In tree-log.c:btrfs_log_inode(), we keep calling btrfs_search_forward()
until it returns a key whose objectid is higher than our inode or until
the key's type is higher than our maximum allowed type.
At the end of the loop, we increment our mininum search key's objectid
and type regardless of our desired target objectid and maximum desired
type, which causes another loop iteration that will call again
btrfs_search_forward() just to figure out we've gone beyond our maximum
key and exit the loop. Therefore while incrementing our minimum key,
don't do it blindly and exit the loop immiediately if the next search
key's objectid or type is beyond what we seek.
Also after incrementing the type, set the key's offset to 0, which was
missing and could make us loose some of the inode's items.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It is not used for anything.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
As we're hold a ref on looking up the extent map, we need to drop the ref
before returning to callers.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The performance was slowed down sometimes when we ran sysbench to measure
the performance of the sequential buffered write by 2 or more threads.
It was because the write order of the test threads might be confused
by the task scheduler, and the coming write would be beyond the end of
the file, in this case, we need insert dummy file extents and create
a hole for the area we skip. But in order to avoid the ongoing ordered
extents which are in the area, we need wait for them. Unfortunately,
the current code doesn't check if there are ordered extents in the area
or not, try to find and flush the dirty pages directly, but in fact,
there is no dirty page in that area, this step of the current code is
unnecessary, and just wastes time. Sometimes, it would increase
the contention of some locks, and makes the performance slow down suddenly.
So we remove the ordered extent flush function before the check, and flush
the dirty pages and wait for the ordered extents only when we find them.
According to my test, we got 1-2 times of the performance regression when
we ran the test by 10 times before applying this patch. After applying
this patch, the regression went away.
Test Environment:
CPU: 1CPU * 4Cores
Memory: 6GB
Partition: 20GB
Test Command:
# sysbench --test=fileio --file-total-size=16G --file-test-mode=seqwr \
> --num-threads=512 --file-block-size=16384 --max-time=60 --max-requests=0 run
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When we did space balance and snapshot creation at the same time, we might
meet the following oops:
kernel BUG at fs/btrfs/inode.c:3038!
[SNIP]
Call Trace:
[<ffffffffa0411ec7>] btrfs_orphan_cleanup+0x293/0x407 [btrfs]
[<ffffffffa042dc45>] btrfs_mksubvol.isra.28+0x259/0x373 [btrfs]
[<ffffffffa042de85>] btrfs_ioctl_snap_create_transid+0x126/0x156 [btrfs]
[<ffffffffa042dff1>] btrfs_ioctl_snap_create_v2+0xd0/0x121 [btrfs]
[<ffffffffa0430b2c>] btrfs_ioctl+0x414/0x1854 [btrfs]
[<ffffffff813b60b7>] ? __do_page_fault+0x305/0x379
[<ffffffff811215a9>] vfs_ioctl+0x1d/0x39
[<ffffffff81121d7c>] do_vfs_ioctl+0x32d/0x3e2
[<ffffffff81057fe7>] ? finish_task_switch+0x80/0xb8
[<ffffffff81121e88>] SyS_ioctl+0x57/0x83
[<ffffffff813b39ff>] ? do_device_not_available+0x12/0x14
[<ffffffff813b99c2>] system_call_fastpath+0x16/0x1b
[SNIP]
RIP [<ffffffffa040da40>] btrfs_orphan_add+0xc3/0x126 [btrfs]
The reason of the problem is that the relocation root creation stole
the reserved space, which was reserved for orphan item deletion.
There are several ways to fix this problem, one is to increasing
the reserved space size of the space balace, and then we can use
that space to create the relocation tree for each fs/file trees.
But it is hard to calculate the suitable size because we doesn't
know how many fs/file trees we need relocate.
We fixed this problem by reserving the space for relocation root creation
actively since the space it need is very small (one tree block, used for
root node copy), then we use that reserved space to create the
relocation tree. If we don't reserve space for relocation tree creation,
we will use the reserved space of the balance.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused parameter, 'eb'. Unused since introduction in
5f39d397df
Updated to be rebased against current upstream and correct diff supplied this time!
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I was noticing the slab redzone stuff going off every once and a while during
transaction aborts. This was caused by two things
1) We would walk the pending snapshots and set their error to -ECANCELED. We
don't need to do this, the snapshot stuff waits for a transaction commit and if
there is a problem we just free our pending snapshot object and exit. Doing
this was causing us to touch the pending snapshot object after the thing had
already been freed.
2) We were freeing the transaction manually with wanton disregard for it's
use_count reference counter. To fix this I cleaned up the transaction freeing
loop to either wait for the transaction commit to finish if it was in the middle
of that (since it will be cleaned and freed up there) or to do the cleanup
oursevles.
I also moved the global "kill all things dirty everywhere" stuff outside of the
transaction cleanup loop since that only needs to be done once. With this patch
I'm no longer seeing slab corruption because of use after frees. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Noticed this when forcing errors to happen during delayed ref running. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
During transaction cleanup after an abort we are just removing roots from the
ordered roots list which is incorrect. We have a BUG_ON() to make sure that the
root is still part of the ordered roots list when we put our ordered extent
which we were tripping in this case. So do like we do everywhere else and just
move it to the tail of the ordered roots list and allow the normal cleanup to
take care of stuff. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we abort not during a transaction commit we won't clean up anything until we
unmount. Unfortunately if we abort in the middle of writing out an ordered
extent we won't clean it up and if somebody is waiting on that ordered extent
they will wait forever. To fix this just make the transaction kthread call the
cleanup transaction stuff if it notices theres an error, and make
btrfs_end_transaction wake up the transaction kthread if there is an error.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I've been testing our error paths and I was tripping the BUG_ON() in
drop_outstanding_extent because our outstanding_extents is 0 for space cache
inodes. This is because we don't reserve metadata space for these inodes since
we depend on the global block reserve for our space. To fix this we need to
make sure the DO_ACCOUNTING stuff doesn't actually call release_metadata for
space cache inodes. With this patch I'm no longer panicing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we abort a transaction in the middle of a commit we weren't undoing the
intwrite locking. This patch fixes that problem.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
A user reported a problem where they were getting csum errors when running a
balance and running systemd's journal. This is because systemd is awesome and
fallocate()'s its log space and writes into it. Unfortunately we assume that
when we read in all the csums for an extent that they are sequential starting at
the bytenr we care about. This obviously isn't the case for prealloc extents,
where we could have written to the middle of the prealloc extent only, which
means the csum would be for the bytenr in the middle of our range and not the
front of our range. Fix this by offsetting the new bytenr we are logging to
based on the original bytenr the csum was for. With this patch I no longer see
the csum errors I was seeing. Thanks,
Cc: stable@vger.kernel.org
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In extent-tree.c:btrfs_write_dirty_block_groups(), if the call to
write_one_cache_group() failed, we would return without putting
the block group first.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently the fs sync function (super.c:btrfs_sync_fs()) doesn't
wait for delayed work to finish before returning success to the
caller. This change fixes this, ensuring that there's no data loss
if a power failure happens right after fs sync returns success to
the caller and before the next commit happens.
Steps to reproduce the data loss issue:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ perl -e '$d = ("\x41" x 6001); open($f,">","/mnt/btrfs/foobar"); print $f $d; close($f);' && btrfs fi sync /mnt/btrfs
Right after the btrfs fi sync command (a second or 2 for example), power
off the machine and reboot it. The file will be empty, as it can be verified
after mounting the filesystem and through btrfs-debug-tree:
$ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8
item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36
location key (257 INODE_ITEM 0) type FILE
namelen 6 datalen 0 name: foobar
item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160
inode generation 7 transid 7 size 0 block group 0 mode 100644 links 1
item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16
inode ref index 2 namelen 6 name: foobar
checksum tree key (CSUM_TREE ROOT_ITEM 0)
leaf 29429760 items 0 free space 3995 generation 7 owner 7
fs uuid 6192815c-af2a-4b75-b3db-a959ffb6166e
chunk uuid b529c44b-938c-4d3d-910a-013b4700bcae
uuid tree key (UUID_TREE ROOT_ITEM 0)
After this patch, the data loss no longer happens after a power failure and
btrfs-debug-tree shows:
$ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8
item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36
location key (257 INODE_ITEM 0) type FILE
namelen 6 datalen 0 name: foobar
item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160
inode generation 6 transid 6 size 6001 block group 0 mode 100644 links 1
item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16
inode ref index 2 namelen 6 name: foobar
item 6 key (257 EXTENT_DATA 0) itemoff 3522 itemsize 53
extent data disk byte 12845056 nr 8192
extent data offset 0 nr 8192 ram 8192
extent compression 0
checksum tree key (CSUM_TREE ROOT_ITEM 0)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In inode.c:btrfs_orphan_add() if we failed to insert the orphan
item, we would return without decrementing the orphan count that
we just incremented before attempting the insertion, leaving the
orphan inode count wrong.
In inode.c:btrfs_orphan_del(), we were decrementing the inode
orphan count if the bit BTRFS_INODE_ORPHAN_META_RESERVED was set,
which is logically wrong because it should be decremented if the
bit BTRFS_INODE_HAS_ORPHAN_ITEM was set - after all we increment
the count when we set the bit BTRFS_INODE_HAS_ORPHAN_ITEM elsewhere.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Similar to ocfs2, btrfs also supports that extents can be shared by
different inodes, and there are some userspace tools requesting
for this kind of 'space shared infomation'.[1]
ocfs2 uses flag FIEMAP_EXTENT_SHARED, so does btrfs.
[1]: http://thr3ads.net/ocfs2-devel/2010/09/489052-PATCH-3-3-shared-du-using-fiemap-to-figure-up-the-shared-extents-per-file-and-the-footprint-in
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Not used for anything, and removing it avoids caller's need to
allocate a path structure.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We're doing a unnecessary extra lookup of the ino cache's
inode when we already have it (and holding a reference)
during the process of saving the ino cache contents to disk.
Therefore remove this extra lookup.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While running some snashot aware defrag tests I noticed I was panicing every
once and a while in key_search. This is because of the optimization that says
if we find a key at slot 0 it will be at slot 0 all the way down the rest of the
tree. This isn't the case for btrfs_search_old_slot since it will likely replay
changes to a buffer if something has changed since we took our sequence number.
So short circuit this optimization by setting prev_cmp to -1 every time we call
key_search so we will do our normal binary search. With this patch I am no
longer seeing the panics I was seeing before. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While looking at somebodys corruption I became completely convinced that
btrfs_split_item was broken, so I wrote this test to verify that it was working
as it was supposed to. Thankfully it appears to be working as intended, so just
add this test to make sure nobody breaks it in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused eb parameter from btrfs_item_nr
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It is not necessary to store the NULL byte in a symlink inline file
extent. There's currently no code that requires the NULL byte to be
present in the extent. This change also doesn't break file format
compatibility nor the send/receive feature.
The VFS also doesn't need the NULL byte to be present in the extent,
as it reads up to inode->i_size bytes (which already excluded the NULL
byte) and sets the NULL byte for us (in fs/namei.c:page_getlink()).
So with this change we save 1 byte per symlink file extent (which is
always inlined in the btree leaf) without losing backward and forward
compatibility.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The fact that btrfs_root_refs() returned 0 for the tree_root caused
bugs in the past, therefore it is set to 1 with this patch and
(hopefully) all affected code is adapted to this change.
I verified this change by temporarily adding WARN_ON() checks
everywhere where btrfs_root_refs() is used, checking whether the
logic of the code is changed by btrfs_root_refs() returning 1
instead of 0 for root->root_key.objectid == BTRFS_ROOT_TREE_OBJECTID.
With these added checks, I ran the xfstests './check -g auto'.
The two roots chunk_root and log_root_tree that are only referenced
by the superblock and the log_roots below the log_root_tree still
have btrfs_root_refs() == 0, only the tree_root is changed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fix from Chris Mason:
"Sage hit a deadlock with ceph on btrfs, and Josef tracked it down to a
regression in our initial rc1 pull. When doing nocow writes we were
sometimes starting a transaction with locks held"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: release path before starting transaction in can_nocow_extent
We can't be holding tree locks while we try to start a transaction, we will
deadlock. Thanks,
Reported-by: Sage Weil <sage@inktank.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"We've got more bug fixes in my for-linus branch:
One of these fixes another corner of the compression oops from last
time. Miao nailed down some problems with concurrent snapshot
deletion and drive balancing.
I kept out one of his patches for more testing, but these are all
stable"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix oops caused by the space balance and dead roots
Btrfs: insert orphan roots into fs radix tree
Btrfs: limit delalloc pages outside of find_delalloc_range
Btrfs: use right root when checking for hash collision
When doing space balance and subvolume destroy at the same time, we met
the following oops:
kernel BUG at fs/btrfs/relocation.c:2247!
RIP: 0010: [<ffffffffa04cec16>] prepare_to_merge+0x154/0x1f0 [btrfs]
Call Trace:
[<ffffffffa04b5ab7>] relocate_block_group+0x466/0x4e6 [btrfs]
[<ffffffffa04b5c7a>] btrfs_relocate_block_group+0x143/0x275 [btrfs]
[<ffffffffa0495c56>] btrfs_relocate_chunk.isra.27+0x5c/0x5a2 [btrfs]
[<ffffffffa0459871>] ? btrfs_item_key_to_cpu+0x15/0x31 [btrfs]
[<ffffffffa048b46a>] ? btrfs_get_token_64+0x7e/0xcd [btrfs]
[<ffffffffa04a3467>] ? btrfs_tree_read_unlock_blocking+0xb2/0xb7 [btrfs]
[<ffffffffa049907d>] btrfs_balance+0x9c7/0xb6f [btrfs]
[<ffffffffa049ef84>] btrfs_ioctl_balance+0x234/0x2ac [btrfs]
[<ffffffffa04a1e8e>] btrfs_ioctl+0xd87/0x1ef9 [btrfs]
[<ffffffff81122f53>] ? path_openat+0x234/0x4db
[<ffffffff813c3b78>] ? __do_page_fault+0x31d/0x391
[<ffffffff810f8ab6>] ? vma_link+0x74/0x94
[<ffffffff811250f5>] vfs_ioctl+0x1d/0x39
[<ffffffff811258c8>] do_vfs_ioctl+0x32d/0x3e2
[<ffffffff811259d4>] SyS_ioctl+0x57/0x83
[<ffffffff813c3bfa>] ? do_page_fault+0xe/0x10
[<ffffffff813c73c2>] system_call_fastpath+0x16/0x1b
It is because we returned the error number if the reference of the root was 0
when doing space relocation. It was not right here, because though the root
was dead(refs == 0), but the space it held still need be relocated, or we
could not remove the block group. So in this case, we should return the root
no matter it is dead or not.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Now we don't drop all the deleted snapshots/subvolumes before the space
balance. It means we have to relocate the space which is held by the dead
snapshots/subvolumes. So we must into them into fs radix tree, or we would
forget to commit the change of them when doing transaction commit, and it
would corrupt the metadata.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Liu fixed part of this problem and unfortunately I steered him in slightly the
wrong direction and so didn't completely fix the problem. The problem is we
limit the size of the delalloc range we are looking for to max bytes and then we
try to lock that range. If we fail to lock the pages in that range we will
shrink the max bytes to a single page and re loop. However if our first page is
inside of the delalloc range then we will end up limiting the end of the range
to a period before our first page. This is illustrated below
[0 -------- delalloc range --------- 256mb]
[page]
So find_delalloc_range will return with delalloc_start as 0 and end as 128mb,
and then we will notice that delalloc_start < *start and adjust it up, but not
adjust delalloc_end up, so things go sideways. To fix this we need to not limit
the max bytes in find_delalloc_range, but in find_lock_delalloc_range and that
way we don't end up with this confusion. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
btrfs_rename was using the root of the old dir instead of the root of the new
dir when checking for a hash collision, so if you tried to move a file into a
subvol it would freak out because it would see the file you are trying to move
in its current root. This fixes the bug where this would fail
btrfs subvol create test1
btrfs subvol create test2
mv test1 test2.
Thanks to Chris Murphy for catching this,
Cc: stable@vger.kernel.org
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
free_device rcu callback, scheduled from btrfs_rm_dev_replace_srcdev,
can be processed before btrfs_scratch_superblock is called, which would
result in a use-after-free on btrfs_device contents. Fix this by
zeroing the superblock before the rcu callback is registered.
Cc: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The current implementation of worker threads in Btrfs has races in
worker stopping code, which cause all kinds of panics and lockups when
running btrfs/011 xfstest in a loop. The problem is that
btrfs_stop_workers is unsynchronized with respect to check_idle_worker,
check_busy_worker and __btrfs_start_workers.
E.g., check_idle_worker race flow:
btrfs_stop_workers(): check_idle_worker(aworker):
- grabs the lock
- splices the idle list into the
working list
- removes the first worker from the
working list
- releases the lock to wait for
its kthread's completion
- grabs the lock
- if aworker is on the working list,
moves aworker from the working list
to the idle list
- releases the lock
- grabs the lock
- puts the worker
- removes the second worker from the
working list
......
btrfs_stop_workers returns, aworker is on the idle list
FS is umounted, memory is freed
......
aworker is waken up, fireworks ensue
With this applied, I wasn't able to trigger the problem in 48 hours,
whereas previously I could reliably reproduce at least one of these
races within an hour.
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The crash[1] is found by xfstests/generic/208 with "-o compress",
it's not reproduced everytime, but it does panic.
The bug is quite interesting, it's actually introduced by a recent commit
(573aecafca,
Btrfs: actually limit the size of delalloc range).
Btrfs implements delay allocation, so during writeback, we
(1) get a page A and lock it
(2) search the state tree for delalloc bytes and lock all pages within the range
(3) process the delalloc range, including find disk space and create
ordered extent and so on.
(4) submit the page A.
It runs well in normal cases, but if we're in a racy case, eg.
buffered compressed writes and aio-dio writes,
sometimes we may fail to lock all pages in the 'delalloc' range,
in which case, we need to fall back to search the state tree again with
a smaller range limit(max_bytes = PAGE_CACHE_SIZE - offset).
The mentioned commit has a side effect, that is, in the fallback case,
we can find delalloc bytes before the index of the page we already have locked,
so we're in the case of (delalloc_end <= *start) and return with (found > 0).
This ends with not locking delalloc pages but making ->writepage still
process them, and the crash happens.
This fixes it by just thinking that we find nothing and returning to caller
as the caller knows how to deal with it properly.
[1]:
------------[ cut here ]------------
kernel BUG at mm/page-writeback.c:2170!
[...]
CPU: 2 PID: 11755 Comm: btrfs-delalloc- Tainted: G O 3.11.0+ #8
[...]
RIP: 0010:[<ffffffff810f5093>] [<ffffffff810f5093>] clear_page_dirty_for_io+0x1e/0x83
[...]
[ 4934.248731] Stack:
[ 4934.248731] ffff8801477e5dc8 ffffea00049b9f00 ffff8801869f9ce8 ffffffffa02b841a
[ 4934.248731] 0000000000000000 0000000000000000 0000000000000fff 0000000000000620
[ 4934.248731] ffff88018db59c78 ffffea0005da8d40 ffffffffa02ff860 00000001810016c0
[ 4934.248731] Call Trace:
[ 4934.248731] [<ffffffffa02b841a>] extent_range_clear_dirty_for_io+0xcf/0xf5 [btrfs]
[ 4934.248731] [<ffffffffa02a8889>] compress_file_range+0x1dc/0x4cb [btrfs]
[ 4934.248731] [<ffffffff8104f7af>] ? detach_if_pending+0x22/0x4b
[ 4934.248731] [<ffffffffa02a8bad>] async_cow_start+0x35/0x53 [btrfs]
[ 4934.248731] [<ffffffffa02c694b>] worker_loop+0x14b/0x48c [btrfs]
[ 4934.248731] [<ffffffffa02c6800>] ? btrfs_queue_worker+0x25c/0x25c [btrfs]
[ 4934.248731] [<ffffffff810608f5>] kthread+0x8d/0x95
[ 4934.248731] [<ffffffff81060868>] ? kthread_freezable_should_stop+0x43/0x43
[ 4934.248731] [<ffffffff814fe09c>] ret_from_fork+0x7c/0xb0
[ 4934.248731] [<ffffffff81060868>] ? kthread_freezable_should_stop+0x43/0x43
[ 4934.248731] Code: ff 85 c0 0f 94 c0 0f b6 c0 59 5b 5d c3 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb e8 2c de 00 00 49 89 c4 48 8b 03 a8 01 75 02 <0f> 0b 4d 85 e4 74 52 49 8b 84 24 80 00 00 00 f6 40 20 01 75 44
[ 4934.248731] RIP [<ffffffff810f5093>] clear_page_dirty_for_io+0x1e/0x83
[ 4934.248731] RSP <ffff8801869f9c48>
[ 4934.280307] ---[ end trace 36f06d3f8750236a ]---
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If we crash with a log, remount and recover that log, and then crash before we
can commit another transaction we will get transid verify errors on the next
mount. This is because we were not zero'ing out the log when we committed the
transaction after recovery. This is ok as long as we commit another transaction
at some point in the future, but if you abort or something else goes wrong you
can end up in this weird state because the recovery stuff says that the tree log
should have a generation+1 of the super generation, which won't be the case of
the transaction that was started for recovery. Fix this by removing the check
and _always_ zero out the log portion of the super when we commit a transaction.
This fixes the transid verify issues I was seeing with my force errors tests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"These are mostly bug fixes and a two small performance fixes. The
most important of the bunch are Josef's fix for a snapshotting
regression and Mark's update to fix compile problems on arm"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: create the uuid tree on remount rw
btrfs: change extent-same to copy entire argument struct
Btrfs: dir_inode_operations should use btrfs_update_time also
btrfs: Add btrfs: prefix to kernel log output
btrfs: refuse to remount read-write after abort
Btrfs: btrfs_ioctl_default_subvol: Revert back to toplevel subvolume when arg is 0
Btrfs: don't leak transaction in btrfs_sync_file()
Btrfs: add the missing mutex unlock in write_all_supers()
Btrfs: iput inode on allocation failure
Btrfs: remove space_info->reservation_progress
Btrfs: kill delay_iput arg to the wait_ordered functions
Btrfs: fix worst case calculator for space usage
Revert "Btrfs: rework the overcommit logic to be based on the total size"
Btrfs: improve replacing nocow extents
Btrfs: drop dir i_size when adding new names on replay
Btrfs: replay dir_index items before other items
Btrfs: check roots last log commit when checking if an inode has been logged
Btrfs: actually log directory we are fsync()'ing
Btrfs: actually limit the size of delalloc range
Btrfs: allocate the free space by the existed max extent size when ENOSPC
...
Users have been complaining of the uuid tree stuff warning that there is no uuid
root when trying to do snapshot operations. This is because if you mount -o ro
we will not create the uuid tree. But then if you mount -o rw,remount we will
still not create it and then any subsequent snapshot/subvol operations you try
to do will fail gloriously. Fix this by creating the uuid_root on remount rw if
it was not already there. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
btrfs_ioctl_file_extent_same() uses __put_user_unaligned() to copy some data
back to it's argument struct. Unfortunately, not all architectures provide
__put_user_unaligned(), so compiles break on them if btrfs is selected.
Instead, just copy the whole struct in / out at the start and end of
operations, respectively.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Commit 2bc5565286 (Btrfs: don't update atime on
RO subvolumes) ensures that the access time of an inode is not updated when
the inode lives in a read-only subvolume.
However, if a directory on a read-only subvolume is accessed, the atime is
updated. This results in a write operation to a read-only subvolume. I
believe that access times should never be updated on read-only subvolumes.
To reproduce:
# mkfs.btrfs -f /dev/dm-3
(...)
# mount /dev/dm-3 /mnt
# btrfs subvol create /mnt/sub
Create subvolume '/mnt/sub'
# mkdir /mnt/sub/dir
# echo "abc" > /mnt/sub/dir/file
# btrfs subvol snapshot -r /mnt/sub /mnt/rosnap
Create a readonly snapshot of '/mnt/sub' in '/mnt/rosnap'
# stat /mnt/rosnap/dir
File: `/mnt/rosnap/dir'
Size: 8 Blocks: 0 IO Block: 4096 directory
Device: 16h/22d Inode: 257 Links: 1
Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2013-09-11 07:21:49.389157126 -0400
Modify: 2013-09-11 07:22:02.330156079 -0400
Change: 2013-09-11 07:22:02.330156079 -0400
# ls /mnt/rosnap/dir
file
# stat /mnt/rosnap/dir
File: `/mnt/rosnap/dir'
Size: 8 Blocks: 0 IO Block: 4096 directory
Device: 16h/22d Inode: 257 Links: 1
Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2013-09-11 07:22:56.797151670 -0400
Modify: 2013-09-11 07:22:02.330156079 -0400
Change: 2013-09-11 07:22:02.330156079 -0400
Reported-by: Koen De Wit <koen.de.wit@oracle.com>
Signed-off-by: Guangyu Sun <guangyu.sun@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The kernel log entries for device label %s and device fsid %pU
are missing the btrfs: prefix. Add those here.
Signed-off-by: Frank Holton <fholton@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It's still possible to flip the filesystem into RW mode after it's
remounted RO due to an abort. There are lots of places that check for
the superblock error bit and will not write data, but we should not let
the filesystem appear read-write.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch makes it possible to set BTRFS_FS_TREE_OBJECTID as the default
subvolume by passing a subvolume id of 0.
Signed-off-by: chandan <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In btrfs_sync_file(), if the call to btrfs_log_dentry_safe() returns
a negative error (for e.g. -ENOMEM via btrfs_log_inode()), we would
return without ending/freeing the transaction.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The BUG() was replaced by btrfs_error() and return -EIO with the
patch "get rid of one BUG() in write_all_supers()", but the missing
mutex_unlock() was overlooked.
The 0-DAY kernel build service from Intel reported the missing
unlock which was found by the coccinelle tool:
fs/btrfs/disk-io.c:3422:2-8: preceding lock on line 3374
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We don't do the iput when we fail to allocate our delayed delalloc work in
__start_delalloc_inodes, fix this.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This isn't used for anything anymore, just remove it.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is a left over of how we used to wait for ordered extents, which was to
grab the inode and then run filemap flush on it. However if we have an ordered
extent then we already are holding a ref on the inode, and we just use
btrfs_start_ordered_extent anyway, so there is no reason to have an extra ref on
the inode to start work on the ordered extent. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Forever ago I made the worst case calculator say that we could potentially split
into 3 blocks for every level on the way down, which isn't right. If we split
we're only going to get two new blocks, the one we originally cow'ed and the new
one we're going to split. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>