mirror of
https://github.com/torvalds/linux.git
synced 2024-12-03 17:41:22 +00:00
32d5f7add0
1423 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Evan Green
|
1f5288874d
|
RISC-V: hwprobe: Add SCALAR to misaligned perf defines
In preparation for misaligned vector performance hwprobe keys, rename the hwprobe key values associated with misaligned scalar accesses to include the term SCALAR. Leave the old defines in place to maintain source compatibility. This change is intended to be a functional no-op. Signed-off-by: Evan Green <evan@rivosinc.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240809214444.3257596-3-evan@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Evan Green
|
c42e2f0767
|
RISC-V: hwprobe: Add MISALIGNED_PERF key
RISCV_HWPROBE_KEY_CPUPERF_0 was mistakenly flagged as a bitmask in
hwprobe_key_is_bitmask(), when in reality it was an enum value. This
causes problems when used in conjunction with RISCV_HWPROBE_WHICH_CPUS,
since SLOW, FAST, and EMULATED have values whose bits overlap with
each other. If the caller asked for the set of CPUs that was SLOW or
EMULATED, the returned set would also include CPUs that were FAST.
Introduce a new hwprobe key, RISCV_HWPROBE_KEY_MISALIGNED_PERF, which
returns the same values in response to a direct query (with no flags),
but is properly handled as an enumerated value. As a result, SLOW,
FAST, and EMULATED are all correctly treated as distinct values under
the new key when queried with the WHICH_CPUS flag.
Leave the old key in place to avoid disturbing applications which may
have already come to rely on the key, with or without its broken
behavior with respect to the WHICH_CPUS flag.
Fixes:
|
||
Linus Torvalds
|
c9f33436d8 |
RISC-V Patches for the 6.11 Merge Window, Part 2
* Support for NUMA (via SRAT and SLIT), console output (via SPCR), and cache info (via PPTT) on ACPI-based systems. * The trap entry/exit code no longer breaks the return address stack predictor on many systems, which results in an improvement to trap latency. * Support for HAVE_ARCH_STACKLEAK. * The sv39 linear map has been extended to support 128GiB mappings. * The frequency of the mtime CSR is now visible via hwprobe. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmaj2EYTHHBhbG1lckBk YWJiZWx0LmNvbQAKCRAuExnzX7sYiVG3D/9kNHTI09iPDJd6fTChE3cpMxy7xXXE URX3Avu+gYsJmIbYyg4RnQ8FGFN7icKBCrQqs7JmLliU0NU+YMcCcjsJA2QaivbD VAlaex1qNcvNGteHrpbqhr3Zs4zw8GlBkB3KFTLyPAp61bybGo0a/A5ONJ7ScQIW RWHewAPgb86cQ0Q34JpO87TqvMM0KMvhQP5dip+olaFjLRBzhXmGFZfHqA80kTWl 0ytYclVCHZMtO/5mnQpuIOVs1IKw9L4wa0sivOQF0iLTqfKDFALa6yZsThHA/w3e JVuBAdQhcPZ3fgO2fUfJPlW16GmRC2/tdiFg5NFw8k4vo7DYBwX55ztPKXqDrJDM 8ah85IeLiPar/A/uHdn6bPjK+aGMuzklKF50r62XXAc2fL8mza1sdvKCVOy2EOLn JyGI9c/10KpvN/DW8g7hPefhvbx4+tCKkFcPqf++VQha6W8cQdCKi+Li0Pm8TTnp XPQjIvSlDDG1Pl4ofgBSFoyB8pkBXNzvv8NZp+YYtnqSOLAKaZuP+KwA8TwHdvGM pdCXcL3KHiLy4/pJWEoNTutD0mbJ7PUIb2P/KkjqYDgp4F1n0Hg+/aeSIp+7a4Pv yTBctIGxrlriQMIdtWCR8tyhcPP4pDpGYkW0K15EE16G0NK0fjD89LEXYqT6ae2R C0QgiwnVe/eopg== =zeUn -----END PGP SIGNATURE----- Merge tag 'riscv-for-linus-6.11-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull more RISC-V updates from Palmer Dabbelt: - Support for NUMA (via SRAT and SLIT), console output (via SPCR), and cache info (via PPTT) on ACPI-based systems. - The trap entry/exit code no longer breaks the return address stack predictor on many systems, which results in an improvement to trap latency. - Support for HAVE_ARCH_STACKLEAK. - The sv39 linear map has been extended to support 128GiB mappings. - The frequency of the mtime CSR is now visible via hwprobe. * tag 'riscv-for-linus-6.11-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (21 commits) RISC-V: Provide the frequency of time CSR via hwprobe riscv: Extend sv39 linear mapping max size to 128G riscv: enable HAVE_ARCH_STACKLEAK riscv: signal: Remove unlikely() from WARN_ON() condition riscv: Improve exception and system call latency RISC-V: Select ACPI PPTT drivers riscv: cacheinfo: initialize cacheinfo's level and type from ACPI PPTT riscv: cacheinfo: remove the useless input parameter (node) of ci_leaf_init() RISC-V: ACPI: Enable SPCR table for console output on RISC-V riscv: boot: remove duplicated targets line trace: riscv: Remove deprecated kprobe on ftrace support riscv: cpufeature: Extract common elements from extension checking riscv: Introduce vendor variants of extension helpers riscv: Add vendor extensions to /proc/cpuinfo riscv: Extend cpufeature.c to detect vendor extensions RISC-V: run savedefconfig for defconfig RISC-V: hwprobe: sort EXT_KEY()s in hwprobe_isa_ext0() alphabetically ACPI: NUMA: replace pr_info with pr_debug in arch_acpi_numa_init ACPI: NUMA: change the ACPI_NUMA to a hidden option ACPI: NUMA: Add handler for SRAT RINTC affinity structure ... |
||
Linus Torvalds
|
51c4767503 |
bitmap-6.11-rc1
Random fixes for v6.11. -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmahKbIACgkQsUSA/Tof vsh8zQwAvguyeNubDFqdMe3E/Vp1J3WqXsBFzbE1rGLCyI2S0cgJFL5BlW51zY47 70wLt9EmroEobwj1qHSQlzejNp31kSBQ1Sqq25oivfJqEF1elDT5PQxYqBbU1C9Y kVWnxtb+oKaoFd5jiBK8+iTl8dXjT6H2RoV0zpPab/JPcqsjwFfkUvtENt/Kpo5c aRrGTFwshdp5eT4sEZQv57VKroBcwZOvv2//qrklFHrJHl4pjMT8eaX3twcQysoy umTVt+TK6NErLnht+VRQJ2/L02FKi7b+bHePVgNzaT+1FSDMT4FltmZd96Xwbzah hSkwWtqy0N2gaTcqie9nwdEiCJGjF39M7k2wangUS91CeDsbIUSsJgDCESUCm+zK hRqleGOnoeg4+jZBci7M53lKa/pADlmLhnU8iAc3BSKozsaioltkT+hHn8vAkstk h/kHlbfkzasufUWAhduBpIn384gWWEY6RACffgCsOuvbT+ZyDKUJpKYaEwVx+Pri l72j0hs9 =RbET -----END PGP SIGNATURE----- Merge tag 'bitmap-6.11-rc1' of https://github.com:/norov/linux Pull bitmap updates from Yury Norov: "Random fixes" * tag 'bitmap-6.11-rc1' of https://github.com:/norov/linux: riscv: Remove unnecessary int cast in variable_fls() radix tree test suite: put definition of bitmap_clear() into lib/bitmap.c bitops: Add a comment explaining the double underscore macros lib: bitmap: add missing MODULE_DESCRIPTION() macros cpumask: introduce assign_cpu() macro |
||
Palmer Dabbelt
|
52420e483d
|
RISC-V: Provide the frequency of time CSR via hwprobe
The RISC-V architecture makes a real time counter CSR (via RDTIME instruction) available for applications in U-mode but there is no architected mechanism for an application to discover the frequency the counter is running at. Some applications (e.g., DPDK) use the time counter for basic performance analysis as well as fine grained time-keeping. Add support to the hwprobe system call to export the time CSR frequency to code running in U-mode. Signed-off-by: Yunhui Cui <cuiyunhui@bytedance.com> Reviewed-by: Evan Green <evan@rivosinc.com> Reviewed-by: Anup Patel <anup@brainfault.org> Acked-by: Punit Agrawal <punit.agrawal@bytedance.com> Link: https://lore.kernel.org/r/20240702033731.71955-2-cuiyunhui@bytedance.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Stuart Menefy
|
5c8405d763
|
riscv: Extend sv39 linear mapping max size to 128G
This harmonizes all virtual addressing modes which can now all map (PGDIR_SIZE * PTRS_PER_PGD) / 4 of physical memory. The RISCV implementation of KASAN requires that the boundary between shallow mappings are aligned on an 8G boundary. In this case we need VMALLOC_START to be 8G aligned. So although we only need to move the start of the linear mapping down by 4GiB to allow 128GiB to be mapped, we actually move it down by 8GiB (creating a 4GiB hole between the linear mapping and KASAN shadow space) to maintain the alignment requirement. Signed-off-by: Stuart Menefy <stuart.menefy@codasip.com> Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Link: https://lore.kernel.org/r/20240630110550.1731929-1-stuart.menefy@codasip.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Jisheng Zhang
|
b5db73fb18
|
riscv: enable HAVE_ARCH_STACKLEAK
Add support for the stackleak feature. Whenever the kernel returns to user space the kernel stack is filled with a poison value. At the same time, disables the plugin in EFI stub code because EFI stub is out of scope for the protection. Tested on qemu and milkv duo: / # echo STACKLEAK_ERASING > /sys/kernel/debug/provoke-crash/DIRECT [ 38.675575] lkdtm: Performing direct entry STACKLEAK_ERASING [ 38.678448] lkdtm: stackleak stack usage: [ 38.678448] high offset: 288 bytes [ 38.678448] current: 496 bytes [ 38.678448] lowest: 1328 bytes [ 38.678448] tracked: 1328 bytes [ 38.678448] untracked: 448 bytes [ 38.678448] poisoned: 14312 bytes [ 38.678448] low offset: 8 bytes [ 38.689887] lkdtm: OK: the rest of the thread stack is properly erased Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240623235316.2010-1-jszhang@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Palmer Dabbelt
|
b9a603da42
|
Merge patch series "riscv: Separate vendor extensions from standard extensions"
Charlie Jenkins <charlie@rivosinc.com> says: All extensions, both standard and vendor, live in one struct "riscv_isa_ext". There is currently one vendor extension, xandespmu, but it is likely that more vendor extensions will be added to the kernel in the future. As more vendor extensions (and standard extensions) are added, riscv_isa_ext will become more bloated with a mix of vendor and standard extensions. This also allows each vendor to be conditionally enabled through Kconfig. * b4-shazam-merge: riscv: cpufeature: Extract common elements from extension checking riscv: Introduce vendor variants of extension helpers riscv: Add vendor extensions to /proc/cpuinfo riscv: Extend cpufeature.c to detect vendor extensions Link: https://lore.kernel.org/r/20240719-support_vendor_extensions-v3-0-0af7587bbec0@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Charlie Jenkins
|
d4c8d79f51
|
riscv: cpufeature: Extract common elements from extension checking
The __riscv_has_extension_likely() and __riscv_has_extension_unlikely() functions from the vendor_extensions.h can be used to simplify the standard extension checking code as well. Migrate those functions to cpufeature.h and reorganize the code in the file to use the functions. Signed-off-by: Charlie Jenkins <charlie@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Andy Chiu <andy.chiu@sifive.com> Link: https://lore.kernel.org/r/20240719-support_vendor_extensions-v3-4-0af7587bbec0@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Charlie Jenkins
|
0f24254111
|
riscv: Introduce vendor variants of extension helpers
Vendor extensions are maintained in per-vendor structs (separate from standard extensions which live in riscv_isa). Create vendor variants for the existing extension helpers to interface with the riscv_isa_vendor bitmaps. Signed-off-by: Charlie Jenkins <charlie@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Andy Chiu <andy.chiu@sifive.com> Link: https://lore.kernel.org/r/20240719-support_vendor_extensions-v3-3-0af7587bbec0@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Charlie Jenkins
|
23c996fc2b
|
riscv: Extend cpufeature.c to detect vendor extensions
Instead of grouping all vendor extensions into the same riscv_isa_ext that standard instructions use, create a struct "riscv_isa_vendor_ext_data_list" that allows each vendor to maintain their vendor extensions independently of the standard extensions. xandespmu is currently the only vendor extension so that is the only extension that is affected by this change. An additional benefit of this is that the extensions of each vendor can be conditionally enabled. A config RISCV_ISA_VENDOR_EXT_ANDES has been added to allow for that. Signed-off-by: Charlie Jenkins <charlie@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Andy Chiu <andy.chiu@sifive.com> Tested-by: Yu Chien Peter Lin <peterlin@andestech.com> Reviewed-by: Yu Chien Peter Lin <peterlin@andestech.com> Link: https://lore.kernel.org/r/20240719-support_vendor_extensions-v3-1-0af7587bbec0@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Palmer Dabbelt
|
6a4aa4c94b
|
Merge patch series "Add ACPI NUMA support for RISC-V"
Haibo Xu <haibo1.xu@intel.com> says:
This patch series enable RISC-V ACPI NUMA support which was based on
the recently approved ACPI ECR[1].
Patch 1/4 add RISC-V specific acpi_numa.c file to parse NUMA information
from SRAT and SLIT ACPI tables.
Patch 2/4 add the common SRAT RINTC affinity structure handler.
Patch 3/4 change the ACPI_NUMA to a hidden option since it would be selected
by default on all supported platform.
Patch 4/4 replace pr_info with pr_debug in arch_acpi_numa_init() to avoid
potential boot noise on ACPI platforms that are not NUMA.
Based-on: https://github.com/linux-riscv/linux-riscv/tree/for-next
[1] https://drive.google.com/file/d/1YTdDx2IPm5IeZjAW932EYU-tUtgS08tX/view?usp=sharing
Testing:
Since the ACPI AIA/PLIC support patch set is still under upstream review,
hence it is tested using the poll based HVC SBI console and RAM disk.
1) Build latest Qemu with the following patch backported
|
||
Haibo Xu
|
eabd9db64e
|
ACPI: RISCV: Add NUMA support based on SRAT and SLIT
Add acpi_numa.c file to enable parse NUMA information from ACPI SRAT and SLIT tables. SRAT table provide CPUs(Hart) and memory nodes to proximity domain mapping, while SLIT table provide the distance metrics between proximity domains. Signed-off-by: Haibo Xu <haibo1.xu@intel.com> Reviewed-by: Sunil V L <sunilvl@ventanamicro.com> Reviewed-by: Hanjun Guo <guohanjun@huawei.com> Link: https://lore.kernel.org/r/65dbad1fda08a32922c44886e4581e49b4a2fecc.1718268003.git.haibo1.xu@intel.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Linus Torvalds
|
fbc90c042c |
- 875fa64577da ("mm/hugetlb_vmemmap: fix race with speculative PFN
walkers") is known to cause a performance regression (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff). Yu has a fix which I'll send along later via the hotfixes branch. - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Is anyone reading this stuff? If so, email me! - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8= =z0Lf -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. * tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits) mm/mglru: fix ineffective protection calculation mm/zswap: fix a white space issue mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio mm/hugetlb: fix possible recursive locking detected warning mm/gup: clear the LRU flag of a page before adding to LRU batch mm/numa_balancing: teach mpol_to_str about the balancing mode mm: memcg1: convert charge move flags to unsigned long long alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting lib: reuse page_ext_data() to obtain codetag_ref lib: add missing newline character in the warning message mm/mglru: fix overshooting shrinker memory mm/mglru: fix div-by-zero in vmpressure_calc_level() mm/kmemleak: replace strncpy() with strscpy() mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB mm: ignore data-race in __swap_writepage hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr mm: shmem: rename mTHP shmem counters mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async() mm/migrate: putback split folios when numa hint migration fails ... |
||
Linus Torvalds
|
2c9b351240 |
ARM:
* Initial infrastructure for shadow stage-2 MMUs, as part of nested virtualization enablement * Support for userspace changes to the guest CTR_EL0 value, enabling (in part) migration of VMs between heterogenous hardware * Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1 of the protocol * FPSIMD/SVE support for nested, including merged trap configuration and exception routing * New command-line parameter to control the WFx trap behavior under KVM * Introduce kCFI hardening in the EL2 hypervisor * Fixes + cleanups for handling presence/absence of FEAT_TCRX * Miscellaneous fixes + documentation updates LoongArch: * Add paravirt steal time support. * Add support for KVM_DIRTY_LOG_INITIALLY_SET. * Add perf kvm-stat support for loongarch. RISC-V: * Redirect AMO load/store access fault traps to guest * perf kvm stat support * Use guest files for IMSIC virtualization, when available ONE_REG support for the Zimop, Zcmop, Zca, Zcf, Zcd, Zcb and Zawrs ISA extensions is coming through the RISC-V tree. s390: * Assortment of tiny fixes which are not time critical x86: * Fixes for Xen emulation. * Add a global struct to consolidate tracking of host values, e.g. EFER * Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC bus frequency, because TDX. * Print the name of the APICv/AVIC inhibits in the relevant tracepoint. * Clean up KVM's handling of vendor specific emulation to consistently act on "compatible with Intel/AMD", versus checking for a specific vendor. * Drop MTRR virtualization, and instead always honor guest PAT on CPUs that support self-snoop. * Update to the newfangled Intel CPU FMS infrastructure. * Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads '0' and writes from userspace are ignored. * Misc cleanups x86 - MMU: * Small cleanups, renames and refactoring extracted from the upcoming Intel TDX support. * Don't allocate kvm_mmu_page.shadowed_translation for shadow pages that can't hold leafs SPTEs. * Unconditionally drop mmu_lock when allocating TDP MMU page tables for eager page splitting, to avoid stalling vCPUs when splitting huge pages. * Bug the VM instead of simply warning if KVM tries to split a SPTE that is non-present or not-huge. KVM is guaranteed to end up in a broken state because the callers fully expect a valid SPTE, it's all but dangerous to let more MMU changes happen afterwards. x86 - AMD: * Make per-CPU save_area allocations NUMA-aware. * Force sev_es_host_save_area() to be inlined to avoid calling into an instrumentable function from noinstr code. * Base support for running SEV-SNP guests. API-wise, this includes a new KVM_X86_SNP_VM type, encrypting/measure the initial image into guest memory, and finalizing it before launching it. Internally, there are some gmem/mmu hooks needed to prepare gmem-allocated pages before mapping them into guest private memory ranges. This includes basic support for attestation guest requests, enough to say that KVM supports the GHCB 2.0 specification. There is no support yet for loading into the firmware those signing keys to be used for attestation requests, and therefore no need yet for the host to provide certificate data for those keys. To support fetching certificate data from userspace, a new KVM exit type will be needed to handle fetching the certificate from userspace. An attempt to define a new KVM_EXIT_COCO/KVM_EXIT_COCO_REQ_CERTS exit type to handle this was introduced in v1 of this patchset, but is still being discussed by community, so for now this patchset only implements a stub version of SNP Extended Guest Requests that does not provide certificate data. x86 - Intel: * Remove an unnecessary EPT TLB flush when enabling hardware. * Fix a series of bugs that cause KVM to fail to detect nested pending posted interrupts as valid wake eents for a vCPU executing HLT in L2 (with HLT-exiting disable by L1). * KVM: x86: Suppress MMIO that is triggered during task switch emulation Explicitly suppress userspace emulated MMIO exits that are triggered when emulating a task switch as KVM doesn't support userspace MMIO during complex (multi-step) emulation. Silently ignoring the exit request can result in the WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace for some other reason prior to purging mmio_needed. See commit |
||
Linus Torvalds
|
f557af081d |
RISC-V Patches for the 6.11 Merge Window, Part 1
* Support for various new ISA extensions: * The Zve32[xf] and Zve64[xfd] sub-extensios of the vector extension. * Zimop and Zcmop for may-be-operations. * The Zca, Zcf, Zcd and Zcb sub-extensions of the C extension. * Zawrs, * riscv,cpu-intc is now dtschema. * A handful of performance improvements and cleanups to text patching. * Support for memory hot{,un}plug * The highest user-allocatable virtual address is now visible in hwprobe. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmabIGETHHBhbG1lckBk YWJiZWx0LmNvbQAKCRAuExnzX7sYiQe8D/9QPCaOnoP5OCZbwjkRBwaVxyknNyD0 l+YNXk7Jk3B/oaOv3d7Bz+uWt1SG4j4jkfyuGJ81StZykp4/R7T823TZrPhog9VX IJm580MtvE49I2i1qJ+ZQti9wpiM+80lFnyMCzY6S7rrM9m62tKgUpARZcWoA55P iUo5bku99TYCcU2k1pnPrNSPQvVpECpv7tG0PwKpQd5DiYjbPp+aw5cQWN+izdOB 6raOZ0buzP7McszvO/gcJs+kuHwrp0JSRvNxc2pwYZ0lx00p3hSV8UdtIMlI9Qm/ z3gkQGHwc6UVMPHo1x0Gr5ShUTCI/iSwy4/7aY4NNXF6Sj99b8alt9GcbYqNAE7V k7sibCR7dhL4ods/GFMmzR7cQYlwlwtO+/ILak7rXhNvA32Xy1WUABguhP9ElTmw 1ZS2hnRv6wc7MA2V7HBamf5mPXM6HQyC3oKy3njzDSJdiGIG7aa+TOfRAD+L/1Du QjIrKp6XcPIsZNjh8H3nMDVJ0VvDNnS4d4LbfNQc23VPzf57kFUqbli1pS0hBjFT ELEItH9dgSx+T5Qebdy/QMC3RG8Yc1IUdw6VQ7Jny/uCCEZNq+VZ+bXxspMmswCp sUIyDplJTJfRt3G2OxK0b95x6oj8jbaJOQfv6PBF71dDBsChg8eXFVJ2NDrX4Bvr h2MPK7vGBtFz8w== =+ICi -----END PGP SIGNATURE----- Merge tag 'riscv-for-linus-6.11-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-V updates from Palmer Dabbelt: - Support for various new ISA extensions: * The Zve32[xf] and Zve64[xfd] sub-extensios of the vector extension * Zimop and Zcmop for may-be-operations * The Zca, Zcf, Zcd and Zcb sub-extensions of the C extension * Zawrs - riscv,cpu-intc is now dtschema - A handful of performance improvements and cleanups to text patching - Support for memory hot{,un}plug - The highest user-allocatable virtual address is now visible in hwprobe * tag 'riscv-for-linus-6.11-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (58 commits) riscv: lib: relax assembly constraints in hweight riscv: set trap vector earlier KVM: riscv: selftests: Add Zawrs extension to get-reg-list test KVM: riscv: Support guest wrs.nto riscv: hwprobe: export Zawrs ISA extension riscv: Add Zawrs support for spinlocks dt-bindings: riscv: Add Zawrs ISA extension description riscv: Provide a definition for 'pause' riscv: hwprobe: export highest virtual userspace address riscv: Improve sbi_ecall() code generation by reordering arguments riscv: Add tracepoints for SBI calls and returns riscv: Optimize crc32 with Zbc extension riscv: Enable DAX VMEMMAP optimization riscv: mm: Add support for ZONE_DEVICE virtio-mem: Enable virtio-mem for RISC-V riscv: Enable memory hotplugging for RISC-V riscv: mm: Take memory hotplug read-lock during kernel page table dump riscv: mm: Add memory hotplugging support riscv: mm: Add pfn_to_kaddr() implementation riscv: mm: Refactor create_linear_mapping_range() for memory hot add ... |
||
Linus Torvalds
|
70045bfc4c |
ftrace: Rewrite of function graph tracer
Up until now, the function graph tracer could only have a single user attached to it. If another user tried to attach to the function graph tracer while one was already attached, it would fail. Allowing function graph tracer to have more than one user has been asked for since 2009, but it required a rewrite to the logic to pull it off so it never happened. Until now! There's three systems that trace the return of a function. That is kretprobes, function graph tracer, and BPF. kretprobes and function graph tracing both do it similarly. The difference is that kretprobes uses a shadow stack per callback and function graph tracer creates a shadow stack for all tasks. The function graph tracer method makes it possible to trace the return of all functions. As kretprobes now needs that feature too, allowing it to use function graph tracer was needed. BPF also wants to trace the return of many probes and its method doesn't scale either. Having it use function graph tracer would improve that. By allowing function graph tracer to have multiple users allows both kretprobes and BPF to use function graph tracer in these cases. This will allow kretprobes code to be removed in the future as it's version will no longer be needed. Note, function graph tracer is only limited to 16 simultaneous users, due to shadow stack size and allocated slots. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZpbWlxQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qgtvAP9jxmgEiEhz4Bpe1vRKVSMYK6ozXHTT 7MFKRMeQqQ8zeAEA2sD5Zrt9l7zKzg0DFpaDLgc3/yh14afIDxzTlIvkmQ8= =umuf -----END PGP SIGNATURE----- Merge tag 'ftrace-v6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull ftrace updates from Steven Rostedt: "Rewrite of function graph tracer to allow multiple users Up until now, the function graph tracer could only have a single user attached to it. If another user tried to attach to the function graph tracer while one was already attached, it would fail. Allowing function graph tracer to have more than one user has been asked for since 2009, but it required a rewrite to the logic to pull it off so it never happened. Until now! There's three systems that trace the return of a function. That is kretprobes, function graph tracer, and BPF. kretprobes and function graph tracing both do it similarly. The difference is that kretprobes uses a shadow stack per callback and function graph tracer creates a shadow stack for all tasks. The function graph tracer method makes it possible to trace the return of all functions. As kretprobes now needs that feature too, allowing it to use function graph tracer was needed. BPF also wants to trace the return of many probes and its method doesn't scale either. Having it use function graph tracer would improve that. By allowing function graph tracer to have multiple users allows both kretprobes and BPF to use function graph tracer in these cases. This will allow kretprobes code to be removed in the future as it's version will no longer be needed. Note, function graph tracer is only limited to 16 simultaneous users, due to shadow stack size and allocated slots" * tag 'ftrace-v6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (49 commits) fgraph: Use str_plural() in test_graph_storage_single() function_graph: Add READ_ONCE() when accessing fgraph_array[] ftrace: Add missing kerneldoc parameters to unregister_ftrace_direct() function_graph: Everyone uses HAVE_FUNCTION_GRAPH_RET_ADDR_PTR, remove it function_graph: Fix up ftrace_graph_ret_addr() function_graph: Make fgraph_update_pid_func() a stub for !DYNAMIC_FTRACE function_graph: Rename BYTE_NUMBER to CHAR_NUMBER in selftests fgraph: Remove some unused functions ftrace: Hide one more entry in stack trace when ftrace_pid is enabled function_graph: Do not update pid func if CONFIG_DYNAMIC_FTRACE not enabled function_graph: Make fgraph_do_direct static key static ftrace: Fix prototypes for ftrace_startup/shutdown_subops() ftrace: Assign RCU list variable with rcu_assign_ptr() ftrace: Assign ftrace_list_end to ftrace_ops_list type cast to RCU ftrace: Declare function_trace_op in header to quiet sparse warning ftrace: Add comments to ftrace_hash_move() and friends ftrace: Convert "inc" parameter to bool in ftrace_hash_rec_update_modify() ftrace: Add comments to ftrace_hash_rec_disable/enable() ftrace: Remove "filter_hash" parameter from __ftrace_hash_rec_update() ftrace: Rename dup_hash() and comment it ... |
||
Paolo Bonzini
|
86014c1e20 |
KVM generic changes for 6.11
- Enable halt poll shrinking by default, as Intel found it to be a clear win. - Setup empty IRQ routing when creating a VM to avoid having to synchronize SRCU when creating a split IRQCHIP on x86. - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag that arch code can use for hooking both sched_in() and sched_out(). - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid truncating a bogus value from userspace, e.g. to help userspace detect bugs. - Mark a vCPU as preempted if and only if it's scheduled out while in the KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest memory when retrieving guest state during live migration blackout. - A few minor cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRuOYACgkQOlYIJqCj N/1UnQ/8CI5Qfr+/0gzYgtWmtEMczGG+rMNpzD3XVqPjJjXcMcBiQnplnzUVLhha vlPdYVK7vgmEt003XGzV55mik46LHL+DX/v4hI3HEdblfyCeNLW3fKEWVRB44qJe o+YUQwSK42SORUp9oXuQINxhA//U9EnI7CQxlJ8w8wenv5IJKfIGr01DefmfGPAV PKm9t6WLcNqvhZMEyy/zmzM3KVPCJL0NcwI97x6sHxFpQYIDtL0E/VexA4AFqMoT QK7cSDC/2US41Zvem/r/GzM/ucdF6vb9suzZYBohwhxtVhwJe2CDeYQZvtNKJ1U7 GOHPaKL6nBWdZCm/yyWbbX2nstY1lHqxhN3JD0X8wqU5rNcwm2b8Vfyav0Ehc7H+ jVbDTshOx4YJmIgajoKjgM050rdBK59TdfVL+l+AAV5q/TlHocalYtvkEBdGmIDg 2td9UHSime6sp20vQfczUEz4bgrQsh4l2Fa/qU2jFwLievnBw0AvEaMximkSGMJe b8XfjmdTjlOesWAejANKtQolfrq14+1wYw0zZZ8PA+uNVpKdoovmcqSOcaDC9bT8 GO/NFUvoG+lkcvJcIlo1SSl81SmGLosijwxWfGvFAqsgpR3/3l3dYp0QtztoCNJO d3+HnjgYn5o5FwufuTD3eUOXH4AFjG108DH0o25XrIkb2Kymy0o= =BalU -----END PGP SIGNATURE----- Merge tag 'kvm-x86-generic-6.11' of https://github.com/kvm-x86/linux into HEAD KVM generic changes for 6.11 - Enable halt poll shrinking by default, as Intel found it to be a clear win. - Setup empty IRQ routing when creating a VM to avoid having to synchronize SRCU when creating a split IRQCHIP on x86. - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag that arch code can use for hooking both sched_in() and sched_out(). - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid truncating a bogus value from userspace, e.g. to help userspace detect bugs. - Mark a vCPU as preempted if and only if it's scheduled out while in the KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest memory when retrieving guest state during live migration blackout. - A few minor cleanups |
||
Qingfang Deng
|
93b63f68d0
|
riscv: lib: relax assembly constraints in hweight
rd and rs don't have to be the same. In some cases where rs needs to be saved for later usage, this will save us some mv instructions. Signed-off-by: Qingfang Deng <qingfang.deng@siflower.com.cn> Reviewed-by: Xiao Wang <xiao.w.wang@intel.com> Link: https://lore.kernel.org/r/20240527092405.134967-1-dqfext@gmail.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Christophe Leroy
|
e6c0c03245 |
mm: provide mm_struct and address to huge_ptep_get()
On powerpc 8xx huge_ptep_get() will need to know whether the given ptep is a PTE entry or a PMD entry. This cannot be known with the PMD entry itself because there is no easy way to know it from the content of the entry. So huge_ptep_get() will need to know either the size of the page or get the pmd. In order to be consistent with huge_ptep_get_and_clear(), give mm and address to huge_ptep_get(). Link: https://lkml.kernel.org/r/cc00c70dd384298796a4e1b25d6c4eb306d3af85.1719928057.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Palmer Dabbelt
|
5ee121a393
|
Merge patch series "riscv: Apply Zawrs when available"
Andrew Jones <ajones@ventanamicro.com> says:
Zawrs provides two instructions (wrs.nto and wrs.sto), where both are
meant to allow the hart to enter a low-power state while waiting on a
store to a memory location. The instructions also both wait an
implementation-defined "short" duration (unless the implementation
terminates the stall for another reason). The difference is that while
wrs.sto will terminate when the duration elapses, wrs.nto, depending on
configuration, will either just keep waiting or an ILL exception will be
raised. Linux will use wrs.nto, so if platforms have an implementation
which falls in the "just keep waiting" category (which is not expected),
then it should _not_ advertise Zawrs in the hardware description.
Like wfi (and with the same {m,h}status bits to configure it), when
wrs.nto is configured to raise exceptions it's expected that the higher
privilege level will see the instruction was a wait instruction, do
something, and then resume execution following the instruction. For
example, KVM does configure exceptions for wfi (hstatus.VTW=1) and
therefore also for wrs.nto. KVM does this for wfi since it's better to
allow other tasks to be scheduled while a VCPU waits for an interrupt.
For waits such as those where wrs.nto/sto would be used, which are
typically locks, it is also a good idea for KVM to be involved, as it
can attempt to schedule the lock holding VCPU.
This series starts with Christoph's addition of the riscv
smp_cond_load_relaxed function which applies wrs.sto when available.
That patch has been reworked to use wrs.nto and to use the same approach
as Arm for the wait loop, since we can't have arbitrary C code between
the load-reserved and the wrs. Then, hwprobe support is added (since the
instructions are also usable from usermode), and finally KVM is
taught about wrs.nto, allowing guests to see and use the Zawrs
extension.
We still don't have test results from hardware, and it's not possible to
prove that using Zawrs is a win when testing on QEMU, not even when
oversubscribing VCPUs to guests. However, it is possible to use KVM
selftests to force a scenario where we can prove Zawrs does its job and
does it well. [4] is a test which does this and, on my machine, without
Zawrs it takes 16 seconds to complete and with Zawrs it takes 0.25
seconds.
This series is also available here [1]. In order to use QEMU for testing
a build with [2] is needed. In order to enable guests to use Zawrs with
KVM using kvmtool, the branch at [3] may be used.
[1] https://github.com/jones-drew/linux/commits/riscv/zawrs-v3/
[2] https://lore.kernel.org/all/20240312152901.512001-2-ajones@ventanamicro.com/
[3] https://github.com/jones-drew/kvmtool/commits/riscv/zawrs/
[4]
|
||
Andrew Jones
|
86d6a86e59
|
KVM: riscv: Support guest wrs.nto
When a guest traps on wrs.nto, call kvm_vcpu_on_spin() to attempt to yield to the lock holding VCPU. Also extend the KVM ISA extension ONE_REG interface to allow KVM userspace to detect and enable the Zawrs extension for the Guest/VM. Signed-off-by: Andrew Jones <ajones@ventanamicro.com> Acked-by: Anup Patel <anup@brainfault.org> Link: https://lore.kernel.org/r/20240426100820.14762-13-ajones@ventanamicro.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Andrew Jones
|
244c18fbf6
|
riscv: hwprobe: export Zawrs ISA extension
Export Zawrs ISA extension through hwprobe. [Palmer: there's a gap in the numbers here as there will be a merge conflict when this is picked up. To avoid confusion I just set the hwprobe ID to match what it would be post-merge.] Signed-off-by: Andrew Jones <ajones@ventanamicro.com> Reviewed-by: Clément Léger <cleger@rivosinc.com> Link: https://lore.kernel.org/r/20240426100820.14762-12-ajones@ventanamicro.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Paolo Bonzini
|
c8b8b8190a |
LoongArch KVM changes for v6.11
1. Add ParaVirt steal time support. 2. Add some VM migration enhancement. 3. Add perf kvm-stat support for loongarch. -----BEGIN PGP SIGNATURE----- iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmaOS6UWHGNoZW5odWFj YWlAa2VybmVsLm9yZwAKCRAChivD8uImehejD/9pACGe3h3krXLcFVWXOFIu5Hpc 5kQLP0lSPJ/o5Xs8t/oPLrnDX70z90wXI1LOmltc7h32MSwFa2l8COQh+sN5eJBQ PNyt7u7bMipp0yJS4Gl3LQQ5vklcGOSpQc/gbeXnVx8J/tz+Mo9YGGLIXVRXRM6W Ri8D2VVFiwzQQYeTpPo1u1Ob8C6mA4KOppwvhscMTM3vj4NMbsinBzRnR0lG0Tdw meFhxDPly1Ksxsbnj9UGO6UnEY0A2SLONs6MiO4y4DtoqoDlw/lbqFJuYo4vvbx1 pxtjyirD/PX/wjslQFWUOuU0hMfAodera+JupZ5BZWfcG8FltA4DQfDsm/U9RjK/ 7gGNnr8Xk2/tp6+4AVV+HU2iTgRvq+mXCL72zSy2Y4r7ElBAANDfk4n+Zn/PWisn U9wwV8Ue7tVB15BRpRsg77NzBidiCFEe/6flWYiX2y24ke71gwDJBGUy8hMdKt6t 4Cq8atsU0MvDAzfYMsK9JjskJp4UFq6wb1tXbbuADM4TDhnzlK6s6h3vM+pFlh/f my7fDH8/2qsCWhBDM4pmsJskVp+I1GOk/80RjTQISwx7iHktJWvxNYTaisK2fvD5 Qs1IUWfNFbDX0Lr0QpN6j6X4rZkghR4R6XoFkd4nkicwi+UHVn3oK9GSqv24QJn9 7+Ev3dfRTUYLd6mC4Q== =DpIK -----END PGP SIGNATURE----- Merge tag 'loongarch-kvm-6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.11 1. Add ParaVirt steal time support. 2. Add some VM migration enhancement. 3. Add perf kvm-stat support for loongarch. |
||
Paolo Bonzini
|
60d2b2f3c4 |
KVM/riscv changes for 6.11
- Redirect AMO load/store access fault traps to guest - Perf kvm stat support for RISC-V - Use HW IMSIC guest files when available -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmaRDW4ACgkQrUjsVaLH LAcU2Q/+IaL17M8D8ueOcbmCMqZRReyVdR9vH6q87E9NJYRH2dewZ656bNQnnU20 3hkbHOnF+NJAHJ0SfXwqNTVkJcQ8u+F3Xui4DlnFZ/lkpcWpvT/DRI5SCjIjiB/G SS/xWaRoSjvVJ7M8SyQhHUb2Y/tiDRXOOEl59ROGAKjzC3SY5/NJJ6g5FeE5akT8 /Q7WisZmc+ZH+a9EEOnl+Do7AFakrlaFM5KnweamfqSlSFrQB12YNpSsmA16k6X9 fqK/xPQTjeNakdQDPKw8INCbXkt8dsnlrPS6ivL0FCVf38aIJK0jxyLk9JbZGBK8 +dGCJOLVJontEyOVTYheq2oWv40xAlkXDjLNbnz+Nf7Sau8evFBpE2mPnbUBoGZi fu5UCddSw3CFwrFNM+qiBRPz/mNuUpCC4pCh8yJSCDZ374ew9ili2l3Nb2IvBcJ2 36lQuxlPVTPOv1J76/WtYwsSwaYBHHcBshweTJCkAkezp0d/wAE8bpaw3n4YnfSn l4u8/rrnEBb3Cd9cbW1Vk77Vw5e02RlZY5T+JLj7TXWSAFzstYxMpLsf097tqqcn vY1iTrpxTcJuY0Rra3SI05eKgliXI5snh08xlW2NiVxu8NjjZMU73b6tg3JX8FHl DMCafyQUBueV2jCpwbYribpbWv/UuUl92AKyJOwZ76W/e9YVBLA= =atJQ -----END PGP SIGNATURE----- Merge tag 'kvm-riscv-6.11-1' of https://github.com/kvm-riscv/linux into HEAD KVM/riscv changes for 6.11 - Redirect AMO load/store access fault traps to guest - Perf kvm stat support for RISC-V - Use guest files for IMSIC virtualization, when available ONE_REG support for the Zimop, Zcmop, Zca, Zcf, Zcd, Zcb and Zawrs ISA extensions is coming through the RISC-V tree. |
||
Christoph Müllner
|
b8ddb0df30
|
riscv: Add Zawrs support for spinlocks
RISC-V code uses the generic ticket lock implementation, which calls the macros smp_cond_load_relaxed() and smp_cond_load_acquire(). Introduce a RISC-V specific implementation of smp_cond_load_relaxed() which applies WRS.NTO of the Zawrs extension in order to reduce power consumption while waiting and allows hypervisors to enable guests to trap while waiting. smp_cond_load_acquire() doesn't need a RISC-V specific implementation as the generic implementation is based on smp_cond_load_relaxed() and smp_acquire__after_ctrl_dep() sufficiently provides the acquire semantics. This implementation is heavily based on Arm's approach which is the approach Andrea Parri also suggested. The Zawrs specification can be found here: https://github.com/riscv/riscv-zawrs/blob/main/zawrs.adoc Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Co-developed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20240426100820.14762-11-ajones@ventanamicro.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Andrew Jones
|
6da111574b
|
riscv: Provide a definition for 'pause'
If we're going to provide the encoding for 'pause' in cpu_relax() anyway, then we can drop the toolchain checks and just always use it. The advantage of doing this is that other code that need pause don't need to also define it (yes, another use is coming). Add the definition to insn-def.h since it's an instruction definition and also because insn-def.h doesn't include much, so it's safe to include from asm/vdso/processor.h without concern for circular dependencies. Signed-off-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20240426100820.14762-9-ajones@ventanamicro.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
c9b8cd139c
|
riscv: hwprobe: export highest virtual userspace address
Some userspace applications (OpenJDK for instance) uses the free MSBs in pointers to insert additional information for their own logic and need to get this information from somewhere. Currently they rely on parsing /proc/cpuinfo "mmu=svxx" string to obtain the current value of virtual address usable bits [1]. Since this reflect the raw supported MMU mode, it might differ from the logical one used internally which is why arch_get_mmap_end() is used. Exporting the highest mmapable address through hwprobe will allow a more stable interface to be used. For that purpose, add a new hwprobe key named RISCV_HWPROBE_KEY_HIGHEST_VIRT_ADDRESS which will export the highest userspace virtual address. Link: https://github.com/openjdk/jdk/blob/master/src/hotspot/os_cpu/linux_riscv/vm_version_linux_riscv.cpp#L171 [1] Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240410144558.1104006-1-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Thorsten Blum
|
fb9086e95a |
riscv: Remove unnecessary int cast in variable_fls()
__builtin_clz() returns an int and casting the whole expression to int is unnecessary. Remove it. Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Signed-off-by: Yury Norov <yury.norov@gmail.com> |
||
Alexandre Ghiti
|
16badacd8a
|
riscv: Improve sbi_ecall() code generation by reordering arguments
The sbi_ecall() function arguments are not in the same order as the ecall arguments, so we end up re-ordering the registers before the ecall which is useless and costly. So simply reorder the arguments in the same way as expected by ecall. Instead of reordering directly the arguments of sbi_ecall(), use a proxy macro since the current ordering is more natural. Before: Dump of assembler code for function sbi_ecall: 0xffffffff800085e0 <+0>: add sp,sp,-32 0xffffffff800085e2 <+2>: sd s0,24(sp) 0xffffffff800085e4 <+4>: mv t1,a0 0xffffffff800085e6 <+6>: add s0,sp,32 0xffffffff800085e8 <+8>: mv t3,a1 0xffffffff800085ea <+10>: mv a0,a2 0xffffffff800085ec <+12>: mv a1,a3 0xffffffff800085ee <+14>: mv a2,a4 0xffffffff800085f0 <+16>: mv a3,a5 0xffffffff800085f2 <+18>: mv a4,a6 0xffffffff800085f4 <+20>: mv a5,a7 0xffffffff800085f6 <+22>: mv a6,t3 0xffffffff800085f8 <+24>: mv a7,t1 0xffffffff800085fa <+26>: ecall 0xffffffff800085fe <+30>: ld s0,24(sp) 0xffffffff80008600 <+32>: add sp,sp,32 0xffffffff80008602 <+34>: ret After: Dump of assembler code for function __sbi_ecall: 0xffffffff8000b6b2 <+0>: add sp,sp,-32 0xffffffff8000b6b4 <+2>: sd s0,24(sp) 0xffffffff8000b6b6 <+4>: add s0,sp,32 0xffffffff8000b6b8 <+6>: ecall 0xffffffff8000b6bc <+10>: ld s0,24(sp) 0xffffffff8000b6be <+12>: add sp,sp,32 0xffffffff8000b6c0 <+14>: ret Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Reviewed-by: Yunhui Cui <cuiyunhui@bytedance.com> Link: https://lore.kernel.org/r/20240322112629.68170-1-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Samuel Holland
|
56c1c1a09a
|
riscv: Add tracepoints for SBI calls and returns
These are useful for measuring the latency of SBI calls. The SBI HSM extension is excluded because those functions are called from contexts such as cpuidle where instrumentation is not allowed. Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Samuel Holland <samuel.holland@sifive.com> Link: https://lore.kernel.org/r/20240321230131.1838105-1-samuel.holland@sifive.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Arnd Bergmann
|
3db80c999d |
riscv: convert to generic syscall table
The uapi/asm/unistd_{32,64}.h and asm/syscall_table_{32,64}.h headers can now be generated from scripts/syscall.tbl, which makes this consistent with the other architectures that have their own syscall.tbl. riscv has two extra system call that gets added to scripts/syscall.tbl. The newstat and rlimit entries in the syscall_abis_64 line are for system calls that were part of the generic ABI when riscv64 got added but are no longer enabled by default for new architectures. Both riscv32 and riscv64 also implement memfd_secret, which is optional for all architectures. Unlike all the other 32-bit architectures, the time32 and stat64 sets of syscalls are not enabled on riscv32. Both the user visible side of asm/unistd.h and the internal syscall table in the kernel should have the same effective contents after this. Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Arnd Bergmann
|
505d66d1ab |
clone3: drop __ARCH_WANT_SYS_CLONE3 macro
When clone3() was introduced, it was not obvious how each architecture deals with setting up the stack and keeping the register contents in a fork()-like system call, so this was left for the architecture maintainers to implement, with __ARCH_WANT_SYS_CLONE3 defined by those that already implement it. Five years later, we still have a few architectures left that are missing clone3(), and the macro keeps getting in the way as it's fundamentally different from all the other __ARCH_WANT_SYS_* macros that are meant to provide backwards-compatibility with applications using older syscalls that are no longer provided by default. Address this by reversing the polarity of the macro, adding an __ARCH_BROKEN_SYS_CLONE3 macro to all architectures that don't already provide the syscall, and remove __ARCH_WANT_SYS_CLONE3 from all the other ones. Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Bang Li
|
8f65aa3223 |
mm: implement update_mmu_tlb() using update_mmu_tlb_range()
Let's make update_mmu_tlb() simply a generic wrapper around update_mmu_tlb_range(). Only the latter can now be overridden by the architecture. We can now remove __HAVE_ARCH_UPDATE_MMU_TLB as well. Link: https://lkml.kernel.org/r/20240522061204.117421-3-libang.li@antgroup.com Signed-off-by: Bang Li <libang.li@antgroup.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chris Zankel <chris@zankel.net> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Lance Yang <ioworker0@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Bang Li
|
23b1b44e6c |
mm: add update_mmu_tlb_range()
Patch series "Add update_mmu_tlb_range() to simplify code", v4.
This series of commits mainly adds the update_mmu_tlb_range() to batch
update tlb in an address range and implement update_mmu_tlb() using
update_mmu_tlb_range().
After commit
|
||
Palmer Dabbelt
|
60a6707f58
|
Merge patch series "riscv: Memory Hot(Un)Plug support"
Björn Töpel <bjorn@kernel.org> says: From: Björn Töpel <bjorn@rivosinc.com> ================================================================ Memory Hot(Un)Plug support (and ZONE_DEVICE) for the RISC-V port ================================================================ Introduction ============ To quote "Documentation/admin-guide/mm/memory-hotplug.rst": "Memory hot(un)plug allows for increasing and decreasing the size of physical memory available to a machine at runtime." This series adds memory hot(un)plugging, and ZONE_DEVICE support for the RISC-V Linux port. MM configuration ================ RISC-V MM has the following configuration: * Memory blocks are 128M, analogous to x86-64. It uses PMD ("hugepage") vmemmaps. From that follows that 2M (PMD) worth of vmemmap spans 32768 pages á 4K which gets us 128M. * The pageblock size is the minimum minimum virtio_mem size, and on RISC-V it's 2M (2^9 * 4K). Implementation ============== The PGD table on RISC-V is shared/copied between for all processes. To avoid doing page table synchronization, the first patch (patch 1) pre-allocated the PGD entries for vmemmap/direct map. By doing that the init_mm PGD will be fixed at kernel init, and synchronization can be avoided all together. The following two patches (patch 2-3) does some preparations, followed by the actual MHP implementation (patch 4-5). Then, MHP and virtio-mem are enabled (patch 6-7), and finally ZONE_DEVICE support is added (patch 8). MHP and locking =============== TL;DR: The MHP does not step on any toes, except for ptdump. Additional locking is required for ptdump. Long version: For v2 I spent some time digging into init_mm synchronization/update. Here are my findings, and I'd love them to be corrected if incorrect. It's been a gnarly path... The `init_mm` structure is a special mm (perhaps not a "real" one). It's a "lazy context" that tracks kernel page table resources, e.g., the kernel page table (swapper_pg_dir), a kernel page_table_lock (more about the usage below), mmap_lock, and such. `init_mm` does not track/contain any VMAs. Having the `init_mm` is convenient, so that the regular kernel page table walk/modify functions can be used. Now, `init_mm` being special means that the locking for kernel page tables are special as well. On RISC-V the PGD (top-level page table structure), similar to x86, is shared (copied) with user processes. If the kernel PGD is modified, it has to be synched to user-mode processes PGDs. This is avoided by pre-populating the PGD, so it'll be fixed from boot. The in-kernel pgd regions are documented in `Documentation/arch/riscv/vm-layout.rst`. The distinct regions are: * vmemmap * vmalloc/ioremap space * direct mapping of all physical memory * kasan * modules, BPF * kernel Memory hotplug is the process of adding/removing memory to/from the kernel. Adding is done in two phases: 1. Add the memory to the kernel 2. Online memory, making it available to the page allocator. Step 1 is partially architecture dependent, and updates the init_mm page table: * Update the direct map page tables. The direct map is a linear map, representing all physical memory: `virt = phys + PAGE_OFFSET` * Add a `struct page` for each added page of memory. Update the vmemmap (virtual mapping to the `struct page`, so we can easily transform a kernel virtual address to a `struct page *` address. From an MHP perspective, there are two regions of the PGD that are updated: * vmemmap * direct mapping of all physical memory The `struct mm_struct` has a couple of locks in play: * `spinlock_t page_table_lock` protects the page table, and some counters * `struct rw_semaphore mmap_lock` protect an mm's VMAs Note again that `init_mm` does not contain any VMAs, but still uses the mmap_lock in some places. The `page_table_lock` was originally used to to protect all pages tables, but more recently a split page table lock has been introduced. The split lock has a per-table lock for the PTE and PMD tables. If split lock is disabled, all tables are guarded by `mm->page_table_lock` (for user processes). Split page table locks are not used for init_mm. MHP operations is typically synchronized using `DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock)`. Actors ------ The following non-MHP actors in the kernel traverses (read), and/or modifies the kernel PGD. * `ptdump` Walks the entire `init_mm`, via `ptdump_walk_pgd()` with the `mmap_write_lock(init_mm)` taken. Observation: ptdump can race with MHP, and needs additional locking to avoid crashes/races. * `set_direct_*` / `arch/riscv/mm/pageattr.c` The `set_direct_*` functionality is used to "synchronize" the direct map to other kernel mappings, e.g. modules/kernel text. The direct map is using "as large huge table mappings as possible", which means that the `set_direct_*` might need to split the direct map. The `set_direct_*` functions operates with the `mmap_write_lock(init_mm)` taken. Observation: `set_direct_*` uses the direct map, but will never modify the same entry as MHP. If there is a mapping, that entry will never race with MHP. Further, MHP acts when memory is offline. * HVO / `mm/hugetlb_vmemmap` HVO optimizes the backing `struct page` for hugetlb pages, which means changing the "vmemmap" region. HVO can split (merge?) a vmemmap pmd. However, it will never race with MHP, since HVO only operates at online memory. HVO cannot touch memory being MHP added or removed. * `apply_to_page_range` Walks a range, creates pages and applies a callback (setting permissions) for the page. When creating a table, it might use `int __pte_alloc_kernel(pmd_t *pmd)` which takes the `init_mm.page_table_lock` to synchronize pmd populate. Used by: `mm/vmalloc.c` and `mm/kasan/shadow.c`. The KASAN callback takes the `init_mm.page_table_lock` to synchronize pte creation. Observations: `apply_to_page_range` applies to the "vmalloc/ioremap space" region, and "kasan" region. *Not* affected by MHP. * `apply_to_existing_page_range` Walks a range, applies a callback (setting permissions) for the page (no page creation). Used by: `kernel/bpf/arena.c` and `mm/kasan/shadow.c`. The KASAN callback takes the `init_mm.page_table_lock` to synchronize pte creation. *Not* affected by MHP regions. * `apply_to_existing_page_range` applies to the "vmalloc/ioremap space" region, and "kasan" region. *Not* affected by MHP regions. * `ioremap_page_range` and `vmap_page_range` Uses the same internal function, and might create table entries at the "vmalloc/ioremap space" region. Can call `__pte_alloc_kernel()` which takes the `init_mm.page_table_lock` synchronizing pmd populate in the region. *Not* affected by MHP regions. Summary: * MHP add will never modify the same page table entries, as any of the other actors. * MHP remove is done when memory is offlined, and will not clash with any of the actors. * Functions that walk the entire kernel page table need synchronization * It's sufficient to add the MHP lock ptdump. Testing ======= This series adds basic DT supported hotplugging. There is a QEMU series enabling MHP for the RISC-V "virt" machine here: [1] ACPI/MSI support is still in the making for RISC-V, and prior proper (ACPI) PCI MSI support lands [2] and NUMA SRAT support [3], it hard to try it out. I've prepared a QEMU branch with proper ACPI GED/PC-DIMM support [4], and a this series with the required prerequisites [5] (AIA, ACPI AIA MADT, ACPI NUMA SRAT). To test with virtio-mem, e.g.: | qemu-system-riscv64 \ | -machine virt,aia=aplic-imsic \ | -cpu rv64,v=true,vlen=256,elen=64,h=true,zbkb=on,zbkc=on,zbkx=on,zkr=on,zkt=on,svinval=on,svnapot=on,svpbmt=on \ | -nodefaults \ | -nographic -smp 8 -kernel rv64-u-boot.bin \ | -drive file=rootfs.img,format=raw,if=virtio \ | -device virtio-rng-pci \ | -m 16G,slots=3,maxmem=32G \ | -object memory-backend-ram,id=mem0,size=16G \ | -numa node,nodeid=0,memdev=mem0 \ | -serial chardev:char0 \ | -mon chardev=char0,mode=readline \ | -chardev stdio,mux=on,id=char0 \ | -device pci-serial,id=serial0,chardev=char0 \ | -object memory-backend-ram,id=vmem0,size=2G \ | -device virtio-mem-pci,id=vm0,memdev=vmem0,node=0 where "rv64-u-boot.bin" is U-boot with EFI/ACPI-support (use [6] if you're lazy). In the QEMU monitor: | (qemu) info memory-devices | (qemu) qom-set vm0 requested-size 1G ...to test DAX/KMEM, use the follow QEMU parameters: | -object memory-backend-file,id=mem1,share=on,mem-path=virtio_pmem.img,size=4G \ | -device virtio-pmem-pci,memdev=mem1,id=nv1 and the regular ndctl/daxctl dance. If you're brave to try the ACPI branch, add "acpi=on" to "-machine virt", and test PC-DIMM MHP (in addition to virtio-{p},mem): In the QEMU monitor: | (qemu) object_add memory-backend-ram,id=mem1,size=1G | (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 You can also try hot-remove with some QEMU options, say: | -object memory-backend-file,id=mem-1,size=256M,mem-path=/pagesize-2MB | -device pc-dimm,id=mem1,memdev=mem-1 | -object memory-backend-file,id=mem-2,size=1G,mem-path=/pagesize-1GB | -device pc-dimm,id=mem2,memdev=mem-2 | -object memory-backend-file,id=mem-3,size=256M,mem-path=/pagesize-2MB | -device pc-dimm,id=mem3,memdev=mem-3 Remove "acpi=on" to run with DT. Thanks to Alex, Andrew, David, and Oscar for all comments/tests/fixups. References ========== [1] https://lore.kernel.org/qemu-devel/20240521105635.795211-1-bjorn@kernel.org/ [2] https://lore.kernel.org/linux-riscv/20240501121742.1215792-1-sunilvl@ventanamicro.com/ [3] https://lore.kernel.org/linux-riscv/cover.1713778236.git.haibo1.xu@intel.com/ [4] https://github.com/bjoto/qemu/commits/virtio-mem-pc-dimm-mhp-acpi-v2/ [5] https://github.com/bjoto/linux/commits/mhp-v4-acpi [6] https://github.com/bjoto/riscv-rootfs-utils/tree/acpi * b4-shazam-merge: riscv: Enable DAX VMEMMAP optimization riscv: mm: Add support for ZONE_DEVICE virtio-mem: Enable virtio-mem for RISC-V riscv: Enable memory hotplugging for RISC-V riscv: mm: Take memory hotplug read-lock during kernel page table dump riscv: mm: Add memory hotplugging support riscv: mm: Add pfn_to_kaddr() implementation riscv: mm: Refactor create_linear_mapping_range() for memory hot add riscv: mm: Change attribute from __init to __meminit for page functions riscv: mm: Pre-allocate vmemmap/direct map/kasan PGD entries riscv: mm: Properly forward vmemmap_populate() altmap parameter Link: https://lore.kernel.org/r/20240605114100.315918-1-bjorn@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Björn Töpel
|
216e04bf1e
|
riscv: mm: Add support for ZONE_DEVICE
ZONE_DEVICE pages need DEVMAP PTEs support to function (ARCH_HAS_PTE_DEVMAP). Claim another RSW (reserved for software) bit in the PTE for DEVMAP mark, add the corresponding helpers, and enable ARCH_HAS_PTE_DEVMAP for riscv64. Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Björn Töpel <bjorn@rivosinc.com> Link: https://lore.kernel.org/r/20240605114100.315918-11-bjorn@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Björn Töpel
|
6e6c5e21b8
|
riscv: mm: Add pfn_to_kaddr() implementation
The pfn_to_kaddr() function is used by KASAN's memory hotplugging path. Add the missing function to the RISC-V port, so that it can be built with MHP and CONFIG_KASAN. Signed-off-by: Björn Töpel <bjorn@rivosinc.com> Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Link: https://lore.kernel.org/r/20240605114100.315918-6-bjorn@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Björn Töpel
|
fe122b89da
|
riscv: mm: Change attribute from __init to __meminit for page functions
Prepare for memory hotplugging support by changing from __init to __meminit for the page table functions that are used by the upcoming architecture specific callbacks. Changing the __init attribute to __meminit, avoids that the functions are removed after init. The __meminit attribute makes sure the functions are kept in the kernel text post init, but only if memory hotplugging is enabled for the build. Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Björn Töpel <bjorn@rivosinc.com> Link: https://lore.kernel.org/r/20240605114100.315918-4-bjorn@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Björn Töpel
|
66673099f7
|
riscv: mm: Pre-allocate vmemmap/direct map/kasan PGD entries
The RISC-V port copies the PGD table from init_mm/swapper_pg_dir to all userland page tables, which means that if the PGD level table is changed, other page tables has to be updated as well. Instead of having the PGD changes ripple out to all tables, the synchronization can be avoided by pre-allocating the PGD entries/pages at boot, avoiding the synchronization all together. This is currently done for the bpf/modules, and vmalloc PGD regions. Extend this scheme for the PGD regions touched by memory hotplugging. Prepare the RISC-V port for memory hotplug by pre-allocate vmemmap/direct map/kasan entries at the PGD level. This will roughly waste ~128 (plus 32 if KASAN is enabled) worth of 4K pages when memory hotplugging is enabled in the kernel configuration. Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Björn Töpel <bjorn@rivosinc.com> Link: https://lore.kernel.org/r/20240605114100.315918-3-bjorn@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Haibo Xu
|
d6ecd18893
|
riscv: dmi: Add SMBIOS/DMI support
Enable the dmi driver for riscv which would allow access the SMBIOS info through some userspace file(/sys/firmware/dmi/*). The change was based on that of arm64 and has been verified by dmidecode tool. Signed-off-by: Haibo Xu <haibo1.xu@intel.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20240613065507.287577-1-haibo1.xu@intel.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Alexandre Ghiti
|
50b5bae5be
|
riscv: Implement pte_accessible()
Like other architectures, a pte is accessible if it is present or if there is a pending tlb flush and the pte is protnone (which could be the case when a pte is downgraded to protnone before a flush tlb is executed). Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com> Link: https://lore.kernel.org/r/20240128115953.25085-1-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Palmer Dabbelt
|
914e618b43
|
Merge patch series "Add support for a few Zc* extensions, Zcmop and Zimop"
Clément Léger <cleger@rivosinc.com> says: Add support for (yet again) more RVA23U64 missing extensions. Add support for Zimop, Zcmop, Zca, Zcf, Zcd and Zcb extensions ISA string parsing, hwprobe and kvm support. Zce, Zcmt and Zcmp extensions have been left out since they target microcontrollers/embedded CPUs and are not needed by RVA23U64. Since Zc* extensions states that C implies Zca, Zcf (if F and RV32), Zcd (if D), this series modifies the way ISA string is parsed and now does it in two phases. First one parses the string and the second one validates it for the final ISA description. * b4-shazam-merge: KVM: riscv: selftests: Add Zcmop extension to get-reg-list test RISC-V: KVM: Allow Zcmop extension for Guest/VM riscv: hwprobe: export Zcmop ISA extension riscv: add ISA extension parsing for Zcmop dt-bindings: riscv: add Zcmop ISA extension description KVM: riscv: selftests: Add some Zc* extensions to get-reg-list test RISC-V: KVM: Allow Zca, Zcf, Zcd and Zcb extensions for Guest/VM riscv: hwprobe: export Zca, Zcf, Zcd and Zcb ISA extensions riscv: add ISA parsing for Zca, Zcf, Zcd and Zcb riscv: add ISA extensions validation callback dt-bindings: riscv: add Zca, Zcf, Zcd and Zcb ISA extension description KVM: riscv: selftests: Add Zimop extension to get-reg-list test RISC-V: KVM: Allow Zimop extension for Guest/VM riscv: hwprobe: export Zimop ISA extension riscv: add ISA extension parsing for Zimop dt-bindings: riscv: add Zimop ISA extension description Link: https://lore.kernel.org/r/20240619113529.676940-1-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
29cf9b803e
|
RISC-V: KVM: Allow Zcmop extension for Guest/VM
Extend the KVM ISA extension ONE_REG interface to allow KVM user space to detect and enable Zcmop extension for Guest/VM. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Anup Patel <anup@brainfault.org> Acked-by: Anup Patel <anup@brainfault.org> Link: https://lore.kernel.org/r/20240619113529.676940-16-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
fc078ea317
|
riscv: hwprobe: export Zcmop ISA extension
Export Zcmop ISA extension through hwprobe. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Evan Green <evan@rivosinc.com> Link: https://lore.kernel.org/r/20240619113529.676940-15-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
164d644059
|
riscv: add ISA extension parsing for Zcmop
Add parsing for Zcmop ISA extension which was ratified in commit c732a4f39a4c ("Zcmop is ratified/1.0") of the riscv-isa-manual. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240619113529.676940-14-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
d964e8f2ae
|
RISC-V: KVM: Allow Zca, Zcf, Zcd and Zcb extensions for Guest/VM
Extend the KVM ISA extension ONE_REG interface to allow KVM user space to detect and enable Zca, Zcf, Zcd and Zcb extensions for Guest/VM. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Anup Patel <anup@brainfault.org> Acked-by: Anup Patel <anup@brainfault.org> Link: https://lore.kernel.org/r/20240619113529.676940-11-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
0ad70db5eb
|
riscv: hwprobe: export Zca, Zcf, Zcd and Zcb ISA extensions
Export Zca, Zcf, Zcd and Zcb ISA extension through hwprobe. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240619113529.676940-10-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
ba4cd85583
|
riscv: add ISA parsing for Zca, Zcf, Zcd and Zcb
The Zc* standard extension for code reduction introduces new extensions. This patch adds support for Zca, Zcf, Zcd and Zcb. Zce, Zcmt and Zcmp are left out of this patch since they are targeting microcontrollers/ embedded CPUs instead of application processors. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Link: https://lore.kernel.org/r/20240619113529.676940-9-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |
||
Clément Léger
|
625034abd5
|
riscv: add ISA extensions validation callback
Since a few extensions (Zicbom/Zicboz) already needs validation and future ones will need it as well (Zc*) add a validate() callback to struct riscv_isa_ext_data. This require to rework the way extensions are parsed and split it in two phases. First phase is isa string or isa extension list parsing and consists in enabling all the extensions in a temporary bitmask (source isa) without any validation. The second step "resolves" the final isa bitmap, handling potential missing dependencies. The mechanism is quite simple and simply validate each extension described in the source bitmap before enabling it in the resolved isa bitmap. validate() callbacks can return either 0 for success, -EPROBEDEFER if extension needs to be validated again at next loop. A previous ISA bitmap is kept to avoid looping multiple times if an extension dependencies are never satisfied until we reach a stable state. In order to avoid any potential infinite looping, allow looping a maximum of the number of extension we handle. Zicboz and Zicbom extensions are modified to use this validation mechanism. Signed-off-by: Clément Léger <cleger@rivosinc.com> Reviewed-by: Conor Dooley <conor.dooley@microchip.com> Link: https://lore.kernel.org/r/20240619113529.676940-8-cleger@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> |