There is a bug sending link commands for existing file paths. When we're
processing an inode, we go over all references. All the new file paths are
added to the "new_refs" list. And all the deleted file paths are added to
the "deleted_refs" list. In the end, when we finish processing the inode,
we iterate over all the items in the "new_refs" list and send link commands
for those file paths. After that, we go over all the items in the
"deleted_refs" list and send unlink commands for them. If there are
duplicated file paths in both lists, we will try to create them before we
remove them. Then the receiver gets an -EEXIST error when trying the link
operations.
Example for having duplicated file paths in both list:
$ btrfs subvolume create vol
# create a file and 2000 hard links to the same inode
$ touch vol/foo
$ for i in {1..2000}; do link vol/foo vol/$i ; done
# take a snapshot for a parent snapshot
$ btrfs subvolume snapshot -r vol snap1
# remove 2000 hard links and re-create the last 1000 links
$ for i in {1..2000}; do rm vol/$i; done;
$ for i in {1001..2000}; do link vol/foo vol/$i; done
# take another one for a send snapshot
$ btrfs subvolume snapshot -r vol snap2
$ mkdir receive_dir
$ btrfs send snap2 -p snap1 | btrfs receive receive_dir/
At subvol snap2
link 1238 -> foo
ERROR: link 1238 -> foo failed: File exists
In this case, we will have the same file paths added to both lists. In the
parent snapshot, reference paths {1..1237} are stored in inode references,
but reference paths {1238..2000} are stored in inode extended references.
In the send snapshot, all reference paths {1001..2000} are stored in inode
references. During the incremental send, we process their inode references
first. In record_changed_ref(), we iterate all its inode references in the
send/parent snapshot. For every inode reference, we also use find_iref() to
check whether the same file path also appears in the parent/send snapshot
or not. Inode references {1238..2000} which appear in the send snapshot but
not in the parent snapshot are added to the "new_refs" list. On the other
hand, Inode references {1..1000} which appear in the parent snapshot but
not in the send snapshot are added to the "deleted_refs" list. Next, when
we process their inode extended references, reference paths {1238..2000}
are added to the "deleted_refs" list because all of them only appear in the
parent snapshot. Now two lists contain items as below:
"new_refs" list: {1238..2000}
"deleted_refs" list: {1..1000}, {1238..2000}
Reference paths {1238..2000} appear in both lists. And as the processing
order mentioned about before, the receiver gets an -EEXIST error when trying
the link operations.
To fix the bug, the idea is to process the "deleted_refs" list before
the "new_refs" list. However, it's not easy to reshuffle the processing
order. For one reason, if we do so, we may unlink all the existing paths
first, there's no valid path anymore for links. And it's inefficient
because we do a bunch of unlinks followed by links for the same paths.
Moreover, it makes less sense to have duplications in both lists. A
reference path cannot not only be regarded as new but also has been seen in
the past, or we won't call it a new path. However, it's also not a good
idea to make find_iref() check a reference against all inode references
and all inode extended references because it may result in large disk
reads.
So we introduce two rbtrees to make the references easier for lookups.
And we also introduce record_new_ref_if_needed() and
record_deleted_ref_if_needed() for changed_ref() to check and remove
duplicated references early.
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce wrappers to allocate and free recorded_ref structures.
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the allocated position doesn't progress, we cannot submit IOs to
finish a block group, but there should be ongoing IOs that will finish a
block group. So, in that case, we wait for a zone to be finished and retry
the allocation after that.
Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to
indicate we need a zone finish to have proceeded. The flag is set when the
allocator detected it cannot activate a new block group. And, it is cleared
once a zone is finished.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
cow_file_range() works in an all-or-nothing way: if it fails to allocate an
extent for a part of the given region, it gives up all the region including
the successfully allocated parts. On cow_file_range(), run_delalloc_zoned()
writes data for the region only when it successfully allocate all the
region.
This all-or-nothing allocation and write-out are problematic when available
space in all the block groups are get tight with the active zone
restriction. btrfs_reserve_extent() try hard to utilize the left space in
the active block groups and gives up finally and fails with
-ENOSPC. However, if we send IOs for the successfully allocated region, we
can finish a zone and can continue on the rest of the allocation on a newly
allocated block group.
This patch implements the partial write-out for run_delalloc_zoned(). With
this patch applied, cow_file_range() returns -EAGAIN to tell the caller to
do something to progress the further allocation, and tells the successfully
allocated region with done_offset. Furthermore, the zoned extent allocator
returns -EAGAIN to tell cow_file_range() going back to the caller side.
Actually, we still need to wait for an IO to complete to continue the
allocation. The next patch implements that part.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places where allocating a chunk is not enough. These two
places are trying to ensure the space by allocating a chunk. To meet the
condition for active_total_bytes, we also need to activate a block group
there.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For metadata space on zoned filesystem, reaching ALLOC_CHUNK{,_FORCE}
means we don't have enough space left in the active_total_bytes. Before
allocating a new chunk, we can try to activate an existing block group
in this case.
Also, allocating a chunk is not enough to grant a ticket for metadata
space on zoned filesystem we need to activate the block group to
increase the active_total_bytes.
btrfs_zoned_activate_one_bg() implements the activation feature. It will
activate a block group by (maybe) finishing a block group. It will give up
activating a block group if it cannot finish any block group.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The metadata overcommit makes the space reservation flexible but it is also
harmful to active zone tracking. Since we cannot finish a block group from
the metadata allocation context, we might not activate a new block group
and might not be able to actually write out the overcommit reservations.
So, disable metadata overcommit for zoned filesystems. We will ensure
the reservations are under active_total_bytes in the following patches.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The active_total_bytes, like the total_bytes, accounts for the total bytes
of active block groups in the space_info.
With an introduction of active_total_bytes, we can check if the reserved
bytes can be written to the block groups without activating a new block
group. The check is necessary for metadata allocation on zoned
filesystem. We cannot finish a block group, which may require waiting
for the current transaction, from the metadata allocation context.
Instead, we need to ensure the ongoing allocation (reserved bytes) fits
in active block groups.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we run out of active zones and no sufficient space is left in any
block groups, we need to finish one block group to make room to activate a
new block group.
However, we cannot do this for metadata block groups because we can cause a
deadlock by waiting for a running transaction commit. So, do that only for
a data block group.
Furthermore, the block group to be finished has two requirements. First,
the block group must not have reserved bytes left. Having reserved bytes
means we have an allocated region but did not yet send bios for it. If that
region is allocated by the thread calling btrfs_zone_finish(), it results
in a deadlock.
Second, the block group to be finished must not be a SYSTEM block
group. Finishing a SYSTEM block group easily breaks further chunk
allocation by nullifying the SYSTEM free space.
In a certain case, we cannot find any zone finish candidate or
btrfs_zone_finish() may fail. In that case, we fall back to split the
allocation bytes and fill the last spaces left in the block groups.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the later patch, convert the return type from bool to int and return
errors. No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use fs_info->max_extent_size also in get_extent_max_capacity() for the
completeness. This is only used for defrag and not really necessary to fix
the metadata reservation size. But, it still suppresses unnecessary defrag
operations.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If count_max_extents() uses BTRFS_MAX_EXTENT_SIZE to calculate the number
of extents needed, btrfs release the metadata reservation too much on its
way to write out the data.
Now that BTRFS_MAX_EXTENT_SIZE is replaced with fs_info->max_extent_size,
convert count_max_extents() to use it instead, and fix the calculation of
the metadata reservation.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu_read_lock_sched_held+0x16/0x80
[75721.969111] ? lock_acquire+0x41b/0x4c0
[75721.974982] finish_ordered_fn+0x15/0x20 [btrfs]
[75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs]
[75721.988184] ? _raw_spin_unlock_irq+0x28/0x50
[75721.994643] process_one_work+0x815/0x1460
[75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250
[75722.006643] ? do_raw_spin_trylock+0xbb/0x190
[75722.013086] worker_thread+0x59a/0xeb0
[75722.018511] kthread+0x2ac/0x360
[75722.023428] ? process_one_work+0x1460/0x1460
[75722.029431] ? kthread_complete_and_exit+0x30/0x30
[75722.036044] ret_from_fork+0x22/0x30
[75722.041255] </TASK>
[75722.045047] irq event stamp: 0
[75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0
[75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0
[75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0
[75722.085335] ---[ end trace 0000000000000000 ]---
To fix the estimation, we need to introduce fs_info->max_extent_size to
replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for
regular vs zoned filesystem.
Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned
filesystem, it is set to fs_info->max_zone_append_size.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch is basically a revert of commit 5a80d1c6a2 ("btrfs: zoned:
remove max_zone_append_size logic"), but without unnecessary ASSERT and
check. The max_zone_append_size will be used as a hint to estimate the
number of extents to cover delalloc/writeback region in the later commits.
The size of a ZONE APPEND bio is also limited by queue_max_segments(), so
this commit considers it to calculate max_zone_append_size. Technically, a
bio can be larger than queue_max_segments() * PAGE_SIZE if the pages are
contiguous. But, it is safe to consider "queue_max_segments() * PAGE_SIZE"
as an upper limit of an extent size to calculate the number of extents
needed to write data.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_ino() tries to use first the objectid of the inode's
location key. This is to avoid truncation of the inode number on 32 bits
platforms because the i_ino field of struct inode has the unsigned long
type, while the objectid is a 64 bits unsigned type (u64) on every system.
This logic was added in commit 33345d0152 ("Btrfs: Always use 64bit
inode number").
However if we are running on a 64 bits system, we can always directly
return the i_ino value from struct inode, which eliminates the need for
he special if statement that tests for a location key type of
BTRFS_ROOT_ITEM_KEY - in which case i_ino may not have the same value as
the objectid in the inode's location objectid, it may have a value of
BTRFS_EMPTY_SUBVOL_DIR_OBJECTID, for the case of snapshots of trees with
subvolumes/snapshots inside them.
So add a special version for 64 bits system that directly returns i_ino
of struct inode. This eliminates one branch and reduces the overall code
size, since btrfs_ino() is an inline function that is extensively used.
Before:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko
After:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1612028 189180 29032 1830240 1bed60 fs/btrfs/btrfs.ko
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently don't use the location key of the btree inode, its content
is set to zeroes, as it's a special inode that is not persisted (it has
no inode item stored in any btree).
At btrfs_ino(), an inline function used extensively in btrfs, we have
this special check if the given inode's location objectid is 0, and if it
is, we return the value stored in the VFS' inode i_ino field instead
(which is BTRFS_BTREE_INODE_OBJECTID for the btree inode).
To reduce the code at btrfs_ino(), we can simply set the objectid of the
btree inode to the value BTRFS_BTREE_INODE_OBJECTID. This eliminates the
need to check for the special case of the objectid being zero, with the
side effect of reducing the overall code size and having less code to
execute, as btrfs_ino() is an inline function.
Before:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko
After:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
kmap_atomic() is being deprecated in favor of kmap_local_page() where it
is feasible. With kmap_local_page() mappings are per thread, CPU local,
and not globally visible.
The last use of kmap_atomic is in inode.c where the context is atomic [1]
and can be safely replaced by kmap_local_page.
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB RAM and booting a
kernel with HIGHMEM64GB enabled.
[1] https://lore.kernel.org/linux-btrfs/20220601132545.GM20633@twin.jikos.cz/
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_decompress_bio()
because in this function the mappings are per thread and are not visible
in other contexts.
Tested with xfstests on QEMU + KVM 32-bits VM with 4GB of RAM and
HIGHMEM64G enabled. This patch passes 26/26 tests of group "compress".
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_compress_pages()
because in this function the mappings are per thread and are not visible
in other contexts. Furthermore, drop the mappings of "out_page" which is
allocated within zlib_compress_pages() with alloc_page(GFP_NOFS) and use
page_address().
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB of RAM booting
a kernel with HIGHMEM64G enabled. This patch passes 26/26 tests of group
"compress".
CC: Qu Wenruo <wqu@suse.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zstd.c because in this
file the mappings are per thread and are not visible in other contexts. In
the meanwhile use plain page_address() on output pages allocated with
the GFP_NOFS flag instead of calling kmap*() on them (since they are
always allocated from ZONE_NORMAL).
Tested with xfstests on QEMU + KVM 32 bits VM with 4GB of RAM, booting a
kernel with HIGHMEM64G enabled.
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, for a direct IO write, if we need to fallback to buffered IO,
either to satisfy the whole write operation or just a part of it, we do
it in the current context even if it's a NOWAIT context. This is not ideal
because we currently don't have support for NOWAIT semantics in the
buffered IO path (we can block for several reasons), so we should instead
return -EAGAIN to the caller, so that it knows it should retry (the whole
operation or what's left of it) in a context where blocking is acceptable.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The number of block group reserve types BTRFS_BLOCK_RSV_* is small and
fits to u8 and there's enough left in case we want to add more.
For type safety use the enum but make it 8 bits in the structure to save
space.
The structure size is now 48 on release build, making a slight
improvement in structures where it's embedded, like btrfs_fs_info or
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use simple bool type for the block reserve failfast status, there's
short to save space as there used to be int but there's no reason for
that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use simple bool type for the block reserve full status, there's short to
save space as there used to be int but there's no reason for that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission and the other btrfs bio submission handlers do
and avoids any confusion on who needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_wq_submit_bio is used for writeback under memory pressure.
Instead of failing the I/O when we can't allocate the async_submit_bio,
just punt back to the synchronous submission path.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_data_write_bio special cases the reloc root because the
checksums are preloaded, but only does so for the !sync case. The sync
case can't happen for data relocation, but just handling it more generally
significantly simplifies the logic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Transfer the bio counter reference acquired by btrfs_submit_bio to
raid56_parity_write and raid56_parity_recovery together with the bio
that the reference was acquired for instead of acquiring another
reference in those helpers and dropping the original one in
btrfs_submit_bio.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Also use the proper bool type for the generic_io argument.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission does and avoids any confusion on who
needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches
what the block layer submission does and avoids any confusion on who
needs to handle errors.
As this requires touching all the callers, rename the function to
btrfs_submit_bio, which describes the functionality much better.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
For profiles other than RAID56, __btrfs_map_block() returns @map_length
as min(stripe_end, logical + *length), which is also the same result
from btrfs_get_io_geometry().
But for RAID56, __btrfs_map_block() returns @map_length as stripe_len.
This strange behavior is going to hurt incoming bio split at
btrfs_map_bio() time, as we will use @map_length as bio split size.
Fix this behavior by returning @map_length by the same calculation as
for other profiles.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid56 code assumes a fixed stripe length BTRFS_STRIPE_LEN but there
are functions passing it as arguments, this is not necessary. The fixed
value has been used for a long time and though the stripe length should
be configurable by super block member stripesize, this hasn't been
implemented and would require more changes so we don't need to keep this
code around until then.
Partially based on a patch from Qu Wenruo.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode cache feature was removed in kernel 5.11, and we no longer have
any code that reads from or writes to inode caches. We may still mount a
filesystem that has inode caches, but they are ignored.
Remove the check for an inode cache from btrfs_is_free_space_inode(),
since we no longer have code to trigger reads from an inode cache or
writes to an inode cache. The check at send.c is still needed, because
in case we find a filesystem with an inode cache, we must ignore it.
Also leave the checks at tree-checker.c, as they are sanity checks.
This eliminates a dead branch and reduces the amount of code since it's
in an inline function.
Before:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1620662 189240 29032 1838934 1c0f56 fs/btrfs/btrfs.ko
After:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This flag has been merged in 3.10 and is effectively always-on. Its
status depends on the host page size so there's another way to guarantee
compatibility with old kernels.
Due to a bug introduced in 6f93e834fa ("btrfs: fix upper limit for
max_inline for page size 64K") the flag is not persisted among features
in the superblock so it's not reliable.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
This feature has been the default for about 13 year. At this point it's
safe to consider it an indispensable feature of BTRFS as such there's
no need to advertise it in sysfs. Remove the global sysfs feature file,
the per-filesystem feature file has never been there.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Skinny extents have been a default mkfs feature since version 3.18 i
(introduced in btrfs-progs commit 6715de04d9a7 ("btrfs-progs: mkfs:
make skinny-metadata default") ). It really doesn't bring any value to
users to simply remove it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Added in commit 727011e07c ("Btrfs: allow metadata blocks larger than
the page size") in 2010 and it's been default for mkfs since 3.12
(2013). The message doesn't really convey any useful information to
users. Remove it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The chained assignments may be convenient to write, but make readability
a bit worse as it's too easy to overlook that there are several values
set on the same line while this is rather an exception. Making it
consistent everywhere avoids surprises.
The pattern where inode times are initialized reuses the first value and
the order is mtime, ctime. In other blocks the assignments are expanded
so the order of variables is similar to the neighboring code.
Signed-off-by: David Sterba <dsterba@suse.com>
Use the same expression for stripe_nr for RAID0 (map->sub_stripes is 1)
and RAID10 (map->sub_stripes is 2), with equivalent results.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a sequence of hard coded values for RAID1 profiles that are
already stored in the raid_attr table that should be used instead.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 6f93e834fa seemingly inadvertently moved the code responsible
for flagging the filesystem as having BIG_METADATA to a place where
setting the flag was essentially lost. This means that
filesystems created with kernels containing this bug (starting with 5.15)
can potentially be mounted by older (pre-3.4) kernels. In reality
chances for this happening are low because there are other incompat
flags introduced in the mean time. Still the correct behavior is to set
INCOMPAT_BIG_METADATA flag and persist this in the superblock.
Fixes: 6f93e834fa ("btrfs: fix upper limit for max_inline for page size 64K")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Per user request, print the checksum type and implementation at mount
time among the messages. The checksum is user configurable and the
actual crypto implementation is useful to see for performance reasons.
The same information is also available after mount in
/sys/fs/FSID/checksum file.
Example:
[25.323662] BTRFS info (device vdb): using sha256 (sha256-generic) checksum algorithm
Link: https://github.com/kdave/btrfs-progs/issues/483
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If you try to force a chunk allocation, but you race with another chunk
allocation, you will end up waiting on the chunk allocation that just
occurred and then allocate another chunk. If you have many threads all
doing this at once you can way over-allocate chunks.
Fix this by resetting force to NO_FORCE, that way if we think we need to
allocate we can, otherwise we don't force another chunk allocation if
one is already happening.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are file attributes inherited from previous ext2 SETFLAGS/GETFLAGS
and later from XFLAGS interfaces, now commonly found under the
'fileattr' API. This corresponds to the individual inode bits and that's
part of the on-disk format, so this is suitable for the protocol. The
other interfaces contain a lot of cruft or bits that btrfs does not
support yet.
Currently the value is u64 and matches btrfs_inode_item. Not all the
bits can be set by ioctls (like NODATASUM or READONLY), but we can send
them over the protocol and leave it up to the receiving side what and
how to apply.
As some of the flags, eg. IMMUTABLE, can prevent any further changes,
the receiving side needs to understand that and apply the changes in the
right order, or possibly with some intermediate steps. This should be
easier, future proof and simpler on the protocol layer than implementing
in kernel.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When send v1 was introduced the otime (inode creation time) was not
available, however the attribute in btrfs send protocol exists. Though
it would be possible to add it for v1 too as the attribute would be
ignored by v1 receive, let's not change the layout of v1 and only add
that to v2+. The otime cannot be changed and is only informative.
Signed-off-by: David Sterba <dsterba@suse.com>
When handling a real world transid mismatch image, it's hard to know
which copy is corrupted, as the error messages just look like this:
BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
We don't even know if the retry is caused by btrfs or the VFS retry.
To make things a little easier to read, add mirror number for all
related tree block read errors.
So the above messages would look like this:
BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 1 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 2 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 1 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 2 wanted 0xcdcdcdcd found 0x3c0adc8e level 0
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ update messages, add "logical" ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'goto out' in cow_file_range() in the exit block are not necessary
and jump back. Replace them with return, while still keeping 'goto out'
in the main code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ keep goto in the main code, update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
When cow_file_range() fails in the middle of the allocation loop, it
unlocks the pages but leaves the ordered extents intact. Thus, we need
to call btrfs_cleanup_ordered_extents() to finish the created ordered
extents.
Also, we need to call end_extent_writepage() if locked_page is available
because btrfs_cleanup_ordered_extents() never processes the region on
the locked_page.
Furthermore, we need to set the mapping as error if locked_page is
unavailable before unlocking the pages, so that the errno is properly
propagated to the user space.
CC: stable@vger.kernel.org # 5.18+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_cleanup_ordered_extents() assumes locked_page to be non-NULL, so it
is not usable for submit_uncompressed_range() which can have NULL
locked_page.
Add support supports locked_page == NULL case. Also, it rewrites
redundant "page_offset(locked_page)".
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>