There is a bug report that SLAB makes extreme load average due to over
2000 kworker thread.
https://bugzilla.kernel.org/show_bug.cgi?id=172981
This issue is caused by kmemcg feature that try to create new set of
kmem_caches for each memcg. Recently, kmem_cache creation is slowed by
synchronize_sched() and futher kmem_cache creation is also delayed since
kmem_cache creation is synchronized by a global slab_mutex lock. So,
the number of kworker that try to create kmem_cache increases quietly.
synchronize_sched() is for lockless access to node's shared array but
it's not needed when a new kmem_cache is created. So, this patch rules
out that case.
Fixes: 801faf0db8 ("mm/slab: lockless decision to grow cache")
Link: http://lkml.kernel.org/r/1475734855-4837-1-git-send-email-iamjoonsoo.kim@lge.com
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that workqueue can handle work item queueing from very early
during boot, there is no need to gate schedule_delayed_work_on() while
!keventd_up(). Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Install the callbacks via the state machine.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20160823125319.abeapfjapf2kfezp@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit 312b1485fb ("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")
This patch removes the following compatibility definitions and replaces
them treewide.
/* compatibility defines */
#define __init_refok __ref
#define __initdata_refok __refdata
#define __exit_refok __ref
I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The state of object currently tracked in two places - shadow memory, and
the ->state field in struct kasan_alloc_meta. We can get rid of the
latter. The will save us a little bit of memory. Also, this allow us
to move free stack into struct kasan_alloc_meta, without increasing
memory consumption. So now we should always know when the last time the
object was freed. This may be useful for long delayed use-after-free
bugs.
As a side effect this fixes following UBSAN warning:
UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13
member access within misaligned address ffff88000d1efebc for type 'struct qlist_node'
which requires 8 byte alignment
Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using list_move() instead of list_del() + list_add() to avoid needlessly
poisoning the next and prev values.
Link: http://lkml.kernel.org/r/1468929772-9174-1-git-send-email-weiyj_lk@163.com
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both SLAB and SLUB BUG() when a caller provides an invalid gfp_mask.
This is a rather harsh way to announce a non-critical issue. Allocator
is free to ignore invalid flags. Let's simply replace BUG() by
dump_stack to tell the offender and fixup the mask to move on with the
allocation request.
This is an example for kmalloc(GFP_KERNEL|__GFP_HIGHMEM) from a test
module:
Unexpected gfp: 0x2 (__GFP_HIGHMEM). Fixing up to gfp: 0x24000c0 (GFP_KERNEL). Fix your code!
CPU: 0 PID: 2916 Comm: insmod Tainted: G O 4.6.0-slabgfp2-00002-g4cdfc2ef4892-dirty #936
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
Call Trace:
dump_stack+0x67/0x90
cache_alloc_refill+0x201/0x617
kmem_cache_alloc_trace+0xa7/0x24a
? 0xffffffffa0005000
mymodule_init+0x20/0x1000 [test_slab]
do_one_initcall+0xe7/0x16c
? rcu_read_lock_sched_held+0x61/0x69
? kmem_cache_alloc_trace+0x197/0x24a
do_init_module+0x5f/0x1d9
load_module+0x1a3d/0x1f21
? retint_kernel+0x2d/0x2d
SyS_init_module+0xe8/0x10e
? SyS_init_module+0xe8/0x10e
do_syscall_64+0x68/0x13f
entry_SYSCALL64_slow_path+0x25/0x25
Link: http://lkml.kernel.org/r/1465548200-11384-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk offers %pGg for quite some time so let's use it to get a human
readable list of invalid flags.
The original output would be
[ 429.191962] gfp: 2
after the change
[ 429.191962] Unexpected gfp: 0x2 (__GFP_HIGHMEM)
Link: http://lkml.kernel.org/r/1465548200-11384-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel heap allocators are using a sequential freelist making their
allocation predictable. This predictability makes kernel heap overflow
easier to exploit. An attacker can careful prepare the kernel heap to
control the following chunk overflowed.
For example these attacks exploit the predictability of the heap:
- Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
- Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
***Problems that needed solving:
- Randomize the Freelist (singled linked) used in the SLUB allocator.
- Ensure good performance to encourage usage.
- Get best entropy in early boot stage.
***Parts:
- 01/02 Reorganize the SLAB Freelist randomization to share elements
with the SLUB implementation.
- 02/02 The SLUB Freelist randomization implementation. Similar approach
than the SLAB but tailored to the singled freelist used in SLUB.
***Performance data:
slab_test impact is between 3% to 4% on average for 100000 attempts
without smp. It is a very focused testing, kernbench show the overall
impact on the system is way lower.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
This patch (of 2):
This commit reorganizes the previous SLAB freelist randomization to
prepare for the SLUB implementation. It moves functions that will be
shared to slab_common.
The entropy functions are changed to align with the SLUB implementation,
now using get_random_(int|long) functions. These functions were chosen
because they provide a bit more entropy early on boot and better
performance when specific arch instructions are not available.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under CONFIG_HARDENED_USERCOPY, this adds object size checking to the
SLAB allocator to catch any copies that may span objects.
Based on code from PaX and grsecurity.
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Instead of calling kasan_krealloc(), which replaces the memory
allocation stack ID (if stack depot is used), just unpoison the whole
memory chunk.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.
When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator. From now on the
allocator may reuse it for another allocation. Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).
When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped. Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.
Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
Freed objects are first added to per-cpu quarantine queues. When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue. Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).
As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased. Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.
Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.
This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov. A number of improvements have been
suggested by Andrey Ryabinin.
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lots of code does
node = next_node(node, XXX);
if (node == MAX_NUMNODES)
node = first_node(XXX);
so create next_node_in() to do this and use it in various places.
[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or
not, so ZONE_DMA_FLAG sounds no longer useful.
And, the use of ZONE_DMA_FLAG in slab looks pointless according to the
comment [1] from Johannes Weiner, so remove them and ORing passed in
flags with the cache gfp flags has been done in kmem_getpages().
[1] https://lkml.org/lkml/2014/9/25/553
Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize
the SLAB freelist. The list is randomized during initialization of a
new set of pages. The order on different freelist sizes is pre-computed
at boot for performance. Each kmem_cache has its own randomized
freelist. Before pre-computed lists are available freelists are
generated dynamically. This security feature reduces the predictability
of the kernel SLAB allocator against heap overflows rendering attacks
much less stable.
For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
Also, since v4.6 the freelist was moved at the end of the SLAB. It
means a controllable heap is opened to new attacks not yet publicly
discussed. A kernel heap overflow can be transformed to multiple
use-after-free. This feature makes this type of attack harder too.
To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage. In the worse case this function
will fallback to the get_random_bytes sub API. We also generate a shift
random number to shift pre-computed freelist for each new set of pages.
The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.
Performance results highlighted no major changes:
Hackbench (running 90 10 times):
Before average: 0.0698
After average: 0.0663 (-5.01%)
slab_test 1 run on boot. Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization. New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 121 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 121 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 123 cycles
10000 times kmalloc(64)/kfree -> 142 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 119 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
[akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()]
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To check whether free objects exist or not precisely, we need to grab a
lock. But, accuracy isn't that important because race window would be
even small and if there is too much free object, cache reaper would reap
it. So, this patch makes the check for free object exisistence not to
hold a lock. This will reduce lock contention in heavily allocation
case.
Note that until now, n->shared can be freed during the processing by
writing slabinfo, but, with some trick in this patch, we can access it
freely within interrupt disabled period.
Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago. I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.
* Before
Kmalloc N*alloc N*free(32): Average=248/966
Kmalloc N*alloc N*free(64): Average=261/949
Kmalloc N*alloc N*free(128): Average=314/1016
Kmalloc N*alloc N*free(256): Average=741/1061
Kmalloc N*alloc N*free(512): Average=1246/1152
Kmalloc N*alloc N*free(1024): Average=2437/1259
Kmalloc N*alloc N*free(2048): Average=4980/1800
Kmalloc N*alloc N*free(4096): Average=9000/2078
* After
Kmalloc N*alloc N*free(32): Average=344/792
Kmalloc N*alloc N*free(64): Average=347/882
Kmalloc N*alloc N*free(128): Average=390/959
Kmalloc N*alloc N*free(256): Average=393/1067
Kmalloc N*alloc N*free(512): Average=683/1229
Kmalloc N*alloc N*free(1024): Average=1295/1325
Kmalloc N*alloc N*free(2048): Average=2513/1664
Kmalloc N*alloc N*free(4096): Average=4742/2172
It shows that allocation performance decreases for the object size up to
128 and it may be due to extra checks in cache_alloc_refill(). But,
with considering improvement of free performance, net result looks the
same. Result for other size class looks very promising, roughly, 50%
performance improvement.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until now, cache growing makes a free slab on node's slab list and then
we can allocate free objects from it. This necessarily requires to hold
a node lock which is very contended. If we refill cpu cache before
attaching it to node's slab list, we can avoid holding a node lock as
much as possible because this newly allocated slab is only visible to
the current task. This will reduce lock contention.
Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago. I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.
* Before
Kmalloc N*alloc N*free(32): Average=355/750
Kmalloc N*alloc N*free(64): Average=452/812
Kmalloc N*alloc N*free(128): Average=559/1070
Kmalloc N*alloc N*free(256): Average=1176/980
Kmalloc N*alloc N*free(512): Average=1939/1189
Kmalloc N*alloc N*free(1024): Average=3521/1278
Kmalloc N*alloc N*free(2048): Average=7152/1838
Kmalloc N*alloc N*free(4096): Average=13438/2013
* After
Kmalloc N*alloc N*free(32): Average=248/966
Kmalloc N*alloc N*free(64): Average=261/949
Kmalloc N*alloc N*free(128): Average=314/1016
Kmalloc N*alloc N*free(256): Average=741/1061
Kmalloc N*alloc N*free(512): Average=1246/1152
Kmalloc N*alloc N*free(1024): Average=2437/1259
Kmalloc N*alloc N*free(2048): Average=4980/1800
Kmalloc N*alloc N*free(4096): Average=9000/2078
It shows that contention is reduced for all the object sizes and
performance increases by 30 ~ 40%.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation step to implement lockless allocation path when
there is no free objects in kmem_cache.
What we'd like to do here is to refill cpu cache without holding a node
lock. To accomplish this purpose, refill should be done after new slab
allocation but before attaching the slab to the management list. So,
this patch separates cache_grow() to two parts, allocation and attaching
to the list in order to add some code inbetween them in the following
patch.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, cache_grow() assumes that allocated page's nodeid would be
same with parameter nodeid which is used for allocation request. If we
discard this assumption, we can handle fallback_alloc() case gracefully.
So, this patch makes cache_grow() handle the page allocated on arbitrary
node and clean-up relevant code.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab color isn't needed to be changed strictly. Because locking for
changing slab color could cause more lock contention so this patch
implements racy access/modify the slab color. This is a preparation
step to implement lockless allocation path when there is no free objects
in the kmem_cache.
Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago. I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.
* Before
Kmalloc N*alloc N*free(32): Average=365/806
Kmalloc N*alloc N*free(64): Average=452/690
Kmalloc N*alloc N*free(128): Average=736/886
Kmalloc N*alloc N*free(256): Average=1167/985
Kmalloc N*alloc N*free(512): Average=2088/1125
Kmalloc N*alloc N*free(1024): Average=4115/1184
Kmalloc N*alloc N*free(2048): Average=8451/1748
Kmalloc N*alloc N*free(4096): Average=16024/2048
* After
Kmalloc N*alloc N*free(32): Average=355/750
Kmalloc N*alloc N*free(64): Average=452/812
Kmalloc N*alloc N*free(128): Average=559/1070
Kmalloc N*alloc N*free(256): Average=1176/980
Kmalloc N*alloc N*free(512): Average=1939/1189
Kmalloc N*alloc N*free(1024): Average=3521/1278
Kmalloc N*alloc N*free(2048): Average=7152/1838
Kmalloc N*alloc N*free(4096): Average=13438/2013
It shows that contention is reduced for object size >= 1024 and
performance increases by roughly 15%.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, determination to free a slab is done whenever each freed
object is put into the slab. This has a following problem.
Assume free_limit = 10 and nr_free = 9.
Free happens as following sequence and nr_free changes as following.
free(become a free slab) free(not become a free slab) nr_free: 9 -> 10
(at first free) -> 11 (at second free)
If we try to check if we can free current slab or not on each object
free, we can't free any slab in this situation because current slab
isn't a free slab when nr_free exceed free_limit (at second free) even
if there is a free slab.
However, if we check it lastly, we can free 1 free slab.
This problem would cause to keep too much memory in the slab subsystem.
This patch try to fix it by checking number of free object after all
free work is done. If there is free slab at that time, we can free slab
as much as possible so we keep free slab as minimal.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are mostly same code for setting up kmem_cache_node either in
cpuup_prepare() or alloc_kmem_cache_node(). Factor out and clean-up
them.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Nishanth Menon <nm@ti.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can be reused on other place, so factor out it. Following patch will
use it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slabs_tofree() implies freeing all free slab. We can do it with just
providing INT_MAX.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initial attemp to remove BAD_ALIEN_MAGIC is once reverted by 'commit
edcad25095 ("Revert "slab: remove BAD_ALIEN_MAGIC"")' because it
causes a problem on m68k which has many node but !CONFIG_NUMA. In this
case, although alien cache isn't used at all but to cope with some
initialization path, garbage value is used and that is BAD_ALIEN_MAGIC.
Now, this patch set use_alien_caches to 0 when !CONFIG_NUMA, there is no
initialization path problem so we don't need BAD_ALIEN_MAGIC at all. So
remove it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While processing concurrent allocation, SLAB could be contended a lot
because it did a lots of work with holding a lock. This patchset try to
reduce the number of critical section to reduce lock contention. Major
changes are lockless decision to allocate more slab and lockless cpu
cache refill from the newly allocated slab.
Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago. I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.
* Before
Kmalloc N*alloc N*free(32): Average=365/806
Kmalloc N*alloc N*free(64): Average=452/690
Kmalloc N*alloc N*free(128): Average=736/886
Kmalloc N*alloc N*free(256): Average=1167/985
Kmalloc N*alloc N*free(512): Average=2088/1125
Kmalloc N*alloc N*free(1024): Average=4115/1184
Kmalloc N*alloc N*free(2048): Average=8451/1748
Kmalloc N*alloc N*free(4096): Average=16024/2048
* After
Kmalloc N*alloc N*free(32): Average=344/792
Kmalloc N*alloc N*free(64): Average=347/882
Kmalloc N*alloc N*free(128): Average=390/959
Kmalloc N*alloc N*free(256): Average=393/1067
Kmalloc N*alloc N*free(512): Average=683/1229
Kmalloc N*alloc N*free(1024): Average=1295/1325
Kmalloc N*alloc N*free(2048): Average=2513/1664
Kmalloc N*alloc N*free(4096): Average=4742/2172
It shows that performance improves greatly (roughly more than 50%) for
the object class whose size is more than 128 bytes.
This patch (of 11):
If we don't hold neither the slab_mutex nor the node lock, node's shared
array cache could be freed and re-populated. If __kmem_cache_shrink()
is called at the same time, it will call drain_array() with n->shared
without holding node lock so problem can happen. This patch fix the
situation by holding the node lock before trying to drain the shared
array.
In addition, add a debug check to confirm that n->shared access race
doesn't exist.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add GFP flags to KASAN hooks for future patches to use.
This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add KASAN hooks to SLAB allocator.
This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the mm subsystem uses pr_<level> so make it consistent.
Miscellanea:
- Realign arguments
- Add missing newline to format
- kmemleak-test.c has a "kmemleak: " prefix added to the
"Kmemleak testing" logging message via pr_fmt
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel style prefers a single string over split strings when the string is
'user-visible'.
Miscellanea:
- Add a missing newline
- Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure. The problem is that
THP allocation requests potentially enter reclaim/compaction. This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses. While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so. Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM. It's been years and
it's time to throw in the towel.
First, this patch defines THP defrag as follows;
madvise: A failed allocation will direct reclaim/compact if the application requests it
never: Neither reclaim/compact nor wake kswapd
defer: A failed allocation will wake kswapd/kcompactd
always: A failed allocation will direct reclaim/compact (historical behaviour)
khugepaged defrag will enter direct/reclaim but not wake kswapd.
Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.
Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work. The callers that
really cares are slub/slab and they are updated accordingly. The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.
This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available. There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary. THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.
After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future. In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.
The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times. The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete. It uses multiple threads to see
if that is a factor. On UMA, the performance is almost identical so is
not reported but on NUMA, we see this
usemem
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%)
Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%)
Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%)
Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%)
Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%)
Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%)
Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%)
Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%)
Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%)
Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%)
Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%)
Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%)
Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%)
Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%)
For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases. Similar,
notice the large reduction in most cases in system CPU usage. The
overall CPU time is
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
User 10357.65 10438.33
System 3988.88 3543.94
Elapsed 2203.01 1634.41
Which is substantial. Now, the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 128458477 278352931
Major Faults 2174976 225
Swap Ins 16904701 0
Swap Outs 17359627 0
Allocation stalls 43611 0
DMA allocs 0 0
DMA32 allocs 19832646 19448017
Normal allocs 614488453 580941839
Movable allocs 0 0
Direct pages scanned 24163800 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 20691346 0
Compaction stalls 42263 0
Compaction success 938 0
Compaction failures 41325 0
This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.
I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used
thpscale Fault Latencies
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%)
Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%)
Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%)
Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%)
Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%)
Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%)
Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%)
Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%)
Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%)
Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%)
Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%)
Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%)
Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%)
Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%)
Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%)
Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%)
Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%)
Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%)
The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%)
Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%)
Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%)
Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%)
Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%)
Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%)
Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%)
Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%)
Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%)
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 37429143 47564000
Major Faults 1916 1558
Swap Ins 1466 1079
Swap Outs 2936863 149626
Allocation stalls 62510 3
DMA allocs 0 0
DMA32 allocs 6566458 6401314
Normal allocs 216361697 216538171
Movable allocs 0 0
Direct pages scanned 25977580 17998
Kswapd pages scanned 0 3638931
Kswapd pages reclaimed 0 207236
Direct pages reclaimed 8833714 88
Compaction stalls 103349 5
Compaction success 270 4
Compaction failures 103079 1
Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.
I also tried the stutter benchmark. For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available
stutter
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%)
1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%)
2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%)
3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%)
Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%)
Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%)
Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%)
Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%)
Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%)
Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%)
This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently. This shows a mix because the ideal case of mapping with THP
is not hit as often. However, note that 99% of the mappings complete
13.79% faster. The CPU usage here is particularly interesting
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
User 67.50 0.99
System 1327.88 91.30
Elapsed 2079.00 2128.98
And once again we look at the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 335241922 1314582827
Major Faults 715 819
Swap Ins 0 0
Swap Outs 0 0
Allocation stalls 532723 0
DMA allocs 0 0
DMA32 allocs 1822364341 1177950222
Normal allocs 1815640808 1517844854
Movable allocs 0 0
Direct pages scanned 21892772 0
Kswapd pages scanned 20015890 41879484
Kswapd pages reclaimed 19961986 41822072
Direct pages reclaimed 21892741 0
Compaction stalls 1065755 0
Compaction success 514 0
Compaction failures 1065241 0
Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.
THP gives impressive gains in some cases but only if they are quickly
available. We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can now print gfp_flags more human-readable. Make use of this in
slab_out_of_memory() for SLUB and SLAB. Also convert the SLAB variant
it to pr_warn() along the way.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current implementation of pfmemalloc handling in SLAB has some problems.
1) pfmemalloc_active is set to true when there is just one or more
pfmemalloc slabs in the system, but it is cleared when there is no
pfmemalloc slab in one arbitrary kmem_cache. So, pfmemalloc_active
could be wrongly cleared.
2) Search to partial and free list doesn't happen when non-pfmemalloc
object are not found in cpu cache. Instead, allocating new slab
happens and it is not optimal.
3) Even after sk_memalloc_socks() is disabled, cpu cache would keep
pfmemalloc objects tagged with SLAB_OBJ_PFMEMALLOC. It isn't cleared
if sk_memalloc_socks() is disabled so it could cause problem.
4) If cpu cache is filled with pfmemalloc objects, it would cause slow
down non-pfmemalloc allocation.
To me, current pointer tagging approach looks complex and fragile so this
patch re-implement whole thing instead of fixing problems one by one.
Design principle for new implementation is that
1) Don't disrupt non-pfmemalloc allocation in fast path even if
sk_memalloc_socks() is enabled. It's more likely case than pfmemalloc
allocation.
2) Ensure that pfmemalloc slab is used only for pfmemalloc allocation.
3) Don't consider performance of pfmemalloc allocation in memory
deficiency state.
As a result, all pfmemalloc alloc/free in memory tight state will be
handled in slow-path. If there is non-pfmemalloc free object, it will be
returned first even for pfmemalloc user in fast-path so that performance
of pfmemalloc user isn't affected in normal case and pfmemalloc objects
will be kept as long as possible.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Returing values by reference is bad practice. Instead, just use
function return value.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Suggested-by: Christoph Lameter <cl@linux.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB needs an array to manage freed objects in a slab. It is only used
if some objects are freed so we can use free object itself as this
array. This requires additional branch in somewhat critical lock path
to check if it is first freed object or not but that's all we need.
Benefits is that we can save extra memory usage and reduce some
computational overhead by allocating a management array when new slab is
created.
Code change is rather complex than what we can expect from the idea, in
order to handle debugging feature efficiently. If you want to see core
idea only, please remove '#if DEBUG' block in the patch.
Although this idea can apply to all caches whose size is larger than
management array size, it isn't applied to caches which have a
constructor. If such cache's object is used for management array,
constructor should be called for it before that object is returned to
user. I guess that overhead overwhelm benefit in that case so this idea
doesn't applied to them at least now.
For summary, from now on, slab management type is determined by
following logic.
1) if management array size is smaller than object size and no ctor, it
becomes OBJFREELIST_SLAB.
2) if management array size is smaller than leftover, it becomes
NORMAL_SLAB which uses leftover as a array.
3) if OFF_SLAB help to save memory than way 4), it becomes OFF_SLAB.
It allocate a management array from the other cache so memory waste
happens.
4) others become NORMAL_SLAB. It uses dedicated internal memory in a
slab as a management array so it causes memory waste.
In my system, without enabling CONFIG_DEBUG_SLAB, Almost caches become
OBJFREELIST_SLAB and NORMAL_SLAB (using leftover) which doesn't waste
memory. Following is the result of number of caches with specific slab
management type.
TOTAL = OBJFREELIST + NORMAL(leftover) + NORMAL + OFF
/Before/
126 = 0 + 60 + 25 + 41
/After/
126 = 97 + 12 + 15 + 2
Result shows that number of caches that doesn't waste memory increase
from 60 to 109.
I did some benchmarking and it looks that benefit are more than loss.
Kmalloc: Repeatedly allocate then free test
/Before/
[ 0.286809] 1. Kmalloc: Repeatedly allocate then free test
[ 1.143674] 100000 times kmalloc(32) -> 116 cycles kfree -> 78 cycles
[ 1.441726] 100000 times kmalloc(64) -> 121 cycles kfree -> 80 cycles
[ 1.815734] 100000 times kmalloc(128) -> 168 cycles kfree -> 85 cycles
[ 2.380709] 100000 times kmalloc(256) -> 287 cycles kfree -> 95 cycles
[ 3.101153] 100000 times kmalloc(512) -> 370 cycles kfree -> 117 cycles
[ 3.942432] 100000 times kmalloc(1024) -> 413 cycles kfree -> 156 cycles
[ 5.227396] 100000 times kmalloc(2048) -> 622 cycles kfree -> 248 cycles
[ 7.519793] 100000 times kmalloc(4096) -> 1102 cycles kfree -> 452 cycles
/After/
[ 1.205313] 100000 times kmalloc(32) -> 117 cycles kfree -> 78 cycles
[ 1.510526] 100000 times kmalloc(64) -> 124 cycles kfree -> 81 cycles
[ 1.827382] 100000 times kmalloc(128) -> 130 cycles kfree -> 84 cycles
[ 2.226073] 100000 times kmalloc(256) -> 177 cycles kfree -> 92 cycles
[ 2.814747] 100000 times kmalloc(512) -> 286 cycles kfree -> 112 cycles
[ 3.532952] 100000 times kmalloc(1024) -> 344 cycles kfree -> 141 cycles
[ 4.608777] 100000 times kmalloc(2048) -> 519 cycles kfree -> 210 cycles
[ 6.350105] 100000 times kmalloc(4096) -> 789 cycles kfree -> 391 cycles
In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object. It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit. So, this
patch doesn't include it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cache_init_objs() will be changed in following patch and current form
doesn't fit well for that change. So, before doing it, this patch
separates debugging initialization. This would cause two loop iteration
when debugging is enabled, but, this overhead seems too light than debug
feature itself so effect may not be visible. This patch will greatly
simplify changes in cache_init_objs() in following patch.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab list should be fixed up after object is detached from the slab and
this happens at two places. They do exactly same thing. They will be
changed in the following patch, so, to reduce code duplication, this
patch factor out them and make it common function.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To become an off slab, there are some constraints to avoid bootstrapping
problem and recursive call. This can be avoided differently by simply
checking that corresponding kmalloc cache is ready and it's not a off
slab. It would be more robust because static size checking can be
affected by cache size change or architecture type but dynamic checking
isn't.
One check 'freelist_cache->size > cachep->size / 2' is added to check
benefit of choosing off slab, because, now, there is no size constraint
which ensures enough advantage when selecting off slab.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can fail to setup off slab in some conditions. Even in this case,
debug pagealloc increases cache size to PAGE_SIZE in advance and it is
waste because debug pagealloc cannot work for it when it isn't the off
slab. To improve this situation, this patch checks first that this
cache with increased size is suitable for off slab. It actually
increases cache size when it is suitable for off-slab, so possible waste
is removed.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current cache type determination code is open-code and looks not
understandable. Following patch will introduce one more cache type and
it would make code more complex. So, before it happens, this patch
abstracts these codes.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Finding suitable OFF_SLAB candidate is more related to aligned cache
size rather than original size. Same reasoning can be applied to the
debug pagealloc candidate. So, this patch moves up alignment fixup to
proper position. From that point, size is aligned so we can remove some
alignment fixups.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the freelist is at the front of slab page. This requires
extra space to meet object alignment requirement. If we put the
freelist at the end of a slab page, objects could start at page boundary
and will be at correct alignment. This is possible because freelist has
no alignment constraint itself.
This gives us two benefits: It removes extra memory space for the
freelist alignment and remove complex calculation at cache
initialization step. I can't think notable drawback here.
I mentioned that this would reduce extra memory space, but, this benefit
is rather theoretical because it can be applied to very few cases.
Following is the example cache type that can get benefit from this
change.
size align num before after
32 8 124 4100 4092
64 8 63 4103 4095
88 8 46 4102 4094
272 8 15 4103 4095
408 8 10 4098 4090
32 16 124 4108 4092
64 16 63 4111 4095
32 32 124 4124 4092
64 32 63 4127 4095
96 32 42 4106 4074
before means whole size for objects and aligned freelist before applying
patch and after shows the result of this patch.
Since before is more than 4096, number of object should decrease and
memory waste happens.
Anyway, this patch removes complex calculation so looks beneficial to
me.
[akpm@linux-foundation.org: fix kerneldoc]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we don't use object status buffer in any setup. Remove it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DEBUG_SLAB_LEAK is a debug option. It's current implementation requires
status buffer so we need more memory to use it. And, it cause
kmem_cache initialization step more complex.
To remove this extra memory usage and to simplify initialization step,
this patch implement this feature with another way.
When user requests to get slab object owner information, it marks that
getting information is started. And then, all free objects in caches
are flushed to corresponding slab page. Now, we can distinguish all
freed object so we can know all allocated objects, too. After
collecting slab object owner information on allocated objects, mark is
checked that there is no free during the processing. If true, we can be
sure that our information is correct so information is returned to user.
Although this way is rather complex, it has two important benefits
mentioned above. So, I think it is worth changing.
There is one drawback that it takes more time to get slab object owner
information but it is just a debug option so it doesn't matter at all.
To help review, this patch implements new way only. Following patch
will remove useless code.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, open code for checking DEBUG_PAGEALLOC cache is spread to
some sites. It makes code unreadable and hard to change.
This patch cleans up this code. The following patch will change the
criteria for DEBUG_PAGEALLOC cache so this clean-up will help it, too.
[akpm@linux-foundation.org: fix build with CONFIG_DEBUG_PAGEALLOC=n]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
debug_pagealloc debugging is related to SLAB_POISON flag rather than
FORCED_DEBUG option, although FORCED_DEBUG option will enable
SLAB_POISON. Fix it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of "#if DEBUG" are for reporting slab implementation bug rather
than user usecase bug. It's not really needed because slab is stable
for a quite long time and it makes code too dirty. This patch remove
it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is obsolete so remove it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset implements a new freed object management way, that is,
OBJFREELIST_SLAB. Purpose of it is to reduce memory overhead in SLAB.
SLAB needs a array to manage freed objects in a slab. If there is
leftover after objects are packed into a slab, we can use it as a
management array, and, in this case, there is no memory waste. But, in
the other cases, we need to allocate extra memory for a management array
or utilize dedicated internal memory in a slab for it. Both cases
causes memory waste so it's not good.
With this patchset, freed object itself can be used for a management
array. So, memory waste could be reduced. Detailed idea and numbers
are described in last patch's commit description. Please refer it.
In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object. It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit. So,
this patchset doesn't include it. I will attach prototype just for a
reference.
This patch (of 16):
We use freelist_idx_t type for free object management whose size would be
smaller than size of unsigned int. Fix it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the call to cache_alloc_debugcheck_after() outside the IRQ disabled
section in kmem_cache_alloc_bulk().
When CONFIG_DEBUG_SLAB is disabled the compiler should remove this code.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements the alloc side of bulk API for the SLAB allocator.
Further optimization are still possible by changing the call to
__do_cache_alloc() into something that can return multiple objects.
This optimization is left for later, given end results already show in
the area of 80% speedup.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewers notice that the order in slab_post_alloc_hook() of
kmemcheck_slab_alloc() and kmemleak_alloc_recursive() gets swapped
compared to slab.c / SLAB allocator.
Also notice memset now occurs before calling kmemcheck_slab_alloc() and
kmemleak_alloc_recursive().
I assume this reordering of kmemcheck, kmemleak and memset is okay
because this is the order they are used by the SLUB allocator.
This patch completes the sharing of alloc_hook's between SLUB and SLAB.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deduplicate code in SLAB allocator functions slab_alloc() and
slab_alloc_node() by using the slab_pre_alloc_hook() call, which is now
shared between SLUB and SLAB.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the SLAB specific function slab_should_failslab(), by moving the
check against fault-injection for the bootstrap slab, into the shared
function should_failslab() (used by both SLAB and SLUB).
This is a step towards sharing alloc_hook's between SLUB and SLAB.
This bootstrap slab "kmem_cache" is used for allocating struct
kmem_cache objects to the allocator itself.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When slub_debug alloc_calls_show is enabled we will try to track
location and user of slab object on each online node, kmem_cache_node
structure and cpu_cache/cpu_slub shouldn't be freed till there is the
last reference to sysfs file.
This fixes the following panic:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
IP: list_locations+0x169/0x4e0
PGD 257304067 PUD 438456067 PMD 0
Oops: 0000 [#1] SMP
CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30
Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011
task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000
RIP: list_locations+0x169/0x4e0
Call Trace:
alloc_calls_show+0x1d/0x30
slab_attr_show+0x1b/0x30
sysfs_read_file+0x9a/0x1a0
vfs_read+0x9c/0x170
SyS_read+0x58/0xb0
system_call_fastpath+0x16/0x1b
Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10
CR2: 0000000000000020
Separated __kmem_cache_release from __kmem_cache_shutdown which now
called on slab_kmem_cache_release (after the last reference to sysfs
file object has dropped).
Reintroduced locking in free_partial as sysfs file might access cache's
partial list after shutdowning - partial revert of the commit
69cb8e6b7c ("slub: free slabs without holding locks"). Zap
__remove_partial and use remove_partial (w/o underscores) as
free_partial now takes list_lock which s partial revert for commit
1e4dd9461f ("slub: do not assert not having lock in removing freed
partial")
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new helper function get_first_slab() that get the first slab from
a kmem_cache_node.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code with list_for_each_entry().
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code with list_first_entry_or_null().
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust kmem_cache_alloc_bulk API before we have any real users.
Adjust API to return type 'int' instead of previously type 'bool'. This
is done to allow future extension of the bulk alloc API.
A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.
The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled. With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist. To avoid overshooting we would
stop processing at a slab-page boundary. Else we always end up returning
some objects at the cost of another cmpxchg.
To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e. they are only used for charging pages allocated
with alloc_kmem_pages). The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.
To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context. Next, it makes the slab
subsystem use this function to charge slab pages.
Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.
Note, this patch switches slab to charge-after-alloc design. Since this
design is already used for all other memcg charges, it should not make any
difference.
[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On systems with a KMALLOC_MIN_SIZE of 128 (arm64, some mips and powerpc
configurations defining ARCH_DMA_MINALIGN to 128), the first
kmalloc_caches[] entry to be initialised after slab_early_init = 0 is
"kmalloc-128" with index 7. Depending on the debug kernel configuration,
sizeof(struct kmem_cache) can be larger than 128 resulting in an
INDEX_NODE of 8.
Commit 8fc9cf420b ("slab: make more slab management structure off the
slab") enables off-slab management objects for sizes starting with
PAGE_SIZE >> 5 (128 bytes for a 4KB page configuration) and the creation
of the "kmalloc-128" cache would try to place the management objects
off-slab. However, since KMALLOC_MIN_SIZE is already 128 and
freelist_size == 32 in __kmem_cache_create(), kmalloc_slab(freelist_size)
returns NULL (kmalloc_caches[7] not populated yet). This triggers the
following bug on arm64:
kernel BUG at /work/Linux/linux-2.6-aarch64/mm/slab.c:2283!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.3.0-rc4+ #540
Hardware name: Juno (DT)
PC is at __kmem_cache_create+0x21c/0x280
LR is at __kmem_cache_create+0x210/0x280
[...]
Call trace:
__kmem_cache_create+0x21c/0x280
create_boot_cache+0x48/0x80
create_kmalloc_cache+0x50/0x88
create_kmalloc_caches+0x4c/0xf4
kmem_cache_init+0x100/0x118
start_kernel+0x214/0x33c
This patch introduces an OFF_SLAB_MIN_SIZE definition to avoid off-slab
management objects for sizes equal to or smaller than KMALLOC_MIN_SIZE.
Fixes: 8fc9cf420b ("slab: make more slab management structure off the slab")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit description is copied from the original post of this bug:
http://comments.gmane.org/gmane.linux.kernel.mm/135349
Kernels after v3.9 use kmalloc_size(INDEX_NODE + 1) to get the next
larger cache size than the size index INDEX_NODE mapping. In kernels
3.9 and earlier we used malloc_sizes[INDEX_L3 + 1].cs_size.
However, sometimes we can't get the right output we expected via
kmalloc_size(INDEX_NODE + 1), causing a BUG().
The mapping table in the latest kernel is like:
index = {0, 1, 2 , 3, 4, 5, 6, n}
size = {0, 96, 192, 8, 16, 32, 64, 2^n}
The mapping table before 3.10 is like this:
index = {0 , 1 , 2, 3, 4 , 5 , 6, n}
size = {32, 64, 96, 128, 192, 256, 512, 2^(n+3)}
The problem on my mips64 machine is as follows:
(1) When configured DEBUG_SLAB && DEBUG_PAGEALLOC && DEBUG_LOCK_ALLOC
&& DEBUG_SPINLOCK, the sizeof(struct kmem_cache_node) will be "150",
and the macro INDEX_NODE turns out to be "2": #define INDEX_NODE
kmalloc_index(sizeof(struct kmem_cache_node))
(2) Then the result of kmalloc_size(INDEX_NODE + 1) is 8.
(3) Then "if(size >= kmalloc_size(INDEX_NODE + 1)" will lead to "size
= PAGE_SIZE".
(4) Then "if ((size >= (PAGE_SIZE >> 3))" test will be satisfied and
"flags |= CFLGS_OFF_SLAB" will be covered.
(5) if (flags & CFLGS_OFF_SLAB)" test will be satisfied and will go to
"cachep->slabp_cache = kmalloc_slab(slab_size, 0u)", and the result
here may be NULL while kernel bootup.
(6) Finally,"BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));" causes the
BUG info as the following shows (may be only mips64 has this problem):
This patch fixes the problem of kmalloc_size(INDEX_NODE + 1) and removes
the BUG by adding 'size >= 256' check to guarantee that all necessary
small sized slabs are initialized regardless sequence of slab size in
mapping table.
Fixes: e33660165c ("slab: Use common kmalloc_index/kmalloc_size...")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Liuhailong <liu.hailong6@zte.com.cn>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.
Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed. These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.
Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions. They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c48a11c7ad ("netvm: propagate page->pfmemalloc to skb") added
checks for page->pfmemalloc to __skb_fill_page_desc():
if (page->pfmemalloc && !page->mapping)
skb->pfmemalloc = true;
It assumes page->mapping == NULL implies that page->pfmemalloc can be
trusted. However, __delete_from_page_cache() can set set page->mapping
to NULL and leave page->index value alone. Due to being in union, a
non-zero page->index will be interpreted as true page->pfmemalloc.
So the assumption is invalid if the networking code can see such a page.
And it seems it can. We have encountered this with a NFS over loopback
setup when such a page is attached to a new skbuf. There is no copying
going on in this case so the page confuses __skb_fill_page_desc which
interprets the index as pfmemalloc flag and the network stack drops
packets that have been allocated using the reserves unless they are to
be queued on sockets handling the swapping which is the case here and
that leads to hangs when the nfs client waits for a response from the
server which has been dropped and thus never arrive.
The struct page is already heavily packed so rather than finding another
hole to put it in, let's do a trick instead. We can reuse the index
again but define it to an impossible value (-1UL). This is the page
index so it should never see the value that large. Replace all direct
users of page->pfmemalloc by page_is_pfmemalloc which will hide this
nastiness from unspoiled eyes.
The information will get lost if somebody wants to use page->index
obviously but that was the case before and the original code expected
that the information should be persisted somewhere else if that is
really needed (e.g. what SLAB and SLUB do).
[akpm@linux-foundation.org: fix blooper in slub]
Fixes: c48a11c7ad ("netvm: propagate page->pfmemalloc to skb")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.com>
Debugged-by: Jiri Bohac <jbohac@suse.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.
There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called. It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.
The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
size_index[size_index_elem(size)]. For MIPS, size is 56, and the
expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
create_kmalloc_caches() at this point which would have changed
size_index[size_index_elem(size)] to 7.
I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem. I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.
Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NOTE: this is not about __GFP_THISNODE, this is only about GFP_THISNODE.
GFP_THISNODE is a secret combination of gfp bits that have different
behavior than expected. It is a combination of __GFP_THISNODE,
__GFP_NORETRY, and __GFP_NOWARN and is special-cased in the page
allocator slowpath to fail without trying reclaim even though it may be
used in combination with __GFP_WAIT.
An example of the problem this creates: commit e97ca8e5b8 ("mm: fix
GFP_THISNODE callers and clarify") fixed up many users of GFP_THISNODE
that really just wanted __GFP_THISNODE. The problem doesn't end there,
however, because even it was a no-op for alloc_misplaced_dst_page(),
which also sets __GFP_NORETRY and __GFP_NOWARN, and
migrate_misplaced_transhuge_page(), where __GFP_NORETRY and __GFP_NOWAIT
is set in GFP_TRANSHUGE. Converting GFP_THISNODE to __GFP_THISNODE is a
no-op in these cases since the page allocator special-cases
__GFP_THISNODE && __GFP_NORETRY && __GFP_NOWARN.
It's time to just remove GFP_THISNODE entirely. We leave __GFP_THISNODE
to restrict an allocation to a local node, but remove GFP_THISNODE and
its obscurity. Instead, we require that a caller clear __GFP_WAIT if it
wants to avoid reclaim.
This allows the aforementioned functions to actually reclaim as they
should. It also enables any future callers that want to do
__GFP_THISNODE but also __GFP_NORETRY && __GFP_NOWARN to reclaim. The
rule is simple: if you don't want to reclaim, then don't set __GFP_WAIT.
Aside: ovs_flow_stats_update() really wants to avoid reclaim as well, so
it is unchanged.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Jarno Rajahalme <jrajahalme@nicira.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately. This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.
To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed. It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.
The runtime overhead is minimal. From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup. Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead. We do have to disable preemption
for put_cpu_partial() to achieve that though.
The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time. I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list. Besides, we currently do not
even call per-memcg shrinkers for offline memcgs. Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.
Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically. Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.
[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache. Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.
However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then. I'm going to wipe away dead caches from it to
save space. To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fallback_alloc is called on kmalloc if the preferred node doesn't have
free or partial slabs and there's no pages on the node's free list
(GFP_THISNODE allocations fail). Before invoking the reclaimer it tries
to locate a free or partial slab on other allowed nodes' lists. While
iterating over the preferred node's zonelist it skips those zones which
hardwall cpuset check returns false for. That means that for a task bound
to a specific node using cpusets fallback_alloc will always ignore free
slabs on other nodes and go directly to the reclaimer, which, however, may
allocate from other nodes if cpuset.mem_hardwall is unset (default). As a
result, we may get lists of free slabs grow without bounds on other nodes,
which is bad, because inactive slabs are only evicted by cache_reap at a
very slow rate and cannot be dropped forcefully.
To reproduce the issue, run a process that will walk over a directory tree
with lots of files inside a cpuset bound to a node that constantly
experiences memory pressure. Look at num_slabs vs active_slabs growth as
reported by /proc/slabinfo.
To avoid this we should use softwall cpuset check in fallback_alloc.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c. The copy of @c corresponding to
@memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:
CPU0 CPU1
---- ----
[ current=@t
@mc->memcg_params->nr_pages=0 ]
kmem_cache_alloc(@c):
call memcg_kmem_get_cache(@c);
proceed to allocation from @mc:
alloc a page for @mc:
...
move @t from @memcg
destroy @memcg:
mem_cgroup_css_offline(@memcg):
memcg_unregister_all_caches(@memcg):
kmem_cache_destroy(@mc)
add page to @mc
We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.
Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free. As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed. This doesn't sound as a high price for code readability though.
Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache. Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled. I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup update from Tejun Heo:
"cpuset got simplified a bit. cgroup core got a fix on unified
hierarchy and grew some effective css related interfaces which will be
used for blkio support for writeback IO traffic which is currently
being worked on"
* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: implement cgroup_get_e_css()
cgroup: add cgroup_subsys->css_e_css_changed()
cgroup: add cgroup_subsys->css_released()
cgroup: fix the async css offline wait logic in cgroup_subtree_control_write()
cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write()
cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask()
cpuset: lock vs unlock typo
cpuset: simplify cpuset_node_allowed API
cpuset: convert callback_mutex to a spinlock
The code goes BUG, but doesn't tell us which bits were unexpectedly set.
Print that out.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we print the slabinfo header in the seq start method, which
makes it unusable for showing leaks, so we have leaks_show, which does
practically the same as s_show except it doesn't show the header.
However, we can print the header in the seq show method - we only need
to check if the current element is the first on the list. This will
allow us to use the same set of seq iterators for both leaks and
slabinfo reporting, which is nice.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some code in mm/slab.c and mm/slub.c use whitespaces in indent.
Clean them up.
Signed-off-by: LQYMGT <lqymgt@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bounds check for nodeid in ____cache_alloc_node gives false
positives on machines where the node IDs are not contiguous, leading to
a panic at boot time. For example, on a POWER8 machine the node IDs are
typically 0, 1, 16 and 17. This means that num_online_nodes() returns
4, so when ____cache_alloc_node is called with nodeid = 16 the VM_BUG_ON
triggers, like this:
kernel BUG at /home/paulus/kernel/kvm/mm/slab.c:3079!
Call Trace:
.____cache_alloc_node+0x5c/0x270 (unreliable)
.kmem_cache_alloc_node_trace+0xdc/0x360
.init_list+0x3c/0x128
.kmem_cache_init+0x1dc/0x258
.start_kernel+0x2a0/0x568
start_here_common+0x20/0xa8
To fix this, we instead compare the nodeid with MAX_NUMNODES, and
additionally make sure it isn't negative (since nodeid is an int). The
check is there mainly to protect the array dereference in the get_node()
call in the next line, and the array being dereferenced is of size
MAX_NUMNODES. If the nodeid is in range but invalid (for example if the
node is off-line), the BUG_ON in the next line will catch that.
Fixes: 14e50c6a9b ("mm: slab: Verify the nodeid passed to ____cache_alloc_node")
Signed-off-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current cpuset API for checking if a zone/node is allowed to allocate
from looks rather awkward. We have hardwall and softwall versions of
cpuset_node_allowed with the softwall version doing literally the same
as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
If it isn't, the softwall version may check the given node against the
enclosing hardwall cpuset, which it needs to take the callback lock to
do.
Such a distinction was introduced by commit 02a0e53d82 ("cpuset:
rework cpuset_zone_allowed api"). Before, we had the only version with
the __GFP_HARDWALL flag determining its behavior. The purpose of the
commit was to avoid sleep-in-atomic bugs when someone would mistakenly
call the function without the __GFP_HARDWALL flag for an atomic
allocation. The suffixes introduced were intended to make the callers
think before using the function.
However, since the callback lock was converted from mutex to spinlock by
the previous patch, the softwall check function cannot sleep, and these
precautions are no longer necessary.
So let's simplify the API back to the single check.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit bf0dea23a9 ("mm/slab: use percpu allocator for cpu cache")
changed the allocation method for cpu cache array from slab allocator to
percpu allocator. Alignment should be provided for aligned memory in
percpu allocator case, but, that commit mistakenly set this alignment to
0. So, percpu allocator returns unaligned memory address. It doesn't
cause any problem on x86 which permits unaligned access, but, it causes
the problem on sparc64 which needs strong guarantee of alignment.
Following bug report is reported from David Miller.
I'm getting tons of the following on sparc64:
[603965.383447] Kernel unaligned access at TPC[546b58] free_block+0x98/0x1a0
[603965.396987] Kernel unaligned access at TPC[546b60] free_block+0xa0/0x1a0
...
[603970.554394] log_unaligned: 333 callbacks suppressed
...
This patch provides a proper alignment parameter when allocating cpu
cache to fix this unaligned memory access problem on sparc64.
Reported-by: David Miller <davem@davemloft.net>
Tested-by: David Miller <davem@davemloft.net>
Tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using __seq_open_private() removes boilerplate code from slabstats_open()
The resultant code is shorter and easier to follow.
This patch does not change any functionality.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because of chicken and egg problem, initialization of SLAB is really
complicated. We need to allocate cpu cache through SLAB to make the
kmem_cache work, but before initialization of kmem_cache, allocation
through SLAB is impossible.
On the other hand, SLUB does initialization in a more simple way. It uses
percpu allocator to allocate cpu cache so there is no chicken and egg
problem.
So, this patch try to use percpu allocator in SLAB. This simplifies the
initialization step in SLAB so that we could maintain SLAB code more
easily.
In my testing there is no performance difference.
This implementation relies on percpu allocator. Because percpu allocator
uses vmalloc address space, vmalloc address space could be exhausted by
this change on many cpu system with *32 bit* kernel. This implementation
can cover 1024 cpus in worst case by following calculation.
Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches *
120 objects per cpu_cache = 140 MB
Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) *
80 objects per cpu_cache = 46 MB
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab merge is good feature to reduce fragmentation. If new creating slab
have similar size and property with exsitent slab, this feature reuse it
rather than creating new one. As a result, objects are packed into fewer
slabs so that fragmentation is reduced.
Below is result of my testing.
* After boot, sleep 20; cat /proc/meminfo | grep Slab
<Before>
Slab: 25136 kB
<After>
Slab: 24364 kB
We can save 3% memory used by slab.
For supporting this feature in SLAB, we need to implement SLAB specific
kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some
SLUB specific processing related to debug flag and object size change on
these functions.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cache_free_alien() is rarely used function when node mismatch. But, it is
defined with inline attribute so it is inlined to __cache_free() which is
core free function of slab allocator. It uselessly makes
kmem_cache_free()/kfree() functions large. What we really need to inline
is just checking node match so this patch factor out other parts of
cache_free_alien() to reduce code size of kmem_cache_free()/ kfree().
<Before>
nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free"
00000000000011e0 0000000000000228 T kfree
0000000000000670 0000000000000216 T kmem_cache_free
<After>
nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free"
0000000000001110 00000000000001b5 T kfree
0000000000000750 0000000000000181 T kmem_cache_free
You can see slightly reduced size of text: 0x228->0x1b5, 0x216->0x181.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our intention of __ac_put_obj() is that it doesn't affect anything if
sk_memalloc_socks() is disabled. But, because __ac_put_obj() is too
small, compiler inline it to ac_put_obj() and affect code size of free
path. This patch add noinline keyword for __ac_put_obj() not to distrupt
normal free path at all.
<Before>
nm -S slab-orig.o |
grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free"
0000000000001e80 00000000000002f5 t cache_alloc_refill
0000000000001230 0000000000000258 T kfree
0000000000000690 000000000000024c T kmem_cache_free
<After>
nm -S slab-patched.o |
grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free"
0000000000001e00 00000000000002e5 t cache_alloc_refill
00000000000011e0 0000000000000228 T kfree
0000000000000670 0000000000000216 T kmem_cache_free
cache_alloc_refill: 0x2f5->0x2e5
kfree: 0x256->0x228
kmem_cache_free: 0x24c->0x216
code size of each function is reduced slightly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, due to likely keyword, compiled code of cache_flusharray() is on
unlikely.text section. Although it is uncommon case compared to free to
cpu cache case, it is common case than free_block(). But, free_block() is
on normal text section. This patch fix this odd situation to remove
likely keyword.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we track caller if tracing or slab debugging is enabled. If they are
disabled, we could save one argument passing overhead by calling
__kmalloc(_node)(). But, I think that it would be marginal. Furthermore,
default slab allocator, SLUB, doesn't use this technique so I think that
it's okay to change this situation.
After this change, we can turn on/off CONFIG_DEBUG_SLAB without full
kernel build and remove some complicated '#if' defintion. It looks more
benefitial to me.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup fixes from Tejun Heo:
"This is quite late but these need to be backported anyway.
This is the fix for a long-standing cpuset bug which existed from
2009. cpuset makes use of PF_SPREAD_{PAGE|SLAB} flags to modify the
task's memory allocation behavior according to the settings of the
cpuset it belongs to; unfortunately, when those flags have to be
changed, cpuset did so directly even whlie the target task is running,
which is obviously racy as task->flags may be modified by the task
itself at any time. This obscure bug manifested as corrupt
PF_USED_MATH flag leading to a weird crash.
The bug is fixed by moving the flag to task->atomic_flags. The first
two are prepatory ones to help defining atomic_flags accessors and the
third one is the actual fix"
* 'for-3.17-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flags
sched: add macros to define bitops for task atomic flags
sched: fix confusing PFA_NO_NEW_PRIVS constant
Since commit 4590685546 ("mm/sl[aou]b: Common alignment code"), the
"ralign" automatic variable in __kmem_cache_create() may be used as
uninitialized.
The proper alignment defaults to BYTES_PER_WORD and can be overridden by
SLAB_RED_ZONE or the alignment specified by the caller.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=85031
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Andrei Elovikov <a.elovikov@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we change cpuset.memory_spread_{page,slab}, cpuset will flip
PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset.
This should be done using atomic bitops, but currently we don't,
which is broken.
Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened
when one thread tried to clear PF_USED_MATH while at the same time another
thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on
the same task.
Here's the full report:
https://lkml.org/lkml/2014/9/19/230
To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags.
v4:
- updated mm/slab.c. (Fengguang Wu)
- updated Documentation.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Kees Cook <keescook@chromium.org>
Fixes: 950592f7b9 ("cpusets: update tasks' page/slab spread flags in time")
Cc: <stable@vger.kernel.org> # 2.6.31+
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This reverts commit a640616822 ("slab: remove BAD_ALIEN_MAGIC").
commit a640616822 ("slab: remove BAD_ALIEN_MAGIC") assumes that the
system with !CONFIG_NUMA has only one memory node. But, it turns out to
be false by the report from Geert. His system, m68k, has many memory
nodes and is configured in !CONFIG_NUMA. So it couldn't boot with above
change.
Here goes his failure report.
With latest mainline, I'm getting a crash during bootup on m68k/ARAnyM:
enable_cpucache failed for radix_tree_node, error 12.
kernel BUG at /scratch/geert/linux/linux-m68k/mm/slab.c:1522!
*** TRAP #7 *** FORMAT=0
Current process id is 0
BAD KERNEL TRAP: 00000000
Modules linked in:
PC: [<0039c92c>] kmem_cache_init_late+0x70/0x8c
SR: 2200 SP: 00345f90 a2: 0034c2e8
d0: 0000003d d1: 00000000 d2: 00000000 d3: 003ac942
d4: 00000000 d5: 00000000 a0: 0034f686 a1: 0034f682
Process swapper (pid: 0, task=0034c2e8)
Frame format=0
Stack from 00345fc4:
002f69ef 002ff7e5 000005f2 000360fa 0017d806 003921d4 00000000
00000000 00000000 00000000 00000000 00000000 003ac942 00000000
003912d6
Call Trace: [<000360fa>] parse_args+0x0/0x2ca
[<0017d806>] strlen+0x0/0x1a
[<003921d4>] start_kernel+0x23c/0x428
[<003912d6>] _sinittext+0x2d6/0x95e
Code: f7e5 4879 002f 69ef 61ff ffca 462a 4e47 <4879> 0035 4b1c 61ff
fff0 0cc4 7005 23c0 0037 fd20 588f 265f 285f 4e75 48e7 301c
Disabling lock debugging due to kernel taint
Kernel panic - not syncing: Attempted to kill the idle task!
Although there is a alternative way to fix this issue such as disabling
use of alien cache on !CONFIG_NUMA, but, reverting issued commit is better
to me in this time.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current struct kmem_cache has no 'lock' field, and slab page is managed by
struct kmem_cache_node, which has 'list_lock' field.
Clean up the related comment.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is better to represent allocation size in size_t rather than int. So
change it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
BAD_ALIEN_MAGIC value isn't used anymore. So remove it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>