A proposed rework of security_locked_down() users identified that the
cxl_pci driver was passing the wrong lockdown_reason. Update
cxl_mem_raw_command_allowed() to fail raw command access when raw pci
access is also disabled.
Fixes: 13237183c7 ("cxl/mem: Add a "RAW" send command")
Cc: Ben Widawsky <ben.widawsky@intel.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <stable@vger.kernel.org>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/r/163072204525.2250120.16615792476976546735.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL spec defines the volatile DPA range to be 0 to Volatile memory size.
It further defines the persistent DPA range to follow directly after the
end of the Volatile DPA through the persistent memory size. Essentially
Volatile DPA range = [0, Volatile size)
Persistent DPA range = [Volatile size, Volatile size + Persistent size)
Adjust the pmem_range start to reflect this and remote the TODO.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210617221620.1904031-4-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Memory devices may specify volatile only, persistent only, and
partitionable space which when added together result in a total capacity.
If Identify Memory Device.Partition Alignment != 0 the device supports
partitionable space. This partitionable space can be split between
volatile and persistent space. The total volatile and persistent sizes
are reported in Get Partition Info. ie
active volatile memory = volatile only + partitionable volatile
active persistent memory = persistent only + partitionable persistent
Define cxl_mem_get_partition(), check for partitionable support, and use
cxl_mem_get_partition() if applicable.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The Identify Memory Device command returns information about the
volatile only and persistent only memory capacities. Store those values
in the cxl_mem structure for later use. While at it, reuse those
calculations to calculate the ram and pmem ranges.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210617221620.1904031-2-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
It is desirable to retain the mappings from the calling function. By
simplifying this code, it will be much more straightforward to do that.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210716231548.174778-3-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In an effort to explicit avoid supporting vendor specific register
blocks (which can happily be mapped from userspace), entirely skip
probing unknown types. The secondary benefit of this will be revealed
in the future with code simplification.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210716231548.174778-2-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The motivation for moving cxl_memdev allocation to the core (beyond
better file organization of sysfs attributes in core/ and drivers in
cxl/), is that device lifetime is longer than module lifetime. The cxl_pci
module should be free to come and go without needing to coordinate with
devices that need the text associated with cxl_memdev_release() to stay
resident. The move fixes a use after free bug when looping driver
load / unload with CONFIG_DEBUG_KOBJECT_RELEASE=y.
Another motivation for disconnecting cxl_memdev creation from cxl_pci is
to enable other drivers, like a unit test driver, to registers memdevs.
Fixes: b39cb1052a ("cxl/mem: Register CXL memX devices")
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792540495.368511.9748638751088219595.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for moving cxl_memdev allocation to the core, introduce
cdevm_file_operations to coordinate file operations shutdown relative to
driver data release.
The motivation for moving cxl_memdev allocation to the core (beyond
better file organization of sysfs attributes in core/ and drivers in
cxl/), is that device lifetime is longer than module lifetime. The cxl_pci
module should be free to come and go without needing to coordinate with
devices that need the text associated with cxl_memdev_release() to stay
resident. The move will fix a use after free bug when looping driver
load / unload with CONFIG_DEBUG_KOBJECT_RELEASE=y.
Another motivation for passing in file_operations to the core cxl_memdev
creation flow is to allow for alternate drivers, like unit test code, to
define their own ioctl backends.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792539962.368511.2962268954245340288.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL core is growing, and it's already arguably unmanageable. To support
future growth, move core functionality to a new directory and rename the
file to represent just bus support. Future work will remove non-bus
functionality.
Note that mem.h is renamed to cxlmem.h to avoid a namespace collision
with the global ARCH=um mem.h header.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792537866.368511.8915631504621088321.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The current naming is confusing and wrong. The Register Locator is
identified by the DSVSEC identifier, not an offset.
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210618003009.956929-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While a memX device on /sys/bus/cxl represents a CXL memory expander
control interface, a pmemX device represents the persistent memory
sub-functionality. It bridges the CXL subystem to the libnvdimm nmemX
control interface.
With this skeleton ndctl can now see persistent memory devices on a
"CXL" bus. Later patches add support for translating libnvdimm native
commands to CXL commands.
# ndctl list -BDiu -b CXL
{
"provider":"CXL",
"dev":"ndbus1",
"dimms":[
{
"dev":"nmem1",
"state":"disabled"
},
{
"dev":"nmem0",
"state":"disabled"
}
]
}
Given nvdimm_bus_unregister() removes all devices on an ndbus0 the
cxl_pmem infrastructure needs to arrange ->remove() to be triggered on
cxl_nvdimm devices to keep their enabled state synchronized with the
registration state of their corresponding device on the nvdimm_bus. In
other words, always arrange for cxl_nvdimm_driver.remove() to unregister
nvdimms from an nvdimm_bus ahead of the bus being unregistered.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162380012696.3039556.4293801691038740850.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Some of the commands have already been defined for the support of RAW
commands (to be blocked). Unlike their usage in the RAW interface, when
used through the supported interface, they will be coordinated and
marshalled along with other commands being issued by userspace and the
driver itself. That coordination will be added later.
The list of commands was determined based on the learnings from
libnvdimm and this list is provided directly from Dan.
Recommended-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210413140907.534404-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
An HDM decoder is defined in the CXL 2.0 specification as a mechanism
that allow devices and upstream ports to claim memory address ranges and
participate in interleave sets. HDM decoder registers are within the
component register block defined in CXL 2.0 8.2.3 CXL 2.0 Component
Registers as part of the CXL.cache and CXL.mem subregion.
The Component Register Block is found via the Register Locator DVSEC
in a similar fashion to how the CXL Device Register Block is found. The
primary difference is the capability id size of the Component Register
Block is a single DWORD instead of 4 DWORDS.
It's now possible to configure a CXL type 3 device's HDM decoder. Such
programming is expected for CXL devices with persistent memory, and hot
plugged CXL devices that participate in CXL.mem with volatile memory.
Add probe and mapping functions for the component register blocks.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Co-developed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210528004922.3980613-6-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Some hardware implementations mix component and device registers into
the same BAR and the driver stack is going to need independent mapping
implementations for those 2 cases. Furthermore, it will be nice to have
finer grained mappings should user space want to map some register
blocks.
Now that individual register blocks are mapped; those blocks regions
should be reserved individually to fully separate the register blocks.
Release the 'global' memory reservation and create individual register
block region reservations through devm.
NOTE: pci_release_mem_regions() is still compatible with
pcim_enable_device() because it removes the automatic region release
when called. So preserve the pcim_enable_device() so that the pcim
interface can be called if needed.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20210604005316.4187340-1-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The information required to map registers based on capabilities is
contained within the bars themselves. This means the bar must be mapped
to read the information needed and then unmapped to map the individual
parts of the BAR based on capabilities.
Change cxl_setup_device_regs() to return a new cxl_register_map, change
the name to cxl_probe_device_regs(). Allocate and place
cxl_register_maps on a list while processing all of the specified
register blocks.
After probing all the register blocks go back and map smaller registers
blocks based on their capabilities and dispose of the cxl_register_maps.
NOTE: pci_iomap() is not managed automatically via pcim_enable_device()
so be careful to call pci_iounmap() correctly.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20210604005036.4187184-1-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In order to remap individual register sets each bar region must be
reserved prior to mapping. Because the details of individual register
sets are contained within the BARs themselves, the bar must be mapped 2
times, once to extract this information and a second time for each
register set.
Rather than attempt to reserve each BAR individually and track if that
bar has been reserved. Open code pcim_iomap_regions() by first
reserving all memory regions on the device and then mapping the bars
individually as needed.
NOTE pci_request_mem_regions() does not need a corresponding
pci_release_mem_regions() because the pci device is managed via
pcim_enable_device().
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20210528004922.3980613-3-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Each register block located in the DVSEC needs to be decoded from 2
words, 'register offset high' and 'register offset low'.
Create a function, cxl_decode_register_block() to perform this decode
and return the bar, offset, and register type of the register block.
Then use the values decoded in cxl_mem_map_regblock() instead of passing
the raw registers.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20210528004922.3980613-2-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
@cxlm.base only existed to support holding the base found in the
register block mapping code, and pass it along to the register setup
code. Now that the register setup function has all logic around managing
the registers, from DVSEC to iomapping up to populating our CXL specific
information, it is easy to turn the @base values into local variables
and remove them from our device driver state.
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210520212953.1181695-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Start moving code around to ultimately get rid of @cxlm.base. The
@cxlm.base member serves no purpose other than intermediate storage of
the offset found in cxl_mem_map_regblock() later used by
cxl_mem_setup_regs(). Aside from wanting to get rid of this useless
member, it will help later when adding new register block identifiers.
While @cxlm.base still exists, it will become trivial to remove it in a
future patch.
No functional change is meant to be introduced in this patch.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210407222625.320177-4-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a new function specifically for mapping the register blocks and
offsets within. The new function can be used more generically for other
register block identifiers.
No functional change is meant to be introduced in this patch with the
exception of a dev_err printed when the device register block isn't
found.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20210407222625.320177-3-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The 'Identify Device' mailbox command returns an 'lsa_size', which is
the size of the label storage area on the device. Export it as a sysfs
attribute so that userspace tooling to read/write the LSA can determine
the size without having to run an 'Identify Device' on their own.
Cc: Ben Widawsky <ben.widawsky@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20210520194745.1095517-1-vishal.l.verma@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
As the driver has undergone development, it's become clear that the
majority [entirety?] of the current functionality in mem.c is actually a
layer encapsulating functionality exposed through PCI based
interactions. This layer can be used either in isolation or to provide
functionality for higher level functionality.
CXL capabilities exist in a parallel domain to PCIe. CXL devices are
enumerable and controllable via "legacy" PCIe mechanisms; however, their
CXL capabilities are a superset of PCIe. For example, a CXL device may
be connected to a non-CXL capable PCIe root port, and therefore will not
be able to participate in CXL.mem or CXL.cache operations, but can still
be accessed through PCIe mechanisms for CXL.io operations.
To properly represent the PCI nature of this driver, and in preparation for
introducing a new driver for the CXL.mem / HDM decoder (Host-managed Device
Memory) capabilities of a CXL memory expander, rename mem.c to pci.c so that
mem.c is available for this new driver.
The result of the change is that there is a clear layering distinction
in the driver, and a systems administrator may load only the cxl_pci
module and gain access to such operations as, firmware update, offline
provisioning of devices, and error collection. In addition to freeing up
the file name for another purpose, there are two primary reasons this is
useful,
1. Acting upon devices which don't have full CXL capabilities. This
may happen for instance if the CXL device is connected in a CXL
unaware part of the platform topology.
2. Userspace-first provisioning for devices without kernel driver
interference. This may be useful when provisioning a new device
in a specific manner that might otherwise be blocked or prevented
by the real CXL mem driver.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210526174413.802913-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>