If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 528x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 527x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 5249 QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 523x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 520x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire FEC is common to quite a few ColdFire CPUs. No need to duplicate
its platform setup code for every CPU family member that has it. Merge all the
setup code into a single shared file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 532x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 528x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 527x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 5272 FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 523x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 520x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Some ColdFire CPU UART hardware modules can configure the IRQ they use.
Currently the same setup code is duplicated in the init code for each of
these ColdFire CPUs. Merge all this code to a single instance.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire UART is common to all ColdFire CPU's. No need to duplicate
its platform setup code for every CPU family member. Merge all the setup
code into a single shared file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 54xx UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5407 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 532x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 528x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5307 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 527x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5272 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5249 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 523x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 520x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5206 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The MMU and non-MMU varients of the m68k arch process.c code are pretty
much the same. Only a few minor details differ between the two. The
majority of the difference is to deal with having or wanting hardware FPU
support. So merge them back into a single process.c file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The classic m68k code has always supported an FPU (although it may have
been a software emulated one). The non-MMU m68k code has never supported FPU
hardware. To help in merging common code create a configation setting that
signifies if we are builing in FPU support or not.
This switch, CONFIG_FPU, is set as per the current use cases. So it is
always enabled if CONFIG_MMU is set, and disabled otherwise. With a little
extra code it will be possible to disable it on the classic m68k platforms
as well, and to enable it on non-MMU platforms that do have hardware FPU.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Most of the code in the non-mmu ptrace_no.c file is the same as the mmu
version ptrace_mm.c. So merge them back into a single file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The set_rtc_mmss() function is defined "static inline" but is never used
in this file. Remove it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
There is only trivial differences between the mmu time_mm.c and non-mmu
time_no.c files. Merge them back into a single time.c.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The CONFIG_GENERIC_CMOS_UPDATE switch is always enabled for the non-MMU
m68k case. But the underlying code to support it, update_persistent_clock(),
doesn't end up doing anything on the currently supported non-MMU platforms.
No platforms supply the necessary function support for writing back the RTC.
So lets remove this option and support code. This also brings m68knommu
in line with the m68k, which doesn't enabled this switch either.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
With a few small changes we can make the m68knommu timer init code the
same as the m68k code. By using the mach_sched_init function pointer
and reworking the current timer initializers to keep track of the common
m68k timer_interrupt() handler we end up with almost identical code for
m68knommu.
This will allow us to more easily merge the mmu and non-mmu m68k time.c
in future patches.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The read_persistent_clock() code is different on m68knommu, for really no
reason. With a few changes to support function names and some code
re-organization the code can be made the same.
This will make it easier to merge the arch/m68k/kernel/time.c for m68k and
m68knommu in a future patch.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The base of the real RAM resident hardware vectors, _ramvec, is declared in
our asm/traps.h. No need to have local declarations spread around in other
files that use this. So remove them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
There is a lot of years of collected cruft in the m68knommu linker script.
Clean it all up and use the well defined linker script support macros.
Support is maintained for building both ROM/FLASH based and RAM based setups.
No major changes to section layouts, though the rodata section is now lumped
in with the read/write data section.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire MBAR register that holds the mapping of the peripheral region
on some ColdFire CPUs is configurable. It can be configured at some address
different to that of the bootloader that loaded the kernel. So hard set
the MBAR register mapping at kernel startup time.
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If the SG bit is set in MMUTR the page is accessible for all
userspace processes (ignoring the ASID). So a process might randomly
access a page from a different process which had a shared page
(from shared memory) in its context.
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
We had problems accessing our NOR flash trough mtd. The system always got
stuck at attaching UBI using ubiattach if booted from NFS or after mounting
squashfs as rootfs directly from NOR flash.
After some testing of the new changes introduced from v3.2-rc1 to v3.2-rc7
we had to apply the following patch to get mtd working again.
[gerg: The problem was ultimately caused by allocated kernel pages not having
the shared (SG) bit set. Without the SG bit set the MMU will look for page
matches incorporating the ASID as well. Things like module regions allocated
using vmalloc would fault when other processes run. ]
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The return path from an exception was checking too many bits in the
thread_info->flags, and getting stuck calling do_signal(). There was
no work to do, we should only be checking the low 8 bits (as per comments
and definitions in arch/m68k/include/asm/thread_info.h).
This fixes the stuck process problem when using strace.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k: Fix assembler constraint to prevent overeager gcc optimisation
mac_esp: rename irq
mac_scsi: dont enable mac_scsi irq before requesting it
macfb: fix black and white modes
m68k/irq: Remove obsolete IRQ_FLG_* definitions
Fix up trivial conflict in arch/m68k/kernel/process_mm.c as per Geert.