The IOMAP_ flags are now only used inside xfs_aops.c for extent
probing and I/O completion tracking, so more them here, and rename
them to IO_* as there's no mapping involved at all.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Now that struct xfs_iomap contains exactly the same units as struct
xfs_bmbt_irec we can just use the latter directly in the aops code.
Replace the missing IOMAP_NEW flag with a new boolean output
parameter to xfs_iomap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Report the iomap_bn field of struct xfs_iomap in terms of filesystem
blocks instead of in terms of bytes. Shift the byte conversions
into the caller, and replace the IOMAP_DELAY and IOMAP_HOLE flag
checks with checks for HOLESTARTBLOCK and DELAYSTARTBLOCK.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
The iomap_delta field in struct xfs_iomap just contains the
difference between the offset passed to xfs_iomap and the
iomap_offset. Just calculate it in the only caller that cares.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Instead of using the iomap_target field in struct xfs_iomap
and the IOMAP_REALTIME flag just use the already existing
xfs_find_bdev_for_inode helper. There's some fallout as we
need to pass the inode in a few more places, which we also
use to sanitize some calling conventions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Convert the old xfs tracing support that could only be used with the
out of tree kdb and xfsidbg patches to use the generic event tracer.
To use it make sure CONFIG_EVENT_TRACING is enabled and then enable
all xfs trace channels by:
echo 1 > /sys/kernel/debug/tracing/events/xfs/enable
or alternatively enable single events by just doing the same in one
event subdirectory, e.g.
echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable
or set more complex filters, etc. In Documentation/trace/events.txt
all this is desctribed in more detail. To reads the events do a
cat /sys/kernel/debug/tracing/trace
Compared to the last posting this patch converts the tracing mostly to
the one tracepoint per callsite model that other users of the new
tracing facility also employ. This allows a very fine-grained control
of the tracing, a cleaner output of the traces and also enables the
perf tool to use each tracepoint as a virtual performance counter,
allowing us to e.g. count how often certain workloads git various
spots in XFS. Take a look at
http://lwn.net/Articles/346470/
for some examples.
Also the btree tracing isn't included at all yet, as it will require
additional core tracing features not in mainline yet, I plan to
deliver it later.
And the really nice thing about this patch is that it actually removes
many lines of code while adding this nice functionality:
fs/xfs/Makefile | 8
fs/xfs/linux-2.6/xfs_acl.c | 1
fs/xfs/linux-2.6/xfs_aops.c | 52 -
fs/xfs/linux-2.6/xfs_aops.h | 2
fs/xfs/linux-2.6/xfs_buf.c | 117 +--
fs/xfs/linux-2.6/xfs_buf.h | 33
fs/xfs/linux-2.6/xfs_fs_subr.c | 3
fs/xfs/linux-2.6/xfs_ioctl.c | 1
fs/xfs/linux-2.6/xfs_ioctl32.c | 1
fs/xfs/linux-2.6/xfs_iops.c | 1
fs/xfs/linux-2.6/xfs_linux.h | 1
fs/xfs/linux-2.6/xfs_lrw.c | 87 --
fs/xfs/linux-2.6/xfs_lrw.h | 45 -
fs/xfs/linux-2.6/xfs_super.c | 104 ---
fs/xfs/linux-2.6/xfs_super.h | 7
fs/xfs/linux-2.6/xfs_sync.c | 1
fs/xfs/linux-2.6/xfs_trace.c | 75 ++
fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++
fs/xfs/linux-2.6/xfs_vnode.h | 4
fs/xfs/quota/xfs_dquot.c | 110 ---
fs/xfs/quota/xfs_dquot.h | 21
fs/xfs/quota/xfs_qm.c | 40 -
fs/xfs/quota/xfs_qm_syscalls.c | 4
fs/xfs/support/ktrace.c | 323 ---------
fs/xfs/support/ktrace.h | 85 --
fs/xfs/xfs.h | 16
fs/xfs/xfs_ag.h | 14
fs/xfs/xfs_alloc.c | 230 +-----
fs/xfs/xfs_alloc.h | 27
fs/xfs/xfs_alloc_btree.c | 1
fs/xfs/xfs_attr.c | 107 ---
fs/xfs/xfs_attr.h | 10
fs/xfs/xfs_attr_leaf.c | 14
fs/xfs/xfs_attr_sf.h | 40 -
fs/xfs/xfs_bmap.c | 507 +++------------
fs/xfs/xfs_bmap.h | 49 -
fs/xfs/xfs_bmap_btree.c | 6
fs/xfs/xfs_btree.c | 5
fs/xfs/xfs_btree_trace.h | 17
fs/xfs/xfs_buf_item.c | 87 --
fs/xfs/xfs_buf_item.h | 20
fs/xfs/xfs_da_btree.c | 3
fs/xfs/xfs_da_btree.h | 7
fs/xfs/xfs_dfrag.c | 2
fs/xfs/xfs_dir2.c | 8
fs/xfs/xfs_dir2_block.c | 20
fs/xfs/xfs_dir2_leaf.c | 21
fs/xfs/xfs_dir2_node.c | 27
fs/xfs/xfs_dir2_sf.c | 26
fs/xfs/xfs_dir2_trace.c | 216 ------
fs/xfs/xfs_dir2_trace.h | 72 --
fs/xfs/xfs_filestream.c | 8
fs/xfs/xfs_fsops.c | 2
fs/xfs/xfs_iget.c | 111 ---
fs/xfs/xfs_inode.c | 67 --
fs/xfs/xfs_inode.h | 76 --
fs/xfs/xfs_inode_item.c | 5
fs/xfs/xfs_iomap.c | 85 --
fs/xfs/xfs_iomap.h | 8
fs/xfs/xfs_log.c | 181 +----
fs/xfs/xfs_log_priv.h | 20
fs/xfs/xfs_log_recover.c | 1
fs/xfs/xfs_mount.c | 2
fs/xfs/xfs_quota.h | 8
fs/xfs/xfs_rename.c | 1
fs/xfs/xfs_rtalloc.c | 1
fs/xfs/xfs_rw.c | 3
fs/xfs/xfs_trans.h | 47 +
fs/xfs/xfs_trans_buf.c | 62 -
fs/xfs/xfs_vnodeops.c | 8
70 files changed, 2151 insertions(+), 2592 deletions(-)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
The only thing we need to do now when we get an ENOSPC condition during delayed
allocation reservation is flush all the other inodes with delalloc blocks on
them and retry without EOF preallocation. Remove the unneeded mess that is
xfs_flush_space() and just call xfs_flush_inodes() directly from
xfs_iomap_write_delay().
Also, change the location of the retry label to avoid trying to do EOF
preallocation because we don't want to do that at ENOSPC. This enables us to
remove the BMAPI_SYNC flag as it is no longer used.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently there is an indirection called ioops in the XFS data I/O path.
Various functions are called by functions pointers, but there is no
coherence in what this is for, and of course for XFS itself it's entirely
unused. This patch removes it instead and significantly reduces source and
binary size of XFS while making maintaince easier.
SGI-PV: 970841
SGI-Modid: xfs-linux-melb:xfs-kern:29737a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
There is no reason to go through xfs_iomap for the BMAPI_UNWRITTEN because
it has nothing in common with the other cases. Instead check for the
shutdown filesystem in xfs_end_bio_unwritten and perform a direct call to
xfs_iomap_write_unwritten (which should be renamed to something more
sensible one day)
SGI-PV: 970241
SGI-Modid: xfs-linux-melb:xfs-kern:29681a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
There is no reason to go into the iomap machinery just to get the right
block device for an inode. Instead look at the realtime flag in the inode
and grab the right device from the mount structure.
I created a new helper, xfs_find_bdev_for_inode instead of opencoding it
because I plan to use it in other places in the future.
SGI-PV: 970240
SGI-Modid: xfs-linux-melb:xfs-kern:29680a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!