Since 20d59ee551 ("libbpf: add bpf_core_cast() macro"), libbpf is now
exporting a const arg version of bpf_rdonly_cast(). This causes the
following conflicting type error when generating kfunc prototypes from
BTF:
In file included from skeleton/pid_iter.bpf.c:5:
/home/dxu/dev/linux/tools/bpf/bpftool/bootstrap/libbpf/include/bpf/bpf_core_read.h:297:14: error: conflicting types for 'bpf_rdonly_cast'
extern void *bpf_rdonly_cast(const void *obj__ign, __u32 btf_id__k) __ksym __weak;
^
./vmlinux.h:135625:14: note: previous declaration is here
extern void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) __weak __ksym;
This is b/c the kernel defines bpf_rdonly_cast() with non-const arg.
Since const arg is more permissive and thus backwards compatible, we
change the kernel definition as well to avoid conflicting type errors.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/dfd3823f11ffd2d4c838e961d61ec9ae8a646773.1707080349.git.dxu@dxuuu.xyz
Similar to the handling in the functions __register_btf_kfunc_id_set()
and register_btf_id_dtor_kfuncs(), this patch uses the newly added
helper check_btf_kconfigs() to handle module with its btf section
stripped.
While at it, the patch also adds the missed IS_ERR() check to fix the
commit f6be98d199 ("bpf, net: switch to dynamic registration")
Fixes: f6be98d199 ("bpf, net: switch to dynamic registration")
Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn>
Link: https://lore.kernel.org/r/69082b9835463fe36f9e354bddf2d0a97df39c2b.1707373307.git.tanggeliang@kylinos.cn
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
This patch extracts duplicate code on error path when btf_get_module_btf()
returns NULL from the functions __register_btf_kfunc_id_set() and
register_btf_id_dtor_kfuncs() into a new helper named check_btf_kconfigs()
to check CONFIG_DEBUG_INFO_BTF and CONFIG_DEBUG_INFO_BTF_MODULES in it.
Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/fa5537fc55f1e4d0bfd686598c81b7ab9dbd82b7.1707373307.git.tanggeliang@kylinos.cn
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The same as __register_btf_kfunc_id_set(), to let the modules with
stripped btf section loaded, this patch changes the return value of
register_btf_id_dtor_kfuncs() too from -ENOENT to 0 when btf is NULL.
Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn>
Link: https://lore.kernel.org/r/eab65586d7fb0e72f2707d3747c7d4a5d60c823f.1707373307.git.tanggeliang@kylinos.cn
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
'config BPF' exists in both init/Kconfig and kernel/bpf/Kconfig.
Commit b24abcff91 ("bpf, kconfig: Add consolidated menu entry for bpf
with core options") added the second one to kernel/bpf/Kconfig instead
of moving the existing one.
Merge them together.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240204075634.32969-1-masahiroy@kernel.org
Allow transferring an imbalanced RCU lock state between subprog calls
during verification. This allows patterns where a subprog call returns
with an RCU lock held, or a subprog call releases an RCU lock held by
the caller. Currently, the verifier would end up complaining if the RCU
lock is not released when processing an exit from a subprog, which is
non-ideal if its execution is supposed to be enclosed in an RCU read
section of the caller.
Instead, simply only check whether we are processing exit for frame#0
and do not complain on an active RCU lock otherwise. We only need to
update the check when processing BPF_EXIT insn, as copy_verifier_state
is already set up to do the right thing.
Suggested-by: David Vernet <void@manifault.com>
Tested-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20240205055646.1112186-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, calling any helpers, kfuncs, or subprogs except the graph
data structure (lists, rbtrees) API kfuncs while holding a bpf_spin_lock
is not allowed. One of the original motivations of this decision was to
force the BPF programmer's hand into keeping the bpf_spin_lock critical
section small, and to ensure the execution time of the program does not
increase due to lock waiting times. In addition to this, some of the
helpers and kfuncs may be unsafe to call while holding a bpf_spin_lock.
However, when it comes to subprog calls, atleast for static subprogs,
the verifier is able to explore their instructions during verification.
Therefore, it is similar in effect to having the same code inlined into
the critical section. Hence, not allowing static subprog calls in the
bpf_spin_lock critical section is mostly an annoyance that needs to be
worked around, without providing any tangible benefit.
Unlike static subprog calls, global subprog calls are not safe to permit
within the critical section, as the verifier does not explore them
during verification, therefore whether the same lock will be taken
again, or unlocked, cannot be ascertained.
Therefore, allow calling static subprogs within a bpf_spin_lock critical
section, and only reject it in case the subprog linkage is global.
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20240204222349.938118-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The "i" here is always equal to "btf_type_vlen(t)" since
the "for_each_member()" loop never breaks.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240203055119.2235598-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When btf_prepare_func_args() was generalized to handle both static and
global subprogs, a few warnings/errors that are meant only for global
subprog cases started to be emitted for static subprogs, where they are
sort of expected and irrelavant.
Stop polutting verifier logs with irrelevant scary-looking messages.
Fixes: e26080d0da ("bpf: prepare btf_prepare_func_args() for handling static subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240202190529.2374377-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add PTR_TRUSTED | PTR_MAYBE_NULL modifiers for PTR_TO_BTF_ID to
check_reg_type() to support passing trusted nullable PTR_TO_BTF_ID
registers into global functions accepting `__arg_trusted __arg_nullable`
arguments. This hasn't been caught earlier because tests were either
passing known non-NULL PTR_TO_BTF_ID registers or known NULL (SCALAR)
registers.
When utilizing this functionality in complicated real-world BPF
application that passes around PTR_TO_BTF_ID_OR_NULL, it became apparent
that verifier rejects valid case because check_reg_type() doesn't handle
this case explicitly. Existing check_reg_type() logic is already
anticipating this combination, so we just need to explicitly list this
combo in the switch statement.
Fixes: e2b3c4ff5d ("bpf: add __arg_trusted global func arg tag")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240202190529.2374377-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When check_stack_read_fixed_off() reads value from an spi
all stack slots of which are set to STACK_{MISC,INVALID},
the destination register is set to unbound SCALAR_VALUE.
Exploit this fact by allowing stacksafe() to use a fake
unbound scalar register to compare 'mmmm mmmm' stack value
in old state vs spilled 64-bit scalar in current state
and vice versa.
Veristat results after this patch show some gains:
./veristat -C -e file,prog,states -f 'states_pct>10' not-opt after
File Program States (DIFF)
----------------------- --------------------- ---------------
bpf_overlay.o tail_rev_nodeport_lb4 -45 (-15.85%)
bpf_xdp.o tail_lb_ipv4 -541 (-19.57%)
pyperf100.bpf.o on_event -680 (-10.42%)
pyperf180.bpf.o on_event -2164 (-19.62%)
pyperf600.bpf.o on_event -9799 (-24.84%)
strobemeta.bpf.o on_event -9157 (-65.28%)
xdp_synproxy_kern.bpf.o syncookie_tc -54 (-19.29%)
xdp_synproxy_kern.bpf.o syncookie_xdp -74 (-24.50%)
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-6-maxtram95@gmail.com
When the width of a fill is smaller than the width of the preceding
spill, the information about scalar boundaries can still be preserved,
as long as it's coerced to the right width (done by coerce_reg_to_size).
Even further, if the actual value fits into the fill width, the ID can
be preserved as well for further tracking of equal scalars.
Implement the above improvements, which makes narrowing fills behave the
same as narrowing spills and MOVs between registers.
Two tests are adjusted to accommodate for endianness differences and to
take into account that it's now allowed to do a narrowing fill from the
least significant bits.
reg_bounds_sync is added to coerce_reg_to_size to correctly adjust
umin/umax boundaries after the var_off truncation, for example, a 64-bit
value 0xXXXXXXXX00000000, when read as a 32-bit, gets umin = 0, umax =
0xFFFFFFFF, var_off = (0x0; 0xffffffff00000000), which needs to be
synced down to umax = 0, otherwise reg_bounds_sanity_check doesn't pass.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-4-maxtram95@gmail.com
Support the pattern where an unbounded scalar is spilled to the stack,
then boundary checks are performed on the src register, after which the
stack frame slot is refilled into a register.
Before this commit, the verifier didn't treat the src register and the
stack slot as related if the src register was an unbounded scalar. The
register state wasn't copied, the id wasn't preserved, and the stack
slot was marked as STACK_MISC. Subsequent boundary checks on the src
register wouldn't result in updating the boundaries of the spilled
variable on the stack.
After this commit, the verifier will preserve the bond between src and
dst even if src is unbounded, which permits to do boundary checks on src
and refill dst later, still remembering its boundaries. Such a pattern
is sometimes generated by clang when compiling complex long functions.
One test is adjusted to reflect that now unbounded scalars are tracked.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240127175237.526726-2-maxtram95@gmail.com
There's already one main CONFIG_SECURITY_NETWORK ifdef block within
the sleepable_lsm_hooks BTF set. Consolidate this duplicated ifdef
block as there's no need for it and all things guarded by it should
remain in one place in this specific context.
Signed-off-by: Matt Bobrowski <mattbobrowski@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/Zbt1smz43GDMbVU3@google.com
This commit marks kfuncs as such inside the .BTF_ids section. The upshot
of these annotations is that we'll be able to automatically generate
kfunc prototypes for downstream users. The process is as follows:
1. In source, use BTF_KFUNCS_START/END macro pair to mark kfuncs
2. During build, pahole injects into BTF a "bpf_kfunc" BTF_DECL_TAG for
each function inside BTF_KFUNCS sets
3. At runtime, vmlinux or module BTF is made available in sysfs
4. At runtime, bpftool (or similar) can look at provided BTF and
generate appropriate prototypes for functions with "bpf_kfunc" tag
To ensure future kfunc are similarly tagged, we now also return error
inside kfunc registration for untagged kfuncs. For vmlinux kfuncs,
we also WARN(), as initcall machinery does not handle errors.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/e55150ceecbf0a5d961e608941165c0bee7bc943.1706491398.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add ability to mark arg:trusted arguments with optional arg:nullable
tag to mark it as PTR_TO_BTF_ID_OR_NULL variant, which will allow
callers to pass NULL, and subsequently will force global subprog's code
to do NULL check. This allows to have "optional" PTR_TO_BTF_ID values
passed into global subprogs.
For now arg:nullable cannot be combined with anything else.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130000648.2144827-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support for passing PTR_TO_BTF_ID registers to global subprogs.
Currently only PTR_TRUSTED flavor of PTR_TO_BTF_ID is supported.
Non-NULL semantics is assumed, so caller will be forced to prove
PTR_TO_BTF_ID can't be NULL.
Note, we disallow global subprogs to destroy passed in PTR_TO_BTF_ID
arguments, even the trusted one. We achieve that by not setting
ref_obj_id when validating subprog code. This basically enforces (in
Rust terms) borrowing semantics vs move semantics. Borrowing semantics
seems to be a better fit for isolated global subprog validation
approach.
Implementation-wise, we utilize existing logic for matching
user-provided BTF type to kernel-side BTF type, used by BPF CO-RE logic
and following same matching rules. We enforce a unique match for types.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130000648.2144827-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that bpf and bpf-next trees converged and we don't run the risk of
merge conflicts, move btf_validate_prog_ctx_type() into its most logical
place inside the main logic loop.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240125205510.3642094-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In bpf_struct_ops_map_alloc, it needs to check for NULL in the returned
pointer of bpf_get_btf_vmlinux() when CONFIG_DEBUG_INFO_BTF is not set.
ENOTSUPP is used to preserve the same behavior before the
struct_ops kmod support.
In the function check_struct_ops_btf_id(), instead of redoing the
bpf_get_btf_vmlinux() that has already been done in syscall.c, the fix
here is to check for prog->aux->attach_btf_id.
BPF_PROG_TYPE_STRUCT_OPS must require attach_btf_id and syscall.c
guarantees a valid attach_btf as long as attach_btf_id is set.
When attach_btf_id is not set, this patch returns -ENOTSUPP
because it is what the selftest in test_libbpf_probe_prog_types()
and libbpf_probes.c are expecting for feature probing purpose.
Changes from v1:
- Remove an unnecessary NULL check in check_struct_ops_btf_id()
Reported-by: syzbot+88f0aafe5f950d7489d7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000040d68a060fc8db8c@google.com/
Reported-by: syzbot+1336f3d4b10bcda75b89@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000026353b060fc21c07@google.com/
Fixes: fcc2c1fb06 ("bpf: pass attached BTF to the bpf_struct_ops subsystem")
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240126023113.1379504-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Besides already supported special "any" value and hex bit mask, support
string-based parsing of delegation masks based on exact enumerator
names. Utilize BTF information of `enum bpf_cmd`, `enum bpf_map_type`,
`enum bpf_prog_type`, and `enum bpf_attach_type` types to find supported
symbolic names (ignoring __MAX_xxx guard values and stripping repetitive
prefixes like BPF_ for cmd and attach types, BPF_MAP_TYPE_ for maps, and
BPF_PROG_TYPE_ for prog types). The case doesn't matter, but it is
normalized to lower case in mount option output. So "PROG_LOAD",
"prog_load", and "MAP_create" are all valid values to specify for
delegate_cmds options, "array" is among supported for map types, etc.
Besides supporting string values, we also support multiple values
specified at the same time, using colon (':') separator.
There are corresponding changes on bpf_show_options side to use known
values to print them in human-readable format, falling back to hex mask
printing, if there are any unrecognized bits. This shouldn't be
necessary when enum BTF information is present, but in general we should
always be able to fall back to this even if kernel was built without BTF.
As mentioned, emitted symbolic names are normalized to be all lower case.
Example below shows various ways to specify delegate_cmds options
through mount command and how mount options are printed back:
12/14 14:39:07.604
vmuser@archvm:~/local/linux/tools/testing/selftests/bpf
$ mount | rg token
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
-o delegate_cmds=prog_load:MAP_CREATE \
-o delegate_progs=kprobe \
-o delegate_attachs=xdp
$ mount | grep token
bpffs on /sys/fs/bpf/token type bpf (rw,relatime,delegate_cmds=map_create:prog_load,delegate_progs=kprobe,delegate_attachs=xdp)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-20-andrii@kernel.org
It's quite confusing in practice when it's possible to successfully
create a BPF token from BPF FS that didn't have any of delegate_xxx
mount options set up. While it's not wrong, it's actually more
meaningful to reject BPF_TOKEN_CREATE with specific error code (-ENOENT)
to let user-space know that no token delegation is setup up.
So, instead of creating empty BPF token that will be always ignored
because it doesn't have any of the allow_xxx bits set, reject it with
-ENOENT. If we ever need empty BPF token to be possible, we can support
that with extra flag passed into BPF_TOKEN_CREATE.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-19-andrii@kernel.org
Wire up bpf_token_create and bpf_token_free LSM hooks, which allow to
allocate LSM security blob (we add `void *security` field to struct
bpf_token for that), but also control who can instantiate BPF token.
This follows existing pattern for BPF map and BPF prog.
Also add security_bpf_token_allow_cmd() and security_bpf_token_capable()
LSM hooks that allow LSM implementation to control and negate (if
necessary) BPF token's delegation of a specific bpf_cmd and capability,
respectively.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-12-andrii@kernel.org
Similarly to bpf_prog_alloc LSM hook, rename and extend bpf_map_alloc
hook into bpf_map_create, taking not just struct bpf_map, but also
bpf_attr and bpf_token, to give a fuller context to LSMs.
Unlike bpf_prog_alloc, there is no need to move the hook around, as it
currently is firing right before allocating BPF map ID and FD, which
seems to be a sweet spot.
But like bpf_prog_alloc/bpf_prog_free combo, make sure that bpf_map_free
LSM hook is called even if bpf_map_create hook returned error, as if few
LSMs are combined together it could be that one LSM successfully
allocated security blob for its needs, while subsequent LSM rejected BPF
map creation. The former LSM would still need to free up LSM blob, so we
need to ensure security_bpf_map_free() is called regardless of the
outcome.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-11-andrii@kernel.org
Based on upstream discussion ([0]), rework existing
bpf_prog_alloc_security LSM hook. Rename it to bpf_prog_load and instead
of passing bpf_prog_aux, pass proper bpf_prog pointer for a full BPF
program struct. Also, we pass bpf_attr union with all the user-provided
arguments for BPF_PROG_LOAD command. This will give LSMs as much
information as we can basically provide.
The hook is also BPF token-aware now, and optional bpf_token struct is
passed as a third argument. bpf_prog_load LSM hook is called after
a bunch of sanity checks were performed, bpf_prog and bpf_prog_aux were
allocated and filled out, but right before performing full-fledged BPF
verification step.
bpf_prog_free LSM hook is now accepting struct bpf_prog argument, for
consistency. SELinux code is adjusted to all new names, types, and
signatures.
Note, given that bpf_prog_load (previously bpf_prog_alloc) hook can be
used by some LSMs to allocate extra security blob, but also by other
LSMs to reject BPF program loading, we need to make sure that
bpf_prog_free LSM hook is called after bpf_prog_load/bpf_prog_alloc one
*even* if the hook itself returned error. If we don't do that, we run
the risk of leaking memory. This seems to be possible today when
combining SELinux and BPF LSM, as one example, depending on their
relative ordering.
Also, for BPF LSM setup, add bpf_prog_load and bpf_prog_free to
sleepable LSM hooks list, as they are both executed in sleepable
context. Also drop bpf_prog_load hook from untrusted, as there is no
issue with refcount or anything else anymore, that originally forced us
to add it to untrusted list in c0c852dd18 ("bpf: Do not mark certain LSM
hook arguments as trusted"). We now trigger this hook much later and it
should not be an issue anymore.
[0] https://lore.kernel.org/bpf/9fe88aef7deabbe87d3fc38c4aea3c69.paul@paul-moore.com/
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-10-andrii@kernel.org
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org
Instead of performing unconditional system-wide bpf_capable() and
perfmon_capable() calls inside bpf_base_func_proto() function (and other
similar ones) to determine eligibility of a given BPF helper for a given
program, use previously recorded BPF token during BPF_PROG_LOAD command
handling to inform the decision.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-8-andrii@kernel.org
Add basic support of BPF token to BPF_PROG_LOAD. BPF_F_TOKEN_FD flag
should be set in prog_flags field when providing prog_token_fd.
Wire through a set of allowed BPF program types and attach types,
derived from BPF FS at BPF token creation time. Then make sure we
perform bpf_token_capable() checks everywhere where it's relevant.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-7-andrii@kernel.org
Accept BPF token FD in BPF_BTF_LOAD command to allow BTF data loading
through delegated BPF token. BPF_F_TOKEN_FD flag has to be specified
when passing BPF token FD. Given BPF_BTF_LOAD command didn't have flags
field before, we also add btf_flags field.
BTF loading is a pretty straightforward operation, so as long as BPF
token is created with allow_cmds granting BPF_BTF_LOAD command, kernel
proceeds to parsing BTF data and creating BTF object.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-6-andrii@kernel.org
Allow providing token_fd for BPF_MAP_CREATE command to allow controlled
BPF map creation from unprivileged process through delegated BPF token.
New BPF_F_TOKEN_FD flag is added to specify together with BPF token FD
for BPF_MAP_CREATE command.
Wire through a set of allowed BPF map types to BPF token, derived from
BPF FS at BPF token creation time. This, in combination with allowed_cmds
allows to create a narrowly-focused BPF token (controlled by privileged
agent) with a restrictive set of BPF maps that application can attempt
to create.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-5-andrii@kernel.org
Add new kind of BPF kernel object, BPF token. BPF token is meant to
allow delegating privileged BPF functionality, like loading a BPF
program or creating a BPF map, from privileged process to a *trusted*
unprivileged process, all while having a good amount of control over which
privileged operations could be performed using provided BPF token.
This is achieved through mounting BPF FS instance with extra delegation
mount options, which determine what operations are delegatable, and also
constraining it to the owning user namespace (as mentioned in the
previous patch).
BPF token itself is just a derivative from BPF FS and can be created
through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF
FS FD, which can be attained through open() API by opening BPF FS mount
point. Currently, BPF token "inherits" delegated command, map types,
prog type, and attach type bit sets from BPF FS as is. In the future,
having an BPF token as a separate object with its own FD, we can allow
to further restrict BPF token's allowable set of things either at the
creation time or after the fact, allowing the process to guard itself
further from unintentionally trying to load undesired kind of BPF
programs. But for now we keep things simple and just copy bit sets as is.
When BPF token is created from BPF FS mount, we take reference to the
BPF super block's owning user namespace, and then use that namespace for
checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN}
capabilities that are normally only checked against init userns (using
capable()), but now we check them using ns_capable() instead (if BPF
token is provided). See bpf_token_capable() for details.
Such setup means that BPF token in itself is not sufficient to grant BPF
functionality. User namespaced process has to *also* have necessary
combination of capabilities inside that user namespace. So while
previously CAP_BPF was useless when granted within user namespace, now
it gains a meaning and allows container managers and sys admins to have
a flexible control over which processes can and need to use BPF
functionality within the user namespace (i.e., container in practice).
And BPF FS delegation mount options and derived BPF tokens serve as
a per-container "flag" to grant overall ability to use bpf() (plus further
restrict on which parts of bpf() syscalls are treated as namespaced).
Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF)
within the BPF FS owning user namespace, rounding up the ns_capable()
story of BPF token. Also creating BPF token in init user namespace is
currently not supported, given BPF token doesn't have any effect in init
user namespace anyways.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
Add few new mount options to BPF FS that allow to specify that a given
BPF FS instance allows creation of BPF token (added in the next patch),
and what sort of operations are allowed under BPF token. As such, we get
4 new mount options, each is a bit mask
- `delegate_cmds` allow to specify which bpf() syscall commands are
allowed with BPF token derived from this BPF FS instance;
- if BPF_MAP_CREATE command is allowed, `delegate_maps` specifies
a set of allowable BPF map types that could be created with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_progs` specifies
a set of allowable BPF program types that could be loaded with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_attachs` specifies
a set of allowable BPF program attach types that could be loaded with
BPF token; delegate_progs and delegate_attachs are meant to be used
together, as full BPF program type is, in general, determined
through both program type and program attach type.
Currently, these mount options accept the following forms of values:
- a special value "any", that enables all possible values of a given
bit set;
- numeric value (decimal or hexadecimal, determined by kernel
automatically) that specifies a bit mask value directly;
- all the values for a given mount option are combined, if specified
multiple times. E.g., `mount -t bpf nodev /path/to/mount -o
delegate_maps=0x1 -o delegate_maps=0x2` will result in a combined 0x3
mask.
Ideally, more convenient (for humans) symbolic form derived from
corresponding UAPI enums would be accepted (e.g., `-o
delegate_progs=kprobe|tracepoint`) and I intend to implement this, but
it requires a bunch of UAPI header churn, so I postponed it until this
feature lands upstream or at least there is a definite consensus that
this feature is acceptable and is going to make it, just to minimize
amount of wasted effort and not increase amount of non-essential code to
be reviewed.
Attentive reader will notice that BPF FS is now marked as
FS_USERNS_MOUNT, which theoretically makes it mountable inside non-init
user namespace as long as the process has sufficient *namespaced*
capabilities within that user namespace. But in reality we still
restrict BPF FS to be mountable only by processes with CAP_SYS_ADMIN *in
init userns* (extra check in bpf_fill_super()). FS_USERNS_MOUNT is added
to allow creating BPF FS context object (i.e., fsopen("bpf")) from
inside unprivileged process inside non-init userns, to capture that
userns as the owning userns. It will still be required to pass this
context object back to privileged process to instantiate and mount it.
This manipulation is important, because capturing non-init userns as the
owning userns of BPF FS instance (super block) allows to use that userns
to constraint BPF token to that userns later on (see next patch). So
creating BPF FS with delegation inside unprivileged userns will restrict
derived BPF token objects to only "work" inside that intended userns,
making it scoped to a intended "container". Also, setting these
delegation options requires capable(CAP_SYS_ADMIN), so unprivileged
process cannot set this up without involvement of a privileged process.
There is a set of selftests at the end of the patch set that simulates
this sequence of steps and validates that everything works as intended.
But careful review is requested to make sure there are no missed gaps in
the implementation and testing.
This somewhat subtle set of aspects is the result of previous
discussions ([0]) about various user namespace implications and
interactions with BPF token functionality and is necessary to contain
BPF token inside intended user namespace.
[0] https://lore.kernel.org/bpf/20230704-hochverdient-lehne-eeb9eeef785e@brauner/
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-3-andrii@kernel.org
Within BPF syscall handling code CAP_NET_ADMIN checks stand out a bit
compared to CAP_BPF and CAP_PERFMON checks. For the latter, CAP_BPF or
CAP_PERFMON are checked first, but if they are not set, CAP_SYS_ADMIN
takes over and grants whatever part of BPF syscall is required.
Similar kind of checks that involve CAP_NET_ADMIN are not so consistent.
One out of four uses does follow CAP_BPF/CAP_PERFMON model: during
BPF_PROG_LOAD, if the type of BPF program is "network-related" either
CAP_NET_ADMIN or CAP_SYS_ADMIN is required to proceed.
But in three other cases CAP_NET_ADMIN is required even if CAP_SYS_ADMIN
is set:
- when creating DEVMAP/XDKMAP/CPU_MAP maps;
- when attaching CGROUP_SKB programs;
- when handling BPF_PROG_QUERY command.
This patch is changing the latter three cases to follow BPF_PROG_LOAD
model, that is allowing to proceed under either CAP_NET_ADMIN or
CAP_SYS_ADMIN.
This also makes it cleaner in subsequent BPF token patches to switch
wholesomely to a generic bpf_token_capable(int cap) check, that always
falls back to CAP_SYS_ADMIN if requested capability is missing.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-2-andrii@kernel.org
The module requires the use of btf_ctx_access() to invoke
bpf_tracing_btf_ctx_access() from a module. This function is valuable for
implementing validation functions that ensure proper access to ctx.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-14-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Replace the static list of struct_ops types with per-btf struct_ops_tab to
enable dynamic registration.
Both bpf_dummy_ops and bpf_tcp_ca now utilize the registration function
instead of being listed in bpf_struct_ops_types.h.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-12-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
A value_type should consist of three components: refcnt, state, and data.
refcnt and state has been move to struct bpf_struct_ops_common_value to
make it easier to check the value type.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-11-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
To ensure that a module remains accessible whenever a struct_ops object of
a struct_ops type provided by the module is still in use.
struct bpf_struct_ops_map doesn't hold a refcnt to btf anymore since a
module will hold a refcnt to it's btf already. But, struct_ops programs are
different. They hold their associated btf, not the module since they need
only btf to assure their types (signatures).
However, verifier holds the refcnt of the associated module of a struct_ops
type temporarily when verify a struct_ops prog. Verifier needs the help
from the verifier operators (struct bpf_verifier_ops) provided by the owner
module to verify data access of a prog, provide information, and generate
code.
This patch also add a count of links (links_cnt) to bpf_struct_ops_map. It
avoids bpf_struct_ops_map_put_progs() from accessing btf after calling
module_put() in bpf_struct_ops_map_free().
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-10-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Pass the fd of a btf from the userspace to the bpf() syscall, and then
convert the fd into a btf. The btf is generated from the module that
defines the target BPF struct_ops type.
In order to inform the kernel about the module that defines the target
struct_ops type, the userspace program needs to provide a btf fd for the
respective module's btf. This btf contains essential information on the
types defined within the module, including the target struct_ops type.
A btf fd must be provided to the kernel for struct_ops maps and for the bpf
programs attached to those maps.
In the case of the bpf programs, the attach_btf_obj_fd parameter is passed
as part of the bpf_attr and is converted into a btf. This btf is then
stored in the prog->aux->attach_btf field. Here, it just let the verifier
access attach_btf directly.
In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd
of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a
btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added
for map_flags to indicate that the value of value_type_btf_obj_fd is set.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
This is a preparation for searching for struct_ops types from a specified
module. BTF is always btf_vmlinux now. This patch passes a pointer of BTF
to bpf_struct_ops_find_value() and bpf_struct_ops_find(). Once the new
registration API of struct_ops types is used, other BTFs besides
btf_vmlinux can also be passed to them.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-8-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Include btf object id (btf_obj_id) in bpf_map_info so that tools (ex:
bpftools struct_ops dump) know the correct btf from the kernel to look up
type information of struct_ops types.
Since struct_ops types can be defined and registered in a module. The
type information of a struct_ops type are defined in the btf of the
module defining it. The userspace tools need to know which btf is for
the module defining a struct_ops type.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-7-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Once new struct_ops can be registered from modules, btf_vmlinux is no
longer the only btf that struct_ops_map would face. st_map should remember
what btf it should use to get type information.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-6-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Maintain a registry of registered struct_ops types in the per-btf (module)
struct_ops_tab. This registry allows for easy lookup of struct_ops types
that are registered by a specific module.
It is a preparation work for supporting kernel module struct_ops in a
latter patch. Each struct_ops will be registered under its own kernel
module btf and will be stored in the newly added btf->struct_ops_tab. The
bpf verifier and bpf syscall (e.g. prog and map cmd) can find the
struct_ops and its btf type/size/id... information from
btf->struct_ops_tab.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-5-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Move some of members of bpf_struct_ops to bpf_struct_ops_desc. type_id is
unavailabe in bpf_struct_ops anymore. Modules should get it from the btf
received by kmod's init function.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Get ready to remove bpf_struct_ops_init() in the future. By using
BTF_ID_LIST, it is possible to gather type information while building
instead of runtime.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-3-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Move the majority of the code to bpf_struct_ops_init_one(), which can then
be utilized for the initialization of newly registered dynamically
allocated struct_ops types in the following patches.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-2-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
At the moment we don't store cookie for perf_event probes,
while we do that for the rest of the probes.
Adding cookie fields to struct bpf_link_info perf event
probe records:
perf_event.uprobe
perf_event.kprobe
perf_event.tracepoint
perf_event.perf_event
And the code to store that in bpf_link_info struct.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20240119110505.400573-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Current checking rules are structured to disallow alu on particular ptr
types explicitly, so default cases are allowed implicitly. This may lead
to newly added ptr types being allowed unexpectedly. So restruture it to
allow alu explicitly. The tradeoff is mainly a bit more cases added in
the switch. The following table from Eduard summarizes the rules:
| Pointer type | Arithmetics allowed |
|---------------------+---------------------|
| PTR_TO_CTX | yes |
| CONST_PTR_TO_MAP | conditionally |
| PTR_TO_MAP_VALUE | yes |
| PTR_TO_MAP_KEY | yes |
| PTR_TO_STACK | yes |
| PTR_TO_PACKET_META | yes |
| PTR_TO_PACKET | yes |
| PTR_TO_PACKET_END | no |
| PTR_TO_FLOW_KEYS | conditionally |
| PTR_TO_SOCKET | no |
| PTR_TO_SOCK_COMMON | no |
| PTR_TO_TCP_SOCK | no |
| PTR_TO_TP_BUFFER | yes |
| PTR_TO_XDP_SOCK | no |
| PTR_TO_BTF_ID | yes |
| PTR_TO_MEM | yes |
| PTR_TO_BUF | yes |
| PTR_TO_FUNC | yes |
| CONST_PTR_TO_DYNPTR | yes |
The refactored rules are equivalent to the original one. Note that
PTR_TO_FUNC and CONST_PTR_TO_DYNPTR are not reject here because: (1)
check_mem_access() rejects load/store on those ptrs, and those ptrs
with offset passing to calls are rejected check_func_arg_reg_off();
(2) someone may rely on the verifier not rejecting programs earily.
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240117094012.36798-1-sunhao.th@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
With patch set [1], precision backtracing supports register spill/fill
to/from the stack. The patch [2] allows initial imprecise register spill
with content 0. This is a common case for cpuv3 and lower for
initializing the stack variables with pattern
r1 = 0
*(u64 *)(r10 - 8) = r1
and the [2] has demonstrated good verification improvement.
For cpuv4, the initialization could be
*(u64 *)(r10 - 8) = 0
The current verifier marks the r10-8 contents with STACK_ZERO.
Similar to [2], let us permit the above insn to behave like
imprecise register spill which can reduce number of verified states.
The change is in function check_stack_write_fixed_off().
Before this patch, spilled zero will be marked as STACK_ZERO
which can provide precise values. In check_stack_write_var_off(),
STACK_ZERO will be maintained if writing a const zero
so later it can provide precise values if needed.
The above handling of '*(u64 *)(r10 - 8) = 0' as a spill
will have issues in check_stack_write_var_off() as the spill
will be converted to STACK_MISC and the precise value 0
is lost. To fix this issue, if the spill slots with const
zero and the BPF_ST write also with const zero, the spill slots
are preserved, which can later provide precise values
if needed. Without the change in check_stack_write_var_off(),
the test_verifier subtest 'BPF_ST_MEM stack imm zero, variable offset'
will fail.
I checked cpuv3 and cpuv4 with and without this patch with veristat.
There is no state change for cpuv3 since '*(u64 *)(r10 - 8) = 0'
is only generated with cpuv4.
For cpuv4:
$ ../veristat -C old.cpuv4.csv new.cpuv4.csv -e file,prog,insns,states -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------------------------------------ ------------------- --------- --------- --------------- ---------- ---------- -------------
local_storage_bench.bpf.linked3.o get_local 228 168 -60 (-26.32%) 17 14 -3 (-17.65%)
pyperf600_bpf_loop.bpf.linked3.o on_event 6066 4889 -1177 (-19.40%) 403 321 -82 (-20.35%)
test_cls_redirect.bpf.linked3.o cls_redirect 35483 35387 -96 (-0.27%) 2179 2177 -2 (-0.09%)
test_l4lb_noinline.bpf.linked3.o balancer_ingress 4494 4522 +28 (+0.62%) 217 219 +2 (+0.92%)
test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 1432 1455 +23 (+1.61%) 92 94 +2 (+2.17%)
test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3462 3458 -4 (-0.12%) 216 216 +0 (+0.00%)
verifier_iterating_callbacks.bpf.linked3.o widening 52 41 -11 (-21.15%) 4 3 -1 (-25.00%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 12412 11719 -693 (-5.58%) 345 330 -15 (-4.35%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 12478 11794 -684 (-5.48%) 346 331 -15 (-4.34%)
test_l4lb_noinline and test_l4lb_noinline_dynptr has minor regression, but
pyperf600_bpf_loop and local_storage_bench gets pretty good improvement.
[1] https://lore.kernel.org/all/20231205184248.1502704-1-andrii@kernel.org/
[2] https://lore.kernel.org/all/20231205184248.1502704-9-andrii@kernel.org/
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240110051348.2737007-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, when a scalar bounded register is spilled to the stack, its
ID is preserved, but only if was already assigned, i.e. if this register
was MOVed before.
Assign an ID on spill if none is set, so that equal scalars could be
tracked if a register is spilled to the stack and filled into another
register.
One test is adjusted to reflect the change in register IDs.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-9-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Put calculation of the register value width into a dedicated function.
This function will also be used in a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Link: https://lore.kernel.org/r/20240108205209.838365-8-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract the common code that generates a register ID for src_reg before
MOV if needed into a new function. This function will also be used in
a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-7-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Current infinite loops detection mechanism is speculative:
- first, states_maybe_looping() check is done which simply does memcmp
for R1-R10 in current frame;
- second, states_equal(..., exact=false) is called. With exact=false
states_equal() would compare scalars for equality only if in old
state scalar has precision mark.
Such logic might be problematic if compiler makes some unlucky stack
spill/fill decisions. An artificial example of a false positive looks
as follows:
r0 = ... unknown scalar ...
r0 &= 0xff;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
loop:
r0 = *(u64 *)(r10 - 8);
if r0 > 10 goto exit_;
r0 += 1;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
goto loop;
This commit updates call to states_equal to use exact=true, forcing
all scalar comparisons to be exact.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-3-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add ability to iterate multiple decl_tag types pointed to the same
function argument. Use this to support multiple __arg_xxx tags per
global subprog argument.
We leave btf_find_decl_tag_value() intact, but change its implementation
to use a new btf_find_next_decl_tag() which can be straightforwardly
used to find next BTF type ID of a matching btf_decl_tag type.
btf_prepare_func_args() is switched from btf_find_decl_tag_value() to
btf_find_next_decl_tag() to gain multiple tags per argument support.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240105000909.2818934-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add btf_arg_tag flags enum to be able to record multiple tags per
argument. Also streamline pointer argument processing some more.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240105000909.2818934-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move scalar arg processing in btf_prepare_func_args() after all pointer
arg processing is done. This makes it easier to do validation. One
example of unintended behavior right now is ability to specify
__arg_nonnull for integer/enum arguments. This patch fixes this.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240105000909.2818934-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The motivation of inlining bpf_kptr_xchg() comes from the performance
profiling of bpf memory allocator benchmark. The benchmark uses
bpf_kptr_xchg() to stash the allocated objects and to pop the stashed
objects for free. After inling bpf_kptr_xchg(), the performance for
object free on 8-CPUs VM increases about 2%~10%. The inline also has
downside: both the kasan and kcsan checks on the pointer will be
unavailable.
bpf_kptr_xchg() can be inlined by converting the calling of
bpf_kptr_xchg() into an atomic_xchg() instruction. But the conversion
depends on two conditions:
1) JIT backend supports atomic_xchg() on pointer-sized word
2) For the specific arch, the implementation of xchg is the same as
atomic_xchg() on pointer-sized words.
It seems most 64-bit JIT backends satisfies these two conditions. But
as a precaution, defining a weak function bpf_jit_supports_ptr_xchg()
to state whether such conversion is safe and only supporting inline for
64-bit host.
For x86-64, it supports BPF_XCHG atomic operation and both xchg() and
atomic_xchg() use arch_xchg() to implement the exchange, so enabling the
inline of bpf_kptr_xchg() on x86-64 first.
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20240105104819.3916743-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add enforcement of expected types for context arguments tagged with
arg:ctx (__arg_ctx) tag.
First, any program type will accept generic `void *` context type when
combined with __arg_ctx tag.
Besides accepting "canonical" struct names and `void *`, for a bunch of
program types for which program context is actually a named struct, we
allows a bunch of pragmatic exceptions to match real-world and expected
usage:
- for both kprobes and perf_event we allow `bpf_user_pt_regs_t *` as
canonical context argument type, where `bpf_user_pt_regs_t` is a
*typedef*, not a struct;
- for kprobes, we also always accept `struct pt_regs *`, as that's what
actually is passed as a context to any kprobe program;
- for perf_event, we resolve typedefs (unless it's `bpf_user_pt_regs_t`)
down to actual struct type and accept `struct pt_regs *`, or
`struct user_pt_regs *`, or `struct user_regs_struct *`, depending
on the actual struct type kernel architecture points `bpf_user_pt_regs_t`
typedef to; otherwise, canonical `struct bpf_perf_event_data *` is
expected;
- for raw_tp/raw_tp.w programs, `u64/long *` are accepted, as that's
what's expected with BPF_PROG() usage; otherwise, canonical
`struct bpf_raw_tracepoint_args *` is expected;
- tp_btf supports both `struct bpf_raw_tracepoint_args *` and `u64 *`
formats, both are coded as expections as tp_btf is actually a TRACING
program type, which has no canonical context type;
- iterator programs accept `struct bpf_iter__xxx *` structs, currently
with no further iterator-type specific enforcement;
- fentry/fexit/fmod_ret/lsm/struct_ops all accept `u64 *`;
- classic tracepoint programs, as well as syscall and freplace
programs allow any user-provided type.
In all other cases kernel will enforce exact match of struct name to
expected canonical type. And if user-provided type doesn't match that
expectation, verifier will emit helpful message with expected type name.
Note a bit unnatural way the check is done after processing all the
arguments. This is done to avoid conflict between bpf and bpf-next
trees. Once trees converge, a small follow up patch will place a simple
btf_validate_prog_ctx_type() check into a proper ARG_PTR_TO_CTX branch
(which bpf-next tree patch refactored already), removing duplicated
arg:ctx detection logic.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240118033143.3384355-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor btf_get_prog_ctx_type() a bit to allow reuse of
bpf_ctx_convert_map logic in more than one places. Simplify interface by
returning btf_type instead of btf_member (field reference in BTF).
To do the above we need to touch and start untangling
btf_translate_to_vmlinux() implementation. We do the bare minimum to
not regress anything for btf_translate_to_vmlinux(), but its
implementation is very questionable for what it claims to be doing.
Mapping kfunc argument types to kernel corresponding types conceptually
is quite different from recognizing program context types. Fixing this
is out of scope for this change though.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240118033143.3384355-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Core & protocols
----------------
- Analyze and reorganize core networking structs (socks, netdev,
netns, mibs) to optimize cacheline consumption and set up
build time warnings to safeguard against future header changes.
This improves TCP performances with many concurrent connections
up to 40%.
- Add page-pool netlink-based introspection, exposing the
memory usage and recycling stats. This helps indentify
bad PP users and possible leaks.
- Refine TCP/DCCP source port selection to no longer favor even
source port at connect() time when IP_LOCAL_PORT_RANGE is set.
This lowers the time taken by connect() for hosts having
many active connections to the same destination.
- Refactor the TCP bind conflict code, shrinking related socket
structs.
- Refactor TCP SYN-Cookie handling, as a preparation step to
allow arbitrary SYN-Cookie processing via eBPF.
- Tune optmem_max for 0-copy usage, increasing the default value
to 128KB and namespecifying it.
- Allow coalescing for cloned skbs coming from page pools, improving
RX performances with some common configurations.
- Reduce extension header parsing overhead at GRO time.
- Add bridge MDB bulk deletion support, allowing user-space to
request the deletion of matching entries.
- Reorder nftables struct members, to keep data accessed by the
datapath first.
- Introduce TC block ports tracking and use. This allows supporting
multicast-like behavior at the TC layer.
- Remove UAPI support for retired TC qdiscs (dsmark, CBQ and ATM) and
classifiers (RSVP and tcindex).
- More data-race annotations.
- Extend the diag interface to dump TCP bound-only sockets.
- Conditional notification of events for TC qdisc class and actions.
- Support for WPAN dynamic associations with nearby devices, to form
a sub-network using a specific PAN ID.
- Implement SMCv2.1 virtual ISM device support.
- Add support for Batman-avd mulicast packet type.
BPF
---
- Tons of verifier improvements:
- BPF register bounds logic and range support along with a large
test suite
- log improvements
- complete precision tracking support for register spills
- track aligned STACK_ZERO cases as imprecise spilled registers. It
improves the verifier "instructions processed" metric from single
digit to 50-60% for some programs
- support for user's global BPF subprogram arguments with few
commonly requested annotations for a better developer experience
- support tracking of BPF_JNE which helps cases when the compiler
transforms (unsigned) "a > 0" into "if a == 0 goto xxx" and the
like
- several fixes
- Add initial TX metadata implementation for AF_XDP with support in
mlx5 and stmmac drivers. Two types of offloads are supported right
now, that is, TX timestamp and TX checksum offload.
- Fix kCFI bugs in BPF all forms of indirect calls from BPF into
kernel and from kernel into BPF work with CFI enabled. This allows
BPF to work with CONFIG_FINEIBT=y.
- Change BPF verifier logic to validate global subprograms lazily
instead of unconditionally before the main program, so they can be
guarded using BPF CO-RE techniques.
- Support uid/gid options when mounting bpffs.
- Add a new kfunc which acquires the associated cgroup of a task
within a specific cgroup v1 hierarchy where the latter is identified
by its id.
- Extend verifier to allow bpf_refcount_acquire() of a map value field
obtained via direct load which is a use-case needed in sched_ext.
- Add BPF link_info support for uprobe multi link along with bpftool
integration for the latter.
- Support for VLAN tag in XDP hints.
- Remove deprecated bpfilter kernel leftovers given the project
is developed in user-space (https://github.com/facebook/bpfilter).
Misc
----
- Support for parellel TC self-tests execution.
- Increase MPTCP self-tests coverage.
- Updated the bridge documentation, including several so-far
undocumented features.
- Convert all the net self-tests to run in unique netns, to
avoid random failures due to conflict and allow concurrent
runs.
- Add TCP-AO self-tests.
- Add kunit tests for both cfg80211 and mac80211.
- Autogenerate Netlink families documentation from YAML spec.
- Add yml-gen support for fixed headers and recursive nests, the
tool can now generate user-space code for all genetlink families
for which we have specs.
- A bunch of additional module descriptions fixes.
- Catch incorrect freeing of pages belonging to a page pool.
Driver API
----------
- Rust abstractions for network PHY drivers; do not cover yet the
full C API, but already allow implementing functional PHY drivers
in rust.
- Introduce queue and NAPI support in the netdev Netlink interface,
allowing complete access to the device <> NAPIs <> queues
relationship.
- Introduce notifications filtering for devlink to allow control
application scale to thousands of instances.
- Improve PHY validation, requesting rate matching information for
each ethtool link mode supported by both the PHY and host.
- Add support for ethtool symmetric-xor RSS hash.
- ACPI based Wifi band RFI (WBRF) mitigation feature for the AMD
platform.
- Expose pin fractional frequency offset value over new DPLL generic
netlink attribute.
- Convert older drivers to platform remove callback returning void.
- Add support for PHY package MMD read/write.
New hardware / drivers
----------------------
- Ethernet:
- Octeon CN10K devices
- Broadcom 5760X P7
- Qualcomm SM8550 SoC
- Texas Instrument DP83TG720S PHY
- Bluetooth:
- IMC Networks Bluetooth radio
Removed
-------
- WiFi:
- libertas 16-bit PCMCIA support
- Atmel at76c50x drivers
- HostAP ISA/PCMCIA style 802.11b driver
- zd1201 802.11b USB dongles
- Orinoco ISA/PCMCIA 802.11b driver
- Aviator/Raytheon driver
- Planet WL3501 driver
- RNDIS USB 802.11b driver
Drivers
-------
- Ethernet high-speed NICs:
- Intel (100G, ice, idpf):
- allow one by one port representors creation and removal
- add temperature and clock information reporting
- add get/set for ethtool's header split ringparam
- add again FW logging
- adds support switchdev hardware packet mirroring
- iavf: implement symmetric-xor RSS hash
- igc: add support for concurrent physical and free-running timers
- i40e: increase the allowable descriptors
- nVidia/Mellanox:
- Preparation for Socket-Direct multi-dev netdev. That will allow
in future releases combining multiple PFs devices attached to
different NUMA nodes under the same netdev
- Broadcom (bnxt):
- TX completion handling improvements
- add basic ntuple filter support
- reduce MSIX vectors usage for MQPRIO offload
- add VXLAN support, USO offload and TX coalesce completion for P7
- Marvell Octeon EP:
- xmit-more support
- add PF-VF mailbox support and use it for FW notifications for VFs
- Wangxun (ngbe/txgbe):
- implement ethtool functions to operate pause param, ring param,
coalesce channel number and msglevel
- Netronome/Corigine (nfp):
- add flow-steering support
- support UDP segmentation offload
- Ethernet NICs embedded, slower, virtual:
- Xilinx AXI: remove duplicate DMA code adopting the dma engine driver
- stmmac: add support for HW-accelerated VLAN stripping
- TI AM654x sw: add mqprio, frame preemption & coalescing
- gve: add support for non-4k page sizes.
- virtio-net: support dynamic coalescing moderation
- nVidia/Mellanox Ethernet datacenter switches:
- allow firmware upgrade without a reboot
- more flexible support for bridge flooding via the compressed
FID flooding mode
- Ethernet embedded switches:
- Microchip:
- fine-tune flow control and speed configurations in KSZ8xxx
- KSZ88X3: enable setting rmii reference
- Renesas:
- add jumbo frames support
- Marvell:
- 88E6xxx: add "eth-mac" and "rmon" stats support
- Ethernet PHYs:
- aquantia: add firmware load support
- at803x: refactor the driver to simplify adding support for more
chip variants
- NXP C45 TJA11xx: Add MACsec offload support
- Wifi:
- MediaTek (mt76):
- NVMEM EEPROM improvements
- mt7996 Extremely High Throughput (EHT) improvements
- mt7996 Wireless Ethernet Dispatcher (WED) support
- mt7996 36-bit DMA support
- Qualcomm (ath12k):
- support for a single MSI vector
- WCN7850: support AP mode
- Intel (iwlwifi):
- new debugfs file fw_dbg_clear
- allow concurrent P2P operation on DFS channels
- Bluetooth:
- QCA2066: support HFP offload
- ISO: more broadcast-related improvements
- NXP: better recovery in case receiver/transmitter get out of sync
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmWdamsSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkGC4P/2xjLzdw22ckSssuE9ORbGko9SNjnqHk
PQh1E+26BHiCg5KB8VvzMsL78E79MRNXEattSW+1g7dhCvln3oi+Vd0WkdRkgt35
98Iv18zLbbwFAJeyKvmLAPAkQkMLtVj19QILBBRrugF+egEZgVSE3JBcTAiKv2ZQ
HzkabA171Ri6LpCcEEtY5XuaKvimGnGzF8YMFf8rX0wtqd2p5kbY9aMe47WAGxvU
Vf9548XvH+A5yVH2/4/gujtUOpA/RHuhuCMb+oo0cZ+VCC1x9MGzoXzj6r87OTkf
k2W1whNzcGoin92f+9Lk1JYMuiGKBH4QVaDdNXJnYFSJWPTE7RvRsPzYTSD4/GzK
yEZbzSJXpy/2vDQm16NoAxl7evRs8Sorzkw4LQRviZHI/5SAkK2ZQiCK5CO8QSYy
C1LELcV5kn6Foe24xWnrWLjAGug9oJnYoGPMU5gvPmFJMvUMXqm5rmbBgUWL5Rxw
q1M6gVzabCyWUy6z2G2vaqW2ZntNVvCkdsLtIX0XZkcTzNoP0MA+TuhyGz4wbiuo
PeyQp/mbGnDgCYggqKIA0YWrTVxkhFrKN520cbO8qXBQytV9oFbM/0/+C0/r/5WX
pL1JVzLrh6l5ME7EIQfha8UOF9j8q4ueSwb40P3AR2NaZiDABM0zfUZ6+sx+91WF
ucqPEcZB5cRE
=1bW6
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Paolo Abeni:
"The most interesting thing is probably the networking structs
reorganization and a significant amount of changes is around
self-tests.
Core & protocols:
- Analyze and reorganize core networking structs (socks, netdev,
netns, mibs) to optimize cacheline consumption and set up build
time warnings to safeguard against future header changes
This improves TCP performances with many concurrent connections up
to 40%
- Add page-pool netlink-based introspection, exposing the memory
usage and recycling stats. This helps indentify bad PP users and
possible leaks
- Refine TCP/DCCP source port selection to no longer favor even
source port at connect() time when IP_LOCAL_PORT_RANGE is set. This
lowers the time taken by connect() for hosts having many active
connections to the same destination
- Refactor the TCP bind conflict code, shrinking related socket
structs
- Refactor TCP SYN-Cookie handling, as a preparation step to allow
arbitrary SYN-Cookie processing via eBPF
- Tune optmem_max for 0-copy usage, increasing the default value to
128KB and namespecifying it
- Allow coalescing for cloned skbs coming from page pools, improving
RX performances with some common configurations
- Reduce extension header parsing overhead at GRO time
- Add bridge MDB bulk deletion support, allowing user-space to
request the deletion of matching entries
- Reorder nftables struct members, to keep data accessed by the
datapath first
- Introduce TC block ports tracking and use. This allows supporting
multicast-like behavior at the TC layer
- Remove UAPI support for retired TC qdiscs (dsmark, CBQ and ATM) and
classifiers (RSVP and tcindex)
- More data-race annotations
- Extend the diag interface to dump TCP bound-only sockets
- Conditional notification of events for TC qdisc class and actions
- Support for WPAN dynamic associations with nearby devices, to form
a sub-network using a specific PAN ID
- Implement SMCv2.1 virtual ISM device support
- Add support for Batman-avd mulicast packet type
BPF:
- Tons of verifier improvements:
- BPF register bounds logic and range support along with a large
test suite
- log improvements
- complete precision tracking support for register spills
- track aligned STACK_ZERO cases as imprecise spilled registers.
This improves the verifier "instructions processed" metric from
single digit to 50-60% for some programs
- support for user's global BPF subprogram arguments with few
commonly requested annotations for a better developer
experience
- support tracking of BPF_JNE which helps cases when the compiler
transforms (unsigned) "a > 0" into "if a == 0 goto xxx" and the
like
- several fixes
- Add initial TX metadata implementation for AF_XDP with support in
mlx5 and stmmac drivers. Two types of offloads are supported right
now, that is, TX timestamp and TX checksum offload
- Fix kCFI bugs in BPF all forms of indirect calls from BPF into
kernel and from kernel into BPF work with CFI enabled. This allows
BPF to work with CONFIG_FINEIBT=y
- Change BPF verifier logic to validate global subprograms lazily
instead of unconditionally before the main program, so they can be
guarded using BPF CO-RE techniques
- Support uid/gid options when mounting bpffs
- Add a new kfunc which acquires the associated cgroup of a task
within a specific cgroup v1 hierarchy where the latter is
identified by its id
- Extend verifier to allow bpf_refcount_acquire() of a map value
field obtained via direct load which is a use-case needed in
sched_ext
- Add BPF link_info support for uprobe multi link along with bpftool
integration for the latter
- Support for VLAN tag in XDP hints
- Remove deprecated bpfilter kernel leftovers given the project is
developed in user-space (https://github.com/facebook/bpfilter)
Misc:
- Support for parellel TC self-tests execution
- Increase MPTCP self-tests coverage
- Updated the bridge documentation, including several so-far
undocumented features
- Convert all the net self-tests to run in unique netns, to avoid
random failures due to conflict and allow concurrent runs
- Add TCP-AO self-tests
- Add kunit tests for both cfg80211 and mac80211
- Autogenerate Netlink families documentation from YAML spec
- Add yml-gen support for fixed headers and recursive nests, the tool
can now generate user-space code for all genetlink families for
which we have specs
- A bunch of additional module descriptions fixes
- Catch incorrect freeing of pages belonging to a page pool
Driver API:
- Rust abstractions for network PHY drivers; do not cover yet the
full C API, but already allow implementing functional PHY drivers
in rust
- Introduce queue and NAPI support in the netdev Netlink interface,
allowing complete access to the device <> NAPIs <> queues
relationship
- Introduce notifications filtering for devlink to allow control
application scale to thousands of instances
- Improve PHY validation, requesting rate matching information for
each ethtool link mode supported by both the PHY and host
- Add support for ethtool symmetric-xor RSS hash
- ACPI based Wifi band RFI (WBRF) mitigation feature for the AMD
platform
- Expose pin fractional frequency offset value over new DPLL generic
netlink attribute
- Convert older drivers to platform remove callback returning void
- Add support for PHY package MMD read/write
New hardware / drivers:
- Ethernet:
- Octeon CN10K devices
- Broadcom 5760X P7
- Qualcomm SM8550 SoC
- Texas Instrument DP83TG720S PHY
- Bluetooth:
- IMC Networks Bluetooth radio
Removed:
- WiFi:
- libertas 16-bit PCMCIA support
- Atmel at76c50x drivers
- HostAP ISA/PCMCIA style 802.11b driver
- zd1201 802.11b USB dongles
- Orinoco ISA/PCMCIA 802.11b driver
- Aviator/Raytheon driver
- Planet WL3501 driver
- RNDIS USB 802.11b driver
Driver updates:
- Ethernet high-speed NICs:
- Intel (100G, ice, idpf):
- allow one by one port representors creation and removal
- add temperature and clock information reporting
- add get/set for ethtool's header split ringparam
- add again FW logging
- adds support switchdev hardware packet mirroring
- iavf: implement symmetric-xor RSS hash
- igc: add support for concurrent physical and free-running
timers
- i40e: increase the allowable descriptors
- nVidia/Mellanox:
- Preparation for Socket-Direct multi-dev netdev. That will
allow in future releases combining multiple PFs devices
attached to different NUMA nodes under the same netdev
- Broadcom (bnxt):
- TX completion handling improvements
- add basic ntuple filter support
- reduce MSIX vectors usage for MQPRIO offload
- add VXLAN support, USO offload and TX coalesce completion
for P7
- Marvell Octeon EP:
- xmit-more support
- add PF-VF mailbox support and use it for FW notifications
for VFs
- Wangxun (ngbe/txgbe):
- implement ethtool functions to operate pause param, ring
param, coalesce channel number and msglevel
- Netronome/Corigine (nfp):
- add flow-steering support
- support UDP segmentation offload
- Ethernet NICs embedded, slower, virtual:
- Xilinx AXI: remove duplicate DMA code adopting the dma engine
driver
- stmmac: add support for HW-accelerated VLAN stripping
- TI AM654x sw: add mqprio, frame preemption & coalescing
- gve: add support for non-4k page sizes.
- virtio-net: support dynamic coalescing moderation
- nVidia/Mellanox Ethernet datacenter switches:
- allow firmware upgrade without a reboot
- more flexible support for bridge flooding via the compressed
FID flooding mode
- Ethernet embedded switches:
- Microchip:
- fine-tune flow control and speed configurations in KSZ8xxx
- KSZ88X3: enable setting rmii reference
- Renesas:
- add jumbo frames support
- Marvell:
- 88E6xxx: add "eth-mac" and "rmon" stats support
- Ethernet PHYs:
- aquantia: add firmware load support
- at803x: refactor the driver to simplify adding support for more
chip variants
- NXP C45 TJA11xx: Add MACsec offload support
- Wifi:
- MediaTek (mt76):
- NVMEM EEPROM improvements
- mt7996 Extremely High Throughput (EHT) improvements
- mt7996 Wireless Ethernet Dispatcher (WED) support
- mt7996 36-bit DMA support
- Qualcomm (ath12k):
- support for a single MSI vector
- WCN7850: support AP mode
- Intel (iwlwifi):
- new debugfs file fw_dbg_clear
- allow concurrent P2P operation on DFS channels
- Bluetooth:
- QCA2066: support HFP offload
- ISO: more broadcast-related improvements
- NXP: better recovery in case receiver/transmitter get out of sync"
* tag 'net-next-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1714 commits)
lan78xx: remove redundant statement in lan78xx_get_eee
lan743x: remove redundant statement in lan743x_ethtool_get_eee
bnxt_en: Fix RCU locking for ntuple filters in bnxt_rx_flow_steer()
bnxt_en: Fix RCU locking for ntuple filters in bnxt_srxclsrldel()
bnxt_en: Remove unneeded variable in bnxt_hwrm_clear_vnic_filter()
tcp: Revert no longer abort SYN_SENT when receiving some ICMP
Revert "mlx5 updates 2023-12-20"
Revert "net: stmmac: Enable Per DMA Channel interrupt"
ipvlan: Remove usage of the deprecated ida_simple_xx() API
ipvlan: Fix a typo in a comment
net/sched: Remove ipt action tests
net: stmmac: Use interrupt mode INTM=1 for per channel irq
net: stmmac: Add support for TX/RX channel interrupt
net: stmmac: Make MSI interrupt routine generic
dt-bindings: net: snps,dwmac: per channel irq
net: phy: at803x: make read_status more generic
net: phy: at803x: add support for cdt cross short test for qca808x
net: phy: at803x: refactor qca808x cable test get status function
net: phy: at803x: generalize cdt fault length function
net: ethernet: cortina: Drop TSO support
...
The following case can cause a crash due to missing attach_btf:
1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3
In the end we have:
- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one
BUG: kernel NULL pointer dereference, address: 0000000000000058
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15b/0x430
? fixup_exception+0x22/0x330
? exc_page_fault+0x6f/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_tracing_prog_attach+0x279/0x560
? btf_obj_id+0x5/0x10
bpf_tracing_prog_attach+0x439/0x560
__sys_bpf+0x1cf4/0x2de0
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x41/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Return -EINVAL in this situation.
Fixes: f3a9507554 ("bpf: Allow trampoline re-attach for tracing and lsm programs")
Cc: stable@vger.kernel.org
Signed-off-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, it's not allowed to attach an fentry/fexit prog to another
one fentry/fexit. At the same time it's not uncommon to see a tracing
program with lots of logic in use, and the attachment limitation
prevents usage of fentry/fexit for performance analysis (e.g. with
"bpftool prog profile" command) in this case. An example could be
falcosecurity libs project that uses tp_btf tracing programs.
Following the corresponding discussion [1], the reason for that is to
avoid tracing progs call cycles without introducing more complex
solutions. But currently it seems impossible to load and attach tracing
programs in a way that will form such a cycle. The limitation is coming
from the fact that attach_prog_fd is specified at the prog load (thus
making it impossible to attach to a program loaded after it in this
way), as well as tracing progs not implementing link_detach.
Replace "no same type" requirement with verification that no more than
one level of attachment nesting is allowed. In this way only one
fentry/fexit program could be attached to another fentry/fexit to cover
profiling use case, and still no cycle could be formed. To implement,
add a new field into bpf_prog_aux to track nested attachment for tracing
programs.
[1]: https://lore.kernel.org/bpf/20191108064039.2041889-16-ast@kernel.org/
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-2-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For percpu data structure allocation with bpf_global_percpu_ma,
the maximum data size is 4K. But for a system with large
number of cpus, bigger data size (e.g., 2K, 4K) might consume
a lot of memory. For example, the percpu memory consumption
with unit size 2K and 1024 cpus will be 2K * 1K * 1k = 2GB
memory.
We should discourage such usage. Let us limit the maximum data
size to be 512 for bpf_global_percpu_ma allocation.
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031801.1290841-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, refill low/high marks are set with the assumption
of normal non-percpu memory allocation. For example, for
an allocation size 256, for non-percpu memory allocation,
low mark is 32 and high mark is 96, resulting in the
batch allocation of 48 elements and the allocated memory
will be 48 * 256 = 12KB for this particular cpu.
Assuming an 128-cpu system, the total memory consumption
across all cpus will be 12K * 128 = 1.5MB memory.
This might be okay for non-percpu allocation, but may not be
good for percpu allocation, which will consume 1.5MB * 128 = 192MB
memory in the worst case if every cpu has a chance of memory
allocation.
In practice, percpu allocation is very rare compared to
non-percpu allocation. So let us have smaller low/high marks
which can avoid unnecessary memory consumption.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031755.1289671-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Typically for percpu map element or data structure, once allocated,
most operations are lookup or in-place update. Deletion are really
rare. Currently, for percpu data strcture, 4 elements will be
refilled if the size is <= 256. Let us just do with one element
for percpu data. For example, for size 256 and 128 cpus, the
potential saving will be 3 * 256 * 128 * 128 = 12MB.
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031750.1289290-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 41a5db8d81 ("Add support for non-fix-size percpu mem allocation")
added support for non-fix-size percpu memory allocation.
Such allocation will allocate percpu memory for all buckets on all
cpus and the memory consumption is in the order to quadratic.
For example, let us say, 4 cpus, unit size 16 bytes, so each
cpu has 16 * 4 = 64 bytes, with 4 cpus, total will be 64 * 4 = 256 bytes.
Then let us say, 8 cpus with the same unit size, each cpu
has 16 * 8 = 128 bytes, with 8 cpus, total will be 128 * 8 = 1024 bytes.
So if the number of cpus doubles, the number of memory consumption
will be 4 times. So for a system with large number of cpus, the
memory consumption goes up quickly with quadratic order.
For example, for 4KB percpu allocation, 128 cpus. The total memory
consumption will 4KB * 128 * 128 = 64MB. Things will become
worse if the number of cpus is bigger (e.g., 512, 1024, etc.)
In Commit 41a5db8d81, the non-fix-size percpu memory allocation is
done in boot time, so for system with large number of cpus, the initial
percpu memory consumption is very visible. For example, for 128 cpu
system, the total percpu memory allocation will be at least
(16 + 32 + 64 + 96 + 128 + 196 + 256 + 512 + 1024 + 2048 + 4096)
* 128 * 128 = ~138MB.
which is pretty big. It will be even bigger for larger number of cpus.
Note that the current prefill also allocates 4 entries if the unit size
is less than 256. So on top of 138MB memory consumption, this will
add more consumption with
3 * (16 + 32 + 64 + 96 + 128 + 196 + 256) * 128 * 128 = ~38MB.
Next patch will try to reduce this memory consumption.
Later on, Commit 1fda5bb66a ("bpf: Do not allocate percpu memory
at init stage") moved the non-fix-size percpu memory allocation
to bpf verificaiton stage. Once a particular bpf_percpu_obj_new()
is called by bpf program, the memory allocator will try to fill in
the cache with all sizes, causing the same amount of percpu memory
consumption as in the boot stage.
To reduce the initial percpu memory consumption for non-fix-size
percpu memory allocation, instead of filling the cache with all
supported allocation sizes, this patch intends to fill the cache
only for the requested size. As typically users will not use large
percpu data structure, this can save memory significantly.
For example, the allocation size is 64 bytes with 128 cpus.
Then total percpu memory amount will be 64 * 128 * 128 = 1MB,
much less than previous 138MB.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031745.1289082-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The objcg is a bpf_mem_alloc level property since all bpf_mem_cache's
are with the same objcg. This patch made such a property explicit.
The next patch will use this property to save and restore objcg
for percpu unit allocator.
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031739.1288590-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, for percpu memory allocation, say if the user
requests allocation size to be 32 bytes, the actually
calculated size will be 40 bytes and it further rounds
to 64 bytes, and eventually 64 bytes are allocated,
wasting 32-byte memory.
Change bpf_mem_alloc() to calculate the cache index
based on the user-provided allocation size so unnecessary
extra memory can be avoided.
Suggested-by: Hou Tao <houtao1@huawei.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031734.1288400-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch simplifies the verification of size arguments associated to
pointer arguments to helpers and kfuncs. Many helpers take a pointer
argument followed by the size of the memory access performed to be
performed through that pointer. Before this patch, the handling of the
size argument in check_mem_size_reg() was confusing and wasteful: if the
size register's lower bound was 0, then the verification was done twice:
once considering the size of the access to be the lower-bound of the
respective argument, and once considering the upper bound (even if the
two are the same). The upper bound checking is a super-set of the
lower-bound checking(*), except: the only point of the lower-bound check
is to handle the case where zero-sized-accesses are explicitly not
allowed and the lower-bound is zero. This static condition is now
checked explicitly, replacing a much more complex, expensive and
confusing verification call to check_helper_mem_access().
Error messages change in this patch. Before, messages about illegal
zero-size accesses depended on the type of the pointer and on other
conditions, and sometimes the message was plain wrong: in some tests
that changed you'll see that the old message was something like "R1 min
value is outside of the allowed memory range", where R1 is the pointer
register; the error was wrongly claiming that the pointer was bad
instead of the size being bad. Other times the information that the size
came for a register with a possible range of values was wrong, and the
error presented the size as a fixed zero. Now the errors refer to the
right register. However, the old error messages did contain useful
information about the pointer register which is now lost; recovering
this information was deemed not important enough.
(*) Besides standing to reason that the checks for a bigger size access
are a super-set of the checks for a smaller size access, I have also
mechanically verified this by reading the code for all types of
pointers. I could convince myself that it's true for all but
PTR_TO_BTF_ID (check_ptr_to_btf_access). There, simply looking
line-by-line does not immediately prove what we want. If anyone has any
qualms, let me know.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231221232225.568730-2-andreimatei1@gmail.com
by moving cond_resched_rcu() to rcupdate_wait.h, we can kill another big
sched.h dependency.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Although it does not seem to have any untoward side-effects, the use
of ';' to separate to assignments seems more appropriate than ','.
Flagged by clang-17 -Wcomma
No functional change intended. Compile tested only.
Signed-off-by: Simon Horman <horms@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/bpf/20231221-bpf-verifier-comma-v1-1-cde2530912e9@kernel.org
For a clean, conflict-free revert of the token-related patches in commit
d17aff807f ("Revert BPF token-related functionality"), the bpf fs commit
750e785796 ("bpf: Support uid and gid when mounting bpffs") was undone
temporarily as well.
This patch manually re-adds the functionality from the original one back
in 750e785796, no other functional changes intended.
Testing:
# mount -t bpf -o uid=65534,gid=65534 bpffs ./foo
# ls -la . | grep foo
drwxrwxrwt 2 nobody nogroup 0 Dec 20 13:16 foo
# mount -t bpf
bpffs on /root/foo type bpf (rw,relatime,uid=65534,gid=65534)
Also, passing invalid arguments for uid/gid are properly rejected as expected.
Fixes: d17aff807f ("Revert BPF token-related functionality")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Cc: Jie Jiang <jiejiang@chromium.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/bpf/20231220133805.20953-1-daniel@iogearbox.net
At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().
The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.
Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.
A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.
As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.
Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:
kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s
After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:
kmalloc: alloc 11.01 ± 0.03M/s free 32.42 ± 0.48M/s
percpu: alloc 12.84 ± 0.12M/s free 35.24 ± 0.23M/s
After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.
Fixes: 9077fc228f ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add ability to pass a pointer to dynptr into global functions.
This allows to have global subprogs that accept and work with generic
dynptrs that are created by caller. Dynptr argument is detected based on
the name of a struct type, if it's "bpf_dynptr", it's assumed to be
a proper dynptr pointer. Both actual struct and forward struct
declaration types are supported.
This is conceptually exactly the same semantics as
bpf_user_ringbuf_drain()'s use of dynptr to pass a variable-sized
pointer to ringbuf record. So we heavily rely on CONST_PTR_TO_DYNPTR
bits of already existing logic in the verifier.
During global subprog validation, we mark such CONST_PTR_TO_DYNPTR as
having LOCAL type, as that's the most unassuming type of dynptr and it
doesn't have any special helpers that can try to free or acquire extra
references (unlike skb, xdp, or ringbuf dynptr). So that seems like a safe
"choice" to make from correctness standpoint. It's still possible to
pass any type of dynptr to such subprog, though, because generic dynptr
helpers, like getting data/slice pointers, read/write memory copying
routines, dynptr adjustment and getter routines all work correctly with
any type of dynptr.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support for annotating global BPF subprog arguments to provide more
information about expected semantics of the argument. Currently,
verifier relies purely on argument's BTF type information, and supports
three general use cases: scalar, pointer-to-context, and
pointer-to-fixed-size-memory.
Scalar and pointer-to-fixed-mem work well in practice and are quite
natural to use. But pointer-to-context is a bit problematic, as typical
BPF users don't realize that they need to use a special type name to
signal to verifier that argument is not just some pointer, but actually
a PTR_TO_CTX. Further, even if users do know which type to use, it is
limiting in situations where the same BPF program logic is used across
few different program types. Common case is kprobes, tracepoints, and
perf_event programs having a helper to send some data over BPF perf
buffer. bpf_perf_event_output() requires `ctx` argument, and so it's
quite cumbersome to share such global subprog across few BPF programs of
different types, necessitating extra static subprog that is context
type-agnostic.
Long story short, there is a need to go beyond types and allow users to
add hints to global subprog arguments to define expectations.
This patch adds such support for two initial special tags:
- pointer to context;
- non-null qualifier for generic pointer arguments.
All of the above came up in practice already and seem generally useful
additions. Non-null qualifier is an often requested feature, which
currently has to be worked around by having unnecessary NULL checks
inside subprogs even if we know that arguments are never NULL. Pointer
to context was discussed earlier.
As for implementation, we utilize btf_decl_tag attribute and set up an
"arg:xxx" convention to specify argument hint. As such:
- btf_decl_tag("arg:ctx") is a PTR_TO_CTX hint;
- btf_decl_tag("arg:nonnull") marks pointer argument as not allowed to
be NULL, making NULL check inside global subprog unnecessary.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove duplicated BTF parsing logic when it comes to subprog call check.
Instead, use (potentially cached) results of btf_prepare_func_args() to
abstract away expectations of each subprog argument in generic terms
(e.g., "this is pointer to context", or "this is a pointer to memory of
size X"), and then use those simple high-level argument type
expectations to validate actual register states to check if they match
expectations.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Subprog call logic in btf_check_subprog_call() currently has both a lot
of BTF parsing logic (which is, presumably, what justified putting it
into btf.c), but also a bunch of register state checks, some of each
utilize deep verifier logic helpers, necessarily exported from
verifier.c: check_ptr_off_reg(), check_func_arg_reg_off(),
and check_mem_reg().
Going forward, btf_check_subprog_call() will have a minimum of
BTF-related logic, but will get more internal verifier logic related to
register state manipulation. So move it into verifier.c to minimize
amount of verifier-specific logic exposed to btf.c.
We do this move before refactoring btf_check_func_arg_match() to
preserve as much history post-refactoring as possible.
No functional changes.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Generalize btf_prepare_func_args() to support both global and static
subprogs. We are going to utilize this property in the next patch,
reusing btf_prepare_func_args() for subprog call logic instead of
reparsing BTF information in a completely separate implementation.
btf_prepare_func_args() now detects whether subprog is global or static
makes slight logic adjustments for static func cases, like not failing
fatally (-EFAULT) for conditions that are allowable for static subprogs.
Somewhat subtle (but major!) difference is the handling of pointer arguments.
Both global and static functions need to handle special context
arguments (which are pointers to predefined type names), but static
subprogs give up on any other pointers, falling back to marking subprog
as "unreliable", disabling the use of BTF type information altogether.
For global functions, though, we are assuming that such pointers to
unrecognized types are just pointers to fixed-sized memory region (or
error out if size cannot be established, like for `void *` pointers).
This patch accommodates these small differences and sets up a stage for
refactoring in the next patch, eliminating a separate BTF-based parsing
logic in btf_check_func_arg_match().
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of btf_check_subprog_arg_match(), use btf_prepare_func_args()
logic to validate "trustworthiness" of main BPF program's BTF information,
if it is present.
We ignored results of original BTF check anyway, often times producing
confusing and ominously-sounding "reg type unsupported for arg#0
function" message, which has no apparent effect on program correctness
and verification process.
All the -EFAULT returning sanity checks are already performed in
check_btf_info_early(), so there is zero reason to have this duplication
of logic between btf_check_subprog_call() and btf_check_subprog_arg_match().
Dropping btf_check_subprog_arg_match() simplifies
btf_check_func_arg_match() further removing `bool processing_call` flag.
One subtle bit that was done by btf_check_subprog_arg_match() was
potentially marking main program's BTF as unreliable. We do this
explicitly now with a dedicated simple check, preserving the original
behavior, but now based on well factored btf_prepare_func_args() logic.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf_prepare_func_args() is used to understand expectations and
restrictions on global subprog arguments. But current implementation is
hard to extend, as it intermixes BTF-based func prototype parsing and
interpretation logic with setting up register state at subprog entry.
Worse still, those registers are not completely set up inside
btf_prepare_func_args(), requiring some more logic later in
do_check_common(). Like calling mark_reg_unknown() and similar
initialization operations.
This intermixing of BTF interpretation and register state setup is
problematic. First, it causes duplication of BTF parsing logic for global
subprog verification (to set up initial state of global subprog) and
global subprog call sites analysis (when we need to check that whatever
is being passed into global subprog matches expectations), performed in
btf_check_subprog_call().
Given we want to extend global func argument with tags later, this
duplication is problematic. So refactor btf_prepare_func_args() to do
only BTF-based func proto and args parsing, returning high-level
argument "expectations" only, with no regard to specifics of register
state. I.e., if it's a context argument, instead of setting register
state to PTR_TO_CTX, we return ARG_PTR_TO_CTX enum for that argument as
"an argument specification" for further processing inside
do_check_common(). Similarly for SCALAR arguments, PTR_TO_MEM, etc.
This allows to reuse btf_prepare_func_args() in following patches at
global subprog call site analysis time. It also keeps register setup
code consistently in one place, do_check_common().
Besides all this, we cache this argument specs information inside
env->subprog_info, eliminating the need to redo these potentially
expensive BTF traversals, especially if BPF program's BTF is big and/or
there are lots of global subprog calls.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We can derive some new information for BPF_JNE in regs_refine_cond_op().
Take following code for example:
/* The type of "a" is u32 */
if (a > 0 && a < 100) {
/* the range of the register for a is [0, 99], not [1, 99],
* and will cause the following error:
*
* invalid zero-sized read
*
* as a can be 0.
*/
bpf_skb_store_bytes(skb, xx, xx, a, 0);
}
In the code above, "a > 0" will be compiled to "jmp xxx if a == 0". In the
TRUE branch, the dst_reg will be marked as known to 0. However, in the
fallthrough(FALSE) branch, the dst_reg will not be handled, which makes
the [min, max] for a is [0, 99], not [1, 99].
For BPF_JNE, we can reduce the range of the dst reg if the src reg is a
const and is exactly the edge of the dst reg.
Signed-off-by: Menglong Dong <menglong8.dong@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231219134800.1550388-2-menglong8.dong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmWAz2EACgkQ6rmadz2v
bToqrw/9EwroZCc8GEHOKAlb/fzrMvn92rLo0ZW/cGN84QJPnx4zM6Zo0+fgLaaN
oqqztwMUwdzGC3uX3FfVXaaLKbJ/MeHeL9BXFZNW8zkRHciw4R7kIBhOdPnHyET7
uT+rQ4xPe1Mt7e9PjepKlSL5mEsxWfBkdUgsdn19Z2Vjdfr9mZMhYWYMJGcfTCD1
TwxHKBPhq5fN3IsshmMBB8IrRp1HStUKb65MgZ4dI22LJXxTsFkx5XMFXcmuqvkH
NhKj8jDcPEEh31bYcb6aG2Z4onw5F2lquygjk1Qyy5cyw45m/ipJKAXKdAyvJG+R
VZCWOET/9wbRwFSK5wxwihCuKghFiofK52i2PcGtXZh0PCouyZZneSJOKM0yVWKO
BvuJBxK4ETRnQyN6ZxhuJiEXG3/YMBBhyR2TX1LntVK9ct/k7qFVzATG49J39/sR
SYMbptBRj4a5oMJ1qn0nFVEDFkg0jTnTDNnsEpcz60Ayt6EsJ1XosO5yz2huf861
xgRMTKMseyG1/uV45tQ8ZPzbSPpBxjUi9Dl3coYsIm1a+y6clWUXcarONY5KVrpS
CR98DuFgl+E7dXuisd/Kz2p2KxxSPq8nytsmLlgOvrUqhwiXqB+TKN8EHgIapVOt
l1A5LrzXFTcGlT9MlaWBqEIy83Bu1nqQqbxrAFOE0k8A5jomXaw=
=stU2
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2023-12-18
This PR is larger than usual and contains changes in various parts
of the kernel.
The main changes are:
1) Fix kCFI bugs in BPF, from Peter Zijlstra.
End result: all forms of indirect calls from BPF into kernel
and from kernel into BPF work with CFI enabled. This allows BPF
to work with CONFIG_FINEIBT=y.
2) Introduce BPF token object, from Andrii Nakryiko.
It adds an ability to delegate a subset of BPF features from privileged
daemon (e.g., systemd) through special mount options for userns-bound
BPF FS to a trusted unprivileged application. The design accommodates
suggestions from Christian Brauner and Paul Moore.
Example:
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
-o delegate_cmds=prog_load:MAP_CREATE \
-o delegate_progs=kprobe \
-o delegate_attachs=xdp
3) Various verifier improvements and fixes, from Andrii Nakryiko, Andrei Matei.
- Complete precision tracking support for register spills
- Fix verification of possibly-zero-sized stack accesses
- Fix access to uninit stack slots
- Track aligned STACK_ZERO cases as imprecise spilled registers.
It improves the verifier "instructions processed" metric from single
digit to 50-60% for some programs.
- Fix verifier retval logic
4) Support for VLAN tag in XDP hints, from Larysa Zaremba.
5) Allocate BPF trampoline via bpf_prog_pack mechanism, from Song Liu.
End result: better memory utilization and lower I$ miss for calls to BPF
via BPF trampoline.
6) Fix race between BPF prog accessing inner map and parallel delete,
from Hou Tao.
7) Add bpf_xdp_get_xfrm_state() kfunc, from Daniel Xu.
It allows BPF interact with IPSEC infra. The intent is to support
software RSS (via XDP) for the upcoming ipsec pcpu work.
Experiments on AWS demonstrate single tunnel pcpu ipsec reaching
line rate on 100G ENA nics.
8) Expand bpf_cgrp_storage to support cgroup1 non-attach, from Yafang Shao.
9) BPF file verification via fsverity, from Song Liu.
It allows BPF progs get fsverity digest.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (164 commits)
bpf: Ensure precise is reset to false in __mark_reg_const_zero()
selftests/bpf: Add more uprobe multi fail tests
bpf: Fail uprobe multi link with negative offset
selftests/bpf: Test the release of map btf
s390/bpf: Fix indirect trampoline generation
selftests/bpf: Temporarily disable dummy_struct_ops test on s390
x86/cfi,bpf: Fix bpf_exception_cb() signature
bpf: Fix dtor CFI
cfi: Add CFI_NOSEAL()
x86/cfi,bpf: Fix bpf_struct_ops CFI
x86/cfi,bpf: Fix bpf_callback_t CFI
x86/cfi,bpf: Fix BPF JIT call
cfi: Flip headers
selftests/bpf: Add test for abnormal cnt during multi-kprobe attachment
selftests/bpf: Don't use libbpf_get_error() in kprobe_multi_test
selftests/bpf: Add test for abnormal cnt during multi-uprobe attachment
bpf: Limit the number of kprobes when attaching program to multiple kprobes
bpf: Limit the number of uprobes when attaching program to multiple uprobes
bpf: xdp: Register generic_kfunc_set with XDP programs
selftests/bpf: utilize string values for delegate_xxx mount options
...
====================
Link: https://lore.kernel.org/r/20231219000520.34178-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It is safe to always start with imprecise SCALAR_VALUE register.
Previously __mark_reg_const_zero() relied on caller to reset precise
mark, but it's very error prone and we already missed it in a few
places. So instead make __mark_reg_const_zero() reset precision always,
as it's a safe default for SCALAR_VALUE. Explanation is basically the
same as for why we are resetting (or rather not setting) precision in
current state. If necessary, precision propagation will set it to
precise correctly.
As such, also remove a big comment about forward precision propagation
in mark_reg_stack_read() and avoid unnecessarily setting precision to
true after reading from STACK_ZERO stack. Again, precision propagation
will correctly handle this, if that SCALAR_VALUE register will ever be
needed to be precise.
Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231218173601.53047-1-andrii@kernel.org
Ensure the various dtor functions match their prototype and retain
their CFI signatures, since they don't have their address taken, they
are prone to not getting CFI, making them impossible to call
indirectly.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231215092707.799451071@infradead.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF struct_ops uses __arch_prepare_bpf_trampoline() to write
trampolines for indirect function calls. These tramplines much have
matching CFI.
In order to obtain the correct CFI hash for the various methods, add a
matching structure that contains stub functions, the compiler will
generate correct CFI which we can pilfer for the trampolines.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231215092707.566977112@infradead.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current BPF call convention is __nocfi, except when it calls !JIT things,
then it calls regular C functions.
It so happens that with FineIBT the __nocfi and C calling conventions are
incompatible. Specifically __nocfi will call at func+0, while FineIBT will have
endbr-poison there, which is not a valid indirect target. Causing #CP.
Notably this only triggers on IBT enabled hardware, which is probably why this
hasn't been reported (also, most people will have JIT on anyway).
Implement proper CFI prologues for the BPF JIT codegen and drop __nocfi for
x86.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231215092707.345270396@infradead.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Registering generic_kfunc_set with XDP programs enables some of the
newer BPF features inside XDP -- namely tree based data structures and
BPF exceptions.
The current motivation for this commit is to enable assertions inside
XDP bpf progs. Assertions are a standard and useful tool to encode
intent.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/d07d4614b81ca6aada44fcb89bb6b618fb66e4ca.1702594357.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Besides already supported special "any" value and hex bit mask, support
string-based parsing of delegation masks based on exact enumerator
names. Utilize BTF information of `enum bpf_cmd`, `enum bpf_map_type`,
`enum bpf_prog_type`, and `enum bpf_attach_type` types to find supported
symbolic names (ignoring __MAX_xxx guard values and stripping repetitive
prefixes like BPF_ for cmd and attach types, BPF_MAP_TYPE_ for maps, and
BPF_PROG_TYPE_ for prog types). The case doesn't matter, but it is
normalized to lower case in mount option output. So "PROG_LOAD",
"prog_load", and "MAP_create" are all valid values to specify for
delegate_cmds options, "array" is among supported for map types, etc.
Besides supporting string values, we also support multiple values
specified at the same time, using colon (':') separator.
There are corresponding changes on bpf_show_options side to use known
values to print them in human-readable format, falling back to hex mask
printing, if there are any unrecognized bits. This shouldn't be
necessary when enum BTF information is present, but in general we should
always be able to fall back to this even if kernel was built without BTF.
As mentioned, emitted symbolic names are normalized to be all lower case.
Example below shows various ways to specify delegate_cmds options
through mount command and how mount options are printed back:
12/14 14:39:07.604
vmuser@archvm:~/local/linux/tools/testing/selftests/bpf
$ mount | rg token
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
-o delegate_cmds=prog_load:MAP_CREATE \
-o delegate_progs=kprobe \
-o delegate_attachs=xdp
$ mount | grep token
bpffs on /sys/fs/bpf/token type bpf (rw,relatime,delegate_cmds=map_create:prog_load,delegate_progs=kprobe,delegate_attachs=xdp)
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231214225016.1209867-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When running `./test_progs -j` in my local vm with latest kernel,
I once hit a kasan error like below:
[ 1887.184724] BUG: KASAN: slab-use-after-free in bpf_rb_root_free+0x1f8/0x2b0
[ 1887.185599] Read of size 4 at addr ffff888106806910 by task kworker/u12:2/2830
[ 1887.186498]
[ 1887.186712] CPU: 3 PID: 2830 Comm: kworker/u12:2 Tainted: G OEL 6.7.0-rc3-00699-g90679706d486-dirty #494
[ 1887.188034] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1887.189618] Workqueue: events_unbound bpf_map_free_deferred
[ 1887.190341] Call Trace:
[ 1887.190666] <TASK>
[ 1887.190949] dump_stack_lvl+0xac/0xe0
[ 1887.191423] ? nf_tcp_handle_invalid+0x1b0/0x1b0
[ 1887.192019] ? panic+0x3c0/0x3c0
[ 1887.192449] print_report+0x14f/0x720
[ 1887.192930] ? preempt_count_sub+0x1c/0xd0
[ 1887.193459] ? __virt_addr_valid+0xac/0x120
[ 1887.194004] ? bpf_rb_root_free+0x1f8/0x2b0
[ 1887.194572] kasan_report+0xc3/0x100
[ 1887.195085] ? bpf_rb_root_free+0x1f8/0x2b0
[ 1887.195668] bpf_rb_root_free+0x1f8/0x2b0
[ 1887.196183] ? __bpf_obj_drop_impl+0xb0/0xb0
[ 1887.196736] ? preempt_count_sub+0x1c/0xd0
[ 1887.197270] ? preempt_count_sub+0x1c/0xd0
[ 1887.197802] ? _raw_spin_unlock+0x1f/0x40
[ 1887.198319] bpf_obj_free_fields+0x1d4/0x260
[ 1887.198883] array_map_free+0x1a3/0x260
[ 1887.199380] bpf_map_free_deferred+0x7b/0xe0
[ 1887.199943] process_scheduled_works+0x3a2/0x6c0
[ 1887.200549] worker_thread+0x633/0x890
[ 1887.201047] ? __kthread_parkme+0xd7/0xf0
[ 1887.201574] ? kthread+0x102/0x1d0
[ 1887.202020] kthread+0x1ab/0x1d0
[ 1887.202447] ? pr_cont_work+0x270/0x270
[ 1887.202954] ? kthread_blkcg+0x50/0x50
[ 1887.203444] ret_from_fork+0x34/0x50
[ 1887.203914] ? kthread_blkcg+0x50/0x50
[ 1887.204397] ret_from_fork_asm+0x11/0x20
[ 1887.204913] </TASK>
[ 1887.204913] </TASK>
[ 1887.205209]
[ 1887.205416] Allocated by task 2197:
[ 1887.205881] kasan_set_track+0x3f/0x60
[ 1887.206366] __kasan_kmalloc+0x6e/0x80
[ 1887.206856] __kmalloc+0xac/0x1a0
[ 1887.207293] btf_parse_fields+0xa15/0x1480
[ 1887.207836] btf_parse_struct_metas+0x566/0x670
[ 1887.208387] btf_new_fd+0x294/0x4d0
[ 1887.208851] __sys_bpf+0x4ba/0x600
[ 1887.209292] __x64_sys_bpf+0x41/0x50
[ 1887.209762] do_syscall_64+0x4c/0xf0
[ 1887.210222] entry_SYSCALL_64_after_hwframe+0x63/0x6b
[ 1887.210868]
[ 1887.211074] Freed by task 36:
[ 1887.211460] kasan_set_track+0x3f/0x60
[ 1887.211951] kasan_save_free_info+0x28/0x40
[ 1887.212485] ____kasan_slab_free+0x101/0x180
[ 1887.213027] __kmem_cache_free+0xe4/0x210
[ 1887.213514] btf_free+0x5b/0x130
[ 1887.213918] rcu_core+0x638/0xcc0
[ 1887.214347] __do_softirq+0x114/0x37e
The error happens at bpf_rb_root_free+0x1f8/0x2b0:
00000000000034c0 <bpf_rb_root_free>:
; {
34c0: f3 0f 1e fa endbr64
34c4: e8 00 00 00 00 callq 0x34c9 <bpf_rb_root_free+0x9>
34c9: 55 pushq %rbp
34ca: 48 89 e5 movq %rsp, %rbp
...
; if (rec && rec->refcount_off >= 0 &&
36aa: 4d 85 ed testq %r13, %r13
36ad: 74 a9 je 0x3658 <bpf_rb_root_free+0x198>
36af: 49 8d 7d 10 leaq 0x10(%r13), %rdi
36b3: e8 00 00 00 00 callq 0x36b8 <bpf_rb_root_free+0x1f8>
<==== kasan function
36b8: 45 8b 7d 10 movl 0x10(%r13), %r15d
<==== use-after-free load
36bc: 45 85 ff testl %r15d, %r15d
36bf: 78 8c js 0x364d <bpf_rb_root_free+0x18d>
So the problem is at rec->refcount_off in the above.
I did some source code analysis and find the reason.
CPU A CPU B
bpf_map_put:
...
btf_put with rcu callback
...
bpf_map_free_deferred
with system_unbound_wq
... ... ...
... btf_free_rcu: ...
... ... bpf_map_free_deferred:
... ...
... ---------> btf_struct_metas_free()
... | race condition ...
... ---------> map->ops->map_free()
...
... btf->struct_meta_tab = NULL
In the above, map_free() corresponds to array_map_free() and eventually
calling bpf_rb_root_free() which calls:
...
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
...
Here, 'value_rec' is assigned in btf_check_and_fixup_fields() with following code:
meta = btf_find_struct_meta(btf, btf_id);
if (!meta)
return -EFAULT;
rec->fields[i].graph_root.value_rec = meta->record;
So basically, 'value_rec' is a pointer to the record in struct_metas_tab.
And it is possible that that particular record has been freed by
btf_struct_metas_free() and hence we have a kasan error here.
Actually it is very hard to reproduce the failure with current bpf/bpf-next
code, I only got the above error once. To increase reproducibility, I added
a delay in bpf_map_free_deferred() to delay map->ops->map_free(), which
significantly increased reproducibility.
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index 5e43ddd1b83f..aae5b5213e93 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -695,6 +695,7 @@ static void bpf_map_free_deferred(struct work_struct *work)
struct bpf_map *map = container_of(work, struct bpf_map, work);
struct btf_record *rec = map->record;
+ mdelay(100);
security_bpf_map_free(map);
bpf_map_release_memcg(map);
/* implementation dependent freeing */
Hao also provided test cases ([1]) for easily reproducing the above issue.
There are two ways to fix the issue, the v1 of the patch ([2]) moving
btf_put() after map_free callback, and the v5 of the patch ([3]) using
a kptr style fix which tries to get a btf reference during
map_check_btf(). Each approach has its pro and cons. The first approach
delays freeing btf while the second approach needs to acquire reference
depending on context which makes logic not very elegant and may
complicate things with future new data structures. Alexei
suggested in [4] going back to v1 which is what this patch
tries to do.
Rerun './test_progs -j' with the above mdelay() hack for a couple
of times and didn't observe the error for the above rb_root test cases.
Running Hou's test ([1]) is also successful.
[1] https://lore.kernel.org/bpf/20231207141500.917136-1-houtao@huaweicloud.com/
[2] v1: https://lore.kernel.org/bpf/20231204173946.3066377-1-yonghong.song@linux.dev/
[3] v5: https://lore.kernel.org/bpf/20231208041621.2968241-1-yonghong.song@linux.dev/
[4] v4: https://lore.kernel.org/bpf/CAADnVQJ3FiXUhZJwX_81sjZvSYYKCFB3BT6P8D59RS2Gu+0Z7g@mail.gmail.com/
Cc: Hou Tao <houtao@huaweicloud.com>
Fixes: 958cf2e273 ("bpf: Introduce bpf_obj_new")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231214203815.1469107-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
rcu_read_lock() is no longer held when invoking bpf_event_entry_gen()
which is called by perf_event_fd_array_get_ptr(), so using GFP_KERNEL
instead of GFP_ATOMIC to reduce the possibility of failures due to
out-of-memory.
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231214043010.3458072-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There is no rcu-read-lock requirement for ops->map_fd_get_ptr() or
ops->map_fd_put_ptr(), so doesn't use rcu-read-lock for these two
callbacks.
For bpf_fd_array_map_update_elem(), accessing array->ptrs doesn't need
rcu-read-lock because array->ptrs must still be allocated. For
bpf_fd_htab_map_update_elem(), htab_map_update_elem() only requires
rcu-read-lock to be held to avoid the WARN_ON_ONCE(), so only use
rcu_read_lock() during the invocation of htab_map_update_elem().
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231214043010.3458072-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since commit 638e4b825d ("bpf: Allows per-cpu maps and map-in-map in
sleepable programs"), sleepable BPF program can also use map-in-map, but
maybe_wait_bpf_programs() doesn't handle it accordingly. The main reason
is that using synchronize_rcu_tasks_trace() to wait for the completions
of these sleepable BPF programs may incur a very long delay and
userspace may think it is hung, so the wait for sleepable BPF programs
is skipped. Update the comments in maybe_wait_bpf_programs() to reflect
the reason.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20231211083447.1921178-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
security_path_* based LSM hooks appear to be generally missing from
the sleepable_lsm_hooks list. Initially add a small subset of them to
the preexisting sleepable_lsm_hooks list so that sleepable BPF helpers
like bpf_d_path() can be used from sleepable BPF LSM based programs.
The security_path_* hooks added in this patch are similar to the
security_inode_* counterparts that already exist in the
sleepable_lsm_hooks list, and are called in roughly similar points and
contexts. Presumably, making them OK to be also annotated as
sleepable.
Building a kernel with DEBUG_ATOMIC_SLEEP options enabled and running
reasonable workloads stimulating activity that would be intercepted by
such security hooks didn't show any splats.
Notably, I haven't added all the security_path_* LSM hooks that are
available as I don't need them at this point in time.
Signed-off-by: Matt Bobrowski <mattbobrowski@google.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/r/ZXM3IHHXpNY9y82a@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's quite confusing in practice when it's possible to successfully
create a BPF token from BPF FS that didn't have any of delegate_xxx
mount options set up. While it's not wrong, it's actually more
meaningful to reject BPF_TOKEN_CREATE with specific error code (-ENOENT)
to let user-space know that no token delegation is setup up.
So, instead of creating empty BPF token that will be always ignored
because it doesn't have any of the allow_xxx bits set, reject it with
-ENOENT. If we ever need empty BPF token to be possible, we can support
that with extra flag passed into BPF_TOKEN_CREATE.
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231213190842.3844987-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Parse uid and gid in bpf_parse_param() so that they can be passed in as
the `data` parameter when mount() bpffs. This will be useful when we
want to control which user/group has the control to the mounted bpffs,
otherwise a separate chown() call will be needed.
Signed-off-by: Jie Jiang <jiejiang@chromium.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Mike Frysinger <vapier@chromium.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231212093923.497838-1-jiejiang@chromium.org
This patch adds a comment to check_mem_size_reg -- a function whose
meaning is not very transparent. The function implicitly deals with two
registers connected by convention, which is not obvious.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231210225149.67639-1-andreimatei1@gmail.com
The function are defined in the verifier.c file, but not called
elsewhere, so delete the unused function.
kernel/bpf/verifier.c:3448:20: warning: unused function 'bt_set_slot'
kernel/bpf/verifier.c:3453:20: warning: unused function 'bt_clear_slot'
kernel/bpf/verifier.c:3488:20: warning: unused function 'bt_is_slot_set'
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231212005436.103829-1-yang.lee@linux.alibaba.com
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=7714
Use the fact that we are passing subprog index around and have
a corresponding struct bpf_subprog_info in bpf_verifier_env for each
subprogram. We don't need to separately pass around a flag whether
subprog is exception callback or not, each relevant verifier function
can determine this using provided subprog index if we maintain
bpf_subprog_info properly.
Also move out exception callback-specific logic from
btf_prepare_func_args(), keeping it generic. We can enforce all these
restriction right before exception callback verification pass. We add
out parameter, arg_cnt, for now, but this will be unnecessary with
subsequent refactoring and will be removed.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231204233931.49758-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It can be useful to query how many bits are set in a cpumask. For
example, if you want to perform special logic for the last remaining
core that's set in a mask. Let's therefore add a new
bpf_cpumask_weight() kfunc which checks how many bits are set in a mask.
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231207210843.168466-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When verifier validates BPF_ST_MEM instruction that stores known
constant to stack (e.g., *(u64 *)(r10 - 8) = 123), it effectively spills
a fake register with a constant (but initially imprecise) value to
a stack slot. Because read-side logic treats it as a proper register
fill from stack slot, we need to mark such stack slot initialization as
INSN_F_STACK_ACCESS instruction to stop precision backtracking from
missing it.
Fixes: 41f6f64e69 ("bpf: support non-r10 register spill/fill to/from stack in precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231209010958.66758-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.
Fix it by setting uattr->batch.count as zero beore batched update or
deletion.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There is no need to call maybe_wait_bpf_programs() if update or deletion
operation fails. So only call maybe_wait_bpf_programs() if update or
deletion operation succeeds.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When doing batched lookup and deletion operations on htab of maps,
maybe_wait_bpf_programs() is needed to ensure all programs don't use the
inner map after the bpf syscall returns.
Instead of adding the wait in __htab_map_lookup_and_delete_batch(),
adding the wait in bpf_map_do_batch() and also removing the calling of
maybe_wait_bpf_programs() from generic_map_{delete,update}_batch().
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Just like commit 9087c6ff8d ("bpf: Call maybe_wait_bpf_programs() only
once from generic_map_delete_batch()"), there is also no need to call
maybe_wait_bpf_programs() for each update in batched update, so only
call it once in generic_map_update_batch().
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Both map_lookup_elem() and generic_map_lookup_batch() use
bpf_map_copy_value() to lookup and copy the value, and there is no
update operation in bpf_map_copy_value(), so just remove the invocation
of maybe_wait_bpf_programs() from it.
Fixes: 15c14a3dca ("bpf: Add bpf_map_{value_size, update_value, map_copy_value} functions")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In the current cgroup1 environment, associating operations between cgroups
and applications in a BPF program requires storing a mapping of cgroup_id
to application either in a hash map or maintaining it in userspace.
However, by enabling bpf_cgrp_storage for cgroup1, it becomes possible to
conveniently store application-specific information in cgroup-local storage
and utilize it within BPF programs. Furthermore, enabling this feature for
cgroup1 involves minor modifications for the non-attach case, streamlining
the process.
However, when it comes to enabling this functionality for the cgroup1
attach case, it presents challenges. Therefore, the decision is to focus on
enabling it solely for the cgroup1 non-attach case at present. If
attempting to attach to a cgroup1 fd, the operation will simply fail with
the error code -EBADF.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231206115326.4295-2-laoar.shao@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Push the rounding up of stack offsets into the function responsible for
growing the stack, rather than relying on all the callers to do it.
Uncertainty about whether the callers did it or not tripped up people in
a previous review.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231208032519.260451-4-andreimatei1@gmail.com
Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.
This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.
This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com
Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.
[1] 815fb87b75/kernel/bpf/verifier.c (L7494-L7498)
[2] 815fb87b75/kernel/bpf/verifier.c (L11904)
Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com
This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.
The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).
Thanks Hao for reporting!
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com
Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Instead of blindly allocating PAGE_SIZE for each trampoline, check the size
of the trampoline with arch_bpf_trampoline_size(). This size is saved in
bpf_tramp_image->size, and used for modmem charge/uncharge. The fallback
arch_alloc_bpf_trampoline() still allocates a whole page because we need to
use set_memory_* to protect the memory.
struct_ops trampoline still uses a whole page for multiple trampolines.
With this size check at caller (regular trampoline and struct_ops
trampoline), remove arch_bpf_trampoline_size() from
arch_prepare_bpf_trampoline() in archs.
Also, update bpf_image_ksym_add() to handle symbol of different sizes.
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> # on s390x
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@rivosinc.com>
Tested-by: Björn Töpel <bjorn@rivosinc.com> # on riscv
Link: https://lore.kernel.org/r/20231206224054.492250-7-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This helper will be used to calculate the size of the trampoline before
allocating the memory.
arch_prepare_bpf_trampoline() for arm64 and riscv64 can use
arch_bpf_trampoline_size() to check the trampoline fits in the image.
OTOH, arch_prepare_bpf_trampoline() for s390 has to call the JIT process
twice, so it cannot use arch_bpf_trampoline_size().
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> # on s390x
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@rivosinc.com>
Tested-by: Björn Töpel <bjorn@rivosinc.com> # on riscv
Link: https://lore.kernel.org/r/20231206224054.492250-6-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As BPF trampoline of different archs moves from bpf_jit_[alloc|free]_exec()
to bpf_prog_pack_[alloc|free](), we need to use different _alloc, _free for
different archs during the transition. Add the following helpers for this
transition:
void *arch_alloc_bpf_trampoline(unsigned int size);
void arch_free_bpf_trampoline(void *image, unsigned int size);
void arch_protect_bpf_trampoline(void *image, unsigned int size);
void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
The fallback version of these helpers require size <= PAGE_SIZE, but they
are only called with size == PAGE_SIZE. They will be called with size <
PAGE_SIZE when arch_bpf_trampoline_size() helper is introduced later.
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> # on s390x
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20231206224054.492250-4-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We are using "im" for "struct bpf_tramp_image" and "tr" for "struct
bpf_trampoline" in most of the code base. The only exception is the
prototype and fallback version of arch_prepare_bpf_trampoline(). Update
them to match the rest of the code base.
We mix "orig_call" and "func_addr" for the argument in different versions
of arch_prepare_bpf_trampoline(). s/orig_call/func_addr/g so they match.
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> # on s390x
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20231206224054.492250-3-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, bpf_prog_pack_free only can only free pointer to struct
bpf_binary_header, which is not flexible. Add a size argument to
bpf_prog_pack_free so that it can handle any pointer.
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> # on s390x
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20231206224054.492250-2-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lee pointed out issue found by syscaller [0] hitting BUG in prog array
map poke update in prog_array_map_poke_run function due to error value
returned from bpf_arch_text_poke function.
There's race window where bpf_arch_text_poke can fail due to missing
bpf program kallsym symbols, which is accounted for with check for
-EINVAL in that BUG_ON call.
The problem is that in such case we won't update the tail call jump
and cause imbalance for the next tail call update check which will
fail with -EBUSY in bpf_arch_text_poke.
I'm hitting following race during the program load:
CPU 0 CPU 1
bpf_prog_load
bpf_check
do_misc_fixups
prog_array_map_poke_track
map_update_elem
bpf_fd_array_map_update_elem
prog_array_map_poke_run
bpf_arch_text_poke returns -EINVAL
bpf_prog_kallsyms_add
After bpf_arch_text_poke (CPU 1) fails to update the tail call jump, the next
poke update fails on expected jump instruction check in bpf_arch_text_poke
with -EBUSY and triggers the BUG_ON in prog_array_map_poke_run.
Similar race exists on the program unload.
Fixing this by moving the update to bpf_arch_poke_desc_update function which
makes sure we call __bpf_arch_text_poke that skips the bpf address check.
Each architecture has slightly different approach wrt looking up bpf address
in bpf_arch_text_poke, so instead of splitting the function or adding new
'checkip' argument in previous version, it seems best to move the whole
map_poke_run update as arch specific code.
[0] https://syzkaller.appspot.com/bug?extid=97a4fe20470e9bc30810
Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Reported-by: syzbot+97a4fe20470e9bc30810@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Cc: Lee Jones <lee@kernel.org>
Cc: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/20231206083041.1306660-2-jolsa@kernel.org
Wire up bpf_token_create and bpf_token_free LSM hooks, which allow to
allocate LSM security blob (we add `void *security` field to struct
bpf_token for that), but also control who can instantiate BPF token.
This follows existing pattern for BPF map and BPF prog.
Also add security_bpf_token_allow_cmd() and security_bpf_token_capable()
LSM hooks that allow LSM implementation to control and negate (if
necessary) BPF token's delegation of a specific bpf_cmd and capability,
respectively.
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-12-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similarly to bpf_prog_alloc LSM hook, rename and extend bpf_map_alloc
hook into bpf_map_create, taking not just struct bpf_map, but also
bpf_attr and bpf_token, to give a fuller context to LSMs.
Unlike bpf_prog_alloc, there is no need to move the hook around, as it
currently is firing right before allocating BPF map ID and FD, which
seems to be a sweet spot.
But like bpf_prog_alloc/bpf_prog_free combo, make sure that bpf_map_free
LSM hook is called even if bpf_map_create hook returned error, as if few
LSMs are combined together it could be that one LSM successfully
allocated security blob for its needs, while subsequent LSM rejected BPF
map creation. The former LSM would still need to free up LSM blob, so we
need to ensure security_bpf_map_free() is called regardless of the
outcome.
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-11-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Based on upstream discussion ([0]), rework existing
bpf_prog_alloc_security LSM hook. Rename it to bpf_prog_load and instead
of passing bpf_prog_aux, pass proper bpf_prog pointer for a full BPF
program struct. Also, we pass bpf_attr union with all the user-provided
arguments for BPF_PROG_LOAD command. This will give LSMs as much
information as we can basically provide.
The hook is also BPF token-aware now, and optional bpf_token struct is
passed as a third argument. bpf_prog_load LSM hook is called after
a bunch of sanity checks were performed, bpf_prog and bpf_prog_aux were
allocated and filled out, but right before performing full-fledged BPF
verification step.
bpf_prog_free LSM hook is now accepting struct bpf_prog argument, for
consistency. SELinux code is adjusted to all new names, types, and
signatures.
Note, given that bpf_prog_load (previously bpf_prog_alloc) hook can be
used by some LSMs to allocate extra security blob, but also by other
LSMs to reject BPF program loading, we need to make sure that
bpf_prog_free LSM hook is called after bpf_prog_load/bpf_prog_alloc one
*even* if the hook itself returned error. If we don't do that, we run
the risk of leaking memory. This seems to be possible today when
combining SELinux and BPF LSM, as one example, depending on their
relative ordering.
Also, for BPF LSM setup, add bpf_prog_load and bpf_prog_free to
sleepable LSM hooks list, as they are both executed in sleepable
context. Also drop bpf_prog_load hook from untrusted, as there is no
issue with refcount or anything else anymore, that originally forced us
to add it to untrusted list in c0c852dd18 ("bpf: Do not mark certain LSM
hook arguments as trusted"). We now trigger this hook much later and it
should not be an issue anymore.
[0] https://lore.kernel.org/bpf/9fe88aef7deabbe87d3fc38c4aea3c69.paul@paul-moore.com/
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of performing unconditional system-wide bpf_capable() and
perfmon_capable() calls inside bpf_base_func_proto() function (and other
similar ones) to determine eligibility of a given BPF helper for a given
program, use previously recorded BPF token during BPF_PROG_LOAD command
handling to inform the decision.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add basic support of BPF token to BPF_PROG_LOAD. Wire through a set of
allowed BPF program types and attach types, derived from BPF FS at BPF
token creation time. Then make sure we perform bpf_token_capable()
checks everywhere where it's relevant.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Accept BPF token FD in BPF_BTF_LOAD command to allow BTF data loading
through delegated BPF token. BTF loading is a pretty straightforward
operation, so as long as BPF token is created with allow_cmds granting
BPF_BTF_LOAD command, kernel proceeds to parsing BTF data and creating
BTF object.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow providing token_fd for BPF_MAP_CREATE command to allow controlled
BPF map creation from unprivileged process through delegated BPF token.
Wire through a set of allowed BPF map types to BPF token, derived from
BPF FS at BPF token creation time. This, in combination with allowed_cmds
allows to create a narrowly-focused BPF token (controlled by privileged
agent) with a restrictive set of BPF maps that application can attempt
to create.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add new kind of BPF kernel object, BPF token. BPF token is meant to
allow delegating privileged BPF functionality, like loading a BPF
program or creating a BPF map, from privileged process to a *trusted*
unprivileged process, all while having a good amount of control over which
privileged operations could be performed using provided BPF token.
This is achieved through mounting BPF FS instance with extra delegation
mount options, which determine what operations are delegatable, and also
constraining it to the owning user namespace (as mentioned in the
previous patch).
BPF token itself is just a derivative from BPF FS and can be created
through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF
FS FD, which can be attained through open() API by opening BPF FS mount
point. Currently, BPF token "inherits" delegated command, map types,
prog type, and attach type bit sets from BPF FS as is. In the future,
having an BPF token as a separate object with its own FD, we can allow
to further restrict BPF token's allowable set of things either at the
creation time or after the fact, allowing the process to guard itself
further from unintentionally trying to load undesired kind of BPF
programs. But for now we keep things simple and just copy bit sets as is.
When BPF token is created from BPF FS mount, we take reference to the
BPF super block's owning user namespace, and then use that namespace for
checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN}
capabilities that are normally only checked against init userns (using
capable()), but now we check them using ns_capable() instead (if BPF
token is provided). See bpf_token_capable() for details.
Such setup means that BPF token in itself is not sufficient to grant BPF
functionality. User namespaced process has to *also* have necessary
combination of capabilities inside that user namespace. So while
previously CAP_BPF was useless when granted within user namespace, now
it gains a meaning and allows container managers and sys admins to have
a flexible control over which processes can and need to use BPF
functionality within the user namespace (i.e., container in practice).
And BPF FS delegation mount options and derived BPF tokens serve as
a per-container "flag" to grant overall ability to use bpf() (plus further
restrict on which parts of bpf() syscalls are treated as namespaced).
Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF)
within the BPF FS owning user namespace, rounding up the ns_capable()
story of BPF token.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add few new mount options to BPF FS that allow to specify that a given
BPF FS instance allows creation of BPF token (added in the next patch),
and what sort of operations are allowed under BPF token. As such, we get
4 new mount options, each is a bit mask
- `delegate_cmds` allow to specify which bpf() syscall commands are
allowed with BPF token derived from this BPF FS instance;
- if BPF_MAP_CREATE command is allowed, `delegate_maps` specifies
a set of allowable BPF map types that could be created with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_progs` specifies
a set of allowable BPF program types that could be loaded with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_attachs` specifies
a set of allowable BPF program attach types that could be loaded with
BPF token; delegate_progs and delegate_attachs are meant to be used
together, as full BPF program type is, in general, determined
through both program type and program attach type.
Currently, these mount options accept the following forms of values:
- a special value "any", that enables all possible values of a given
bit set;
- numeric value (decimal or hexadecimal, determined by kernel
automatically) that specifies a bit mask value directly;
- all the values for a given mount option are combined, if specified
multiple times. E.g., `mount -t bpf nodev /path/to/mount -o
delegate_maps=0x1 -o delegate_maps=0x2` will result in a combined 0x3
mask.
Ideally, more convenient (for humans) symbolic form derived from
corresponding UAPI enums would be accepted (e.g., `-o
delegate_progs=kprobe|tracepoint`) and I intend to implement this, but
it requires a bunch of UAPI header churn, so I postponed it until this
feature lands upstream or at least there is a definite consensus that
this feature is acceptable and is going to make it, just to minimize
amount of wasted effort and not increase amount of non-essential code to
be reviewed.
Attentive reader will notice that BPF FS is now marked as
FS_USERNS_MOUNT, which theoretically makes it mountable inside non-init
user namespace as long as the process has sufficient *namespaced*
capabilities within that user namespace. But in reality we still
restrict BPF FS to be mountable only by processes with CAP_SYS_ADMIN *in
init userns* (extra check in bpf_fill_super()). FS_USERNS_MOUNT is added
to allow creating BPF FS context object (i.e., fsopen("bpf")) from
inside unprivileged process inside non-init userns, to capture that
userns as the owning userns. It will still be required to pass this
context object back to privileged process to instantiate and mount it.
This manipulation is important, because capturing non-init userns as the
owning userns of BPF FS instance (super block) allows to use that userns
to constraint BPF token to that userns later on (see next patch). So
creating BPF FS with delegation inside unprivileged userns will restrict
derived BPF token objects to only "work" inside that intended userns,
making it scoped to a intended "container". Also, setting these
delegation options requires capable(CAP_SYS_ADMIN), so unprivileged
process cannot set this up without involvement of a privileged process.
There is a set of selftests at the end of the patch set that simulates
this sequence of steps and validates that everything works as intended.
But careful review is requested to make sure there are no missed gaps in
the implementation and testing.
This somewhat subtle set of aspects is the result of previous
discussions ([0]) about various user namespace implications and
interactions with BPF token functionality and is necessary to contain
BPF token inside intended user namespace.
[0] https://lore.kernel.org/bpf/20230704-hochverdient-lehne-eeb9eeef785e@brauner/
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Within BPF syscall handling code CAP_NET_ADMIN checks stand out a bit
compared to CAP_BPF and CAP_PERFMON checks. For the latter, CAP_BPF or
CAP_PERFMON are checked first, but if they are not set, CAP_SYS_ADMIN
takes over and grants whatever part of BPF syscall is required.
Similar kind of checks that involve CAP_NET_ADMIN are not so consistent.
One out of four uses does follow CAP_BPF/CAP_PERFMON model: during
BPF_PROG_LOAD, if the type of BPF program is "network-related" either
CAP_NET_ADMIN or CAP_SYS_ADMIN is required to proceed.
But in three other cases CAP_NET_ADMIN is required even if CAP_SYS_ADMIN
is set:
- when creating DEVMAP/XDKMAP/CPU_MAP maps;
- when attaching CGROUP_SKB programs;
- when handling BPF_PROG_QUERY command.
This patch is changing the latter three cases to follow BPF_PROG_LOAD
model, that is allowing to proceed under either CAP_NET_ADMIN or
CAP_SYS_ADMIN.
This also makes it cleaner in subsequent BPF token patches to switch
wholesomely to a generic bpf_token_capable(int cap) check, that always
falls back to CAP_SYS_ADMIN if requested capability is missing.
Cc: Jakub Kicinski <kuba@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to special handling of STACK_ZERO, when reading 1/2/4 bytes from
stack from slot that has register spilled into it and that register has
a constant value zero, preserve that zero and mark spilled register as
precise for that. This makes spilled const zero register and STACK_ZERO
cases equivalent in their behavior.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of always forcing STACK_ZERO slots to STACK_MISC, preserve it in
situations where this is possible. E.g., when spilling register as
1/2/4-byte subslots on the stack, all the remaining bytes in the stack
slot do not automatically become unknown. If we knew they contained
zeroes, we can preserve those STACK_ZERO markers.
Add a helper mark_stack_slot_misc(), similar to scrub_spilled_slot(),
but that doesn't overwrite either STACK_INVALID nor STACK_ZERO. Note
that we need to take into account possibility of being in unprivileged
mode, in which case STACK_INVALID is forced to STACK_MISC for correctness,
as treating STACK_INVALID as equivalent STACK_MISC is only enabled in
privileged mode.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.
Fixes: 27113c59b6 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Use instruction (jump) history to record instructions that performed
register spill/fill to/from stack, regardless if this was done through
read-only r10 register, or any other register after copying r10 into it
*and* potentially adjusting offset.
To make this work reliably, we push extra per-instruction flags into
instruction history, encoding stack slot index (spi) and stack frame
number in extra 10 bit flags we take away from prev_idx in instruction
history. We don't touch idx field for maximum performance, as it's
checked most frequently during backtracking.
This change removes basically the last remaining practical limitation of
precision backtracking logic in BPF verifier. It fixes known
deficiencies, but also opens up new opportunities to reduce number of
verified states, explored in the subsequent patches.
There are only three differences in selftests' BPF object files
according to veristat, all in the positive direction (less states).
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
-------------------------------------- ------------- --------- --------- ------------- ---------- ---------- -------------
test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%)
Note, I avoided renaming jmp_history to more generic insn_hist to
minimize number of lines changed and potential merge conflicts between
bpf and bpf-next trees.
Notice also cur_hist_entry pointer reset to NULL at the beginning of
instruction verification loop. This pointer avoids the problem of
relying on last jump history entry's insn_idx to determine whether we
already have entry for current instruction or not. It can happen that we
added jump history entry because current instruction is_jmp_point(), but
also we need to add instruction flags for stack access. In this case, we
don't want to entries, so we need to reuse last added entry, if it is
present.
Relying on insn_idx comparison has the same ambiguity problem as the one
that was fixed recently in [0], so we avoid that.
[0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When removing the inner map from the outer map, the inner map will be
freed after one RCU grace period and one RCU tasks trace grace
period, so it is certain that the bpf program, which may access the
inner map, has exited before the inner map is freed.
However there is no need to wait for one RCU tasks trace grace period if
the outer map is only accessed by non-sleepable program. So adding
sleepable_refcnt in bpf_map and increasing sleepable_refcnt when adding
the outer map into env->used_maps for sleepable program. Although the
max number of bpf program is INT_MAX - 1, the number of bpf programs
which are being loaded may be greater than INT_MAX, so using atomic64_t
instead of atomic_t for sleepable_refcnt. When removing the inner map
from the outer map, using sleepable_refcnt to decide whether or not a
RCU tasks trace grace period is needed before freeing the inner map.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When updating or deleting an inner map in map array or map htab, the map
may still be accessed by non-sleepable program or sleepable program.
However bpf_map_fd_put_ptr() decreases the ref-counter of the inner map
directly through bpf_map_put(), if the ref-counter is the last one
(which is true for most cases), the inner map will be freed by
ops->map_free() in a kworker. But for now, most .map_free() callbacks
don't use synchronize_rcu() or its variants to wait for the elapse of a
RCU grace period, so after the invocation of ops->map_free completes,
the bpf program which is accessing the inner map may incur
use-after-free problem.
Fix the free of inner map by invoking bpf_map_free_deferred() after both
one RCU grace period and one tasks trace RCU grace period if the inner
map has been removed from the outer map before. The deferment is
accomplished by using call_rcu() or call_rcu_tasks_trace() when
releasing the last ref-counter of bpf map. The newly-added rcu_head
field in bpf_map shares the same storage space with work field to
reduce the size of bpf_map.
Fixes: bba1dc0b55 ("bpf: Remove redundant synchronize_rcu.")
Fixes: 638e4b825d ("bpf: Allows per-cpu maps and map-in-map in sleepable programs")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Both map deletion operation, map release and map free operation use
fd_array_map_delete_elem() to remove the element from fd array and
need_defer is always true in fd_array_map_delete_elem(). For the map
deletion operation and map release operation, need_defer=true is
necessary, because the bpf program, which accesses the element in fd
array, may still alive. However for map free operation, it is certain
that the bpf program which owns the fd array has already been exited, so
setting need_defer as false is appropriate for map free operation.
So fix it by adding need_defer parameter to bpf_fd_array_map_clear() and
adding a new helper __fd_array_map_delete_elem() to handle the map
deletion, map release and map free operations correspondingly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.
The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:
1) release the reference of the old element in the map during map update
or map deletion. The release must be deferred, otherwise the bpf
program may incur use-after-free problem, so need_defer needs to be
true.
2) release the reference of the to-be-added element in the error path of
map update. The to-be-added element is not visible to any bpf
program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
Any bpf program which has access to the map must have been exited and
released, so need_defer=false will be OK.
These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Emit tnum representation as just a constant if all bits are known.
Use decimal-vs-hex logic to determine exact format of emitted
constant value, just like it's done for register range values.
For that move tnum_strn() to kernel/bpf/log.c to reuse decimal-vs-hex
determination logic and constants.
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-12-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Given we enforce a valid range for program and async callback return
value, we must mark R0 as precise to avoid incorrect state pruning.
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Use common logic to verify program return values and async callback
return values. This allows to avoid duplication of any extra steps
necessary, like precision marking, which will be added in the next
patch.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similarly to subprog/callback logic, enforce return value of BPF program
using more precise smin/smax range.
We need to adjust a bunch of tests due to a changed format of an error
message.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of relying on potentially imprecise tnum representation of
expected return value range for callbacks and subprogs, validate that
smin/smax range satisfy exact expected range of return values.
E.g., if callback would need to return [0, 2] range, tnum can't
represent this precisely and instead will allow [0, 3] range. By
checking smin/smax range, we can make sure that subprog/callback indeed
returns only valid [0, 2] range.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Given verifier checks actual value, r0 has to be precise, so we need to
propagate precision properly. r0 also has to be marked as read,
otherwise subsequent state comparisons will ignore such register as
unimportant and precision won't really help here.
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Bpf cpu=v4 support is introduced in [1] and Commit 4cd58e9af8
("bpf: Support new 32bit offset jmp instruction") added support for new
32bit offset jmp instruction. Unfortunately, in function
bpf_adj_delta_to_off(), for new branch insn with 32bit offset, the offset
(plus/minor a small delta) compares to 16-bit offset bound
[S16_MIN, S16_MAX], which caused the following verification failure:
$ ./test_progs-cpuv4 -t verif_scale_pyperf180
...
insn 10 cannot be patched due to 16-bit range
...
libbpf: failed to load object 'pyperf180.bpf.o'
scale_test:FAIL:expect_success unexpected error: -12 (errno 12)
#405 verif_scale_pyperf180:FAIL
Note that due to recent llvm18 development, the patch [2] (already applied
in bpf-next) needs to be applied to bpf tree for testing purpose.
The fix is rather simple. For 32bit offset branch insn, the adjusted
offset compares to [S32_MIN, S32_MAX] and then verification succeeded.
[1] https://lore.kernel.org/all/20230728011143.3710005-1-yonghong.song@linux.dev
[2] https://lore.kernel.org/bpf/20231110193644.3130906-1-yonghong.song@linux.dev
Fixes: 4cd58e9af8 ("bpf: Support new 32bit offset jmp instruction")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231201024640.3417057-1-yonghong.song@linux.dev
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZWiCPAAKCRDbK58LschI
g4djAQC1FdqCRIFkhbiIRNHTgHjnfQShELQbd9ofJqzylLqmmgD+JI1E7D9SXagm
pIXQ26EGmq8/VcCT3VLncA8EsC76Gg4=
=Xowm
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-11-30
We've added 30 non-merge commits during the last 7 day(s) which contain
a total of 58 files changed, 1598 insertions(+), 154 deletions(-).
The main changes are:
1) Add initial TX metadata implementation for AF_XDP with support in mlx5
and stmmac drivers. Two types of offloads are supported right now, that
is, TX timestamp and TX checksum offload, from Stanislav Fomichev with
stmmac implementation from Song Yoong Siang.
2) Change BPF verifier logic to validate global subprograms lazily instead
of unconditionally before the main program, so they can be guarded using
BPF CO-RE techniques, from Andrii Nakryiko.
3) Add BPF link_info support for uprobe multi link along with bpftool
integration for the latter, from Jiri Olsa.
4) Use pkg-config in BPF selftests to determine ld flags which is
in particular needed for linking statically, from Akihiko Odaki.
5) Fix a few BPF selftest failures to adapt to the upcoming LLVM18,
from Yonghong Song.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (30 commits)
bpf/tests: Remove duplicate JSGT tests
selftests/bpf: Add TX side to xdp_hw_metadata
selftests/bpf: Convert xdp_hw_metadata to XDP_USE_NEED_WAKEUP
selftests/bpf: Add TX side to xdp_metadata
selftests/bpf: Add csum helpers
selftests/xsk: Support tx_metadata_len
xsk: Add option to calculate TX checksum in SW
xsk: Validate xsk_tx_metadata flags
xsk: Document tx_metadata_len layout
net: stmmac: Add Tx HWTS support to XDP ZC
net/mlx5e: Implement AF_XDP TX timestamp and checksum offload
tools: ynl: Print xsk-features from the sample
xsk: Add TX timestamp and TX checksum offload support
xsk: Support tx_metadata_len
selftests/bpf: Use pkg-config for libelf
selftests/bpf: Override PKG_CONFIG for static builds
selftests/bpf: Choose pkg-config for the target
bpftool: Add support to display uprobe_multi links
selftests/bpf: Add link_info test for uprobe_multi link
selftests/bpf: Use bpf_link__destroy in fill_link_info tests
...
====================
Conflicts:
Documentation/netlink/specs/netdev.yaml:
839ff60df3 ("net: page_pool: add nlspec for basic access to page pools")
48eb03dd26 ("xsk: Add TX timestamp and TX checksum offload support")
https://lore.kernel.org/all/20231201094705.1ee3cab8@canb.auug.org.au/
While at it also regen, tree is dirty after:
48eb03dd26 ("xsk: Add TX timestamp and TX checksum offload support")
looks like code wasn't re-rendered after "render-max" was removed.
Link: https://lore.kernel.org/r/20231130145708.32573-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
bpf_mem_cache_alloc_flags() may call __alloc() directly when there is no
free object in free list, but it doesn't initialize the allocation hint
for the returned pointer. It may lead to bad memory dereference when
freeing the pointer, so fix it by initializing the allocation hint.
Fixes: 822fb26bdb ("bpf: Add a hint to allocated objects.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231111043821.2258513-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Slightly change BPF verifier logic around eagerness and order of global
subprog validation. Instead of going over every global subprog eagerly
and validating it before main (entry) BPF program is verified, turn it
around. Validate main program first, mark subprogs that were called from
main program for later verification, but otherwise assume it is valid.
Afterwards, go over marked global subprogs and validate those,
potentially marking some more global functions as being called. Continue
this process until all (transitively) callable global subprogs are
validated. It's a BFS traversal at its heart and will always converge.
This is an important change because it allows to feature-gate some
subprograms that might not be verifiable on some older kernel, depending
on supported set of features.
E.g., at some point, global functions were allowed to accept a pointer
to memory, which size is identified by user-provided type.
Unfortunately, older kernels don't support this feature. With BPF CO-RE
approach, the natural way would be to still compile BPF object file once
and guard calls to this global subprog with some CO-RE check or using
.rodata variables. That's what people do to guard usage of new helpers
or kfuncs, and any other new BPF-side feature that might be missing on
old kernels.
That's currently impossible to do with global subprogs, unfortunately,
because they are eagerly and unconditionally validated. This patch set
aims to change this, so that in the future when global funcs gain new
features, those can be guarded using BPF CO-RE techniques in the same
fashion as any other new kernel feature.
Two selftests had to be adjusted in sync with these changes.
test_global_func12 relied on eager global subprog validation failing
before main program failure is detected (unknown return value). Fix by
making sure that main program is always valid.
verifier_subprog_precision's parent_stack_slot_precise subtest relied on
verifier checkpointing heuristic to do a checkpoint at instruction #5,
but that's no longer true because we don't have enough jumps validated
before reaching insn #5 due to global subprogs being validated later.
Other than that, no changes, as one would expect.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231124035937.403208-3-andrii@kernel.org
We have the name, instead of emitting just func#N to identify global
subprog, augment verifier log messages with actual function name to make
it more user-friendly.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231124035937.403208-2-andrii@kernel.org
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZV0kjgAKCRDbK58LschI
gy0EAP9XwncW2OhO72DpITluFzvWPgB0N97OANKBXjzKJrRAlQD/aUe9nlvBQuad
WsbMKLeC4wvI2X/4PEIR4ukbuZ3ypAA=
=LMVg
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-11-21
We've added 85 non-merge commits during the last 12 day(s) which contain
a total of 63 files changed, 4464 insertions(+), 1484 deletions(-).
The main changes are:
1) Huge batch of verifier changes to improve BPF register bounds logic
and range support along with a large test suite, and verifier log
improvements, all from Andrii Nakryiko.
2) Add a new kfunc which acquires the associated cgroup of a task within
a specific cgroup v1 hierarchy where the latter is identified by its id,
from Yafang Shao.
3) Extend verifier to allow bpf_refcount_acquire() of a map value field
obtained via direct load which is a use-case needed in sched_ext,
from Dave Marchevsky.
4) Fix bpf_get_task_stack() helper to add the correct crosstask check
for the get_perf_callchain(), from Jordan Rome.
5) Fix BPF task_iter internals where lockless usage of next_thread()
was wrong. The rework also simplifies the code, from Oleg Nesterov.
6) Fix uninitialized tail padding via LIBBPF_OPTS_RESET, and another
fix for certain BPF UAPI structs to fix verifier failures seen
in bpf_dynptr usage, from Yonghong Song.
7) Add BPF selftest fixes for map_percpu_stats flakes due to per-CPU BPF
memory allocator not being able to allocate per-CPU pointer successfully,
from Hou Tao.
8) Add prep work around dynptr and string handling for kfuncs which
is later going to be used by file verification via BPF LSM and fsverity,
from Song Liu.
9) Improve BPF selftests to update multiple prog_tests to use ASSERT_*
macros, from Yuran Pereira.
10) Optimize LPM trie lookup to check prefixlen before walking the trie,
from Florian Lehner.
11) Consolidate virtio/9p configs from BPF selftests in config.vm file
given they are needed consistently across archs, from Manu Bretelle.
12) Small BPF verifier refactor to remove register_is_const(),
from Shung-Hsi Yu.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (85 commits)
selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in vmlinux
selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bpf_obj_id
selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bind_perm
selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bpf_tcp_ca
selftests/bpf: reduce verboseness of reg_bounds selftest logs
bpf: bpf_iter_task_next: use next_task(kit->task) rather than next_task(kit->pos)
bpf: bpf_iter_task_next: use __next_thread() rather than next_thread()
bpf: task_group_seq_get_next: use __next_thread() rather than next_thread()
bpf: emit frameno for PTR_TO_STACK regs if it differs from current one
bpf: smarter verifier log number printing logic
bpf: omit default off=0 and imm=0 in register state log
bpf: emit map name in register state if applicable and available
bpf: print spilled register state in stack slot
bpf: extract register state printing
bpf: move verifier state printing code to kernel/bpf/log.c
bpf: move verbose_linfo() into kernel/bpf/log.c
bpf: rename BPF_F_TEST_SANITY_STRICT to BPF_F_TEST_REG_INVARIANTS
bpf: Remove test for MOVSX32 with offset=32
selftests/bpf: add iter test requiring range x range logic
veristat: add ability to set BPF_F_TEST_SANITY_STRICT flag with -r flag
...
====================
Link: https://lore.kernel.org/r/20231122000500.28126-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In some cases verifier can't infer convergence of the bpf_loop()
iteration. E.g. for the following program:
static int cb(__u32 idx, struct num_context* ctx)
{
ctx->i++;
return 0;
}
SEC("?raw_tp")
int prog(void *_)
{
struct num_context ctx = { .i = 0 };
__u8 choice_arr[2] = { 0, 1 };
bpf_loop(2, cb, &ctx, 0);
return choice_arr[ctx.i];
}
Each 'cb' simulation would eventually return to 'prog' and reach
'return choice_arr[ctx.i]' statement. At which point ctx.i would be
marked precise, thus forcing verifier to track multitude of separate
states with {.i=0}, {.i=1}, ... at bpf_loop() callback entry.
This commit allows "brute force" handling for such cases by limiting
number of callback body simulations using 'umax' value of the first
bpf_loop() parameter.
For this, extend bpf_func_state with 'callback_depth' field.
Increment this field when callback visiting state is pushed to states
traversal stack. For frame #N it's 'callback_depth' field counts how
many times callback with frame depth N+1 had been executed.
Use bpf_func_state specifically to allow independent tracking of
callback depths when multiple nested bpf_loop() calls are present.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Callbacks are similar to open coded iterators, so add imprecise
widening logic for callback body processing. This makes callback based
loops behave identically to open coded iterators, e.g. allowing to
verify programs like below:
struct ctx { u32 i; };
int cb(u32 idx, struct ctx* ctx)
{
++ctx->i;
return 0;
}
...
struct ctx ctx = { .i = 0 };
bpf_loop(100, cb, &ctx, 0);
...
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-9-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Prior to this patch callbacks were handled as regular function calls,
execution of callback body was modeled exactly once.
This patch updates callbacks handling logic as follows:
- introduces a function push_callback_call() that schedules callback
body verification in env->head stack;
- updates prepare_func_exit() to reschedule callback body verification
upon BPF_EXIT;
- as calls to bpf_*_iter_next(), calls to callback invoking functions
are marked as checkpoints;
- is_state_visited() is updated to stop callback based iteration when
some identical parent state is found.
Paths with callback function invoked zero times are now verified first,
which leads to necessity to modify some selftests:
- the following negative tests required adding release/unlock/drop
calls to avoid previously masked unrelated error reports:
- cb_refs.c:underflow_prog
- exceptions_fail.c:reject_rbtree_add_throw
- exceptions_fail.c:reject_with_cp_reference
- the following precision tracking selftests needed change in expected
log trace:
- verifier_subprog_precision.c:callback_result_precise
(note: r0 precision is no longer propagated inside callback and
I think this is a correct behavior)
- verifier_subprog_precision.c:parent_callee_saved_reg_precise_with_callback
- verifier_subprog_precision.c:parent_stack_slot_precise_with_callback
Reported-by: Andrew Werner <awerner32@gmail.com>
Closes: https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move code for simulated stack frame creation to a separate utility
function. This function would be used in the follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
a parameter;
The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This looks more clear and simplifies the code. While at it, remove the
unnecessary initialization of pos/task at the start of bpf_iter_task_new().
Note that we can even kill kit->task, we can just use pos->group_leader,
but I don't understand the BUILD_BUG_ON() checks in bpf_iter_task_new().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231114163239.GA903@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lockless use of next_thread() should be avoided, kernel/bpf/task_iter.c
is the last user and the usage is wrong.
bpf_iter_task_next() can loop forever, "kit->pos == kit->task" can never
happen if kit->pos execs. Change this code to use __next_thread().
With or without this change the usage of kit->pos/task and next_task()
doesn't look nice, see the next patch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231114163237.GA897@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lockless use of next_thread() should be avoided, kernel/bpf/task_iter.c
is the last user and the usage is wrong.
task_group_seq_get_next() can return the group leader twice if it races
with mt-thread exec which changes the group->leader's pid.
Change the main loop to use __next_thread(), kill "next_tid == common->pid"
check.
__next_thread() can't loop forever, we can also change this code to retry
if next_tid == 0.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231114163234.GA890@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's possible to pass a pointer to parent's stack to child subprogs. In
such case verifier state output is ambiguous not showing whether
register container a pointer to "current" stack, belonging to current
subprog (frame), or it's actually a pointer to one of parent frames.
So emit this information if frame number differs between the state which
register is part of. E.g., if current state is in frame 2 and it has
a register pointing to stack in grand parent state (frame #0), we'll see
something like 'R1=fp[0]-16', while "local stack pointer" will be just
'R2=fp-16'.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of always printing numbers as either decimals (and in some
cases, like for "imm=%llx", in hexadecimals), decide the form based on
actual values. For numbers in a reasonably small range (currently,
[0, U16_MAX] for unsigned values, and [S16_MIN, S16_MAX] for signed ones),
emit them as decimals. In all other cases, even for signed values,
emit them in hexadecimals.
For large values hex form is often times way more useful: it's easier to
see an exact difference between 0xffffffff80000000 and 0xffffffff7fffffff,
than between 18446744071562067966 and 18446744071562067967, as one
particular example.
Small values representing small pointer offsets or application
constants, on the other hand, are way more useful to be represented in
decimal notation.
Adjust reg_bounds register state parsing logic to take into account this
change.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Simplify BPF verifier log further by omitting default (and frequently
irrelevant) off=0 and imm=0 parts for non-SCALAR_VALUE registers. As can
be seen from fixed tests, this is often a visual noise for PTR_TO_CTX
register and even for PTR_TO_PACKET registers.
Omitting default values follows the rest of register state logic: we
omit default values to keep verifier log succinct and to highlight
interesting state that deviates from default one. E.g., we do the same
for var_off, when it's unknown, which gives no additional information.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In complicated real-world applications, whenever debugging some
verification error through verifier log, it often would be very useful
to see map name for PTR_TO_MAP_VALUE register. Usually this needs to be
inferred from key/value sizes and maybe trying to guess C code location,
but it's not always clear.
Given verifier has the name, and it's never too long, let's just emit it
for ptr_to_map_key, ptr_to_map_value, and const_ptr_to_map registers. We
reshuffle the order a bit, so that map name, key size, and value size
appear before offset and immediate values, which seems like a more
logical order.
Current output:
R1_w=map_ptr(map=array_map,ks=4,vs=8,off=0,imm=0)
But we'll get rid of useless off=0 and imm=0 parts in the next patch.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Print the same register state representation when printing stack state,
as we do for normal registers. Note that if stack slot contains
subregister spill (1, 2, or 4 byte long), we'll still emit "m0?" mask
for those bytes that are not part of spilled register.
While means we can get something like fp-8=0000scalar() for a 4-byte
spill with other 4 bytes still being STACK_ZERO.
Some example before and after, taken from the log of
pyperf_subprogs.bpf.o:
49: (7b) *(u64 *)(r10 -256) = r1 ; frame1: R1_w=ctx(off=0,imm=0) R10=fp0 fp-256_w=ctx
49: (7b) *(u64 *)(r10 -256) = r1 ; frame1: R1_w=ctx(off=0,imm=0) R10=fp0 fp-256_w=ctx(off=0,imm=0)
150: (7b) *(u64 *)(r10 -264) = r0 ; frame1: R0_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0) R10=fp0 fp-264_w=map_value_or_null
150: (7b) *(u64 *)(r10 -264) = r0 ; frame1: R0_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0) R10=fp0 fp-264_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0)
5192: (61) r1 = *(u32 *)(r10 -272) ; frame1: R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf)) R10=fp0 fp-272=
5192: (61) r1 = *(u32 *)(r10 -272) ; frame1: R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf)) R10=fp0 fp-272=????scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf))
While at it, do a few other simple clean ups:
- skip slot if it's not scratched before detecting whether it's valid;
- move taking spilled_reg pointer outside of switch (only DYNPTR has
to adjust that to get to the "main" slot);
- don't recalculate types_buf second time for MISC/ZERO/default case.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract printing register state representation logic into a separate
helper, as we are going to reuse it for spilled register state printing
in the next patch. This also nicely reduces code nestedness.
No functional changes.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move a good chunk of code from verifier.c to log.c: verifier state
verbose printing logic. This is an important and very much
logging/debugging oriented code. It fits the overlall log.c's focus on
verifier logging, and moving it allows to keep growing it without
unnecessarily adding to verifier.c code that otherwise contains a core
verification logic.
There are not many shared dependencies between this code and the rest of
verifier.c code, except a few single-line helpers for various register
type checks and a bit of state "scratching" helpers. We move all such
trivial helpers into include/bpf/bpf_verifier.h as static inlines.
No functional changes in this patch.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
verifier.c is huge. Let's try to move out parts that are logging-related
into log.c, as we previously did with bpf_log() and other related stuff.
This patch moves line info verbose output routines: it's pretty
self-contained and isolated code, so there is no problem with this.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This change doesn't seem to have any effect on selftests and production
BPF object files, but we preemptively try to make it more robust.
First, "learn sign from signed bounds" comment is misleading, as we are
learning not just sign, but also values.
Second, we simplify the check for determining whether entire range is
positive or negative similarly to other checks added earlier, using
appropriate u32/u64 cast and single comparisons. As explain in comments
in __reg64_deduce_bounds(), the checks are equivalent.
Last but not least, smin/smax and s32_min/s32_max reassignment based on
min/max of both umin/umax and smin/smax (and 32-bit equivalents) is hard
to explain and justify. We are updating unsigned bounds from signed
bounds, why would we update signed bounds at the same time? This might
be correct, but it's far from obvious why and the code or comments don't
try to justify this. Given we've added a separate deduction of signed
bounds from unsigned bounds earlier, this seems at least redundant, if
not just wrong.
In short, we remove doubtful pieces, and streamline the rest to follow
the logic and approach of the rest of reg_bounds_sync() checks.
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Equivalent checks were recently added in more succinct and, arguably,
safer form in:
- f188765f23a5 ("bpf: derive smin32/smax32 from umin32/umax32 bounds");
- 2e74aef782d3 ("bpf: derive smin/smax from umin/max bounds").
The checks we are removing in this patch set do similar checks to detect
if entire u32/u64 range has signed bit set or not set, but does it with
two separate checks.
Further, we forcefully overwrite either smin or smax (and 32-bit equvalents)
without applying normal min/max intersection logic. It's not clear why
that would be correct in all cases and seems to work by accident. This
logic is also "gated" by previous signed -> unsigned derivation, which
returns early.
All this is quite confusing and seems error-prone, while we already have
at least equivalent checks happening earlier. So remove this duplicate
and error-prone logic to simplify things a bit.
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add simple sanity checks that validate well-formed ranges (min <= max)
across u64, s64, u32, and s32 ranges. Also for cases when the value is
constant (either 64-bit or 32-bit), we validate that ranges and tnums
are in agreement.
These bounds checks are performed at the end of BPF_ALU/BPF_ALU64
operations, on conditional jumps, and for LDX instructions (where subreg
zero/sign extension is probably the most important to check). This
covers most of the interesting cases.
Also, we validate the sanity of the return register when manually
adjusting it for some special helpers.
By default, sanity violation will trigger a warning in verifier log and
resetting register bounds to "unbounded" ones. But to aid development
and debugging, BPF_F_TEST_SANITY_STRICT flag is added, which will
trigger hard failure of verification with -EFAULT on register bounds
violations. This allows selftests to catch such issues. veristat will
also gain a CLI option to enable this behavior.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Use 32-bit subranges to prune some 64-bit BPF_JEQ/BPF_JNE conditions
that otherwise would be "inconclusive" (i.e., is_branch_taken() would
return -1). This can happen, for example, when registers are initialized
as 64-bit u64/s64, then compared for inequality as 32-bit subregisters,
and then followed by 64-bit equality/inequality check. That 32-bit
inequality can establish some pattern for lower 32 bits of a register
(e.g., s< 0 condition determines whether the bit #31 is zero or not),
while overall 64-bit value could be anything (according to a value range
representation).
This is not a fancy quirky special case, but actually a handling that's
necessary to prevent correctness issue with BPF verifier's range
tracking: set_range_min_max() assumes that register ranges are
non-overlapping, and if that condition is not guaranteed by
is_branch_taken() we can end up with invalid ranges, where min > max.
[0] https://lore.kernel.org/bpf/CACkBjsY2q1_fUohD7hRmKGqv1MV=eP2f6XK8kjkYNw7BaiF8iQ@mail.gmail.com/
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Generalize is_branch_taken logic for SCALAR_VALUE register to handle
cases when both registers are not constants. Previously supported
<range> vs <scalar> cases are a natural subset of more generic <range>
vs <range> set of cases.
Generalized logic relies on straightforward segment intersection checks.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Generalize bounds adjustment logic of reg_set_min_max() to handle not
just register vs constant case, but in general any register vs any
register cases. For most of the operations it's trivial extension based
on range vs range comparison logic, we just need to properly pick
min/max of a range to compare against min/max of the other range.
For BPF_JSET we keep the original capabilities, just make sure JSET is
integrated in the common framework. This is manifested in the
internal-only BPF_JSET + BPF_X "opcode" to allow for simpler and more
uniform rev_opcode() handling. See the code for details. This allows to
reuse the same code exactly both for TRUE and FALSE branches without
explicitly handling both conditions with custom code.
Note also that now we don't need a special handling of BPF_JEQ/BPF_JNE
case none of the registers are constants. This is now just a normal
generic case handled by reg_set_min_max().
To make tnum handling cleaner, tnum_with_subreg() helper is added, as
that's a common operator when dealing with 32-bit subregister bounds.
This keeps the overall logic much less noisy when it comes to tnums.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Kirill Shutemov reported significant percpu memory consumption increase after
booting in 288-cpu VM ([1]) due to commit 41a5db8d81 ("bpf: Add support for
non-fix-size percpu mem allocation"). The percpu memory consumption is
increased from 111MB to 969MB. The number is from /proc/meminfo.
I tried to reproduce the issue with my local VM which at most supports upto
255 cpus. With 252 cpus, without the above commit, the percpu memory
consumption immediately after boot is 57MB while with the above commit the
percpu memory consumption is 231MB.
This is not good since so far percpu memory from bpf memory allocator is not
widely used yet. Let us change pre-allocation in init stage to on-demand
allocation when verifier detects there is a need of percpu memory for bpf
program. With this change, percpu memory consumption after boot can be reduced
signicantly.
[1] https://lore.kernel.org/lkml/20231109154934.4saimljtqx625l3v@box.shutemov.name/
Fixes: 41a5db8d81 ("bpf: Add support for non-fix-size percpu mem allocation")
Reported-and-tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231111013928.948838-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A new kfunc is added to acquire cgroup1 of a task:
- bpf_task_get_cgroup1
Acquires the associated cgroup of a task whithin a specific cgroup1
hierarchy. The cgroup1 hierarchy is identified by its hierarchy ID.
This new kfunc enables the tracing of tasks within a designated
container or cgroup directory in BPF programs.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20231111090034.4248-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently get_perf_callchain only supports user stack walking for
the current task. Passing the correct *crosstask* param will return
0 frames if the task passed to __bpf_get_stack isn't the current
one instead of a single incorrect frame/address. This change
passes the correct *crosstask* param but also does a preemptive
check in __bpf_get_stack if the task is current and returns
-EOPNOTSUPP if it is not.
This issue was found using bpf_get_task_stack inside a BPF
iterator ("iter/task"), which iterates over all tasks.
bpf_get_task_stack works fine for fetching kernel stacks
but because get_perf_callchain relies on the caller to know
if the requested *task* is the current one (via *crosstask*)
it was failing in a confusing way.
It might be possible to get user stacks for all tasks utilizing
something like access_process_vm but that requires the bpf
program calling bpf_get_task_stack to be sleepable and would
therefore be a breaking change.
Fixes: fa28dcb82a ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Jordan Rome <jordalgo@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231108112334.3433136-1-jordalgo@meta.com
When BPF program is verified in privileged mode, BPF verifier allows
bounded loops. This means that from CFG point of view there are
definitely some back-edges. Original commit adjusted check_cfg() logic
to not detect back-edges in control flow graph if they are resulting
from conditional jumps, which the idea that subsequent full BPF
verification process will determine whether such loops are bounded or
not, and either accept or reject the BPF program. At least that's my
reading of the intent.
Unfortunately, the implementation of this idea doesn't work correctly in
all possible situations. Conditional jump might not result in immediate
back-edge, but just a few unconditional instructions later we can arrive
at back-edge. In such situations check_cfg() would reject BPF program
even in privileged mode, despite it might be bounded loop. Next patch
adds one simple program demonstrating such scenario.
To keep things simple, instead of trying to detect back edges in
privileged mode, just assume every back edge is valid and let subsequent
BPF verification prove or reject bounded loops.
Note a few test changes. For unknown reason, we have a few tests that
are specified to detect a back-edge in a privileged mode, but looking at
their code it seems like the right outcome is passing check_cfg() and
letting subsequent verification to make a decision about bounded or not
bounded looping.
Bounded recursion case is also interesting. The example should pass, as
recursion is limited to just a few levels and so we never reach maximum
number of nested frames and never exhaust maximum stack depth. But the
way that max stack depth logic works today it falsely detects this as
exceeding max nested frame count. This patch series doesn't attempt to
fix this orthogonal problem, so we just adjust expected verifier failure.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 2589726d12 ("bpf: introduce bounded loops")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110061412.2995786-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking instructions in a state if it happens that state's first
and last instruction indexes are the same. This situations doesn't
necessarily mean that there were no instructions simulated in a state,
but rather that we starting from the instruction, jumped around a bit,
and then ended up at the same instruction before checkpointing or
marking precision.
To distinguish between these two possible situations, we need to consult
jump history. If it's empty or contain a single record "bridging" parent
state and first instruction of processed state, then we indeed
backtracked all instructions in this state. But if history is not empty,
we are definitely not done yet.
Move this logic inside get_prev_insn_idx() to contain it more nicely.
Use -ENOENT return code to denote "we are out of instructions"
situation.
This bug was exposed by verifier_loop1.c's bounded_recursion subtest, once
the next fix in this patch set is applied.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(), just like the rest of BPF verifier does.
This has implications in three places:
- when determining next instruction for non-jump instructions;
- when determining next instruction for callback address ldimm64
instructions (in visit_func_call_insn());
- when checking for unreachable instructions, where second half of
ldimm64 is expected to be unreachable;
We take this also as an opportunity to report jump into the middle of
ldimm64. And adjust few test_verifier tests accordingly.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 475fb78fbf ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch enables the following pattern:
/* mapval contains a __kptr pointing to refcounted local kptr */
mapval = bpf_map_lookup_elem(&map, &idx);
if (!mapval || !mapval->some_kptr) { /* omitted */ }
p = bpf_refcount_acquire(&mapval->some_kptr);
Currently this doesn't work because bpf_refcount_acquire expects an
owning or non-owning ref. The verifier defines non-owning ref as a type:
PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF
while mapval->some_kptr is PTR_TO_BTF_ID | PTR_UNTRUSTED. It's possible
to do the refcount_acquire by first bpf_kptr_xchg'ing mapval->some_kptr
into a temp kptr, refcount_acquiring that, and xchg'ing back into
mapval, but this is unwieldy and shouldn't be necessary.
This patch modifies btf_ld_kptr_type such that user-allocated types are
marked MEM_ALLOC and if those types have a bpf_{rb,list}_node they're
marked NON_OWN_REF as well. Additionally, due to changes to
bpf_obj_drop_impl earlier in this series, rcu_protected_object now
returns true for all user-allocated types, resulting in
mapval->some_kptr being marked MEM_RCU.
After this patch's changes, mapval->some_kptr is now:
PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU
which results in it passing the non-owning ref test, and the motivating
example passing verification.
Future work will likely get rid of special non-owning ref lifetime logic
in the verifier, at which point we'll be able to delete the NON_OWN_REF
flag entirely.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20231107085639.3016113-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This refactoring patch removes the unused BPF_GRAPH_NODE_OR_ROOT
btf_field_type and moves BPF_GRAPH_{NODE,ROOT} macros into the
btf_field_type enum. Further patches in the series will use
BPF_GRAPH_NODE, so let's move this useful definition out of btf.c.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20231107085639.3016113-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The use of bpf_mem_free_rcu to free refcounted local kptrs was added
in commit 7e26cd12ad ("bpf: Use bpf_mem_free_rcu when
bpf_obj_dropping refcounted nodes"). In the cover letter for the
series containing that patch [0] I commented:
Perhaps it makes sense to move to mem_free_rcu for _all_
non-owning refs in the future, not just refcounted. This might
allow custom non-owning ref lifetime + invalidation logic to be
entirely subsumed by MEM_RCU handling. IMO this needs a bit more
thought and should be tackled outside of a fix series, so it's not
attempted here.
It's time to start moving in the "non-owning refs have MEM_RCU
lifetime" direction. As mentioned in that comment, using
bpf_mem_free_rcu for all local kptrs - not just refcounted - is
necessarily the first step towards that goal. This patch does so.
After this patch the memory pointed to by all local kptrs will not be
reused until RCU grace period elapses. The verifier's understanding of
non-owning ref validity and the clobbering logic it uses to enforce
that understanding are not changed here, that'll happen gradually in
future work, including further patches in the series.
[0]: https://lore.kernel.org/all/20230821193311.3290257-1-davemarchevsky@fb.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20231107085639.3016113-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refcounted local kptrs are kptrs to user-defined types with a
bpf_refcount field. Recent commits ([0], [1]) modified the lifetime of
refcounted local kptrs such that the underlying memory is not reused
until RCU grace period has elapsed.
Separately, verification of bpf_refcount_acquire calls currently
succeeds for MAYBE_NULL non-owning reference input, which is a problem
as bpf_refcount_acquire_impl has no handling for this case.
This patch takes advantage of aforementioned lifetime changes to tag
bpf_refcount_acquire_impl kfunc KF_RCU, thereby preventing MAYBE_NULL
input to the kfunc. The KF_RCU flag applies to all kfunc params; it's
fine for it to apply to the void *meta__ign param as that's populated by
the verifier and is tagged __ign regardless.
[0]: commit 7e26cd12ad ("bpf: Use bpf_mem_free_rcu when
bpf_obj_dropping refcounted nodes") is the actual change to
allocation behaivor
[1]: commit 0816b8c6bf ("bpf: Consider non-owning refs to refcounted
nodes RCU protected") modified verifier understanding of
refcounted local kptrs to match [0]'s changes
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Fixes: 7c50b1cb76 ("bpf: Add bpf_refcount_acquire kfunc")
Link: https://lore.kernel.org/r/20231107085639.3016113-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The addition of is_reg_const() in commit 171de12646d2 ("bpf: generalize
is_branch_taken to handle all conditional jumps in one place") has made the
register_is_const() redundant. Give the former has more feature, plus the
fact the latter is only used in one place, replace register_is_const() with
is_reg_const(), and remove the definition of register_is_const.
This requires moving the definition of is_reg_const() further up. And since
the comment of reg_const_value() reference is_reg_const(), move it up as
well.
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231108140043.12282-1-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to ARG_PTR_TO_CONST_STR for BPF helpers, KF_ARG_PTR_TO_CONST_STR
specifies kfunc args that point to const strings. Annotation "__str" is
used to specify kfunc arg of type KF_ARG_PTR_TO_CONST_STR. Also, add
documentation for the "__str" annotation.
bpf_get_file_xattr() will be the first kfunc that uses this type.
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Link: https://lore.kernel.org/bpf/20231107045725.2278852-4-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ARG_PTR_TO_CONST_STR is used to specify constant string args for BPF
helpers. The logic that verifies a reg is ARG_PTR_TO_CONST_STR is
implemented in check_func_arg().
As we introduce kfuncs with constant string args, it is necessary to
do the same check for kfuncs (in check_kfunc_args). Factor out the logic
for ARG_PTR_TO_CONST_STR to a new check_reg_const_str() so that it can be
reused.
check_func_arg() ensures check_reg_const_str() is only called with reg of
type PTR_TO_MAP_VALUE. Add a redundent type check in check_reg_const_str()
to avoid misuse in the future. Other than this redundent check, there is
no change in behavior.
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Link: https://lore.kernel.org/bpf/20231107045725.2278852-3-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Different types of bpf dynptr have different internal data storage.
Specifically, SKB and XDP type of dynptr may have non-continuous data.
Therefore, it is not always safe to directly access dynptr->data.
Add __bpf_dynptr_data and __bpf_dynptr_data_rw to replace direct access to
dynptr->data.
Update bpf_verify_pkcs7_signature to use __bpf_dynptr_data instead of
dynptr->data.
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Link: https://lore.kernel.org/bpf/20231107045725.2278852-2-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.
To resolve this, check key->prefixlen first before walking the LPM trie.
Fixes: b95a5c4db0 ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <dev@der-flo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231105085801.3742-1-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Change reg_set_min_max() to take FALSE/TRUE sets of two registers each,
instead of assuming that we are always comparing to a constant. For now
we still assume that right-hand side registers are constants (and make
sure that's the case by swapping src/dst regs, if necessary), but
subsequent patches will remove this limitation.
reg_set_min_max() is now called unconditionally for any register
comparison, so that might include pointer vs pointer. This makes it
consistent with is_branch_taken() generality. But we currently only
support adjustments based on SCALAR vs SCALAR comparisons, so
reg_set_min_max() has to guard itself againts pointers.
Taking two by two registers allows to further unify and simplify
check_cond_jmp_op() logic. We utilize fake register for BPF_K
conditional jump case, just like with is_branch_taken() part.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-18-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similarly to is_branch_taken()-related refactorings, start preparing
reg_set_min_max() to handle more generic case of two non-const
registers. Start with renaming arguments to accommodate later addition
of second register as an input argument.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-17-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>