low power link states (called collectively CLx) are used to reduce
transmitter and receiver power when a high-speed lane is idle. The
simplest one being called CL0s. Follow what we already do for USB4
device routers and enable CL0s for Intel Titan Ridge device router too.
This allows better thermal management.
Signed-off-by: Gil Fine <gil.fine@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
In this patch we add enabling of CL0s - a low power state of the link.
Low power states (called collectively CLx) are used to reduce
transmitter and receiver power when a high-speed lane is idle. For now,
we add support only for first low power state: CL0s. We enable it, if
both sides of the link support it, and only for the first hop router.
(i.e. the first device that connected to the host router). This is
needed for better thermal management.
Signed-off-by: Gil Fine <gil.fine@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Up until Titan Ridge (Thunderbolt 3) device routers only supported
bi-directional mode. In this patch we add to TMU a uni-directional mode.
The uni-directional mode is needed for enabling of low power state of
the link (CLx).
Signed-off-by: Gil Fine <gil.fine@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
If the boot firmware implements connection manager of its own it may not
create the paths in the same way or order we do. For example it may
create first PCIe tunnel and then USB3 tunnel. When we restore our
tunnels (first de-activating them) we may be doing that over completely
different tunnels and that leaves them possibly non-functional. For this
reason we re-use the tunnel discovery functionality and find out all the
existing tunnels, and tear them down. Once that is done we can restore
our tunnels.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
We only need to set up the device links when software connection manager
path is used. The firmware connection manager does not need them and if
they are present they may even cause problems.
Reviewed-by: Yehezkel Bernat <YehezkelShB@gmail.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
With help from platform firmware (ACPI) it is possible to power on
retimers even when there is no USB4 link (e.g nothing is connected to
the USB4 ports). This allows us to bring the USB4 sideband up so that we
can access retimers and upgrade their NVM firmware.
If the platform has support for this, we expose two additional
attributes under USB4 ports: offline and rescan. These can be used to
bring the port offline, rescan for the retimers and put the port online
again. The retimer NVM upgrade itself works the same way than with cable
connected.
Signed-off-by: Rajmohan Mani <rajmohan.mani@intel.com>
Co-developed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This includes following Thunderbolt/USB4 changes for v5.13 merge window:
* Debugfs improvements
* Align the inter-domain (peer-to-peer) support with the USB4
inter-domain spec for better interoperability
* Add support for USB4 DROM and the new product descriptor
* More KUnit tests
* Detailed uevent for routers
* Few miscellaneous improvements
All these have been in linux-next without reported issues.
-----BEGIN PGP SIGNATURE-----
iQJUBAABCgA+FiEEVTdhRGBbNzLrSUBaAP2fSd+ZWKAFAmB1aWcgHG1pa2Eud2Vz
dGVyYmVyZ0BsaW51eC5pbnRlbC5jb20ACgkQAP2fSd+ZWKB01g/+N8mjL2V4Bvfi
uKQJGsuK+5Bbg1x51Hx8tjxG2I75QMzImoikYJlq99ttPC/+/sBJeXbfPp4yZZQ8
9dxKoXlAu7Ij43/5VNwb9IhMsCktzTsLEsOS0brp4xS5zLAnTKhps4sM8h8pcSgF
IYcNs0thBXoGL9dOOKfRjst4Zs+ksH4wE/FSS581y2dVu3jzqEYRM0O+hSWt6Ekz
UJrt1DJ63coFKqHdHBG2Vnxj1q3+f5S+crGgjVvoDqVLBeur9JGuenllxKfgtJ9k
jKW9pm5P4F5k6l4t7SPk7y10GHmif8JnCJ4zZX4mb29CrgdtG3+P92stkwCWaP1b
yxeLuWv3lOWJrDKdt29cC4tKGCMM3HTsVGOdFHI8IaLOodazMHFXonKSrlaFBRBX
eP94i4OrgR6lmuBD2w5u15LosNJSr7TeCmvDakKW90S3jVohDSS4AfVw4euk1cdu
k0AIJYzmoADdfxY4bHVJ8ZdmUQoRHOMMCpUIAc+nQiP8bGHh9sVx+SRqbEA2BZu1
BrJ5x/zi72We10SySNzMW9l2CL9PTDUIKtebLov0F5kiCFGTGQOqLU8ps3A+r6sR
GB0Dk9mjyozNE88EhjxquzbStm1Mxf2ahvlGSntEk0+5trdbHHK7axPb6ormcQVX
W66XT9bGQ0wyb+qvxY6D/X7lrk3sXXc=
=RzJl
-----END PGP SIGNATURE-----
Merge tag 'thunderbolt-for-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt into usb-next
Mika writes:
thunderbolt: Changes for v5.13 merge window
This includes following Thunderbolt/USB4 changes for v5.13 merge window:
* Debugfs improvements
* Align the inter-domain (peer-to-peer) support with the USB4
inter-domain spec for better interoperability
* Add support for USB4 DROM and the new product descriptor
* More KUnit tests
* Detailed uevent for routers
* Few miscellaneous improvements
All these have been in linux-next without reported issues.
* tag 'thunderbolt-for-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt: (24 commits)
thunderbolt: Hide authorized attribute if router does not support PCIe tunnels
thunderbolt: Add details to router uevent
thunderbolt: Unlock on error path in tb_domain_add()
thunderbolt: Add support for USB4 DROM
thunderbolt: Check quirks in tb_switch_add()
thunderbolt: Add KUnit tests for DMA tunnels
thunderbolt: Add KUnit tests for XDomain properties
net: thunderbolt: Align the driver to the USB4 networking spec
thunderbolt: Allow multiple DMA tunnels over a single XDomain connection
thunderbolt: Drop unused tb_port_set_initial_credits()
thunderbolt: Use dedicated flow control for DMA tunnels
thunderbolt: Add support for maxhopid XDomain property
thunderbolt: Add tb_property_copy_dir()
thunderbolt: Align XDomain protocol timeouts with the spec
thunderbolt: Use pseudo-random number as initial property block generation
thunderbolt: Do not re-establish XDomain DMA paths automatically
thunderbolt: Add more logging to XDomain connections
Documentation / thunderbolt: Drop speed/lanes entries for XDomain
thunderbolt: Decrease control channel timeout for software connection manager
thunderbolt: Do not pass timeout for tb_cfg_reset()
...
Currently we have had an artificial limitation of a single DMA tunnel
per XDomain connection. However, hardware wise there is no such limit
and software based connection manager can take advantage of all the DMA
rings available on the host to establish tunnels.
For this reason make the tb_xdomain_[enable|disable]_paths() to take the
DMA ring and HopID as parameter instead of storing them in the struct
tb_xdomain. We also add API functions to allocate input and output
HopIDs of the XDomain connection that the service drivers can use
instead of hard-coding.
Also convert the two existing service drivers over to this API.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
When the firmware connection manager is not proxying between the
software and the hardware we can decrease the timeout for control
packets significantly. The USB4 spec recommends 10 ms +- 1 ms but we use
slightly larger value (100 ms) which is recommendation from Intel
Thunderbolt firmware folks. When firmware connection manager is running
then we keep using the existing 5000 ms.
To implement this we move the control channel allocation to
tb_domain_alloc(), and pass the timeout from that function to the
tb_ctl_alloc(). Then make both connection manager implementations pass
the timeout when they alloc the domain structure.
While there update kernel-doc of struct tb_ctl to match the reality.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
If the driver is unbound and then bound back it goes over the topology
and figure out the existing tunnels. However, if it finds DP tunnel it
should make sure the domain does not runtime suspend as otherwise it
will tear down the DP tunnel unexpectedly.
Fixes: 6ac6faee5d ("thunderbolt: Add runtime PM for Software CM")
Cc: stable@vger.kernel.org
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
ACPI 6.4 introduced a new _OSC capability used to negotiate whether the
OS is supposed to use Software (native) or Firmware based Connection
Manager. If the native support is granted then there are set of bits
that enable/disable different tunnel types that the Software Connection
Manager is allowed to tunnel.
This adds support for this new USB4 _OSC accordingly. When PCIe
tunneling is disabled then the driver switches security level to be
"nopcie" following the security level 5 used in Firmware based
Connection Manager.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com>
This allows disabling XDomain protocol completely if the user does not
plan to use the USB4/Thunderbolt peer-to-peer functionality, or for
security reasons.
XDomain protocol is enabled by default but with this commit it is
possible to disable it by passing "xdomain=0" as module parameter (or
through the kernel command line).
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com>
Fixes the following W=1 kernel build warning(s):
drivers/thunderbolt/tb.c:535: warning: Function parameter or member 'sw' not described in 'tb_scan_switch'
drivers/thunderbolt/tb.c:551: warning: Function parameter or member 'port' not described in 'tb_scan_port'
drivers/thunderbolt/tb.c:711: warning: Function parameter or member 'tb' not described in 'tb_free_invalid_tunnels'
drivers/thunderbolt/tb.c:726: warning: Function parameter or member 'sw' not described in 'tb_free_unplugged_children'
drivers/thunderbolt/tb.c:1129: warning: Function parameter or member 'work' not described in 'tb_handle_hotplug'
drivers/thunderbolt/tb.c:1239: warning: Function parameter or member 'tb' not described in 'tb_handle_event'
drivers/thunderbolt/tb.c:1239: warning: Function parameter or member 'type' not described in 'tb_handle_event'
drivers/thunderbolt/tb.c:1239: warning: Function parameter or member 'buf' not described in 'tb_handle_event'
drivers/thunderbolt/tb.c:1239: warning: Function parameter or member 'size' not described in 'tb_handle_event'
drivers/thunderbolt/tb.c:1239: warning: expecting prototype for tb_schedule_hotplug_handler(). Prototype was for tb_handle_event() instead
Cc: Andreas Noever <andreas.noever@gmail.com>
Cc: Michael Jamet <michael.jamet@intel.com>
Cc: Yehezkel Bernat <YehezkelShB@gmail.com>
Cc: linux-usb@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
In some cases it is useful to be able de-authorize devices. For example
if user logs out the userspace can have a policy that disconnects PCIe
devices until logged in again. This is only possible for software based
connection manager as it directly controls the tunnels.
For this reason make the authorized attribute accept writing 0 which
makes the software connection manager to tear down the corresponding
PCIe tunnel. Userspace can check if this is supported by reading a new
domain attribute deauthorization, that holds 1 in that case.
While there correct tb_domain_approve_switch() kernel-doc and
description of authorized attribute to mention that it is only about
PCIe tunnels.
Cc: Christian Kellner <christian@kellner.me>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com>
This makes it easier to figure out whether the driver is using firmware
or software based connection manager implementation.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
According to the kernel power management documentation freeze phase
should only quiesce the device, no need to configure wakes or put it to
low power state. For this reason we simply stop the control channel and
in case of Software Connection Manager also mark the hotplug disabled.
This should align the driver better with the PM framework expectations.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
This adds runtime PM support for the Software Connection Manager parts
of the driver. This allows to save power when either there is no device
attached at all or there is a device attached and all following
conditions are true:
- Tunneled PCIe root/downstream ports are runtime suspended
- Tunneled USB3 ports are runtime suspended
- No active DisplayPort stream
- No active XDomain connection
For the first two we take advantage of device links that were added in
previous patch. Difference for the system sleep case is that we also
enable wakes when something is geting plugged in/out of the Thunderbolt
ports.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB4 spec mandates that the lane 1 should be disabled if lanes are not
bonded. For host-to-host connections (XDomain) we don't support lane
bonding so in order to be compatible with the spec, disable lane 1 when
another host is connected.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
When the port is connected to another host it should be marked as such
in the USB4 port capability. This information is used by the router
during sleep and wakeup.
Also do the same for legacy switches via link controller vendor specific
registers.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
During testing it was noticed that the link is not properly restored
after the domain exits sleep if the link configured bits are set before
lane bonding is enabled. The USB4 spec does not say in which order these
need to be set but setting link configured afterwards makes the link
restoration work so we do that instead.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
DP tunnels do not need the same kind of treatment as others because they
are created based on hot-plug events on DP adapter ports, and the
display stack does not need the tunnels to be enabled when resuming from
suspend. Also Tiger Lake Thunderbolt controller sends unplug event on D3
exit so this avoids that as well.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
First generation routers may need the reset command upon resume but it
is not supported by newer generations.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB4 spec specifies standard access to retimers (both on-board and
cable) through USB4 port sideband access. This makes it possible to
upgrade their firmware in the same way than we already do with the
routers.
This enumerates on-board retimers under each USB4 port when the link
comes up and adds them to the bus under the router the retimer belongs
to. Retimers are exposed in sysfs with name like <device>:<port>.<index>
where device is the router the retimer belongs to, port is the USB4 port
the retimer is connected to and index is the retimer index under that
port (starting from 1). This applies to the upstream USB4 port as well
so if there is on-board retimer between the port and the router it is
also added accordingly.
At this time we do not add cable retimers but there is no techincal
restriction to do so in the future if needed. It is not clear whether it
makes sense to upgrade their firmwares and at least Thunderbolt 3 cables
it has not been done outside of lab environments.
The sysfs interface is made to follow the router NVM upgrade to make it
easy to extend the existing userspace (fwupd) to handle these as well.
Signed-off-by: Kranthi Kuntala <kranthi.kuntala@intel.com>
Co-developed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB3 supports both isochronous and non-isochronous traffic. The former
requires guaranteed bandwidth and can take up to 90% of the total
bandwidth. With USB4 USB3 is tunneled over USB4 fabric which means that
we need to make sure there is enough bandwidth allocated for the USB3
tunnels in addition to DisplayPort tunnels.
Whereas DisplayPort bandwidth management is static and done before the
DP tunnel is established, the USB3 bandwidth management is dynamic and
allows increasing and decreasing the allocated bandwidth according to
what is currently consumed. This is done through host router USB3
downstream adapter registers.
This adds USB3 bandwidth management to the software connection manager
so that we always try to allocate maximum bandwidth for DP tunnels and
what is left is allocated for USB3.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Whereas DisplayPort bandwidth is consumed only in one direction (from DP
IN adapter to DP OUT adapter), USB3 adds separate bandwidth for both
upstream and downstream directions.
For this reason extend the tunnel consumed bandwidth routines to support
both directions and implement this for DP.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Just for symmetry with the usb4_switch_map_usb3_down() make this one
also return ports that are enabled.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
We need to call this on enabled ports in order to find the mapping from
host router USB4 port to a USB 3.x downstream adapter, so make the
function return enabled ports as well.
While there fix parameter alignment in tb_find_usb3_down().
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB3 tunneling is possible only over USB4 link so don't create USB3
tunnels if that's not the case.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB4 spec allows DP tunneling from any router that has DP IN adapter,
not just from host router. The driver currently only added the DP IN
resources for the host router because Thunderbolt 1, 2 and 3 devices do
not have DP IN adapters. However, USB4 allows device routers to have DP
IN adapter as well so update the driver to add DP IN resources for each
device that has one. One example would be an eGPU enclosure where the
eGPU output is forwarded to DP IN port and then tunneled over the USB4
fabric.
Only limitation we add now is that the DP IN and DP OUT that gets paired
for tunnel creation should both be under the same topology starting from
host router downstream port. In other words we do not create DP tunnels
across host router at this time even though that is possible as well but
it complicates the bandwidth management and there is no real use-case
for this anyway.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
USB4 added a capability to tunnel USB 3.x protocol over the USB4
fabric. USB4 device routers may include integrated SuperSpeed HUB or a
function or both. USB tunneling follows PCIe so that the tunnel is
created between the parent and the child router from USB3 downstream
adapter port to USB3 upstream adapter port over a single USB4 link.
This adds support for USB 3.x tunneling and also capability to discover
existing USB 3.x tunnels (for example created by connection manager in
boot firmware).
Signed-off-by: Rajmohan Mani <rajmohan.mani@intel.com>
Co-developed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-9-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Time Management Unit (TMU) is included in each USB4 router. It is used
to synchronize time across the USB4 fabric. By default when USB4 router
is plugged to the domain, its TMU is turned off. This differs from
Thunderbolt (1, 2 and 3) devices whose TMU is by default configured to
bi-directional HiFi mode. Since time synchronization is needed for
proper Display Port tunneling this means we need to configure the TMU on
USB4 compliant devices.
The USB4 spec allows some flexibility on how the TMU can be configured.
This makes it possible to enable link power management states (CLx) in
certain topologies, where for example DP tunneling is not used. TMU can
also be re-configured dynamicaly depending on types of tunnels created
over the USB4 fabric.
In this patch we simply configure the TMU to be in bi-directional HiFi
mode. This way we can tunnel any kind of traffic without need to perform
complex steps to re-configure the domain dynamically. We can add more
fine-grained TMU configuration later on when we start enabling CLx
states.
Signed-off-by: Rajmohan Mani <rajmohan.mani@intel.com>
Co-developed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-8-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
USB4 is the public specification based on Thunderbolt 3 protocol. There
are some differences in register layouts and flows. In addition to PCIe
and DP tunneling, USB4 supports tunneling of USB 3.x. USB4 is also
backward compatible with Thunderbolt 3 (and older generations but the
spec only talks about 3rd generation). USB4 compliant devices can be
identified by checking USB4 version field in router configuration space.
This patch adds initial support for USB4 compliant hosts and devices
which enables following features provided by the existing functionality
in the driver:
- PCIe tunneling
- Display Port tunneling
- Host and device NVM firmware upgrade
- P2P networking
This brings the USB4 support to the same level that we already have for
Thunderbolt 1, 2 and 3 devices.
Note the spec talks about host and device "routers" but in the driver we
still use term "switch" in most places. Both can be used interchangeably.
Co-developed-by: Rajmohan Mani <rajmohan.mani@intel.com>
Signed-off-by: Rajmohan Mani <rajmohan.mani@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-5-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
USB4 1.0 section 6.4.2.7 specifies a new field (PG) in notification
packet that is sent as response of hot plug/unplug events. This field
tells whether the acknowledgment is for plug or unplug event. This needs
to be set accordingly in order the router to send further hot plug
notifications.
To make it simpler we fill the field unconditionally. Legacy devices do
not look at this field so there should be no problems with them.
While there rename tb_cfg_error() to tb_cfg_ack_plug() and update the
log message accordingly. The function is only used to ack plug/unplug
events.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-4-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We will be needing this when adding initial USB4 support so make it
available to other files in the driver as well. We also rename it to
tb_switch_find_port() to follow conventions used in switch.c.
No functional changes.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-2-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since now we can do pretty much the same thing in the software
connection manager than the firmware would do, there is no point
starting it by default. Instead we can just continue using the software
connection manager.
Make it possible for user to switch between the two by adding a module
pararameter (start_icm) which is by default false. Having this ability
to enable the firmware may be useful at least when debugging possible
issues with the software connection manager implementation.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Titan Ridge supports Display Port 1.4 which adds HBR3 (High Bit Rate)
rates that may be up to 8.1 Gb/s over 4 lanes. This translates to
effective data bandwidth of 25.92 Gb/s (as 8/10 encoding is removed by
the DP adapters when going over Thunderbolt fabric). If another high
rate monitor is connected we may need to reduce the bandwidth it
consumes so that it fits into the total 40 Gb/s available on the
Thunderbolt fabric.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
To perform proper Display Port tunneling for Thunderbolt 3 devices we
need to allocate DP resources for DP IN port before they can be used.
The reason for this is that the user can also connect a monitor directly
to the Type-C ports in which case the Thunderbolt controller acts as
re-driver for Display Port (no tunneling takes place) taking the DP
sinks away from the connection manager. This allocation is done using
special sink allocation registers available through the link controller.
We can pair DP IN to DP OUT only if
* DP IN has sink allocated via link controller
* DP OUT port receives hotplug event
For DP IN adapters (only for the host router) we first query whether
there is DP resource available (it may be the previous instance of the
driver for example already allocated it) and if it is we add it to the
list. We then update the list when after each plug/unplug event to a DP
IN/OUT adapter. Each time the list is updated we try to find additional
DP IN <-> DP OUT pairs for tunnel establishment. This strategy also
makes it possible to establish another tunnel in case there are 3
monitors connected and one gets unplugged releasing the DP IN adapter
for the new tunnel.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
In order to keep PCIe hierarchies consistent across hotplugs, add
hard-coded PCIe downstream port to Thunderbolt port for Alpine Ridge and
Titan Ridge as well.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
For a casual reader tb_switch_is_cr() does not tell much so instead
spell out the full controller name in the function name. For example
tb_switch_is_cr() becomes tb_switch_is_cactus_ridge() which is easier
to understand.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Lane bonding allows aggregating two 10/20 Gb/s (depending on the
generation) lanes into a single 20/40 Gb/s bonded link. This allows
sharing the full bandwidth more efficiently. In order to establish lane
bonding we need to check that lane bonding is possible through link
controller and that both ends of the link actually supports 2x widths.
This also means that all the paths should be established through the
primary port so update tb_path_alloc() to handle this as well.
Lane bonding is supported starting from Falcon Ridge (2nd generation)
controllers.
We also expose the current speed and number of lanes under each device
except the host router following similar attribute naming than USB bus.
Expose speed and number of lanes for both directions to allow possibility
of asymmetric link in the future.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
There are quite many places in the driver where we iterate over each
port in the switch. To make it bit more convenient, add a macro that can
be used to iterate over each port and convert existing call sites to use it.
This is based on code by Lukas Wunner.
No functional changes.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Now that the driver can handle every possible tunnel types there is no
point to log everything as info level so turn these to happen at debug
level instead.
While at it remove duplicated tunnel activation log message
(tb_tunnel_activate() calls tb_tunnel_restart() which print the same
message) and add one missing '\n' termination.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Two domains (hosts) can be connected through a Thunderbolt cable and in
that case they can start software services such as networking over the
high-speed DMA paths. Now that we have all the basic building blocks in
place to create DMA tunnels over the Thunderbolt fabric we can add this
support to the software connection manager as well.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
In order to detect possible connections to other domains we need to be
able to find out why tb_switch_alloc() fails so make it return ERR_PTR()
instead. This allows the caller to differentiate between errors such as
-ENOMEM which comes from the kernel and for instance -EIO which comes
from the hardware when trying to access the possible switch.
Convert all the current call sites to handle this properly.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Now that we have capability to discover existing tunnels during driver
load there is no point tearing down tunnels when the driver gets
unloaded. Instead we can just leave them running. If user disconnects
devices while there is no Thunderbolt driver loaded, tunneled protocol
hotplug happens and is handled by the corresponding driver (pciehp in
case of PCIe tunnel, GFX driver in case of DP tunnel).
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Display Port tunnels are somewhat more complex than PCIe tunnels as it
requires 3 tunnels (AUX Rx/Tx and Video). In addition we are not
supposed to create the tunnels immediately when a DP OUT is enumerated.
Instead we need to wait until we get hotplug event to that adapter port
or check if the port has HPD set before tunnels can be established. This
adds Display Port tunneling support to the software connection manager.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
We will be needing these routines to find Display Port adapters as well
so modify them to take port type as the second parameter.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The only way to expand Thunderbolt topology is through the NULL adapter
ports (typically ports 1, 2, 3 and 4). There is no point handling
Thunderbolt hotplug events on any other port.
Add a helper function (tb_port_is_null()) that can be used to determine
if the port is NULL port, and use it in software connection manager code
when hotplug event is handled.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Currently the software connection manager (tb.c) has only supported
creating a single PCIe tunnel, no PCIe device daisy chaining has been
supported so far. This updates the software connection manager so that
it now can create PCIe tunnels for full chain of six devices.
Because PCIe allows DMA and opens possibility for DMA attacks we change
security level to "user" meaning that PCIe tunneling requires that the
userspace authorizes the devices first. This makes it possible to block
PCIe tunneling completely while still allowing other types of tunnels to
be automatically created.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>