Maintaining the uobjects list is mandatory, hoist it into the common
rdma_alloc_commit_uobject() function and inline it as there is now
only one caller.
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
If remove_commit fails then the lock is left locked while the uobj still
exists. Eventually the kernel will deadlock.
lockdep detects this and says:
test/4221 is leaving the kernel with locks still held!
1 lock held by test/4221:
#0: (&ucontext->cleanup_rwsem){.+.+}, at: [<000000001e5c7523>] rdma_explicit_destroy+0x37/0x120 [ib_uverbs]
Fixes: 4da70da23e ("IB/core: Explicitly destroy an object while keeping uobject")
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This is really being used as an assert that the expected usecnt
is being held and implicitly that the usecnt is valid. Rename it to
assert_uverbs_usecnt and tighten the checks to only accept valid
values of usecnt (eg 0 and < -1 are invalid).
The tigher checkes make the assertion cover more cases and is more
likely to find bugs via syzkaller/etc.
Fixes: 3832125624 ("IB/core: Add support for idr types")
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The race is between lookup_get_idr_uobject and
uverbs_idr_remove_uobj -> uverbs_uobject_put.
We deliberately do not call sychronize_rcu after the idr_remove in
uverbs_idr_remove_uobj for performance reasons, instead we call
kfree_rcu() during uverbs_uobject_put.
However, this means we can obtain pointers to uobj's that have
already been released and must protect against krefing them
using kref_get_unless_zero.
==================================================================
BUG: KASAN: use-after-free in copy_ah_attr_from_uverbs.isra.2+0x860/0xa00
Read of size 4 at addr ffff88005fda1ac8 by task syz-executor2/441
CPU: 1 PID: 441 Comm: syz-executor2 Not tainted 4.15.0-rc2+ #56
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xd4
print_address_description+0x73/0x290
kasan_report+0x25c/0x370
? copy_ah_attr_from_uverbs.isra.2+0x860/0xa00
copy_ah_attr_from_uverbs.isra.2+0x860/0xa00
? uverbs_try_lock_object+0x68/0xc0
? modify_qp.isra.7+0xdc4/0x10e0
modify_qp.isra.7+0xdc4/0x10e0
ib_uverbs_modify_qp+0xfe/0x170
? ib_uverbs_query_qp+0x970/0x970
? __lock_acquire+0xa11/0x1da0
ib_uverbs_write+0x55a/0xad0
? ib_uverbs_query_qp+0x970/0x970
? ib_uverbs_query_qp+0x970/0x970
? ib_uverbs_open+0x760/0x760
? futex_wake+0x147/0x410
? sched_clock_cpu+0x18/0x180
? check_prev_add+0x1680/0x1680
? do_futex+0x3b6/0xa30
? sched_clock_cpu+0x18/0x180
__vfs_write+0xf7/0x5c0
? ib_uverbs_open+0x760/0x760
? kernel_read+0x110/0x110
? lock_acquire+0x370/0x370
? __fget+0x264/0x3b0
vfs_write+0x18a/0x460
SyS_write+0xc7/0x1a0
? SyS_read+0x1a0/0x1a0
? trace_hardirqs_on_thunk+0x1a/0x1c
entry_SYSCALL_64_fastpath+0x18/0x85
RIP: 0033:0x448e29
RSP: 002b:00007f443fee0c58 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f443fee16bc RCX: 0000000000448e29
RDX: 0000000000000078 RSI: 00000000209f8000 RDI: 0000000000000012
RBP: 000000000070bea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff
R13: 0000000000008e98 R14: 00000000006ebf38 R15: 0000000000000000
Allocated by task 1:
kmem_cache_alloc_trace+0x16c/0x2f0
mlx5_alloc_cmd_msg+0x12e/0x670
cmd_exec+0x419/0x1810
mlx5_cmd_exec+0x40/0x70
mlx5_core_mad_ifc+0x187/0x220
mlx5_MAD_IFC+0xd7/0x1b0
mlx5_query_mad_ifc_gids+0x1f3/0x650
mlx5_ib_query_gid+0xa4/0xc0
ib_query_gid+0x152/0x1a0
ib_query_port+0x21e/0x290
mlx5_port_immutable+0x30f/0x490
ib_register_device+0x5dd/0x1130
mlx5_ib_add+0x3e7/0x700
mlx5_add_device+0x124/0x510
mlx5_register_interface+0x11f/0x1c0
mlx5_ib_init+0x56/0x61
do_one_initcall+0xa3/0x250
kernel_init_freeable+0x309/0x3b8
kernel_init+0x14/0x180
ret_from_fork+0x24/0x30
Freed by task 1:
kfree+0xeb/0x2f0
mlx5_free_cmd_msg+0xcd/0x140
cmd_exec+0xeba/0x1810
mlx5_cmd_exec+0x40/0x70
mlx5_core_mad_ifc+0x187/0x220
mlx5_MAD_IFC+0xd7/0x1b0
mlx5_query_mad_ifc_gids+0x1f3/0x650
mlx5_ib_query_gid+0xa4/0xc0
ib_query_gid+0x152/0x1a0
ib_query_port+0x21e/0x290
mlx5_port_immutable+0x30f/0x490
ib_register_device+0x5dd/0x1130
mlx5_ib_add+0x3e7/0x700
mlx5_add_device+0x124/0x510
mlx5_register_interface+0x11f/0x1c0
mlx5_ib_init+0x56/0x61
do_one_initcall+0xa3/0x250
kernel_init_freeable+0x309/0x3b8
kernel_init+0x14/0x180
ret_from_fork+0x24/0x30
The buggy address belongs to the object at ffff88005fda1ab0
which belongs to the cache kmalloc-32 of size 32
The buggy address is located 24 bytes inside of
32-byte region [ffff88005fda1ab0, ffff88005fda1ad0)
The buggy address belongs to the page:
page:00000000d5655c19 count:1 mapcount:0 mapping: (null)
index:0xffff88005fda1fc0
flags: 0x4000000000000100(slab)
raw: 4000000000000100 0000000000000000 ffff88005fda1fc0 0000000180550008
raw: ffffea00017f6780 0000000400000004 ffff88006c803980 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88005fda1980: fc fc fb fb fb fb fc fc fb fb fb fb fc fc fb fb
ffff88005fda1a00: fb fb fc fc fb fb fb fb fc fc 00 00 00 00 fc fc
ffff88005fda1a80: fb fb fb fb fc fc fb fb fb fb fc fc fb fb fb fb
ffff88005fda1b00: fc fc 00 00 00 00 fc fc fb fb fb fb fc fc fb fb
ffff88005fda1b80: fb fb fc fc fb fb fb fb fc fc fb fb fb fb fc fc
==================================================================@
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: <stable@vger.kernel.org> # 4.11
Fixes: 3832125624 ("IB/core: Add support for idr types")
Reported-by: Noa Osherovich <noaos@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This clarifies the design intention that time between allocate and
commit has the uobj exclusive to the caller. We already guarantee
this by delaying publishing the uobj pointer via idr_insert,
fd_install, list_add, etc.
Additionally holding the usecnt lock during this period provides
extra clarity and more protection against future mistakes.
Fixes: 3832125624 ("IB/core: Add support for idr types")
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
When some objects are destroyed, we need to extract their status at
destruction. After object's destruction, this status
(e.g. events_reported) relies in the uobject. In order to have the
latest and correct status, the underlying object should be destroyed,
but we should keep the uobject alive and read this information off the
uobject. We introduce a rdma_explicit_destroy function. This function
destroys the class type object (for example, the IDR class type which
destroys the underlying object as well) and then convert the uobject
to be of a null class type. This uobject will then be destroyed as any
other uobject once uverbs_finalize_object[s] is called.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The new ioctl based infrastructure either commits or rollbacks
all objects of the method as one transaction. In order to do
that, we introduce a notion of dealing with a collection of
objects that are related to a specific method.
This also requires adding a notion of a method and attribute.
A method contains a hash of attributes, where each bucket
contains several attributes. The attributes are hashed according
to their namespace which resides in the four upper bits of the id.
For example, an object could be a CQ, which has an action of CREATE_CQ.
This action has multiple attributes. For example, the CQ's new handle
and the comp_channel. Each layer in this hierarchy - objects, methods
and attributes is split into namespaces. The basic example for that is
one namespace representing the default entities and another one
representing the driver specific entities.
When declaring these methods and attributes, we actually declare
their specifications. When a method is executed, we actually
allocates some space to hold auxiliary information. This auxiliary
information contains meta-data about the required objects, such
as pointers to their type information, pointers to the uobjects
themselves (if exist), etc.
The specification, along with the auxiliary information we allocated
and filled is given to the finalize_objects function.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The ioctl infrastructure treats all user-objects in the same manner.
It gets objects ids from the user-space and by using the object type
and type attributes mentioned in the object specification, it executes
this required method. Passing an object id from the user-space as
an attribute is carried out in three stages. The first is carried out
before the actual handler and the last is carried out afterwards.
The different supported operations are read, write, destroy and create.
In the first stage, the former three actions just fetches the object
from the repository (by using its id) and locks it. The last action
allocates a new uobject. Afterwards, the second stage is carried out
when the handler itself carries out the required modification of the
object. The last stage is carried out after the handler finishes and
commits the result. The former two operations just unlock the object.
Destroy calls the "free object" operation, taking into account the
object's type and releases the uobject as well. Creation just adds the
new uobject to the repository, making the object visible to the
application.
In order to abstract these details from the ioctl infrastructure
layer, we add uverbs_get_uobject_from_context and
uverbs_finalize_object functions which corresponds to the first
and last stages respectively.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Currently, we initialize all fields of ib_uobject straight after
allocation. Therefore, a kmalloc was sufficient. Since ib_uobject
could be embedded in a type specific structure, we nullify it to
spare programmer errors.
Fixes: 3832125624 ('IB/core: Add support for idr types')
Signed-off-by: Matan Barak <matanb@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The only scenario where this function was called while the lock is
already taken is in the context cleanup scenario. Thus, in order not
to pass the lock state to this function, we just call the remove logic
straight from the cleanup context function.
Fixes: 3832125624 ('IB/core: Add support for idr types')
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
We rename the "write" flags to "exclusive", as it's used for both
WRITE and DESTROY actions.
Fixes: 3832125624 ('IB/core: Add support for idr types')
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The completion channel we use in verbs infrastructure is FD based.
Previously, we had a separate way to manage this object. Since we
strive for a single way to manage any kind of object in this
infrastructure, we conceptually treat all objects as subclasses
of ib_uobject.
This commit adds the necessary mechanism to support FD based objects
like their IDR counterparts. FD objects release need to be synchronized
with context release. We use the cleanup_mutex on the uverbs_file for
that.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The new ioctl infrastructure supports driver specific objects.
Each such object type has a hot unplug function, allocation size and
an order of destruction.
When a ucontext is created, a new list is created in this ib_ucontext.
This list contains all objects created under this ib_ucontext.
When a ib_ucontext is destroyed, we traverse this list several time
destroying the various objects by the order mentioned in the object
type description. If few object types have the same destruction order,
they are destroyed in an order opposite to their creation.
Adding an object is done in two parts.
First, an object is allocated and added to idr tree. Then, the
command's handlers (in downstream patches) could work on this object
and fill in its required details.
After a successful command, the commit part is called and the user
objects become ucontext visible. If the handler failed, alloc_abort
should be called.
Removing an uboject is done by calling lookup_get with the write flag
and finalizing it with destroy_commit. A major change from the previous
code is that we actually destroy the kernel object itself in
destroy_commit (rather than just the uobject).
We should make sure idr (per-uverbs-file) and list (per-ucontext) could
be accessed concurrently without corrupting them.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>