Rename for consistency between code, comments and documentation. Also
improves the comments on all the possible returns values. Improve the
function by returning the number of populated entries in pfns array.
Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Users of HMM might be using the snapshot information to do preparatory
step like dma mapping pages to a device before checking for invalidation
through hmm_vma_range_done() so do not erase that information and assume
users will do the right thing.
Link: http://lkml.kernel.org/r/20190403193318.16478-4-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every time I read the code to check that the HMM structure does not vanish
before it should thanks to the many lock protecting its removal i get a
headache. Switch to reference counting instead it is much easier to
follow and harder to break. This also remove some code that is no longer
needed with refcounting.
Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid random config build issue, select mmu notifier when HMM is
selected. In any cases when HMM get selected it will be by users that
will also wants the mmu notifier.
Link: http://lkml.kernel.org/r/20190403193318.16478-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb uses a fault mutex hash table to prevent page faults of the
same pages concurrently. The key for shared and private mappings is
different. Shared keys off address_space and file index. Private keys
off mm and virtual address. Consider a private mappings of a populated
hugetlbfs file. A fault will map the page from the file and if needed
do a COW to map a writable page.
Hugetlbfs hole punch uses the fault mutex to prevent mappings of file
pages. It uses the address_space file index key. However, private
mappings will use a different key and could race with this code to map
the file page. This causes problems (BUG) for the page cache remove
code as it expects the page to be unmapped. A sample stack is:
page dumped because: VM_BUG_ON_PAGE(page_mapped(page))
kernel BUG at mm/filemap.c:169!
...
RIP: 0010:unaccount_page_cache_page+0x1b8/0x200
...
Call Trace:
__delete_from_page_cache+0x39/0x220
delete_from_page_cache+0x45/0x70
remove_inode_hugepages+0x13c/0x380
? __add_to_page_cache_locked+0x162/0x380
hugetlbfs_fallocate+0x403/0x540
? _cond_resched+0x15/0x30
? __inode_security_revalidate+0x5d/0x70
? selinux_file_permission+0x100/0x130
vfs_fallocate+0x13f/0x270
ksys_fallocate+0x3c/0x80
__x64_sys_fallocate+0x1a/0x20
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
There seems to be another potential COW issue/race with this approach
of different private and shared keys as noted in commit 8382d914eb
("mm, hugetlb: improve page-fault scalability").
Since every hugetlb mapping (even anon and private) is actually a file
mapping, just use the address_space index key for all mappings. This
results in potentially more hash collisions. However, this should not
be the common case.
Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5
Fixes: b5cec28d36 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a huge page is allocated, PagePrivate() is set if the allocation
consumed a reservation. When freeing a huge page, PagePrivate is checked.
If set, it indicates the reservation should be restored. PagePrivate
being set at free huge page time mostly happens on error paths.
When huge page reservations are created, a check is made to determine if
the mapping is associated with an explicitly mounted filesystem. If so,
pages are also reserved within the filesystem. The default action when
freeing a huge page is to decrement the usage count in any associated
explicitly mounted filesystem. However, if the reservation is to be
restored the reservation/use count within the filesystem should not be
decrementd. Otherwise, a subsequent page allocation and free for the same
mapping location will cause the file filesystem usage to go 'negative'.
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G -4.0M 4.1G - /opt/hugepool
To fix, when freeing a huge page do not adjust filesystem usage if
PagePrivate() is set to indicate the reservation should be restored.
I did not cc stable as the problem has been around since reserves were
added to hugetlbfs and nobody has noticed.
Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code comment above sparse_add_one_section() is obsolete and incorrect.
Clean it up and write a new one.
Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no function named munlock_vma_pages(). Correct it to
munlock_vma_page().
Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by
first determining whether it should be allocated on the stack or
dynamically, depending on NODES_SHIFT. Right now, it goes the dynamic
path whenever the nodemask_t is above 32 bytes.
Although we could bump it to a reasonable value, the largest a nodemask_t
can get is 128 bytes, so since __nr_hugepages_store_common is called from
a rather short stack we can just get rid of the NODEMASK_ALLOC call here.
This reduces some code churn and complexity.
Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: David Rientjes <rientjes@google.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of node specific huge pages can be set via a file such as:
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages
When a node specific value is specified, the global number of huge pages
must also be adjusted. This adjustment is calculated as the specified
node specific value + (global value - current node value). If the node
specific value provided by the user is large enough, this calculation
could overflow an unsigned long leading to a smaller than expected number
of huge pages.
To fix, check the calculation for overflow. If overflow is detected, use
ULONG_MAX as the requested value. This is inline with the user request to
allocate as many huge pages as possible.
It was also noticed that the above calculation was done outside the
hugetlb_lock. Therefore, the values could be inconsistent and result in
underflow. To fix, the calculation is moved within the routine
set_max_huge_pages() where the lock is held.
In addition, the code in __nr_hugepages_store_common() which tries to
handle the case of not being able to allocate a node mask would likely
result in incorrect behavior. Luckily, it is very unlikely we will ever
take this path. If we do, simply return ENOMEM.
Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
342332e6a9 ("mm/page_alloc.c: introduce kernelcore=mirror option") and
later patches rewrote the calculation of node spanned pages.
e506b99696 ("mem-hotplug: fix node spanned pages when we have a movable
node"), but the current code still has problems,
When we have a node with only zone_movable and the node id is not zero,
the size of node spanned pages is double added.
That's because we have an empty normal zone, and zone_start_pfn or
zone_end_pfn is not between arch_zone_lowest_possible_pfn and
arch_zone_highest_possible_pfn, so we need to use clamp to constrain the
range just like the commit <96e907d13602> (bootmem: Reimplement
__absent_pages_in_range() using for_each_mem_pfn_range()).
e.g.
Zone ranges:
DMA [mem 0x0000000000001000-0x0000000000ffffff]
DMA32 [mem 0x0000000001000000-0x00000000ffffffff]
Normal [mem 0x0000000100000000-0x000000023fffffff]
Movable zone start for each node
Node 0: 0x0000000100000000
Node 1: 0x0000000140000000
Early memory node ranges
node 0: [mem 0x0000000000001000-0x000000000009efff]
node 0: [mem 0x0000000000100000-0x00000000bffdffff]
node 0: [mem 0x0000000100000000-0x000000013fffffff]
node 1: [mem 0x0000000140000000-0x000000023fffffff]
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0x100000 present:0x100000 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 2097152
node_spanned_pages:2097152
Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K
cma-reserved)
It shows that the current memory of node 1 is double added.
After this patch, the problem is fixed.
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0 present:0 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 1048576
node_spanned_pages:1048576
memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K
cma-reserved)
Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.com
Signed-off-by: Linxu Fang <fanglinxu@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are three tracepoints using this template, which are
mm_vmscan_direct_reclaim_begin,
mm_vmscan_memcg_reclaim_begin,
mm_vmscan_memcg_softlimit_reclaim_begin.
Regarding mm_vmscan_direct_reclaim_begin,
sc.may_writepage is !laptop_mode, that's a static setting, and
reclaim_idx is derived from gfp_mask which is already show in this
tracepoint.
Regarding mm_vmscan_memcg_reclaim_begin,
may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1),
which are both static value.
mm_vmscan_memcg_softlimit_reclaim_begin is the same with
mm_vmscan_memcg_reclaim_begin.
So we can drop them all.
Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADV_DONTNEED is handled with mmap_sem taken in read mode. We call
page_mkclean without holding mmap_sem.
MADV_DONTNEED implies that pages in the region are unmapped and subsequent
access to the pages in that range is handled as a new page fault. This
implies that if we don't have parallel access to the region when
MADV_DONTNEED is run we expect those range to be unallocated.
w.r.t page_mkclean() we need to make sure that we don't break the
MADV_DONTNEED semantics. MADV_DONTNEED check for pmd_none without holding
pmd_lock. This implies we skip the pmd if we temporarily mark pmd none.
Avoid doing that while marking the page clean.
Keep the sequence same for dax too even though we don't support
MADV_DONTNEED for dax mapping
The bug was noticed by code review and I didn't observe any failures w.r.t
test run. This is similar to
commit 58ceeb6bec
Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Date: Thu Apr 13 14:56:26 2017 -0700
thp: fix MADV_DONTNEED vs. MADV_FREE race
commit ced108037c
Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Date: Thu Apr 13 14:56:20 2017 -0700
thp: fix MADV_DONTNEED vs. numa balancing race
Link: http://lkml.kernel.org/r/20190321040610.14226-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc:"Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A discussion of the overall problem is below.
As mentioned in patch 0001, the steps are to fix the problem are:
1) Provide put_user_page*() routines, intended to be used
for releasing pages that were pinned via get_user_pages*().
2) Convert all of the call sites for get_user_pages*(), to
invoke put_user_page*(), instead of put_page(). This involves dozens of
call sites, and will take some time.
3) After (2) is complete, use get_user_pages*() and put_user_page*() to
implement tracking of these pages. This tracking will be separate from
the existing struct page refcounting.
4) Use the tracking and identification of these pages, to implement
special handling (especially in writeback paths) when the pages are
backed by a filesystem.
Overview
========
Some kernel components (file systems, device drivers) need to access
memory that is specified via process virtual address. For a long time,
the API to achieve that was get_user_pages ("GUP") and its variations.
However, GUP has critical limitations that have been overlooked; in
particular, GUP does not interact correctly with filesystems in all
situations. That means that file-backed memory + GUP is a recipe for
potential problems, some of which have already occurred in the field.
GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem
code to get the struct page behind a virtual address and to let storage
hardware perform a direct copy to or from that page. This is a
short-lived access pattern, and as such, the window for a concurrent
writeback of GUP'd page was small enough that there were not (we think)
any reported problems. Also, userspace was expected to understand and
accept that Direct IO was not synchronized with memory-mapped access to
that data, nor with any process address space changes such as munmap(),
mremap(), etc.
Over the years, more GUP uses have appeared (virtualization, device
drivers, RDMA) that can keep the pages they get via GUP for a long period
of time (seconds, minutes, hours, days, ...). This long-term pinning
makes an underlying design problem more obvious.
In fact, there are a number of key problems inherent to GUP:
Interactions with file systems
==============================
File systems expect to be able to write back data, both to reclaim pages,
and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain
write access to the file memory pages means that such hardware can dirty
the pages, without the filesystem being aware. This can, in some cases
(depending on filesystem, filesystem options, block device, block device
options, and other variables), lead to data corruption, and also to kernel
bugs of the form:
kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
backtrace:
ext4_writepage
__writepage
write_cache_pages
ext4_writepages
do_writepages
__writeback_single_inode
writeback_sb_inodes
__writeback_inodes_wb
wb_writeback
wb_workfn
process_one_work
worker_thread
kthread
ret_from_fork
...which is due to the file system asserting that there are still buffer
heads attached:
({ \
BUG_ON(!PagePrivate(page)); \
((struct buffer_head *)page_private(page)); \
})
Dave Chinner's description of this is very clear:
"The fundamental issue is that ->page_mkwrite must be called on every
write access to a clean file backed page, not just the first one.
How long the GUP reference lasts is irrelevant, if the page is clean
and you need to dirty it, you must call ->page_mkwrite before it is
marked writeable and dirtied. Every. Time."
This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.
Long term GUP
=============
Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a
writeable mapping is created), and the pages are file-backed. That can
lead to filesystem corruption. What happens is that when a file-backed
page is being written back, it is first mapped read-only in all of the CPU
page tables; the file system then assumes that nobody can write to the
page, and that the page content is therefore stable. Unfortunately, the
GUP callers generally do not monitor changes to the CPU pages tables; they
instead assume that the following pattern is safe (it's not):
get_user_pages()
Hardware can keep a reference to those pages for a very long time,
and write to it at any time. Because "hardware" here means "devices
that are not a CPU", this activity occurs without any interaction with
the kernel's file system code.
for each page
set_page_dirty
put_page()
In fact, the GUP documentation even recommends that pattern.
Anyway, the file system assumes that the page is stable (nothing is
writing to the page), and that is a problem: stable page content is
necessary for many filesystem actions during writeback, such as checksum,
encryption, RAID striping, etc. Furthermore, filesystem features like COW
(copy on write) or snapshot also rely on being able to use a new page for
as memory for that memory range inside the file.
Corruption during write back is clearly possible here. To solve that, one
idea is to identify pages that have active GUP, so that we can use a
bounce page to write stable data to the filesystem. The filesystem would
work on the bounce page, while any of the active GUP might write to the
original page. This would avoid the stable page violation problem, but
note that it is only part of the overall solution, because other problems
remain.
Other filesystem features that need to replace the page with a new one can
be inhibited for pages that are GUP-pinned. This will, however, alter and
limit some of those filesystem features. The only fix for that would be
to require GUP users to monitor and respond to CPU page table updates.
Subsystems such as ODP and HMM do this, for example. This aspect of the
problem is still under discussion.
Direct IO
=========
Direct IO can cause corruption, if userspace does Direct-IO that writes to
a range of virtual addresses that are mmap'd to a file. The pages written
to are file-backed pages that can be under write back, while the Direct IO
is taking place. Here, Direct IO races with a write back: it calls GUP
before page_mkclean() has replaced the CPU pte with a read-only entry.
The race window is pretty small, which is probably why years have gone by
before we noticed this problem: Direct IO is generally very quick, and
tends to finish up before the filesystem gets around to do anything with
the page contents. However, it's still a real problem. The solution is
to never let GUP return pages that are under write back, but instead,
force GUP to take a write fault on those pages. That way, GUP will
properly synchronize with the active write back. This does not change the
required GUP behavior, it just avoids that race.
Details
=======
Introduces put_user_page(), which simply calls put_page(). This provides
a way to update all get_user_pages*() callers, so that they call
put_user_page(), instead of put_page().
Also introduces put_user_pages(), and a few dirty/locked variations, as a
replacement for release_pages(), and also as a replacement for open-coded
loops that release multiple pages. These may be used for subsequent
performance improvements, via batching of pages to be released.
This is the first step of fixing a problem (also described in [1] and [2])
with interactions between get_user_pages ("gup") and filesystems.
Problem description: let's start with a bug report. Below, is what
happens sometimes, under memory pressure, when a driver pins some pages
via gup, and then marks those pages dirty, and releases them. Note that
the gup documentation actually recommends that pattern. The problem is
that the filesystem may do a writeback while the pages were gup-pinned,
and then the filesystem believes that the pages are clean. So, when the
driver later marks the pages as dirty, that conflicts with the
filesystem's page tracking and results in a BUG(), like this one that I
experienced:
kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
backtrace:
ext4_writepage
__writepage
write_cache_pages
ext4_writepages
do_writepages
__writeback_single_inode
writeback_sb_inodes
__writeback_inodes_wb
wb_writeback
wb_workfn
process_one_work
worker_thread
kthread
ret_from_fork
...which is due to the file system asserting that there are still buffer
heads attached:
({ \
BUG_ON(!PagePrivate(page)); \
((struct buffer_head *)page_private(page)); \
})
Dave Chinner's description of this is very clear:
"The fundamental issue is that ->page_mkwrite must be called on
every write access to a clean file backed page, not just the first
one. How long the GUP reference lasts is irrelevant, if the page is
clean and you need to dirty it, you must call ->page_mkwrite before it
is marked writeable and dirtied. Every. Time."
This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.
The steps are to fix it are:
1) (This patch): provide put_user_page*() routines, intended to be used
for releasing pages that were pinned via get_user_pages*().
2) Convert all of the call sites for get_user_pages*(), to
invoke put_user_page*(), instead of put_page(). This involves dozens of
call sites, and will take some time.
3) After (2) is complete, use get_user_pages*() and put_user_page*() to
implement tracking of these pages. This tracking will be separate from
the existing struct page refcounting.
4) Use the tracking and identification of these pages, to implement
special handling (especially in writeback paths) when the pages are
backed by a filesystem.
[1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()"
[2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"
Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs]
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On systems without CONTIG_ALLOC activated but that support gigantic pages,
boottime reserved gigantic pages can not be freed at all. This patch
simply enables the possibility to hand back those pages to memory
allocator.
Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: David S. Miller <davem@davemloft.net> [sparc]
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This condition allows to define alloc_contig_range, so simplify it into a
more accurate naming.
Link: http://lkml.kernel.org/r/20190327063626.18421-4-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
f022d8cb7e ("mm: cma: Don't crash on allocation if CMA area can't be
activated") fixes the crash issue when activation fails via setting
cma->count as 0, same logic exists if bitmap allocation fails.
Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.
Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).
Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.
This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.
Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page alloc fast path it may perform node reclaim, which may cause a
latency spike. We should add tracepoint for this event, and also measure
the latency it causes.
So bellow two tracepoints are introduced,
mm_vmscan_node_reclaim_begin
mm_vmscan_node_reclaim_end
Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_valid_within() calls pfn_valid() when CONFIG_HOLES_IN_ZONE making it
redundant for both definitions (w/wo CONFIG_MEMORY_HOTPLUG) of the helper
pfn_to_online_page() which either calls pfn_valid() or pfn_valid_within().
pfn_valid_within() being 1 when !CONFIG_HOLES_IN_ZONE is irrelevant
either way. This does not change functionality.
Link: http://lkml.kernel.org/r/1553141595-26907-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently one bit in cma bitmap represents number of pages rather than
one page, cma->count means cma size in pages. So to find available pages
via find_next_zero_bit()/find_next_bit() we should use cma size not in
pages but in bits although current free pages number is correct due to
zero value of order_per_bit. Once order_per_bit is changed the bitmap
status will be incorrect.
The size input in cma_debug_show_areas() is not correct. It will
affect the available pages at some position to debug the failure issue.
This is an example with order_per_bit = 1
Before this change:
[ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages
After this change:
[ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages
Obviously the bitmap status before is incorrect.
Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a low-memory situation, cc->fast_search_fail can keep increasing as it
is unable to find an available page to isolate in
fast_isolate_freepages(). As the result, it could trigger an error below,
so just compare with the maximum bits can be shifted first.
UBSAN: Undefined behaviour in mm/compaction.c:1160:30
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 131 PID: 1308 Comm: kcompactd1 Kdump: loaded Tainted: G
W L 5.0.0+ #17
Call trace:
dump_backtrace+0x0/0x450
show_stack+0x20/0x2c
dump_stack+0xc8/0x14c
__ubsan_handle_shift_out_of_bounds+0x7e8/0x8c4
compaction_alloc+0x2344/0x2484
unmap_and_move+0xdc/0x1dbc
migrate_pages+0x274/0x1310
compact_zone+0x26ec/0x43bc
kcompactd+0x15b8/0x1a24
kthread+0x374/0x390
ret_from_fork+0x10/0x18
[akpm@linux-foundation.org: code cleanup]
Link: http://lkml.kernel.org/r/20190320203338.53367-1-cai@lca.pw
Fixes: 70b44595ea ("mm, compaction: use free lists to quickly locate a migration source")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In node_states_check_changes_online(), N_HIGH_MEMORY is used to substitute
ZONE_HIGHMEM directly. This is not right. N_HIGH_MEMORY is to mark the
memory state of node. Here zone index is checked, which should be
compared with 'ZONE_HIGHMEM' accordingly.
Replace it with ZONE_HIGHMEM.
This is a code cleanup - no known runtime effects.
Link: http://lkml.kernel.org/r/20190320080732.14933-1-bhe@redhat.com
Fixes: 8efe33f40f ("mm/memory_hotplug.c: simplify node_states_check_changes_online")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
has_unmovable_pages() already checks whether the hugetlb page supports
migration, so all non-migratable hugetlb pages should have been caught
there. Let us drop the check from scan_movable_pages() as is redundant.
Link: http://lkml.kernel.org/r/20190320152658.10855-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86_64, 1GB-hugetlb pages could never be offlined due to the fact
that hugepage_migration_supported() returned false for PUD_SHIFT.
So whenever we wanted to offline a memblock containing a gigantic
hugetlb page, we never got beyond has_unmovable_pages() check.
This changed with [1], where now we also return true for PUD_SHIFT.
After that patch, the check in has_unmovable_pages() and scan_movable_pages()
returned true, but we still had a final barrier in do_migrate_range():
if (compound_order(head) > PFN_SECTION_SHIFT) {
ret = -EBUSY;
break;
}
This is not really nice, and we do not really need it.
It is perfectly possible to migrate a gigantic page as long as another node has
a spare gigantic page for us.
In alloc_huge_page_nodemask(), we calculate the __real__ number of free pages,
and if any, we try to dequeue one from another node.
This all works fine when we do have another node with a spare gigantic page,
but if that is not the case, alloc_huge_page_nodemask() ends up calling
alloc_migrate_huge_page() which bails out if the wanted page is gigantic.
That is mainly because finding a 1GB (or even 16GB on powerpc) contiguous
memory is quite unlikely when the system has been running for a while.
In that situation, we will keep looping forever because scan_movable_pages()
will give us the same page and we will fail again because there is no node
where we can dequeue a gigantic page from.
This is not nice, and it has been raised that we might want to treat -ENOMEM
as a fatal error in do_migrate_range(), but this has to be checked further.
Anyway, I would tend say that this is the administrator's job, to make sure
that the system can keep up with the memory to be offlined, so that would mean
that if we want to use gigantic pages, make sure that the other nodes have at
least enough gigantic pages to keep up in case we need to offline memory.
Just for the sake of completeness, this is one of the tests done:
# echo 1 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
# echo 1 > /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages
# cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
1
# cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages
1
# cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages
1
# cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
1
(hugetlb1gb is a program that maps 1GB region using MAP_HUGE_1GB)
# numactl -m 1 ./hugetlb1gb
# cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages
0
# cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
1
# offline node1 memory
# cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
0
[1] https://lore.kernel.org/patchwork/patch/998796/
Link: http://lkml.kernel.org/r/20190320152658.10855-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX pages were previously unprotected from longterm pins when users called
get_user_pages_fast().
Use the new FOLL_LONGTERM flag to check for DEVMAP pages and fall back to
regular GUP processing if a DEVMAP page is encountered.
[ira.weiny@intel.com: v3]
Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-5-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To facilitate additional options to get_user_pages_fast() change the
singular write parameter to be gup_flags.
This patch does not change any functionality. New functionality will
follow in subsequent patches.
Some of the get_user_pages_fast() call sites were unchanged because they
already passed FOLL_WRITE or 0 for the write parameter.
NOTE: It was suggested to change the ordering of the get_user_pages_fast()
arguments to ensure that callers were converted. This breaks the current
GUP call site convention of having the returned pages be the final
parameter. So the suggestion was rejected.
Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Mike Marshall <hubcap@omnibond.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to support more options in the GUP fast walk, change the write
parameter to flags throughout the call stack.
This patch does not change functionality and passes FOLL_WRITE where write
was previously used.
Link: http://lkml.kernel.org/r/20190328084422.29911-3-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-3-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pach series "Add FOLL_LONGTERM to GUP fast and use it".
HFI1, qib, and mthca, use get_user_pages_fast() due to its performance
advantages. These pages can be held for a significant time. But
get_user_pages_fast() does not protect against mapping FS DAX pages.
Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which
retains the performance while also adding the FS DAX checks. XDP has also
shown interest in using this functionality.[1]
In addition we change get_user_pages() to use the new FOLL_LONGTERM flag
and remove the specialized get_user_pages_longterm call.
[1] https://lkml.org/lkml/2019/3/19/939
"longterm" is a relative thing and at this point is probably a misnomer.
This is really flagging a pin which is going to be given to hardware and
can't move. I've thought of a couple of alternative names but I think we
have to settle on if we are going to use FL_LAYOUT or something else to
solve the "longterm" problem. Then I think we can change the flag to a
better name.
Secondly, it depends on how often you are registering memory. I have
spoken with some RDMA users who consider MR in the performance path...
For the overall application performance. I don't have the numbers as the
tests for HFI1 were done a long time ago. But there was a significant
advantage. Some of which is probably due to the fact that you don't have
to hold mmap_sem.
Finally, architecturally I think it would be good for everyone to use
*_fast. There are patches submitted to the RDMA list which would allow
the use of *_fast (they reworking the use of mmap_sem) and as soon as they
are accepted I'll submit a patch to convert the RDMA core as well. Also
to this point others are looking to use *_fast.
As an aside, Jasons pointed out in my previous submission that *_fast and
*_unlocked look very much the same. I agree and I think further cleanup
will be coming. But I'm focused on getting the final solution for DAX at
the moment.
This patch (of 7):
This patch starts a series which aims to support FOLL_LONGTERM in
get_user_pages_fast(). Some callers who would like to do a longterm (user
controlled pin) of pages with the fast variant of GUP for performance
purposes.
Rather than have a separate get_user_pages_longterm() call, introduce
FOLL_LONGTERM and change the longterm callers to use it.
This patch does not change any functionality. In the short term
"longterm" or user controlled pins are unsafe for Filesystems and FS DAX
in particular has been blocked. However, callers of get_user_pages_fast()
were not "protected".
FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it
requires vmas to determine if DAX is in use.
NOTE: In merging with the CMA changes we opt to change the
get_user_pages() call in check_and_migrate_cma_pages() to a call of
__get_user_pages_locked() on the newly migrated pages. This makes the
code read better in that we are calling __get_user_pages_locked() on the
pages before and after a potential migration.
As a side affect some of the interfaces are cleaned up but this is not the
primary purpose of the series.
In review[1] it was asked:
<quote>
> This I don't get - if you do lock down long term mappings performance
> of the actual get_user_pages call shouldn't matter to start with.
>
> What do I miss?
A couple of points.
First "longterm" is a relative thing and at this point is probably a
misnomer. This is really flagging a pin which is going to be given to
hardware and can't move. I've thought of a couple of alternative names
but I think we have to settle on if we are going to use FL_LAYOUT or
something else to solve the "longterm" problem. Then I think we can
change the flag to a better name.
Second, It depends on how often you are registering memory. I have spoken
with some RDMA users who consider MR in the performance path... For the
overall application performance. I don't have the numbers as the tests
for HFI1 were done a long time ago. But there was a significant
advantage. Some of which is probably due to the fact that you don't have
to hold mmap_sem.
Finally, architecturally I think it would be good for everyone to use
*_fast. There are patches submitted to the RDMA list which would allow
the use of *_fast (they reworking the use of mmap_sem) and as soon as they
are accepted I'll submit a patch to convert the RDMA core as well. Also
to this point others are looking to use *_fast.
As an asside, Jasons pointed out in my previous submission that *_fast and
*_unlocked look very much the same. I agree and I think further cleanup
will be coming. But I'm focused on getting the final solution for DAX at
the moment.
</quote>
[1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965
[ira.weiny@intel.com: v3]
Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This combines two similar functions move_active_pages_to_lru() and
putback_inactive_pages() into single move_pages_to_lru(). This remove
duplicate code and makes object file size smaller.
Before:
text data bss dec hex filename
57082 4732 128 61942 f1f6 mm/vmscan.o
After:
text data bss dec hex filename
55112 4600 128 59840 e9c0 mm/vmscan.o
Note, that now we are checking for !page_evictable() coming from
shrink_active_list(), which shouldn't change any behavior since that path
works with evictable pages only.
Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We may use input argument list as output argument too. This makes the
function more similar to putback_inactive_pages().
Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Generalize putback functions"]
putback_inactive_pages() and move_active_pages_to_lru() are almost
similar, so this patchset merges them ina single function.
This patch (of 4):
The patch moves the calculation from putback_inactive_pages() to
shrink_inactive_list(). This makes putback_inactive_pages() looking more
similar to move_active_pages_to_lru().
To do that, we account activated pages in reclaim_stat::nr_activate.
Since a page may change its LRU type from anon to file cache inside
shrink_page_list() (see ClearPageSwapBacked()), we have to account pages
for the both types. So, nr_activate becomes an array.
Previously we used nr_activate to account PGACTIVATE events, but now we
account them into pgactivate variable (since they are about number of
pages in general, not about sum of hpage_nr_pages).
Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
[willy@infradead.org: fix swapcache pages]
Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org
[kirill@shutemov.name: hugetlb stores pages in page cache differently]
Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1
Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-and-tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Hugh Dickins <hughd@google.com>
Cc: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If not find zero bit in find_next_zero_bit(), it will return the size
parameter passed in, so the start bit should be compared with bitmap_maxno
rather than cma->count. Although getting maxchunk is working fine due to
zero value of order_per_bit currently, the operation will be stuck if
order_per_bit is set as non-zero.
Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Safonov <d.safonov@partner.samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"cat /proc/slab_allocators" could hang forever on SMP machines with
kmemleak or object debugging enabled due to other CPUs running do_drain()
will keep making kmemleak_object or debug_objects_cache dirty and unable
to escape the first loop in leaks_show(),
do {
set_store_user_clean(cachep);
drain_cpu_caches(cachep);
...
} while (!is_store_user_clean(cachep));
For example,
do_drain
slabs_destroy
slab_destroy
kmem_cache_free
__cache_free
___cache_free
kmemleak_free_recursive
delete_object_full
__delete_object
put_object
free_object_rcu
kmem_cache_free
cache_free_debugcheck --> dirty kmemleak_object
One approach is to check cachep->name and skip both kmemleak_object and
debug_objects_cache in leaks_show(). The other is to set store_user_clean
after drain_cpu_caches() which leaves a small window between
drain_cpu_caches() and set_store_user_clean() where per-CPU caches could
be dirty again lead to slightly wrong information has been stored but
could also speed up things significantly which sounds like a good
compromise. For example,
# cat /proc/slab_allocators
0m42.778s # 1st approach
0m0.737s # 2nd approach
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw
Fixes: d31676dfde ("mm/slab: alternative implementation for DEBUG_SLAB_LEAK")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now frozen slab can only be on the per cpu partial list.
Link: http://lkml.kernel.org/r/1554022325-11305-1-git-send-email-liu.xiang6@zte.com.cn
Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nc is a member of percpu allocation memory, and cannot be NULL.
Link: http://lkml.kernel.org/r/1553159353-5056-1-git-send-email-lirongqing@baidu.com
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_SLUB_DEBUG is not enabled, remove_full() is empty.
While CONFIG_SLUB_DEBUG is enabled, remove_full() can check
s->flags by itself. So kmem_cache_debug() is useless and
can be removed.
Link: http://lkml.kernel.org/r/1552577313-2830-1-git-send-email-liu.xiang6@zte.com.cn
Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we use the page->lru list for maintaining lists of slabs. We
have a list in the page structure (slab_list) that can be used for this
purpose. Doing so makes the code cleaner since we are not overloading the
lru list.
Use the slab_list instead of the lru list for maintaining lists of slabs.
Link: http://lkml.kernel.org/r/20190402230545.2929-7-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we use the page->lru list for maintaining lists of slabs. We
have a list in the page structure (slab_list) that can be used for this
purpose. Doing so makes the code cleaner since we are not overloading the
lru list.
Use the slab_list instead of the lru list for maintaining lists of slabs.
Link: http://lkml.kernel.org/r/20190402230545.2929-6-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB allocator makes heavy use of ifdef/endif pre-processor macros. The
pairing of these statements is at times hard to follow e.g. if the pair
are further than a screen apart or if there are nested pairs. We can
reduce cognitive load by adding a comment to the endif statement of form
#ifdef CONFIG_FOO
...
#endif /* CONFIG_FOO */
Add comments to endif pre-processor macros if ifdef/endif pair is not
immediately apparent.
Link: http://lkml.kernel.org/r/20190402230545.2929-5-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we use the page->lru list for maintaining lists of slabs. We
have a list_head in the page structure (slab_list) that can be used for
this purpose. Doing so makes the code cleaner since we are not
overloading the lru list.
The slab_list is part of a union within the page struct (included here
stripped down):
union {
struct { /* Page cache and anonymous pages */
struct list_head lru;
...
};
struct {
dma_addr_t dma_addr;
};
struct { /* slab, slob and slub */
union {
struct list_head slab_list;
struct { /* Partial pages */
struct page *next;
int pages; /* Nr of pages left */
int pobjects; /* Approximate count */
};
};
...
Here we see that slab_list and lru are the same bits. We can verify that
this change is safe to do by examining the object file produced from
slob.c before and after this patch is applied.
Steps taken to verify:
1. checkout current tip of Linus' tree
commit a667cb7a94 ("Merge branch 'akpm' (patches from Andrew)")
2. configure and build (select SLOB allocator)
CONFIG_SLOB=y
CONFIG_SLAB_MERGE_DEFAULT=y
3. dissasemble object file `objdump -dr mm/slub.o > before.s
4. apply patch
5. build
6. dissasemble object file `objdump -dr mm/slub.o > after.s
7. diff before.s after.s
Use slab_list list_head instead of the lru list_head for maintaining
lists of slabs.
Link: http://lkml.kernel.org/r/20190402230545.2929-4-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we reach inside the list_head. This is a violation of the layer
of abstraction provided by the list_head. It makes the code fragile.
More importantly it makes the code wicked hard to understand.
The code reaches into the list_head structure to counteract the fact that
the list _may_ have been changed during slob_page_alloc(). Instead of
this we can add a return parameter to slob_page_alloc() to signal that the
list was modified (list_del() called with page->lru to remove page from
the freelist).
This code is concerned with an optimisation that counters the tendency for
first fit allocation algorithm to fragment memory into many small chunks
at the front of the memory pool. Since the page is only removed from the
list when an allocation uses _all_ the remaining memory in the page then
in this special case fragmentation does not occur and we therefore do not
need the optimisation.
Add a return parameter to slob_page_alloc() to signal that the allocation
used up the whole page and that the page was removed from the free list.
After calling slob_page_alloc() check the return value just added and only
attempt optimisation if the page is still on the list.
Use list_head API instead of reaching into the list_head structure to
check if sp is at the front of the list.
Link: http://lkml.kernel.org/r/20190402230545.2929-3-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
spinlock recursion happened when do LTP test:
#!/bin/bash
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
The dtor returned by get_compound_page_dtor in __put_compound_page may be
the function of free_huge_page which will lock the hugetlb_lock, so don't
put_page in lock of hugetlb_lock.
BUG: spinlock recursion on CPU#0, hugemmap05/1079
lock: hugetlb_lock+0x0/0x18, .magic: dead4ead, .owner: hugemmap05/1079, .owner_cpu: 0
Call trace:
dump_backtrace+0x0/0x198
show_stack+0x24/0x30
dump_stack+0xa4/0xcc
spin_dump+0x84/0xa8
do_raw_spin_lock+0xd0/0x108
_raw_spin_lock+0x20/0x30
free_huge_page+0x9c/0x260
__put_compound_page+0x44/0x50
__put_page+0x2c/0x60
alloc_surplus_huge_page.constprop.19+0xf0/0x140
hugetlb_acct_memory+0x104/0x378
hugetlb_reserve_pages+0xe0/0x250
hugetlbfs_file_mmap+0xc0/0x140
mmap_region+0x3e8/0x5b0
do_mmap+0x280/0x460
vm_mmap_pgoff+0xf4/0x128
ksys_mmap_pgoff+0xb4/0x258
__arm64_sys_mmap+0x34/0x48
el0_svc_common+0x78/0x130
el0_svc_handler+0x38/0x78
el0_svc+0x8/0xc
Link: http://lkml.kernel.org/r/b8ade452-2d6b-0372-32c2-703644032b47@huawei.com
Fixes: 9980d744a0 ("mm, hugetlb: get rid of surplus page accounting tricks")
Signed-off-by: Kai Shen <shenkai8@huawei.com>
Signed-off-by: Feilong Lin <linfeilong@huawei.com>
Reported-by: Wang Wang <wangwang2@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull percpu updates from Dennis Zhou:
- scan hint update which helps address performance issues with heavily
fragmented blocks
- lockdep fix when freeing an allocation causes balance work to be
scheduled
* 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: remove spurious lock dependency between percpu and sched
percpu: use chunk scan_hint to skip some scanning
percpu: convert chunk hints to be based on pcpu_block_md
percpu: make pcpu_block_md generic
percpu: use block scan_hint to only scan forward
percpu: remember largest area skipped during allocation
percpu: add block level scan_hint
percpu: set PCPU_BITMAP_BLOCK_SIZE to PAGE_SIZE
percpu: relegate chunks unusable when failing small allocations
percpu: manage chunks based on contig_bits instead of free_bytes
percpu: introduce helper to determine if two regions overlap
percpu: do not search past bitmap when allocating an area
percpu: update free path with correct new free region
This is a bit of a mess, to put it mildly. But, it's a bug
that only seems to have showed up in 4.20 but wasn't noticed
until now, because nobody uses MPX.
MPX has the arch_unmap() hook inside of munmap() because MPX
uses bounds tables that protect other areas of memory. When
memory is unmapped, there is also a need to unmap the MPX
bounds tables. Barring this, unused bounds tables can eat 80%
of the address space.
But, the recursive do_munmap() that gets called vi arch_unmap()
wreaks havoc with __do_munmap()'s state. It can result in
freeing populated page tables, accessing bogus VMA state,
double-freed VMAs and more.
See the "long story" further below for the gory details.
To fix this, call arch_unmap() before __do_unmap() has a chance
to do anything meaningful. Also, remove the 'vma' argument
and force the MPX code to do its own, independent VMA lookup.
== UML / unicore32 impact ==
Remove unused 'vma' argument to arch_unmap(). No functional
change.
I compile tested this on UML but not unicore32.
== powerpc impact ==
powerpc uses arch_unmap() well to watch for munmap() on the
VDSO and zeroes out 'current->mm->context.vdso_base'. Moving
arch_unmap() makes this happen earlier in __do_munmap(). But,
'vdso_base' seems to only be used in perf and in the signal
delivery that happens near the return to userspace. I can not
find any likely impact to powerpc, other than the zeroing
happening a little earlier.
powerpc does not use the 'vma' argument and is unaffected by
its removal.
I compile-tested a 64-bit powerpc defconfig.
== x86 impact ==
For the common success case this is functionally identical to
what was there before. For the munmap() failure case, it's
possible that some MPX tables will be zapped for memory that
continues to be in use. But, this is an extraordinarily
unlikely scenario and the harm would be that MPX provides no
protection since the bounds table got reset (zeroed).
I can't imagine anyone doing this:
ptr = mmap();
// use ptr
ret = munmap(ptr);
if (ret)
// oh, there was an error, I'll
// keep using ptr.
Because if you're doing munmap(), you are *done* with the
memory. There's probably no good data in there _anyway_.
This passes the original reproducer from Richard Biener as
well as the existing mpx selftests/.
The long story:
munmap() has a couple of pieces:
1. Find the affected VMA(s)
2. Split the start/end one(s) if neceesary
3. Pull the VMAs out of the rbtree
4. Actually zap the memory via unmap_region(), including
freeing page tables (or queueing them to be freed).
5. Fix up some of the accounting (like fput()) and actually
free the VMA itself.
This specific ordering was actually introduced by:
dd2283f260 ("mm: mmap: zap pages with read mmap_sem in munmap")
during the 4.20 merge window. The previous __do_munmap() code
was actually safe because the only thing after arch_unmap() was
remove_vma_list(). arch_unmap() could not see 'vma' in the
rbtree because it was detached, so it is not even capable of
doing operations unsafe for remove_vma_list()'s use of 'vma'.
Richard Biener reported a test that shows this in dmesg:
[1216548.787498] BUG: Bad rss-counter state mm:0000000017ce560b idx:1 val:551
[1216548.787500] BUG: non-zero pgtables_bytes on freeing mm: 24576
What triggered this was the recursive do_munmap() called via
arch_unmap(). It was freeing page tables that has not been
properly zapped.
But, the problem was bigger than this. For one, arch_unmap()
can free VMAs. But, the calling __do_munmap() has variables
that *point* to VMAs and obviously can't handle them just
getting freed while the pointer is still in use.
I tried a couple of things here. First, I tried to fix the page
table freeing problem in isolation, but I then found the VMA
issue. I also tried having the MPX code return a flag if it
modified the rbtree which would force __do_munmap() to re-walk
to restart. That spiralled out of control in complexity pretty
fast.
Just moving arch_unmap() and accepting that the bonkers failure
case might eat some bounds tables seems like the simplest viable
fix.
This was also reported in the following kernel bugzilla entry:
https://bugzilla.kernel.org/show_bug.cgi?id=203123
There are some reports that this commit triggered this bug:
dd2283f260 ("mm: mmap: zap pages with read mmap_sem in munmap")
While that commit certainly made the issues easier to hit, I believe
the fundamental issue has been with us as long as MPX itself, thus
the Fixes: tag below is for one of the original MPX commits.
[ mingo: Minor edits to the changelog and the patch. ]
Reported-by: Richard Biener <rguenther@suse.de>
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-um@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: stable@vger.kernel.org
Fixes: dd2283f260 ("mm: mmap: zap pages with read mmap_sem in munmap")
Link: http://lkml.kernel.org/r/20190419194747.5E1AD6DC@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In free_percpu() we sometimes call pcpu_schedule_balance_work() to
queue a work item (which does a wakeup) while holding pcpu_lock.
This creates an unnecessary lock dependency between pcpu_lock and
the scheduler's pi_lock. There are other places where we call
pcpu_schedule_balance_work() without hold pcpu_lock, and this case
doesn't need to be different.
Moving the call outside the lock prevents the following lockdep splat
when running tools/testing/selftests/bpf/{test_maps,test_progs} in
sequence with lockdep enabled:
======================================================
WARNING: possible circular locking dependency detected
5.1.0-dbg-DEV #1 Not tainted
------------------------------------------------------
kworker/23:255/18872 is trying to acquire lock:
000000000bc79290 (&(&pool->lock)->rlock){-.-.}, at: __queue_work+0xb2/0x520
but task is already holding lock:
00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (pcpu_lock){..-.}:
lock_acquire+0x9e/0x180
_raw_spin_lock_irqsave+0x3a/0x50
pcpu_alloc+0xfa/0x780
__alloc_percpu_gfp+0x12/0x20
alloc_htab_elem+0x184/0x2b0
__htab_percpu_map_update_elem+0x252/0x290
bpf_percpu_hash_update+0x7c/0x130
__do_sys_bpf+0x1912/0x1be0
__x64_sys_bpf+0x1a/0x20
do_syscall_64+0x59/0x400
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #3 (&htab->buckets[i].lock){....}:
lock_acquire+0x9e/0x180
_raw_spin_lock_irqsave+0x3a/0x50
htab_map_update_elem+0x1af/0x3a0
-> #2 (&rq->lock){-.-.}:
lock_acquire+0x9e/0x180
_raw_spin_lock+0x2f/0x40
task_fork_fair+0x37/0x160
sched_fork+0x211/0x310
copy_process.part.43+0x7b1/0x2160
_do_fork+0xda/0x6b0
kernel_thread+0x29/0x30
rest_init+0x22/0x260
arch_call_rest_init+0xe/0x10
start_kernel+0x4fd/0x520
x86_64_start_reservations+0x24/0x26
x86_64_start_kernel+0x6f/0x72
secondary_startup_64+0xa4/0xb0
-> #1 (&p->pi_lock){-.-.}:
lock_acquire+0x9e/0x180
_raw_spin_lock_irqsave+0x3a/0x50
try_to_wake_up+0x41/0x600
wake_up_process+0x15/0x20
create_worker+0x16b/0x1e0
workqueue_init+0x279/0x2ee
kernel_init_freeable+0xf7/0x288
kernel_init+0xf/0x180
ret_from_fork+0x24/0x30
-> #0 (&(&pool->lock)->rlock){-.-.}:
__lock_acquire+0x101f/0x12a0
lock_acquire+0x9e/0x180
_raw_spin_lock+0x2f/0x40
__queue_work+0xb2/0x520
queue_work_on+0x38/0x80
free_percpu+0x221/0x260
pcpu_freelist_destroy+0x11/0x20
stack_map_free+0x2a/0x40
bpf_map_free_deferred+0x3c/0x50
process_one_work+0x1f7/0x580
worker_thread+0x54/0x410
kthread+0x10f/0x150
ret_from_fork+0x24/0x30
other info that might help us debug this:
Chain exists of:
&(&pool->lock)->rlock --> &htab->buckets[i].lock --> pcpu_lock
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(pcpu_lock);
lock(&htab->buckets[i].lock);
lock(pcpu_lock);
lock(&(&pool->lock)->rlock);
*** DEADLOCK ***
3 locks held by kworker/23:255/18872:
#0: 00000000b36a6e16 ((wq_completion)events){+.+.},
at: process_one_work+0x17a/0x580
#1: 00000000dfd966f0 ((work_completion)(&map->work)){+.+.},
at: process_one_work+0x17a/0x580
#2: 00000000e3e7a6aa (pcpu_lock){..-.},
at: free_percpu+0x36/0x260
stack backtrace:
CPU: 23 PID: 18872 Comm: kworker/23:255 Not tainted 5.1.0-dbg-DEV #1
Hardware name: ...
Workqueue: events bpf_map_free_deferred
Call Trace:
dump_stack+0x67/0x95
print_circular_bug.isra.38+0x1c6/0x220
check_prev_add.constprop.50+0x9f6/0xd20
__lock_acquire+0x101f/0x12a0
lock_acquire+0x9e/0x180
_raw_spin_lock+0x2f/0x40
__queue_work+0xb2/0x520
queue_work_on+0x38/0x80
free_percpu+0x221/0x260
pcpu_freelist_destroy+0x11/0x20
stack_map_free+0x2a/0x40
bpf_map_free_deferred+0x3c/0x50
process_one_work+0x1f7/0x580
worker_thread+0x54/0x410
kthread+0x10f/0x150
ret_from_fork+0x24/0x30
Signed-off-by: John Sperbeck <jsperbeck@google.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Pull vfs inode freeing updates from Al Viro:
"Introduction of separate method for RCU-delayed part of
->destroy_inode() (if any).
Pretty much as posted, except that destroy_inode() stashes
->free_inode into the victim (anon-unioned with ->i_fops) before
scheduling i_callback() and the last two patches (sockfs conversion
and folding struct socket_wq into struct socket) are excluded - that
pair should go through netdev once davem reopens his tree"
* 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (58 commits)
orangefs: make use of ->free_inode()
shmem: make use of ->free_inode()
hugetlb: make use of ->free_inode()
overlayfs: make use of ->free_inode()
jfs: switch to ->free_inode()
fuse: switch to ->free_inode()
ext4: make use of ->free_inode()
ecryptfs: make use of ->free_inode()
ceph: use ->free_inode()
btrfs: use ->free_inode()
afs: switch to use of ->free_inode()
dax: make use of ->free_inode()
ntfs: switch to ->free_inode()
securityfs: switch to ->free_inode()
apparmor: switch to ->free_inode()
rpcpipe: switch to ->free_inode()
bpf: switch to ->free_inode()
mqueue: switch to ->free_inode()
ufs: switch to ->free_inode()
coda: switch to ->free_inode()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA
lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0
m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO
EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK
r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k
FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq
uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj
lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR
waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w
wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55
Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10
c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY=
=WZfC
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Allow state reset of printk_once() calls.
- Prevent crashes when dereferencing invalid pointers in vsprintf().
Only the first byte is checked for simplicity.
- Make vsprintf warnings consistent and inlined.
- Treewide conversion of obsolete %pf, %pF to %ps, %pF printf
modifiers.
- Some clean up of vsprintf and test_printf code.
* tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
lib/vsprintf: Make function pointer_string static
vsprintf: Limit the length of inlined error messages
vsprintf: Avoid confusion between invalid address and value
vsprintf: Prevent crash when dereferencing invalid pointers
vsprintf: Consolidate handling of unknown pointer specifiers
vsprintf: Factor out %pO handler as kobject_string()
vsprintf: Factor out %pV handler as va_format()
vsprintf: Factor out %p[iI] handler as ip_addr_string()
vsprintf: Do not check address of well-known strings
vsprintf: Consistent %pK handling for kptr_restrict == 0
vsprintf: Shuffle restricted_pointer()
printk: Tie printk_once / printk_deferred_once into .data.once for reset
treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
lib/test_printf: Switch to bitmap_zalloc()
Mostly just incremental improvements here:
- Introduce AT_HWCAP2 for advertising CPU features to userspace
- Expose SVE2 availability to userspace
- Support for "data cache clean to point of deep persistence" (DC PODP)
- Honour "mitigations=off" on the cmdline and advertise status via sysfs
- CPU timer erratum workaround (Neoverse-N1 #1188873)
- Introduce perf PMU driver for the SMMUv3 performance counters
- Add config option to disable the kuser helpers page for AArch32 tasks
- Futex modifications to ensure liveness under contention
- Rework debug exception handling to seperate kernel and user handlers
- Non-critical fixes and cleanup
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzMFGgACgkQt6xw3ITB
YzTicAf/TX1h1+ecbx4WJAa4qeiOCPoNpG9efldQumqJhKL44MR5bkhuShna5mwE
ptm5qUXkZCxLTjzssZKnbdbgwa3t+emW8Of3D91IfI9akiZbMoDx5FGgcNbqjazb
RLrhOFHwgontA38yppZN+DrL+sXbvif/CVELdHahkEx6KepSGaS2lmPXRmz/W56v
4yIRy/zxc3Dhjgfm3wKh72nBwoZdLiIc4mchd5pthNlR9E2idrYkQegG1C+gA00r
o8uZRVOWgoh7H+QJE+xLUc8PaNCg8xqRRXOuZYg9GOz6hh7zSWhm+f1nRz9S2tIR
gIgsCHNqoO2I3E1uJpAQXDGtt2kFhA==
=ulpJ
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Mostly just incremental improvements here:
- Introduce AT_HWCAP2 for advertising CPU features to userspace
- Expose SVE2 availability to userspace
- Support for "data cache clean to point of deep persistence" (DC PODP)
- Honour "mitigations=off" on the cmdline and advertise status via
sysfs
- CPU timer erratum workaround (Neoverse-N1 #1188873)
- Introduce perf PMU driver for the SMMUv3 performance counters
- Add config option to disable the kuser helpers page for AArch32 tasks
- Futex modifications to ensure liveness under contention
- Rework debug exception handling to seperate kernel and user
handlers
- Non-critical fixes and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
Documentation: Add ARM64 to kernel-parameters.rst
arm64/speculation: Support 'mitigations=' cmdline option
arm64: ssbs: Don't treat CPUs with SSBS as unaffected by SSB
arm64: enable generic CPU vulnerabilites support
arm64: add sysfs vulnerability show for speculative store bypass
arm64: Fix size of __early_cpu_boot_status
clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters
clocksource/arm_arch_timer: Remove use of workaround static key
clocksource/arm_arch_timer: Drop use of static key in arch_timer_reg_read_stable
clocksource/arm_arch_timer: Direcly assign set_next_event workaround
arm64: Use arch_timer_read_counter instead of arch_counter_get_cntvct
watchdog/sbsa: Use arch_timer_read_counter instead of arch_counter_get_cntvct
ARM: vdso: Remove dependency with the arch_timer driver internals
arm64: Apply ARM64_ERRATUM_1188873 to Neoverse-N1
arm64: Add part number for Neoverse N1
arm64: Make ARM64_ERRATUM_1188873 depend on COMPAT
arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32
arm64: mm: Remove pte_unmap_nested()
arm64: Fix compiler warning from pte_unmap() with -Wunused-but-set-variable
arm64: compat: Reduce address limit for 64K pages
...
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
Pull stack trace updates from Ingo Molnar:
"So Thomas looked at the stacktrace code recently and noticed a few
weirdnesses, and we all know how such stories of crummy kernel code
meeting German engineering perfection end: a 45-patch series to clean
it all up! :-)
Here's the changes in Thomas's words:
'Struct stack_trace is a sinkhole for input and output parameters
which is largely pointless for most usage sites. In fact if embedded
into other data structures it creates indirections and extra storage
overhead for no benefit.
Looking at all usage sites makes it clear that they just require an
interface which is based on a storage array. That array is either on
stack, global or embedded into some other data structure.
Some of the stack depot usage sites are outright wrong, but
fortunately the wrongness just causes more stack being used for
nothing and does not have functional impact.
Another oddity is the inconsistent termination of the stack trace
with ULONG_MAX. It's pointless as the number of entries is what
determines the length of the stored trace. In fact quite some call
sites remove the ULONG_MAX marker afterwards with or without nasty
comments about it. Not all architectures do that and those which do,
do it inconsistenly either conditional on nr_entries == 0 or
unconditionally.
The following series cleans that up by:
1) Removing the ULONG_MAX termination in the architecture code
2) Removing the ULONG_MAX fixups at the call sites
3) Providing plain storage array based interfaces for stacktrace
and stackdepot.
4) Cleaning up the mess at the callsites including some related
cleanups.
5) Removing the struct stack_trace based interfaces
This is not changing the struct stack_trace interfaces at the
architecture level, but it removes the exposure to the generic
code'"
* 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/stacktrace: Use common infrastructure
stacktrace: Provide common infrastructure
lib/stackdepot: Remove obsolete functions
stacktrace: Remove obsolete functions
livepatch: Simplify stack trace retrieval
tracing: Remove the last struct stack_trace usage
tracing: Simplify stack trace retrieval
tracing: Make ftrace_trace_userstack() static and conditional
tracing: Use percpu stack trace buffer more intelligently
tracing: Simplify stacktrace retrieval in histograms
lockdep: Simplify stack trace handling
lockdep: Remove save argument from check_prev_add()
lockdep: Remove unused trace argument from print_circular_bug()
drm: Simplify stacktrace handling
dm persistent data: Simplify stack trace handling
dm bufio: Simplify stack trace retrieval
btrfs: ref-verify: Simplify stack trace retrieval
dma/debug: Simplify stracktrace retrieval
fault-inject: Simplify stacktrace retrieval
mm/page_owner: Simplify stack trace handling
...
Pull objtool updates from Ingo Molnar:
"This is a series from Peter Zijlstra that adds x86 build-time uaccess
validation of SMAP to objtool, which will detect and warn about the
following uaccess API usage bugs and weirdnesses:
- call to %s() with UACCESS enabled
- return with UACCESS enabled
- return with UACCESS disabled from a UACCESS-safe function
- recursive UACCESS enable
- redundant UACCESS disable
- UACCESS-safe disables UACCESS
As it turns out not leaking uaccess permissions outside the intended
uaccess functionality is hard when the interfaces are complex and when
such bugs are mostly dormant.
As a bonus we now also check the DF flag. We had at least one
high-profile bug in that area in the early days of Linux, and the
checking is fairly simple. The checks performed and warnings emitted
are:
- call to %s() with DF set
- return with DF set
- return with modified stack frame
- recursive STD
- redundant CLD
It's all x86-only for now, but later on this can also be used for PAN
on ARM and objtool is fairly cross-platform in principle.
While all warnings emitted by this new checking facility that got
reported to us were fixed, there might be GCC version dependent
warnings that were not reported yet - which we'll address, should they
trigger.
The warnings are non-fatal build warnings"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation
sched/x86_64: Don't save flags on context switch
objtool: Add Direction Flag validation
objtool: Add UACCESS validation
objtool: Fix sibling call detection
objtool: Rewrite alt->skip_orig
objtool: Add --backtrace support
objtool: Rewrite add_ignores()
objtool: Handle function aliases
objtool: Set insn->func for alternatives
x86/uaccess, kcov: Disable stack protector
x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP
x86/uaccess, ubsan: Fix UBSAN vs. SMAP
x86/uaccess, kasan: Fix KASAN vs SMAP
x86/smap: Ditch __stringify()
x86/uaccess: Introduce user_access_{save,restore}()
x86/uaccess, signal: Fix AC=1 bloat
x86/uaccess: Always inline user_access_begin()
x86/uaccess, xen: Suppress SMAP warnings
...
Pull unified TLB flushing from Ingo Molnar:
"This contains the generic mmu_gather feature from Peter Zijlstra,
which is an all-arch unification of TLB flushing APIs, via the
following (broad) steps:
- enhance the <asm-generic/tlb.h> APIs to cover more arch details
- convert most TLB flushing arch implementations to the generic
<asm-generic/tlb.h> APIs.
- remove leftovers of per arch implementations
After this series every single architecture makes use of the unified
TLB flushing APIs"
* 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/resource: Use resource_overlaps() to simplify region_intersects()
ia64/tlb: Eradicate tlb_migrate_finish() callback
asm-generic/tlb: Remove tlb_table_flush()
asm-generic/tlb: Remove tlb_flush_mmu_free()
asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER
asm-generic/tlb: Remove arch_tlb*_mmu()
s390/tlb: Convert to generic mmu_gather
asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y
arch/tlb: Clean up simple architectures
um/tlb: Convert to generic mmu_gather
sh/tlb: Convert SH to generic mmu_gather
ia64/tlb: Convert to generic mmu_gather
arm/tlb: Convert to generic mmu_gather
asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE
asm-generic/tlb, ia64: Conditionally provide tlb_migrate_finish()
asm-generic/tlb: Provide generic tlb_flush() based on flush_tlb_mm()
asm-generic/tlb, arch: Provide generic tlb_flush() based on flush_tlb_range()
asm-generic/tlb, arch: Provide generic VIPT cache flush
asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
asm-generic/tlb: Provide a comment
Add a new flag VM_FLUSH_RESET_PERMS, for enabling vfree operations to
immediately clear executable TLB entries before freeing pages, and handle
resetting permissions on the directmap. This flag is useful for any kind
of memory with elevated permissions, or where there can be related
permissions changes on the directmap. Today this is RO+X and RO memory.
Although this enables directly vfreeing non-writeable memory now,
non-writable memory cannot be freed in an interrupt because the allocation
itself is used as a node on deferred free list. So when RO memory needs to
be freed in an interrupt the code doing the vfree needs to have its own
work queue, as was the case before the deferred vfree list was added to
vmalloc.
For architectures with set_direct_map_ implementations this whole operation
can be done with one TLB flush when centralized like this. For others with
directmap permissions, currently only arm64, a backup method using
set_memory functions is used to reset the directmap. When arm64 adds
set_direct_map_ functions, this backup can be removed.
When the TLB is flushed to both remove TLB entries for the vmalloc range
mapping and the direct map permissions, the lazy purge operation could be
done to try to save a TLB flush later. However today vm_unmap_aliases
could flush a TLB range that does not include the directmap. So a helper
is added with extra parameters that can allow both the vmalloc address and
the direct mapping to be flushed during this operation. The behavior of the
normal vm_unmap_aliases function is unchanged.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-17-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make hibernate handle unmapped pages on the direct map when
CONFIG_ARCH_HAS_SET_ALIAS=y is set. These functions allow for setting pages
to invalid configurations, so now hibernate should check if the pages have
valid mappings and handle if they are unmapped when doing a hibernate
save operation.
Previously this checking was already done when CONFIG_DEBUG_PAGEALLOC=y
was configured. It does not appear to have a big hibernating performance
impact. The speed of the saving operation before this change was measured
as 819.02 MB/s, and after was measured at 813.32 MB/s.
Before:
[ 4.670938] PM: Wrote 171996 kbytes in 0.21 seconds (819.02 MB/s)
After:
[ 4.504714] PM: Wrote 178932 kbytes in 0.22 seconds (813.32 MB/s)
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-16-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the indirection through struct stack_trace by using the storage
array based interfaces.
The original code in all printing functions is really wrong. It allocates a
storage array on stack which is unused because depot_fetch_stack() does not
store anything in it. It overwrites the entries pointer in the stack_trace
struct so it points to the depot storage.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: linux-mm@kvack.org
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: kasan-dev@googlegroups.com
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: iommu@lists.linux-foundation.org
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Cc: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: linux-btrfs@vger.kernel.org
Cc: dm-devel@redhat.com
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: intel-gfx@lists.freedesktop.org
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: dri-devel@lists.freedesktop.org
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: linux-arch@vger.kernel.org
Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
Commit 0a79cdad5e ("mm: use alloc_flags to record if kswapd can wake")
removed setting of the ALLOC_NOFRAGMENT flag. Bring it back.
The runtime effect is that ALLOC_NOFRAGMENT behaviour is restored so
that allocations are spread across local zones to avoid fragmentation
due to mixing pageblocks as long as possible.
Link: http://lkml.kernel.org/r/20190423120806.3503-2-aryabinin@virtuozzo.com
Fixes: 0a79cdad5e ("mm: use alloc_flags to record if kswapd can wake")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ac.preferred_zoneref->zone passed to alloc_flags_nofragment() can be NULL.
'zone' pointer unconditionally derefernced in alloc_flags_nofragment().
Bail out on NULL zone to avoid potential crash. Currently we don't see
any crashes only because alloc_flags_nofragment() has another bug which
allows compiler to optimize away all accesses to 'zone'.
Link: http://lkml.kernel.org/r/20190423120806.3503-1-aryabinin@virtuozzo.com
Fixes: 6bb154504f ("mm, page_alloc: spread allocations across zones before introducing fragmentation")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During the development of commit 5e1f0f098b ("mm, compaction: capture
a page under direct compaction"), a paranoid check was added to ensure
that if a captured page was available after compaction that it was
consistent with the final state of compaction. The intent was to catch
serious programming bugs such as using a stale page pointer and causing
corruption problems.
However, it is possible to get a captured page even if compaction was
unsuccessful if an interrupt triggered and happened to free pages in
interrupt context that got merged into a suitable high-order page. It's
highly unlikely but Li Wang did report the following warning on s390
occuring when testing OOM handling. Note that the warning is slightly
edited for clarity.
WARNING: CPU: 0 PID: 9783 at mm/page_alloc.c:3777 __alloc_pages_direct_compact+0x182/0x190
Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs
lockd grace fscache sunrpc pkey ghash_s390 prng xts aes_s390
des_s390 des_generic sha512_s390 zcrypt_cex4 zcrypt vmur binfmt_misc
ip_tables xfs libcrc32c dasd_fba_mod qeth_l2 dasd_eckd_mod dasd_mod
qeth qdio lcs ctcm ccwgroup fsm dm_mirror dm_region_hash dm_log
dm_mod
CPU: 0 PID: 9783 Comm: copy.sh Kdump: loaded Not tainted 5.1.0-rc 5 #1
This patch simply removes the check entirely instead of trying to be
clever about pages freed from interrupt context. If a serious
programming error was introduced, it is highly likely to be caught by
prep_new_page() instead.
Link: http://lkml.kernel.org/r/20190419085133.GH18914@techsingularity.net
Fixes: 5e1f0f098b ("mm, compaction: capture a page under direct compaction")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Li Wang <liwang@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikulas Patocka reported that commit 1c30844d2d ("mm: reclaim small
amounts of memory when an external fragmentation event occurs") "broke"
memory management on parisc.
The machine is not NUMA but the DISCONTIG model creates three pgdats
even though it's a UMA machine for the following ranges
0) Start 0x0000000000000000 End 0x000000003fffffff Size 1024 MB
1) Start 0x0000000100000000 End 0x00000001bfdfffff Size 3070 MB
2) Start 0x0000004040000000 End 0x00000040ffffffff Size 3072 MB
Mikulas reported:
With the patch 1c30844d2, the kernel will incorrectly reclaim the
first zone when it fills up, ignoring the fact that there are two
completely free zones. Basiscally, it limits cache size to 1GiB.
For example, if I run:
# dd if=/dev/sda of=/dev/null bs=1M count=2048
- with the proper kernel, there should be "Buffers - 2GiB"
when this command finishes. With the patch 1c30844d2, buffers
will consume just 1GiB or slightly more, because the kernel was
incorrectly reclaiming them.
The page allocator and reclaim makes assumptions that pgdats really
represent NUMA nodes and zones represent ranges and makes decisions on
that basis. Watermark boosting for small pgdats leads to unexpected
results even though this would have behaved reasonably on SPARSEMEM.
DISCONTIG is essentially deprecated and even parisc plans to move to
SPARSEMEM so there is no need to be fancy, this patch simply disables
watermark boosting by default on DISCONTIGMEM.
Link: http://lkml.kernel.org/r/20190419094335.GJ18914@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: James Bottomley <James.Bottomley@hansenpartnership.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now we are using find_memory_block() to get the node id for the
pfn range to online. We are missing to drop a reference to the memory
block device. While the device still gets unregistered via
device_unregister(), resulting in no user visible problem, the device is
never released via device_release(), resulting in a memory leak. Fix
that by properly using a put_device().
Link: http://lkml.kernel.org/r/20190411110955.1430-1-david@redhat.com
Fixes: d0dc12e86b ("mm/memory_hotplug: optimize memory hotplug")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull percpu fixlet from Dennis Zhou:
"This stops printing the base address of percpu memory on
initialization"
* 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: stop printing kernel addresses
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes: 86039bd3b4 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only references outside of the #ifdef have been removed, so now we
get a warning in non-SMP configurations:
mm/kmemleak.c:1404:13: error: unused function 'scan_large_block' [-Werror,-Wunused-function]
Add a new #ifdef around it.
Link: http://lkml.kernel.org/r/20190416123148.3502045-1-arnd@arndb.de
Fixes: 298a32b132 ("kmemleak: powerpc: skip scanning holes in the .bss section")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed. But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only. The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux. This behavioral
difference is unexpected and undesirable.
When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.
But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes: 2a2e48854d ("mm: vmscan: fix IO/refault regression in cache workingset transition")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
has_unmovable_pages() is used by allocating CMA and gigantic pages as
well as the memory hotplug. The later doesn't know how to offline CMA
pool properly now, but if an unused (free) CMA page is encountered, then
has_unmovable_pages() happily considers it as a free memory and
propagates this up the call chain. Memory offlining code then frees the
page without a proper CMA tear down which leads to an accounting issues.
Moreover if the same memory range is onlined again then the memory never
gets back to the CMA pool.
State after memory offline:
# grep cma /proc/vmstat
nr_free_cma 205824
# cat /sys/kernel/debug/cma/cma-kvm_cma/count
209920
Also, kmemleak still think those memory address are reserved below but
have already been used by the buddy allocator after onlining. This
patch fixes the situation by treating CMA pageblocks as unmovable except
when has_unmovable_pages() is called as part of CMA allocation.
Offlined Pages 4096
kmemleak: Cannot insert 0xc000201f7d040008 into the object search tree (overlaps existing)
Call Trace:
dump_stack+0xb0/0xf4 (unreliable)
create_object+0x344/0x380
__kmalloc_node+0x3ec/0x860
kvmalloc_node+0x58/0x110
seq_read+0x41c/0x620
__vfs_read+0x3c/0x70
vfs_read+0xbc/0x1a0
ksys_read+0x7c/0x140
system_call+0x5c/0x70
kmemleak: Kernel memory leak detector disabled
kmemleak: Object 0xc000201cc8000000 (size 13757317120):
kmemleak: comm "swapper/0", pid 0, jiffies 4294937297
kmemleak: min_count = -1
kmemleak: count = 0
kmemleak: flags = 0x5
kmemleak: checksum = 0
kmemleak: backtrace:
cma_declare_contiguous+0x2a4/0x3b0
kvm_cma_reserve+0x11c/0x134
setup_arch+0x300/0x3f8
start_kernel+0x9c/0x6e8
start_here_common+0x1c/0x4b0
kmemleak: Automatic memory scanning thread ended
[cai@lca.pw: use is_migrate_cma_page() and update commit log]
Link: http://lkml.kernel.org/r/20190416170510.20048-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190413002623.8967-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 58bc4c34d2 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
depends on skipping vmstat entries with empty name introduced in
7aaf772723 ("mm: don't show nr_indirectly_reclaimable in
/proc/vmstat") but reverted in b29940c1ab ("mm: rename and change
semantics of nr_indirectly_reclaimable_bytes").
So skipping no longer works and /proc/vmstat has misformatted lines " 0".
This patch simply shows debug counters "nr_tlb_remote_*" for UP.
Link: http://lkml.kernel.org/r/155481488468.467.4295519102880913454.stgit@buzz
Fixes: 58bc4c34d2 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Cc: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The igrab() in shmem_unuse() looks good, but we forgot that it gives no
protection against concurrent unmounting: a point made by Konstantin
Khlebnikov eight years ago, and then fixed in 2.6.39 by 778dd893ae
("tmpfs: fix race between umount and swapoff"). The current 5.1-rc
swapoff is liable to hit "VFS: Busy inodes after unmount of tmpfs.
Self-destruct in 5 seconds. Have a nice day..." followed by GPF.
Once again, give up on using igrab(); but don't go back to making such
heavy-handed use of shmem_swaplist_mutex as last time: that would spoil
the new design, and I expect could deadlock inside shmem_swapin_page().
Instead, shmem_unuse() just raise a "stop_eviction" count in the shmem-
specific inode, and shmem_evict_inode() wait for that to go down to 0.
Call it "stop_eviction" rather than "swapoff_busy" because it can be put
to use for others later (huge tmpfs patches expect to use it).
That simplifies shmem_unuse(), protecting it from both unlink and
unmount; and in practice lets it locate all the swap in its first try.
But do not rely on that: there's still a theoretical case, when
shmem_writepage() might have been preempted after its get_swap_page(),
before making the swap entry visible to swapoff.
[hughd@google.com: remove incorrect list_del()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904091133570.1898@eggly.anvils
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081259400.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old try_to_unuse() implementation was driven by find_next_to_unuse(),
which terminated as soon as all the swap had been freed.
Add inuse_pages checks now (alongside signal_pending()) to stop scanning
mms and swap_map once finished.
The same ought to be done in shmem_unuse() too, but never was before,
and needs a different interface: so leave it as is for now.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081258200.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SWAP_UNUSE_MAX_TRIES 3 appeared to work well in earlier testing, but
further testing has proved it to be a source of unnecessary swapoff
EBUSY failures (which can then be followed by unmount EBUSY failures).
When mmget_not_zero() or shmem's igrab() fails, there is an mm exiting
or inode being evicted, freeing up swap independent of try_to_unuse().
Those typically completed much sooner than the old quadratic swapoff,
but now it's more common that swapoff may need to wait for them.
It's possible to move those cases from init_mm.mmlist and shmem_swaplist
to separate "exiting" swaplists, and try_to_unuse() then wait for those
lists to be emptied; but we've not bothered with that in the past, and
don't want to risk missing some other forgotten case. So just revert to
cycling around until the swap is gone, without any retries limit.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081256170.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapfile "type" was passed all the way down to shmem_unuse_inode(), but
then forgotten from shmem_find_swap_entries(): with the result that
removing one swapfile would try to free up all the swap from shmem - no
problem when only one swapfile anyway, but counter-productive when more,
causing swapoff to be unnecessarily OOM-killed when it should succeed.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081254470.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 51dedad06b ("kasan, slab: make freelist stored without tags")
calls kasan_reset_tag() for off-slab slab management object leading to
freelist being stored non-tagged.
However, cache_grow_begin() calls alloc_slabmgmt() which calls
kmem_cache_alloc_node() assigns a tag for the address and stores it in
the shadow address. As the result, it causes endless errors below
during boot due to drain_freelist() -> slab_destroy() ->
kasan_slab_free() which compares already untagged freelist against the
stored tag in the shadow address.
Since off-slab slab management object freelist is such a special case,
just store it tagged. Non-off-slab management object freelist is still
stored untagged which has not been assigned a tag and should not cause
any other troubles with this inconsistency.
BUG: KASAN: double-free or invalid-free in slab_destroy+0x84/0x88
Pointer tag: [ff], memory tag: [99]
CPU: 0 PID: 1376 Comm: kworker/0:4 Tainted: G W 5.1.0-rc3+ #8
Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.0.6 07/10/2018
Workqueue: cgroup_destroy css_killed_work_fn
Call trace:
print_address_description+0x74/0x2a4
kasan_report_invalid_free+0x80/0xc0
__kasan_slab_free+0x204/0x208
kasan_slab_free+0xc/0x18
kmem_cache_free+0xe4/0x254
slab_destroy+0x84/0x88
drain_freelist+0xd0/0x104
__kmem_cache_shrink+0x1ac/0x224
__kmemcg_cache_deactivate+0x1c/0x28
memcg_deactivate_kmem_caches+0xa0/0xe8
memcg_offline_kmem+0x8c/0x3d4
mem_cgroup_css_offline+0x24c/0x290
css_killed_work_fn+0x154/0x618
process_one_work+0x9cc/0x183c
worker_thread+0x9b0/0xe38
kthread+0x374/0x390
ret_from_fork+0x10/0x18
Allocated by task 1625:
__kasan_kmalloc+0x168/0x240
kasan_slab_alloc+0x18/0x20
kmem_cache_alloc_node+0x1f8/0x3a0
cache_grow_begin+0x4fc/0xa24
cache_alloc_refill+0x2f8/0x3e8
kmem_cache_alloc+0x1bc/0x3bc
sock_alloc_inode+0x58/0x334
alloc_inode+0xb8/0x164
new_inode_pseudo+0x20/0xec
sock_alloc+0x74/0x284
__sock_create+0xb0/0x58c
sock_create+0x98/0xb8
__sys_socket+0x60/0x138
__arm64_sys_socket+0xa4/0x110
el0_svc_handler+0x2c0/0x47c
el0_svc+0x8/0xc
Freed by task 1625:
__kasan_slab_free+0x114/0x208
kasan_slab_free+0xc/0x18
kfree+0x1a8/0x1e0
single_release+0x7c/0x9c
close_pdeo+0x13c/0x43c
proc_reg_release+0xec/0x108
__fput+0x2f8/0x784
____fput+0x1c/0x28
task_work_run+0xc0/0x1b0
do_notify_resume+0xb44/0x1278
work_pending+0x8/0x10
The buggy address belongs to the object at ffff809681b89e00
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 0 bytes inside of
128-byte region [ffff809681b89e00, ffff809681b89e80)
The buggy address belongs to the page:
page:ffff7fe025a06e00 count:1 mapcount:0 mapping:01ff80082000fb00
index:0xffff809681b8fe04
flags: 0x17ffffffc000200(slab)
raw: 017ffffffc000200 ffff7fe025a06d08 ffff7fe022ef7b88 01ff80082000fb00
raw: ffff809681b8fe04 ffff809681b80000 00000001000000e0 0000000000000000
page dumped because: kasan: bad access detected
page allocated via order 0, migratetype Unmovable, gfp_mask
0x2420c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_COMP|__GFP_THISNODE)
prep_new_page+0x4e0/0x5e0
get_page_from_freelist+0x4ce8/0x50d4
__alloc_pages_nodemask+0x738/0x38b8
cache_grow_begin+0xd8/0xa24
____cache_alloc_node+0x14c/0x268
__kmalloc+0x1c8/0x3fc
ftrace_free_mem+0x408/0x1284
ftrace_free_init_mem+0x20/0x28
kernel_init+0x24/0x548
ret_from_fork+0x10/0x18
Memory state around the buggy address:
ffff809681b89c00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
ffff809681b89d00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
>ffff809681b89e00: 99 99 99 99 99 99 99 99 fe fe fe fe fe fe fe fe
^
ffff809681b89f00: 43 43 43 43 43 fe fe fe fe fe fe fe fe fe fe fe
ffff809681b8a000: 6d fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
Link: http://lkml.kernel.org/r/20190403022858.97584-1-cai@lca.pw
Fixes: 51dedad06b ("kasan, slab: make freelist stored without tags")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
store_stackinfo() does not seem used in actual SLAB debugging.
Potentially, it could be added to check_poison_obj() to provide more
information but this seems like an overkill due to the declining
popularity of SLAB, so just remove it instead.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: rientjes@google.com
Cc: sean.j.christopherson@intel.com
Link: https://lkml.kernel.org/r/20190416142258.18694-1-cai@lca.pw
Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
No architecture terminates the stack trace with ULONG_MAX anymore. Remove
the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-mm@kvack.org
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20190410103644.661974663@linutronix.de
No architecture terminates the stack trace with ULONG_MAX anymore. Remove
the cruft.
While at it remove the pointless loop of clearing the stack array
completely. It's sufficient to clear the last entry as the consumers break
out on the first zeroed entry anyway.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Link: https://lkml.kernel.org/r/20190410103644.574058244@linutronix.de
If the page refcount wraps around past zero, it will be freed while
there are still four billion references to it. One of the possible
avenues for an attacker to try to make this happen is by doing direct IO
on a page multiple times. This patch makes get_user_pages() refuse to
take a new page reference if there are already more than two billion
references to the page.
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for arm64 supporting ftrace built on other compiler
options, let's have Makefiles remove the $(CC_FLAGS_FTRACE) flags,
whatever these may be, rather than assuming '-pg'.
There should be no functional change as a result of this patch.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The commit 510ded33e0 ("slab: implement slab_root_caches list")
changes the name of the list node within "struct kmem_cache" from "list"
to "root_caches_node", but leaks_show() still use the "list" which
causes a crash when reading /proc/slab_allocators.
You need to have CONFIG_SLAB=y and CONFIG_MEMCG=y to see the problem,
because without MEMCG all slab caches are root caches, and the "list"
node happens to be the right one.
Fixes: 510ded33e0 ("slab: implement slab_root_caches list")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Tobin C. Harding <tobin@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kerneldoc misdescribes strndup_user()'s return value.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Timur Tabi <timur@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With some architectures like ppc64, set_pmd_at() cannot cope with a
situation where there is already some (different) valid entry present.
Use pmdp_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PMD entries.
This is similar to commit cae85cb8ad ("mm/memory.c: fix modifying of
page protection by insert_pfn()")
We also do similar update w.r.t insert_pfn_pud eventhough ppc64 don't
support pud pfn entries now.
Without this patch we also see the below message in kernel log "BUG:
non-zero pgtables_bytes on freeing mm:"
Link: http://lkml.kernel.org/r/20190402115125.18803-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Chandan Rajendra <chandan@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2d4f567103 ("KVM: PPC: Introduce kvm_tmp framework") adds
kvm_tmp[] into the .bss section and then free the rest of unused spaces
back to the page allocator.
kernel_init
kvm_guest_init
kvm_free_tmp
free_reserved_area
free_unref_page
free_unref_page_prepare
With DEBUG_PAGEALLOC=y, it will unmap those pages from kernel. As the
result, kmemleak scan will trigger a panic when it scans the .bss
section with unmapped pages.
This patch creates dedicated kmemleak objects for the .data, .bss and
potentially .data..ro_after_init sections to allow partial freeing via
the kmemleak_free_part() in the powerpc kvm_free_tmp() function.
Link: http://lkml.kernel.org/r/20190321171917.62049-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Qian Cai <cai@lca.pw>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Qian Cai <cai@lca.pw>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikhail Gavrilo reported the following bug being triggered in a Fedora
kernel based on 5.1-rc1 but it is relevant to a vanilla kernel.
kernel: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
kernel: ------------[ cut here ]------------
kernel: kernel BUG at include/linux/mm.h:1021!
kernel: invalid opcode: 0000 [#1] SMP NOPTI
kernel: CPU: 6 PID: 116 Comm: kswapd0 Tainted: G C 5.1.0-0.rc1.git1.3.fc31.x86_64 #1
kernel: Hardware name: System manufacturer System Product Name/ROG STRIX X470-I GAMING, BIOS 1201 12/07/2018
kernel: RIP: 0010:__reset_isolation_pfn+0x244/0x2b0
kernel: Code: fe 06 e8 0f 8e fc ff 44 0f b6 4c 24 04 48 85 c0 0f 85 dc fe ff ff e9 68 fe ff ff 48 c7 c6 58 b7 2e 8c 4c 89 ff e8 0c 75 00 00 <0f> 0b 48 c7 c6 58 b7 2e 8c e8 fe 74 00 00 0f 0b 48 89 fa 41 b8 01
kernel: RSP: 0018:ffff9e2d03f0fde8 EFLAGS: 00010246
kernel: RAX: 0000000000000034 RBX: 000000000081f380 RCX: ffff8cffbddd6c20
kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffff8cffbddd6c20
kernel: RBP: 0000000000000001 R08: 0000009898b94613 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000100000
kernel: R13: 0000000000100000 R14: 0000000000000001 R15: ffffca7de07ce000
kernel: FS: 0000000000000000(0000) GS:ffff8cffbdc00000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00007fc1670e9000 CR3: 00000007f5276000 CR4: 00000000003406e0
kernel: Call Trace:
kernel: __reset_isolation_suitable+0x62/0x120
kernel: reset_isolation_suitable+0x3b/0x40
kernel: kswapd+0x147/0x540
kernel: ? finish_wait+0x90/0x90
kernel: kthread+0x108/0x140
kernel: ? balance_pgdat+0x560/0x560
kernel: ? kthread_park+0x90/0x90
kernel: ret_from_fork+0x27/0x50
He bisected it down to e332f741a8 ("mm, compaction: be selective about
what pageblocks to clear skip hints"). The problem is that the patch in
question was sloppy with respect to the handling of zone boundaries. In
some instances, it was possible for PFNs outside of a zone to be examined
and if those were not properly initialised or poisoned then it would
trigger the VM_BUG_ON. This patch corrects the zone boundary issues when
resetting pageblock skip hints and Mikhail reported that the bug did not
trigger after 30 hours of testing.
Link: http://lkml.kernel.org/r/20190327085424.GL3189@techsingularity.net
Fixes: e332f741a8 ("mm, compaction: be selective about what pageblocks to clear skip hints")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
KASAN inserts extra code for every LOAD/STORE emitted by te compiler.
Much of this code is simple and safe to run with AC=1, however the
kasan_report() function, called on error, is most certainly not safe
to call with AC=1.
Therefore wrap kasan_report() in user_access_{save,restore}; which for
x86 SMAP, saves/restores EFLAGS and clears AC before calling the real
function.
Also ensure all the functions are without __fentry__ hook. The
function tracer is also not safe.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are no external users of this API (nor should there be); remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As the comment notes; it is a potentially dangerous operation. Just
use tlb_flush_mmu(), that will skip the (double) TLB invalidate if
it really isn't needed anyway.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since all architectures are now using it, it is redundant.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all architectures are converted to the generic code, remove
the arch hooks.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the Kconfig option HAVE_MMU_GATHER_NO_GATHER to the generic
mmu_gather code. If the option is set the mmu_gather will not
track individual pages for delayed page free anymore. A platform
that enables the option needs to provide its own implementation
of the __tlb_remove_page_size() function to free pages.
No change in behavior intended.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: linux@armlinux.org.uk
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/20180918125151.31744-2-schwidefsky@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make issuing a TLB invalidate for page-table pages the normal case.
The reason is twofold:
- too many invalidates is safer than too few,
- most architectures use the linux page-tables natively
and would thus require this.
Make it an opt-out, instead of an opt-in.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL
and SIGSEGV that could not be traced back to a userspace code bug. They
had all the magic signs of an I/D cache coherency issue.
Now recently we noticed that the /proc/sys/vm/compact_memory interface
was quite efficient at provoking this class of userspace crashes.
Studying the code in mm/migrate.c there is a distinction made between
migrating a page that is mapped at the instant of migration and one that
is not mapped. Our problem turned out to be the non-mapped pages.
For the non-mapped page the code performs a copy of the page content and
all relevant meta-data of the page without doing the required D-cache
maintenance. This leaves dirty data in the D-cache of the CPU and on
the 1004K cores this data is not visible to the I-cache. A subsequent
page-fault that triggers a mapping of the page will happily serve the
process with potentially stale code.
What about ARM then, this bug should have seen greater exposure? Well
ARM became immune to this flaw back in 2010, see commit c01778001a
("ARM: 6379/1: Assume new page cache pages have dirty D-cache").
My proposed fix moves the D-cache maintenance inside move_to_new_page to
make it common for both cases.
Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com
Fixes: 97ee052461 ("flush cache before installing new page at migraton")
Signed-off-by: Lars Persson <larper@axis.com>
Reviewed-by: Paul Burton <paul.burton@mips.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to has_unmovable_pages() taking an incorrect irqsave flag instead of
the isolation flag in set_migratetype_isolate(), there are issues with
HWPOSION and error reporting where dump_page() is not called when there
is an unmovable page.
Link: http://lkml.kernel.org/r/20190320204941.53731-1-cai@lca.pw
Fixes: d381c54760 ("mm: only report isolation failures when offlining memory")
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org> [5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While debugging something, I added a dump_page() into do_swap_page(),
and I got the splat from below. The issue happens when dereferencing
mapping->host in __dump_page():
...
else if (mapping) {
pr_warn("%ps ", mapping->a_ops);
if (mapping->host->i_dentry.first) {
struct dentry *dentry;
dentry = container_of(mapping->host->i_dentry.first, struct dentry, d_u.d_alias);
pr_warn("name:\"%pd\" ", dentry);
}
}
...
Swap address space does not contain an inode information, and so
mapping->host equals NULL.
Although the dump_page() call was added artificially into
do_swap_page(), I am not sure if we can hit this from any other path, so
it looks worth fixing it. We can easily do that by checking
mapping->host first.
Link: http://lkml.kernel.org/r/20190318072931.29094-1-osalvador@suse.de
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy, mbind() should return -EIO. But
commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()") broke the rule.
And commit c863379849 ("mm: mempolicy: mbind and migrate_pages support
thp migration") didn't return the correct value for THP mbind() too.
If MPOL_MF_STRICT is set, ignore vma_migratable() to make sure it
reaches queue_pages_to_pte_range() or queue_pages_pmd() to check if an
existing page was already on a node that does not follow the policy.
And, non-migratable vma may be used, return -EIO too if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified.
Tested with https://github.com/metan-ucw/ltp/blob/master/testcases/kernel/syscalls/mbind/mbind02.c
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/1553020556-38583-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
platforms (and maybe others?).
[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/
This patch (of 3):
IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems. On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.
For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
1. This patch, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2
page tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable
to reuse freed fragments until the whole page is freed.
This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.
We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.
This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).
Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.
However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing. Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().
Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE. Those pages
will be marked as MIGRATE_MOVABLE again once onlining. The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.
Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there. Fix an incorrect comment along the way.
[cai@lca.pw: v4]
Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atomic64_read() on ppc64le returns "long int", so fix the same way as
commit d549f545e6 ("drm/virtio: use %llu format string form
atomic64_t") by adding a cast to u64, which makes it work on all arches.
In file included from ./include/linux/printk.h:7,
from ./include/linux/kernel.h:15,
from mm/debug.c:9:
mm/debug.c: In function 'dump_mm':
./include/linux/kern_levels.h:5:18: warning: format '%llx' expects argument of type 'long long unsigned int', but argument 19 has type 'long int' [-Wformat=]
#define KERN_SOH "A" /* ASCII Start Of Header */
^~~~~~
./include/linux/kern_levels.h:8:20: note: in expansion of macro
'KERN_SOH'
#define KERN_EMERG KERN_SOH "0" /* system is unusable */
^~~~~~~~
./include/linux/printk.h:297:9: note: in expansion of macro 'KERN_EMERG'
printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__)
^~~~~~~~~~
mm/debug.c:133:2: note: in expansion of macro 'pr_emerg'
pr_emerg("mm %px mmap %px seqnum %llu task_size %lu"
^~~~~~~~
mm/debug.c:140:17: note: format string is defined here
"pinned_vm %llx data_vm %lx exec_vm %lx stack_vm %lx"
~~~^
%lx
Link: http://lkml.kernel.org/r/20190310183051.87303-1-cai@lca.pw
Fixes: 70f8a3ca68 ("mm: make mm->pinned_vm an atomic64 counter")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aneesh has reported that PPC triggers the following warning when
excercising DAX code:
IP set_pte_at+0x3c/0x190
LR insert_pfn+0x208/0x280
Call Trace:
insert_pfn+0x68/0x280
dax_iomap_pte_fault.isra.7+0x734/0xa40
__xfs_filemap_fault+0x280/0x2d0
do_wp_page+0x48c/0xa40
__handle_mm_fault+0x8d0/0x1fd0
handle_mm_fault+0x140/0x250
__do_page_fault+0x300/0xd60
handle_page_fault+0x18
Now that is WARN_ON in set_pte_at which is
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
The problem is that on some architectures set_pte_at() cannot cope with
a situation where there is already some (different) valid entry present.
Use ptep_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PTE.
Link: http://lkml.kernel.org/r/20190311084537.16029-1-jack@suse.cz
Fixes: b2770da642 "mm: add vm_insert_mixed_mkwrite()"
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Chandan Rajendra <chandan@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_tag() compiles away when CONFIG_KASAN_SW_TAGS=n, so make
arch_kasan_set_tag() a static inline function to fix warnings below.
mm/kasan/common.c: In function '__kasan_kmalloc':
mm/kasan/common.c:475:5: warning: variable 'tag' set but not used [-Wunused-but-set-variable]
u8 tag;
^~~
Link: http://lkml.kernel.org/r/20190307185244.54648-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit ad67b74d24 ("printk: hash addresses printed with %p"),
at boot "____ptrval____" is printed instead of actual addresses:
percpu: Embedded 38 pages/cpu @(____ptrval____) s124376 r0 d31272 u524288
Instead of changing the print to "%px", and leaking kernel addresses,
just remove the print completely, cfr. e.g. commit 071929dbdd
("arm64: Stop printing the virtual memory layout").
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
* Replace the /sys/class/dax device model with /sys/bus/dax, and include
a compat driver so distributions can opt-in to the new ABI.
* Allow for an alternative driver for the device-dax address-range
* Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
* Arrange for the device-dax target-node to be onlined so that the newly
added memory range can be uniquely referenced by numa apis.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P
Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v
vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL
MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ
bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ
E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6
vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf
S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz
gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU
EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x
XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe
2UrXGcIfXxyJ8V9v8v4q
=hfa3
-----END PGP SIGNATURE-----
Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull device-dax updates from Dan Williams:
"New device-dax infrastructure to allow persistent memory and other
"reserved" / performance differentiated memories, to be assigned to
the core-mm as "System RAM".
Some users want to use persistent memory as additional volatile
memory. They are willing to cope with potential performance
differences, for example between DRAM and 3D Xpoint, and want to use
typical Linux memory management apis rather than a userspace memory
allocator layered over an mmap() of a dax file. The administration
model is to decide how much Persistent Memory (pmem) to use as System
RAM, create a device-dax-mode namespace of that size, and then assign
it to the core-mm. The rationale for device-dax is that it is a
generic memory-mapping driver that can be layered over any "special
purpose" memory, not just pmem. On subsequent boots udev rules can be
used to restore the memory assignment.
One implication of using pmem as RAM is that mlock() no longer keeps
data off persistent media. For this reason it is recommended to enable
NVDIMM Security (previously merged for 5.0) to encrypt pmem contents
at rest. We considered making this recommendation an actively enforced
requirement, but in the end decided to leave it as a distribution /
administrator policy to allow for emulation and test environments that
lack security capable NVDIMMs.
Summary:
- Replace the /sys/class/dax device model with /sys/bus/dax, and
include a compat driver so distributions can opt-in to the new ABI.
- Allow for an alternative driver for the device-dax address-range
- Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
- Arrange for the device-dax target-node to be onlined so that the
newly added memory range can be uniquely referenced by numa apis"
NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because
we currently have special - and very annoying rules in the kernel about
accessing PMEM only with the "MC safe" accessors, because machine checks
inside the regular repeat string copy functions can be fatal in some
(not described) circumstances.
And apparently the PMEM modules can cause that a lot more than regular
RAM. The argument is that this happens because PMEM doesn't necessarily
get scrubbed at boot like RAM does, but that is planned to be added for
the user space tooling.
Quoting Dan from another email:
"The exposure can be reduced in the volatile-RAM case by scanning for
and clearing errors before it is onlined as RAM. The userspace tooling
for that can be in place before v5.1-final. There's also runtime
notifications of errors via acpi_nfit_uc_error_notify() from
background scrubbers on the DIMM devices. With that mechanism the
kernel could proactively clear newly discovered poison in the volatile
case, but that would be additional development more suitable for v5.2.
I understand the concern, and the need to highlight this issue by
tapping the brakes on feature development, but I don't see PMEM as RAM
making the situation worse when the exposure is also there via DAX in
the PMEM case. Volatile-RAM is arguably a safer use case since it's
possible to repair pages where the persistent case needs active
application coordination"
* tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
device-dax: "Hotplug" persistent memory for use like normal RAM
mm/resource: Let walk_system_ram_range() search child resources
mm/memory-hotplug: Allow memory resources to be children
mm/resource: Move HMM pr_debug() deeper into resource code
mm/resource: Return real error codes from walk failures
device-dax: Add a 'modalias' attribute to DAX 'bus' devices
device-dax: Add a 'target_node' attribute
device-dax: Auto-bind device after successful new_id
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
device-dax: Add /sys/class/dax backwards compatibility
device-dax: Add support for a dax override driver
device-dax: Move resource pinning+mapping into the common driver
device-dax: Introduce bus + driver model
device-dax: Start defining a dax bus model
device-dax: Remove multi-resource infrastructure
device-dax: Kill dax_region base
device-dax: Kill dax_region ida
I thought Josef Bacik's patch to drop the mmap_sem was buggy, because
when looking at the error cases, there was one case where we returned
VM_FAULT_RETRY without actually dropping the mmap_sem.
Josef had to explain to me (using small words) that yes, that's actually
what we're supposed to do, and his patch was correct. Which not only
convinced me he knew what he was doing and I should stop arguing with
him, but also that I should add a comment to the case I was confused
about.
Patiently-pointed-out-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we only drop the mmap_sem if there is contention on the page
lock. The idea is that we issue readahead and then go to lock the page
while it is under IO and we want to not hold the mmap_sem during the IO.
The problem with this is the assumption that the readahead does anything.
In the case that the box is under extreme memory or IO pressure we may end
up not reading anything at all for readahead, which means we will end up
reading in the page under the mmap_sem.
Even if the readahead does something, it could get throttled because of io
pressure on the system and the process is in a lower priority cgroup.
Holding the mmap_sem while doing IO is problematic because it can cause
system-wide priority inversions. Consider some large company that does a
lot of web traffic. This large company has load balancing logic in it's
core web server, cause some engineer thought this was a brilliant plan.
This load balancing logic gets statistics from /proc about the system,
which trip over processes mmap_sem for various reasons. Now the web
server application is in a protected cgroup, but these other processes may
not be, and if they are being throttled while their mmap_sem is held we'll
stall, and cause this nice death spiral.
Instead rework filemap fault path to drop the mmap sem at any point that
we may do IO or block for an extended period of time. This includes while
issuing readahead, locking the page, or needing to call ->readpage because
readahead did not occur. Then once we have a fully uptodate page we can
return with VM_FAULT_RETRY and come back again to find our nicely in-cache
page that was gotten outside of the mmap_sem.
This patch also adds a new helper for locking the page with the mmap_sem
dropped. This doesn't make sense currently as generally speaking if the
page is already locked it'll have been read in (unless there was an error)
before it was unlocked. However a forthcoming patchset will change this
with the ability to abort read-ahead bio's if necessary, making it more
likely that we could contend for a page lock and still have a not uptodate
page. This allows us to deal with this case by grabbing the lock and
issuing the IO without the mmap_sem held, and then returning
VM_FAULT_RETRY to come back around.
[josef@toxicpanda.com: v6]
Link: http://lkml.kernel.org/r/20181212152757.10017-1-josef@toxicpanda.com
[kirill@shutemov.name: fix race in filemap_fault()]
Link: http://lkml.kernel.org/r/20181228235106.okk3oastsnpxusxs@kshutemo-mobl1
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181211173801.29535-4-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: syzbot+b437b5a429d680cf2217@syzkaller.appspotmail.com
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "drop the mmap_sem when doing IO in the fault path", v6.
Now that we have proper isolation in place with cgroups2 we have started
going through and fixing the various priority inversions. Most are all
gone now, but this one is sort of weird since it's not necessarily a
priority inversion that happens within the kernel, but rather because of
something userspace does.
We have giant applications that we want to protect, and parts of these
giant applications do things like watch the system state to determine how
healthy the box is for load balancing and such. This involves running
'ps' or other such utilities. These utilities will often walk
/proc/<pid>/whatever, and these files can sometimes need to
down_read(&task->mmap_sem). Not usually a big deal, but we noticed when
we are stress testing that sometimes our protected application has latency
spikes trying to get the mmap_sem for tasks that are in lower priority
cgroups.
This is because any down_write() on a semaphore essentially turns it into
a mutex, so even if we currently have it held for reading, any new readers
will not be allowed on to keep from starving the writer. This is fine,
except a lower priority task could be stuck doing IO because it has been
throttled to the point that its IO is taking much longer than normal. But
because a higher priority group depends on this completing it is now stuck
behind lower priority work.
In order to avoid this particular priority inversion we want to use the
existing retry mechanism to stop from holding the mmap_sem at all if we
are going to do IO. This already exists in the read case sort of, but
needed to be extended for more than just grabbing the page lock. With
io.latency we throttle at submit_bio() time, so the readahead stuff can
block and even page_cache_read can block, so all these paths need to have
the mmap_sem dropped.
The other big thing is ->page_mkwrite. btrfs is particularly shitty here
because we have to reserve space for the dirty page, which can be a very
expensive operation. We use the same retry method as the read path, and
simply cache the page and verify the page is still setup properly the next
pass through ->page_mkwrite().
I've tested these patches with xfstests and there are no regressions.
This patch (of 3):
If we do not have a page at filemap_fault time we'll do this weird forced
page_cache_read thing to populate the page, and then drop it again and
loop around and find it. This makes for 2 ways we can read a page in
filemap_fault, and it's not really needed. Instead add a FGP_FOR_MMAP
flag so that pagecache_get_page() will return a unlocked page that's in
pagecache. Then use the normal page locking and readpage logic already in
filemap_fault. This simplifies the no page in page cache case
significantly.
[akpm@linux-foundation.org: fix comment text]
[josef@toxicpanda.com: don't unlock null page in FGP_FOR_MMAP case]
Link: http://lkml.kernel.org/r/20190312201742.22935-1-josef@toxicpanda.com
Link: http://lkml.kernel.org/r/20181211173801.29535-2-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All of the arguments to these functions come from the vmf.
Cut down on the amount of arguments passed by simply passing in the vmf
to these two helpers.
Link: http://lkml.kernel.org/r/20181211173801.29535-3-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just like blocks, chunks now maintain a scan_hint. This can be used to
skip some scanning by promoting the scan_hint to be the contig_hint.
The chunk's scan_hint is primarily updated on the backside and relies on
full scanning when a block becomes free or the free region spans across
blocks.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
As mentioned in the last patch, a chunk's hints are no different than a
block just responsible for more bits. This converts chunk level hints to
use a pcpu_block_md to maintain them. This lets us reuse the same hint
helper functions as a block. The left_free and right_free are unused by
the chunk's pcpu_block_md.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
In reality, a chunk is just a block covering a larger number of bits.
The hints themselves are one in the same. Rather than maintaining the
hints separately, first introduce nr_bits to genericize
pcpu_block_update() to correctly maintain block->right_free. The next
patch will convert chunk hints to be managed as a pcpu_block_md.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Blocks now remember the latest scan_hint. This can be used on the
allocation path as when a contig_hint is broken, we can promote the
scan_hint to the contig_hint and scan forward from there. This works
because pcpu_block_refresh_hint() is only called on the allocation path
while block free regions are updated manually in
pcpu_block_update_hint_free().
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Percpu allocations attempt to do first fit by scanning forward from the
first_free of a block. However, fragmentation from allocation requests
can cause holes not seen by block hint update functions. To address
this, create a local version of bitmap_find_next_zero_area_off() that
remembers the largest area skipped over. The caveat is that it only sees
regions skipped over due to not fitting, not regions skipped due to
alignment.
Prior to updating the scan_hint, a scan backwards is done to try and
recover free bits skipped due to alignment. While this can cause
scanning to miss earlier possible free areas, smaller allocations will
eventually fill those holes due to first fit.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Fragmentation can cause both blocks and chunks to have an early
first_firee bit available, but only able to satisfy allocations much
later on. This patch introduces a scan_hint to help mitigate some
unnecessary scanning.
The scan_hint remembers the largest area prior to the contig_hint. If
the contig_hint == scan_hint, then scan_hint_start > contig_hint_start.
This is necessary for scan_hint discovery when refreshing a block.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Previously, block size was flexible based on the constraint that the
GCD(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) > 1. However, this carried the
overhead that keeping a floating number of populated free pages required
scanning over the free regions of a chunk.
Setting the block size to be fixed at PAGE_SIZE lets us know when an
empty page becomes used as we will break a full contig_hint of a block.
This means we no longer have to scan the whole chunk upon breaking a
contig_hint which empty page management piggybacked off. A later patch
takes advantage of this to optimize the allocation path by only scanning
forward using the scan_hint introduced later too.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
In certain cases, requestors of percpu memory may want specific
alignments. However, it is possible to end up in situations where the
contig_hint matches, but the alignment does not. This causes excess
scanning of chunks that will fail. To prevent this, if a small
allocation fails (< 32B), the chunk is moved to the empty list. Once an
allocation is freed from that chunk, it is placed back into rotation.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
When a chunk becomes fragmented, it can end up having a large number of
small allocation areas free. The free_bytes sorting of chunks leads to
unnecessary checking of chunks that cannot satisfy the allocation.
Switch to contig_bits sorting to prevent scanning chunks that may not be
able to service the allocation request.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
While block hints were always accurate, it's possible when spanning
across blocks that we miss updating the chunk's contig_hint. Rather than
rely on correctness of the boundaries of hints, do a full overlap
comparison.
A future patch introduces the scan_hint which makes the contig_hint
slightly fuzzy as they can at times be smaller than the actual hint.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
pcpu_find_block_fit() guarantees that a fit is found within
PCPU_BITMAP_BLOCK_BITS. Iteration is used to determine the first fit as
it compares against the block's contig_hint. This can lead to
incorrectly scanning past the end of the bitmap. The behavior was okay
given the check after for bit_off >= end and the correctness of the
hints from pcpu_find_block_fit().
This patch fixes this by bounding the end offset by the number of bits
in a chunk.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
When updating the chunk's contig_hint on the free path of a hint that
does not touch the page boundaries, it was incorrectly using the
starting offset of the free region and the block's contig_hint. This
could lead to incorrect assumptions about fit given a size and better
alignment of the start. Fix this by using (end - start) as this is only
called when updating a hint within a block.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Merge misc updates from Andrew Morton:
- a few misc things
- the rest of MM
- remove flex_arrays, replace with new simple radix-tree implementation
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
Drop flex_arrays
sctp: convert to genradix
proc: commit to genradix
generic radix trees
selinux: convert to kvmalloc
md: convert to kvmalloc
openvswitch: convert to kvmalloc
of: fix kmemleak crash caused by imbalance in early memory reservation
mm: memblock: update comments and kernel-doc
memblock: split checks whether a region should be skipped to a helper function
memblock: remove memblock_{set,clear}_region_flags
memblock: drop memblock_alloc_*_nopanic() variants
memblock: memblock_alloc_try_nid: don't panic
treewide: add checks for the return value of memblock_alloc*()
swiotlb: add checks for the return value of memblock_alloc*()
init/main: add checks for the return value of memblock_alloc*()
mm/percpu: add checks for the return value of memblock_alloc*()
sparc: add checks for the return value of memblock_alloc*()
ia64: add checks for the return value of memblock_alloc*()
arch: don't memset(0) memory returned by memblock_alloc()
...
__next_mem_range() and __next_mem_range_rev() duplicate the code that
checks whether a region should be skipped because of node or flags
incompatibility.
Split this code into a helper function.
Link: http://lkml.kernel.org/r/1549455025-17706-3-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock API provides dedicated helpers to set or clear a flag on a
memory region, e.g. memblock_{mark,clear}_hotplug().
The memblock_{set,clear}_region_flags() functions are used only by the
memblock internal function that adjusts the region flags. Drop these
functions and use open-coded implementation instead.
Link: http://lkml.kernel.org/r/1549455025-17706-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.
Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com> [printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock_alloc*() users are now checking the return value and
panic() in case of error, the panic() call can be removed from the core
memblock allocator, namely memblock_alloc_try_nid().
Link: http://lkml.kernel.org/r/1548057848-15136-21-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add panic() calls if memblock_alloc() returns NULL.
The panic() format duplicates the one used by memblock itself and in
order to avoid explosion with long parameters list replace open coded
allocation size calculations with a local variable.
Link: http://lkml.kernel.org/r/1548057848-15136-17-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memblock has several internal functions with overlapping
functionality. They all call memblock_find_in_range_node() to find free
memory and then reserve the allocated range and mark it with kmemleak.
However, there is difference in the allocation constraints and in
fallback strategies.
The allocations returning physical address first attempt to find free
memory on the specified node within mirrored memory regions, then retry
on the same node without the requirement for memory mirroring and
finally fall back to all available memory.
The allocations returning virtual address start with clamping the
allowed range to memblock.current_limit, attempt to allocate from the
specified node from regions with mirroring and with user defined minimal
address. If such allocation fails, next attempt is done with node
restriction lifted. Next, the allocation is retried with minimal
address reset to zero and at last without the requirement for mirrored
regions.
Let's consolidate various fallbacks handling and make them more
consistent for physical and virtual variants. Most of the fallback
handling is moved to memblock_alloc_range_nid() and it now handles node
and mirror fallbacks.
The memblock_alloc_internal() uses memblock_alloc_range_nid() to get a
physical address of the allocated range and converts it to virtual
address.
The fallback for allocation below the specified minimal address remains
in memblock_alloc_internal() because memblock_alloc_range_nid() is used
by CMA with exact requirement for lower bounds.
The memblock_phys_alloc_nid() function is completely dropped as it is not
used anywhere outside memblock and its only usage can be replaced by a
call to memblock_alloc_range_nid().
[rppt@linux.ibm.com: fix parameter order in memblock_phys_alloc_try_nid()]
Link: http://lkml.kernel.org/r/20190203113915.GC8620@rapoport-lnx
Link: http://lkml.kernel.org/r/1548057848-15136-11-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_alloc_base() function tries to allocate a memory up to the
limit specified by its max_addr parameter and panics if the allocation
fails. Replace its usage with memblock_phys_alloc_range() and make the
callers check the return value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-10-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __memblock_alloc_base() function tries to allocate a memory up to
the limit specified by its max_addr parameter. Depending on the value
of this parameter, the __memblock_alloc_base() can is replaced with the
appropriate memblock_phys_alloc*() variant.
Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the memblock_phys_alloc() function an inline wrapper for
memblock_phys_alloc_range() and update the memblock_phys_alloc() callers
to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-8-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_phys_alloc_try_nid() function tries to allocate memory from
the requested node and then falls back to allocation from any node in
the system. The memblock_alloc_base() fallback used by this function
panics if the allocation fails.
Replace the memblock_alloc_base() fallback with the direct call to
memblock_alloc_range_nid() and update the memblock_phys_alloc_try_nid()
callers to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-7-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename memblock_alloc_range() to memblock_phys_alloc_range() to
emphasize that it returns a physical address.
While on it, remove the 'enum memblock_flags' parameter from this
function as its only user anyway sets it to MEMBLOCK_NONE, which is the
default for the most of memblock allocations.
Link: http://lkml.kernel.org/r/1548057848-15136-6-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert to use vm_fault_t type as return type for fault handler.
kbuild reported warning during testing of
*mm-create-the-new-vm_fault_t-type.patch* available in below link -
https://patchwork.kernel.org/patch/10752741/
kernel/memremap.c:46:34: warning: incorrect type in return expression
(different base types)
kernel/memremap.c:46:34: expected restricted vm_fault_t
kernel/memremap.c:46:34: got int
This patch has fixed the warnings and also hmm_devmem_fault() is
converted to return vm_fault_t to avoid further warnings.
[sfr@canb.auug.org.au: drm/nouveau/dmem: update for struct hmm_devmem_ops member change]
Link: http://lkml.kernel.org/r/20190220174407.753d94e5@canb.auug.org.au
Link: http://lkml.kernel.org/r/20190110145900.GA1317@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
=8Zfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"xen fixes and features:
- remove fallback code for very old Xen hypervisors
- three patches for fixing Xen dom0 boot regressions
- an old patch for Xen PCI passthrough which was never applied for
unknown reasons
- some more minor fixes and cleanup patches"
* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix dom0 boot on huge systems
xen, cpu_hotplug: Prevent an out of bounds access
xen: remove pre-xen3 fallback handlers
xen/ACPI: Switch to bitmap_zalloc()
x86/xen: dont add memory above max allowed allocation
x86: respect memory size limiting via mem= parameter
xen/gntdev: Check and release imported dma-bufs on close
xen/gntdev: Do not destroy context while dma-bufs are in use
xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
xen-scsiback: mark expected switch fall-through
xen: mark expected switch fall-through
This has been a slightly more active cycle than normal with ongoing core
changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5 On-Demand-Paging MR
feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and fixing
the various unregistration race conditions in rxe's unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
* Drivers should not assume umem SGLs are in PAGE_SIZE chunks
* ucontext is accessed via udata not other means
* Start to make the core code responsible for object memory
allocation
* Drivers should convert struct device to struct ib_device
via a helper
* Drivers have more tools to avoid use after unregister problems
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAlyAJYYACgkQOG33FX4g
mxrWwQ/+OyAx4Moru7Aix0C6GWxTJp/wKgw21CS3reZxgLai6x81xNYG/s2wCNjo
IccObVd7mvzyqPdxOeyHBsJBbQDqWvoD6O2duH8cqGMgBRgh3CSdUep2zLvPpSAx
2W1SvWYCLDnCuarboFrCA8c4AN3eCZiqD7z9lHyFQGjy3nTUWzk1uBaOP46uaiMv
w89N8EMdXJ/iY6ONzihvE05NEYbMA8fuvosKLLNdghRiHIjbMQU8SneY23pvyPDd
ZziPu9NcO3Hw9OVbkwtJp47U3KCBgvKHmnixyZKkikjiD+HVoABw2IMwcYwyBZwP
Bic/ddONJUvAxMHpKRnQaW7znAiHARk21nDG28UAI7FWXH/wMXgicMp6LRcNKqKF
vqXdxHTKJb0QUR4xrYI+eA8ihstss7UUpgSgByuANJ0X729xHiJtlEvPb1DPo1Dz
9CB4OHOVRl5O8sA5Jc6PSusZiKEpvWoyWbdmw0IiwDF5pe922VLl5Nv88ta+sJ38
v2Ll5AgYcluk7F3599Uh9D7gwp5hxW2Ph3bNYyg2j3HP4/dKsL9XvIJPXqEthgCr
3KQS9rOZfI/7URieT+H+Mlf+OWZhXsZilJG7No0fYgIVjgJ00h3SF1/299YIq6Qp
9W7ZXBfVSwLYA2AEVSvGFeZPUxgBwHrSZ62wya4uFeB1jyoodPk=
=p12E
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull rdma updates from Jason Gunthorpe:
"This has been a slightly more active cycle than normal with ongoing
core changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5
On-Demand-Paging MR feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and
fixing the various unregistration race conditions in rxe's
unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
- drivers should not assume umem SGLs are in PAGE_SIZE chunks
- ucontext is accessed via udata not other means
- start to make the core code responsible for object memory
allocation
- drivers should convert struct device to struct ib_device via a
helper
- drivers have more tools to avoid use after unregister problems"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits)
net/mlx5: ODP support for XRC transport is not enabled by default in FW
IB/hfi1: Close race condition on user context disable and close
RDMA/umem: Revert broken 'off by one' fix
RDMA/umem: minor bug fix in error handling path
RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp
cxgb4: kfree mhp after the debug print
IB/rdmavt: Fix concurrency panics in QP post_send and modify to error
IB/rdmavt: Fix loopback send with invalidate ordering
IB/iser: Fix dma_nents type definition
IB/mlx5: Set correct write permissions for implicit ODP MR
bnxt_re: Clean cq for kernel consumers only
RDMA/uverbs: Don't do double free of allocated PD
RDMA: Handle ucontext allocations by IB/core
RDMA/core: Fix a WARN() message
bnxt_re: fix the regression due to changes in alloc_pbl
IB/mlx4: Increase the timeout for CM cache
IB/core: Abort page fault handler silently during owning process exit
IB/mlx5: Validate correct PD before prefetch MR
IB/mlx5: Protect against prefetch of invalid MR
RDMA/uverbs: Store PR pointer before it is overwritten
...
Pull x86 mm cleanup from Ingo Molnar:
"A single GUP cleanup"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/gup: Remove the 'write' parameter from gup_fast_permitted()
Pull percpu updates from Dennis Zhou:
"There are 2 minor changes to the percpu allocator this merge window:
- for loop condition that could be out of bounds on multi-socket UP
- cosmetic removal of pcpu_group_offsets[0] in UP code as it is 0
There has been an interest in having better alignment with percpu
allocations. This has caused a performance regression in at least one
reported workload. I have a series out which adds scan hints to the
allocator as well as some other performance oriented changes. I hope
to have this queued for v5.2 soon"
* 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: km: no need to consider pcpu_group_offsets[0]
percpu: use nr_groups as check condition
When using mremap() syscall in addition to MREMAP_FIXED flag, mremap()
calls mremap_to() which does the following:
1) unmaps the destination region where we are going to move the map
2) If the new region is going to be smaller, we unmap the last part
of the old region
Then, we will eventually call move_vma() to do the actual move.
move_vma() checks whether we are at least 4 maps below max_map_count
before going further, otherwise it bails out with -ENOMEM. The problem
is that we might have already unmapped the vma's in steps 1) and 2), so
it is not possible for userspace to figure out the state of the vmas
after it gets -ENOMEM, and it gets tricky for userspace to clean up
properly on error path.
While it is true that we can return -ENOMEM for more reasons (e.g: see
may_expand_vm() or move_page_tables()), I think that we can avoid this
scenario if we check early in mremap_to() if the operation has high
chances to succeed map-wise.
Should that not be the case, we can bail out before we even try to unmap
anything, so we make sure the vma's are left untouched in case we are
likely to be short of maps.
The thumb-rule now is to rely on the worst-scenario case we can have.
That is when both vma's (old region and new region) are going to be
split in 3, so we get two more maps to the ones we already hold (one per
each). If current map count + 2 maps still leads us to 4 maps below the
threshold, we are going to pass the check in move_vma().
Of course, this is not free, as it might generate false positives when
it is true that we are tight map-wise, but the unmap operation can
release several vma's leading us to a good state.
Another approach was also investigated [1], but it may be too much
hassle for what it brings.
[1] https://lore.kernel.org/lkml/20190219155320.tkfkwvqk53tfdojt@d104.suse.de/
Link: http://lkml.kernel.org/r/20190226091314.18446-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_present_section_nr() could only return an unsigned number -1, so
just check it specifically where compilers will convert -1 to unsigned
if needed.
mm/sparse.c: In function 'sparse_init_nid':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:478:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:497:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c: In function 'sparse_init':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:520:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: http://lkml.kernel.org/r/20190228181839.86504-1-cai@lca.pw
Fixes: c4e1be9ec1 ("mm, sparsemem: break out of loops early")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP testcase mtest06 [1] can trigger a crash on s390x running 5.0.0-rc8.
This is a stress test, where one thread mmaps/writes/munmaps memory area
and other thread is trying to read from it:
CPU: 0 PID: 2611 Comm: mmap1 Not tainted 5.0.0-rc8+ #51
Hardware name: IBM 2964 N63 400 (z/VM 6.4.0)
Krnl PSW : 0404e00180000000 00000000001ac8d8 (__lock_acquire+0x7/0x7a8)
Call Trace:
([<0000000000000000>] (null))
[<00000000001adae4>] lock_acquire+0xec/0x258
[<000000000080d1ac>] _raw_spin_lock_bh+0x5c/0x98
[<000000000012a780>] page_table_free+0x48/0x1a8
[<00000000002f6e54>] do_fault+0xdc/0x670
[<00000000002fadae>] __handle_mm_fault+0x416/0x5f0
[<00000000002fb138>] handle_mm_fault+0x1b0/0x320
[<00000000001248cc>] do_dat_exception+0x19c/0x2c8
[<000000000080e5ee>] pgm_check_handler+0x19e/0x200
page_table_free() is called with NULL mm parameter, but because "0" is a
valid address on s390 (see S390_lowcore), it keeps going until it
eventually crashes in lockdep's lock_acquire. This crash is
reproducible at least since 4.14.
Problem is that "vmf->vma" used in do_fault() can become stale. Because
mmap_sem may be released, other threads can come in, call munmap() and
cause "vma" be returned to kmem cache, and get zeroed/re-initialized and
re-used:
handle_mm_fault |
__handle_mm_fault |
do_fault |
vma = vmf->vma |
do_read_fault |
__do_fault |
vma->vm_ops->fault(vmf); |
mmap_sem is released |
|
| do_munmap()
| remove_vma_list()
| remove_vma()
| vm_area_free()
| # vma is released
| ...
| # same vma is allocated
| # from kmem cache
| do_mmap()
| vm_area_alloc()
| memset(vma, 0, ...)
|
pte_free(vma->vm_mm, ...); |
page_table_free |
spin_lock_bh(&mm->context.lock);|
<crash> |
Cache mm_struct to avoid using potentially stale "vma".
[1] https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/mem/mtest06/mmap1.c
Link: http://lkml.kernel.org/r/5b3fdf19e2a5be460a384b936f5b56e13733f1b8.1551595137.git.jstancek@redhat.com
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a00cc7d9dd ("mm, x86: add support for PUD-sized transparent
hugepages") introduced pudp_huge_get_and_clear_full() but no one uses
its return code.
In order to not diverge from pmdp_huge_get_and_clear_full(), just change
zap_huge_pud() to not assign the return value from
pudp_huge_get_and_clear_full().
mm/huge_memory.c: In function 'zap_huge_pud':
mm/huge_memory.c:1982:8: warning: variable 'orig_pud' set but not used [-Wunused-but-set-variable]
pud_t orig_pud;
^~~~~~~~
Link: http://lkml.kernel.org/r/20190301221956.97493-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages
in the block from kernel, However, it does not map those pages while
offlining at the beginning. As the result, it triggers a panic below
while onlining on ppc64le as it checks if the pages are mapped before
unmapping. However, the imbalance exists for all arches where
double-unmappings could happen. Therefore, let kernel map those pages
in generic_online_page() before they have being freed into the page
allocator for the first time where it will set the page count to one.
On the other hand, it works fine during the boot, because at least for
IBM POWER8, it does,
early_setup
early_init_mmu
harsh__early_init_mmu
htab_initialize [1]
htab_bolt_mapping [2]
where it effectively map all memblock regions just like
kernel_map_linear_page(), so later mem_init() -> memblock_free_all()
will unmap them just fine without any imbalance. On other arches
without this imbalance checking, it still unmap them once at the most.
[1]
for_each_memblock(memory, reg) {
base = (unsigned long)__va(reg->base);
size = reg->size;
DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
base, size, prot);
BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
prot, mmu_linear_psize, mmu_kernel_ssize));
}
[2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815!
Oops: Exception in kernel mode, sig: 5 [#1]
LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries
CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15
NIP: c000000000062670 LR: c00000000006265c CTR: 0000000000000000
REGS: c0000005bf8a75b0 TRAP: 0700 Not tainted (5.0.0-rc7+)
MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28422842
XER: 00000000
CFAR: c000000000804f44 IRQMASK: 1
NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0
LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0
Call Trace:
__kernel_map_pages+0x2cc/0x4f0
free_unref_page_prepare+0x2f0/0x4d0
free_unref_page+0x44/0x90
__online_page_free+0x84/0x110
online_pages_range+0xc0/0x150
walk_system_ram_range+0xc8/0x120
online_pages+0x280/0x5a0
memory_subsys_online+0x1b4/0x270
device_online+0xc0/0xf0
state_store+0xc0/0x180
dev_attr_store+0x3c/0x60
sysfs_kf_write+0x70/0xb0
kernfs_fop_write+0x10c/0x250
__vfs_write+0x48/0x240
vfs_write+0xd8/0x210
ksys_write+0x70/0x120
system_call+0x5c/0x70
Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.
mm/memcontrol.c:5774: warning: bad line: | 0, otherwise.
Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case cma_init_reserved_mem failed, need to free the memblock
allocated by memblock_reserve or memblock_alloc_range.
Quote Catalin's comments:
https://lkml.org/lkml/2019/2/26/482
Kmemleak is supposed to work with the memblock_{alloc,free} pair and it
ignores the memblock_reserve() as a memblock_alloc() implementation
detail. It is, however, tolerant to memblock_free() being called on
a sub-range or just a different range from a previous memblock_alloc().
So the original patch looks fine to me. FWIW:
Link: http://lkml.kernel.org/r/20190227144631.16708-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
too_many_isolated() in mm/compaction.c looks only at node state, so it
makes more sense to change argument to pgdat instead of zone.
Link: http://lkml.kernel.org/r/20190228083329.31892-3-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
workingset_eviction() doesn't use and never did use the @mapping
argument. Remove it.
Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
size = sizeof(struct foo) + count * sizeof(struct boo);
instance = kvzalloc(size, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kvzalloc(struct_size(instance, entry, count), GFP_KERNEL);
Notice that, in this case, variable size is not necessary, hence it is
removed.
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190221154622.GA19599@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cma_debugfs_root is static storage. That is unnecessary since
it will be only used by next cma_debugfs_add_one(). We can just pass it
to following calling to save thisspace. Also remove useless idx
parameter.
Link: http://lkml.kernel.org/r/20190221040130.8940-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_get_pages_range() and find_get_pages_range_tag() already correctly
increment reference count on head when seeing compound page, but they
may still use page index from tail. Page index from tail is always
zero, so these functions don't work on huge shmem. This hasn't been a
problem because, AFAIK, nobody calls these functions on (huge) shmem.
Fix them anyway just in case.
Link: http://lkml.kernel.org/r/20190110030838.84446-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is only used by built-in code, which makes perfect sense
given the purpose of it.
Link: http://lkml.kernel.org/r/20190213174621.29297-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_huge_page() expects we pass the head of hugetlb page to it:
bool isolate_huge_page(...)
{
...
VM_BUG_ON_PAGE(!PageHead(page), page);
...
}
While I really cannot think of any situation where we end up with a
non-head page between hands in do_migrate_range(), let us make sure the
code is as sane as possible by explicitly passing the Head. Since we
already got the pointer, it does not take us extra effort.
Link: http://lkml.kernel.org/r/20190208090604.975-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea has noted that page migration code propagates page_mapping(page)
through the whole migration stack down to migrate_page() function so it
seems stupid to then use page_mapping(page) in expected_page_refs()
instead of passed down 'mapping' argument. I agree so let's make
expected_page_refs() more in line with the rest of the migration stack.
Link: http://lkml.kernel.org/r/20190207112314.24872-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many kernel-doc comments in mm/ have the return value descriptions
either misformatted or omitted at all which makes kernel-doc script
unhappy:
$ make V=1 htmldocs
...
./mm/util.c:36: info: Scanning doc for kstrdup
./mm/util.c:41: warning: No description found for return value of 'kstrdup'
./mm/util.c:57: info: Scanning doc for kstrdup_const
./mm/util.c:66: warning: No description found for return value of 'kstrdup_const'
./mm/util.c:75: info: Scanning doc for kstrndup
./mm/util.c:83: warning: No description found for return value of 'kstrndup'
...
Fixing the formatting and adding the missing return value descriptions
eliminates ~100 such warnings.
Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Number of online NUMA nodes can't be negative as well. This doesn't
save space as the variable is used only in 32-bit context, but do it
anyway for consistency.
Link: http://lkml.kernel.org/r/20190201223151.GB15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter reports a potential NULL dereference in
get_swap_page_of_type:
Smatch complains that the NULL checks on "si" aren't consistent. This
seems like a real bug because we have not ensured that the type is
valid and so "si" can be NULL.
Add the missing check for NULL, taking care to use a read barrier to
ensure CPU1 observes CPU0's updates in the correct order:
CPU0 CPU1
alloc_swap_info() if (type >= nr_swapfiles)
swap_info[type] = p /* handle invalid entry */
smp_wmb() smp_rmb()
++nr_swapfiles p = swap_info[type]
Without smp_rmb, CPU1 might observe CPU0's write to nr_swapfiles before
CPU0's write to swap_info[type] and read NULL from swap_info[type].
Ying Huang noticed other places in swapfile.c don't order these reads
properly. Introduce swap_type_to_swap_info to encourage correct usage.
Use READ_ONCE and WRITE_ONCE to follow the Linux Kernel Memory Model
(see tools/memory-model/Documentation/explanation.txt).
This ordering need not be enforced in places where swap_lock is held
(e.g. si_swapinfo) because swap_lock serializes updates to nr_swapfiles
and the swap_info array.
Link: http://lkml.kernel.org/r/20190131024410.29859-1-daniel.m.jordan@oracle.com
Fixes: ec8acf20af ("swap: add per-partition lock for swapfile")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack
variables for the statistics twice. This is completely useless, and
this just consumes stack much more, then we really need.
The patch kills duplicate stack variables from shrink_page_list(), and
this reduce stack usage and object file size significantly:
Stack usage:
Before: vmscan.c:1122:22:shrink_page_list 648 static
After: vmscan.c:1122:22:shrink_page_list 616 static
Size of vmscan.o:
text data bss dec hex filename
Before: 56866 4720 128 61714 f112 mm/vmscan.o
After: 56770 4720 128 61618 f0b2 mm/vmscan.o
Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksmd needs to search the stable tree to look for the suitable KSM page,
but the KSM page might be locked for a while due to i.e. KSM page rmap
walk. Basically it is not a big deal since commit 2c653d0ee2 ("ksm:
introduce ksm_max_page_sharing per page deduplication limit"), since
max_page_sharing limits the number of shared KSM pages.
But it still sounds not worth waiting for the lock, the page can be
skip, then try to merge it in the next scan to avoid potential stall if
its content is still intact.
Introduce trylock mode to get_ksm_page() to not block on page lock, like
what try_to_merge_one_page() does. And, define three possible
operations (nolock, lock and trylock) as enum type to avoid stacking up
bools and make the code more readable.
Return -EBUSY if trylock fails, since NULL means not find suitable KSM
page, which is a valid case.
With the default max_page_sharing setting (256), there is almost no
observed change comparing lock vs trylock.
However, with ksm02 of LTP, the reduced ksmd full scan time can be
observed, which has set max_page_sharing to 786432. With lock version,
ksmd may tak 10s - 11s to run two full scans, with trylock version ksmd
may take 8s - 11s to run two full scans. And, the number of
pages_sharing and pages_to_scan keep same. Basically, this change has
no harm.
[hughd@google.com: fix BUG_ON()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1902182122280.6914@eggly.anvils
Link: http://lkml.kernel.org/r/1548793753-62377-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide. This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.
For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic]. This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page. It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.
[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current implementation, both kswapd and direct reclaim has to iterate
all mem cgroups. It is not a problem before offline mem cgroups could
be iterated. But, currently with iterating offline mem cgroups, it
could be very time consuming. In our workloads, we saw over 400K mem
cgroups accumulated in some cases, only a few hundred are online memcgs.
Although kswapd could help out to reduce the number of memcgs, direct
reclaim still get hit with iterating a number of offline memcgs in some
cases. We experienced the responsiveness problems due to this
occassionally.
A simple test with pref shows it may take around 220ms to iterate 8K
memcgs in direct reclaim:
dd 13873 [011] 578.542919: vmscan:mm_vmscan_direct_reclaim_begin
dd 13873 [011] 578.758689: vmscan:mm_vmscan_direct_reclaim_end
So for 400K, it may take around 11 seconds to iterate all memcgs.
Here just break the iteration once it reclaims enough pages as what
memcg direct reclaim does. This may hurt the fairness among memcgs.
But the cached iterator cookie could help to achieve the fairness more
or less.
Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android uses ashmem for sharing memory regions. We are looking forward
to migrating all usecases of ashmem to memfd so that we can possibly
remove the ashmem driver in the future from staging while also
benefiting from using memfd and contributing to it. Note staging
drivers are also not ABI and generally can be removed at anytime.
One of the main usecases Android has is the ability to create a region
and mmap it as writeable, then add protection against making any
"future" writes while keeping the existing already mmap'ed
writeable-region active. This allows us to implement a usecase where
receivers of the shared memory buffer can get a read-only view, while
the sender continues to write to the buffer. See CursorWindow
documentation in Android for more details:
https://developer.android.com/reference/android/database/CursorWindow
This usecase cannot be implemented with the existing F_SEAL_WRITE seal.
To support the usecase, this patch adds a new F_SEAL_FUTURE_WRITE seal
which prevents any future mmap and write syscalls from succeeding while
keeping the existing mmap active.
A better way to do F_SEAL_FUTURE_WRITE seal was discussed [1] last week
where we don't need to modify core VFS structures to get the same
behavior of the seal. This solves several side-effects pointed by Andy.
self-tests are provided in later patch to verify the expected semantics.
[1] https://lore.kernel.org/lkml/20181111173650.GA256781@google.com/
Thanks a lot to Andy for suggestions to improve code.
Link: http://lkml.kernel.org/r/20190112203816.85534-2-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch updates get_user_pages_longterm to migrate pages allocated
out of CMA region. This makes sure that we don't keep non-movable pages
(due to page reference count) in the CMA area.
This will be used by ppc64 in a later patch to avoid pinning pages in
the CMA region. ppc64 uses CMA region for allocation of the hardware
page table (hash page table) and not able to migrate pages out of CMA
region results in page table allocation failures.
One case where we hit this easy is when a guest using a VFIO passthrough
device. VFIO locks all the guest's memory and if the guest memory is
backed by CMA region, it becomes unmovable resulting in fragmenting the
CMA and possibly preventing other guests from allocation a large enough
hash page table.
NOTE: We allocate the new page without using __GFP_THISNODE
Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch was initially posted by Kelley Nielsen. Reposting the patch
with all review comments addressed and with minor modifications and
optimizations. Also, folding in the fixes offered by Hugh Dickins and
Huang Ying. Tests were rerun and commit message updated with new
results.
try_to_unuse() is of quadratic complexity, with a lot of wasted effort.
It unuses swap entries one by one, potentially iterating over all the
page tables for all the processes in the system for each one.
This new proposed implementation of try_to_unuse simplifies its
complexity to linear. It iterates over the system's mms once, unusing
all the affected entries as it walks each set of page tables. It also
makes similar changes to shmem_unuse.
Improvement
swapoff was called on a swap partition containing about 6G of data, in a
VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted.
Present implementation....about 1200M calls(8min, avg 80% cpu util).
Prototype.................about 9.0K calls(3min, avg 5% cpu util).
Details
In shmem_unuse(), iterate over the shmem_swaplist and, for each
shmem_inode_info that contains a swap entry, pass it to
shmem_unuse_inode(), along with the swap type. In shmem_unuse_inode(),
iterate over its associated xarray, and store the index and value of
each swap entry in an array for passing to shmem_swapin_page() outside
of the RCU critical section.
In try_to_unuse(), instead of iterating over the entries in the type and
unusing them one by one, perhaps walking all the page tables for all the
processes for each one, iterate over the mmlist, making one pass. Pass
each mm to unuse_mm() to begin its page table walk, and during the walk,
unuse all the ptes that have backing store in the swap type received by
try_to_unuse(). After the walk, check the type for orphaned swap
entries with find_next_to_unuse(), and remove them from the swap cache.
If find_next_to_unuse() starts over at the beginning of the type, repeat
the check of the shmem_swaplist and the walk a maximum of three times.
Change unuse_mm() and the intervening walk functions down to
unuse_pte_range() to take the type as a parameter, and to iterate over
their entire range, calling the next function down on every iteration.
In unuse_pte_range(), make a swap entry from each pte in the range using
the passed in type. If it has backing store in the type, call
swapin_readahead() to retrieve the page and pass it to unuse_pte().
Pass the count of pages_to_unuse down the page table walks in
try_to_unuse(), and return from the walk when the desired number of
pages has been swapped back in.
Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swapin logic can be reused independently without rest of the logic in
shmem_getpage_gfp. So lets refactor it out as an independent function.
Link: http://lkml.kernel.org/r/20190114153129.4852-1-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We may simply check for sc->may_unmap in isolate_lru_pages() instead of
doing that in both of its callers.
Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot with KMSAN reports (excerpt):
==================================================================
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x173/0x1d0 lib/dump_stack.c:113
kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613
__msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295
mpol_rebind_policy mm/mempolicy.c:353 [inline]
mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120
update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline]
update_nodemask kernel/cgroup/cpuset.c:1253 [inline]
cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728
...
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline]
kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158
kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176
kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777
mpol_new mm/mempolicy.c:276 [inline]
do_mbind mm/mempolicy.c:1180 [inline]
kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347
__do_sys_mbind mm/mempolicy.c:1354 [inline]
As it's difficult to report where exactly the uninit value resides in
the mempolicy object, we have to guess a bit. mm/mempolicy.c:353
contains this part of mpol_rebind_policy():
if (!mpol_store_user_nodemask(pol) &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
"mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't
ever see being uninitialized after leaving mpol_new(). So I'll guess
it's actually about accessing pol->w.cpuset_mems_allowed on line 354,
but still part of statement starting on line 353.
For w.cpuset_mems_allowed to be not initialized, and the nodes_equal()
reachable for a mempolicy where mpol_set_nodemask() is called in
do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy
with empty set of nodes, i.e. MPOL_LOCAL equivalent, with MPOL_F_LOCAL
flag. Let's exclude such policies from the nodes_equal() check. Note
the uninit access should be benign anyway, as rebinding this kind of
policy is always a no-op. Therefore no actual need for stable
inclusion.
Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz
Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two early memory allocations that use
memblock_alloc_node_nopanic() and do not check its return value.
While this happens very early during boot and chances that the
allocation will fail are diminishing, it is still worth to have proper
checks for the allocation errors.
Link: http://lkml.kernel.org/r/1547734941-944-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Follow the regular pte change protection
sequence for hugetlb too. This allows the architectures to override the
update sequence.
Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Enable that by passing old pte value as
the arg.
Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates. This patch series does that.
This patch (of 5):
Some architectures may want to call flush_tlb_range from these helpers.
Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change.
Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable 'addr' is redundant in arch_get_unmapped_area_topdown(),
just use parameter 'addr0' directly. Then remove the const qualifier of
the parameter, and change its name to 'addr'.
And in according with other functions, remove the const qualifier of all
other no-pointer parameters in function arch_get_unmapped_area_topdown().
Link: http://lkml.kernel.org/r/20190127041112.25599-1-nullptr.cpp@gmail.com
Signed-off-by: Yang Fan <nullptr.cpp@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the start of the git history of Linux, the kernel after selecting
the worst process to be oom-killed, prefer to kill its child (if the
child does not share mm with the parent). Later it was changed to
prefer to kill a child who is worst. If the parent is still the worst
then the parent will be killed.
This heuristic assumes that the children did less work than their parent
and by killing one of them, the work lost will be less. However this is
very workload dependent. If there is a workload which can benefit from
this heuristic, can use oom_score_adj to prefer children to be killed
before the parent.
The select_bad_process() has already selected the worst process in the
system/memcg. There is no need to recheck the badness of its children
and hoping to find a worse candidate. That's a lot of unneeded racy
work. Also the heuristic is dangerous because it make fork bomb like
workloads to recover much later because we constantly pick and kill
processes which are not memory hogs. So, let's remove this whole
heuristic.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Link: http://lkml.kernel.org/r/20190122152151.16139-14-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages which use page_type must never be mapped to userspace as it would
destroy their page type. Add an explicit check for this instead of
assuming that kernel drivers always get this right.
Link: http://lkml.kernel.org/r/20190129053830.3749-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's never appropriate to map a page allocated by SLAB into userspace.
A buggy device driver might try this, or an attacker might be able to
find a way to make it happen.
Christoph said:
: Let's just fail the code. Currently this may work with SLUB. But SLAB
: and SLOB overlay fields with mapcount. So you would have a corrupted page
: struct if you mapped a slab page to user space.
Link: http://lkml.kernel.org/r/20190125173827.2658-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the vmalloc stress test case triggers the kernel BUG():
<snip>
[60.562151] ------------[ cut here ]------------
[60.562154] kernel BUG at mm/vmalloc.c:512!
[60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161
[60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
[60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390
<snip>
it can happen due to big align request resulting in overflowing of
calculated address, i.e. it becomes 0 after ALIGN()'s fixup.
Fix it by checking if calculated address is within vstart/vend range.
Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task. This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator. The
intent is to avoid redundant scanning.
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%)
Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%)
Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%)
Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%)
Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%)
Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%*
Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%)
Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%)
Latency is only moderately affected but the devil is in the details. A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%)
Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%)
Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%)
Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%)
Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%)
Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%)
Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%)
Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%)
And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.
Compaction migrate scanned 20815362 19573286
Compaction free scanned 16352612 11510663
[mgorman@techsingularity.net: remove redundant check]
Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock hints are cleared when compaction restarts or kswapd makes
enough progress that it can sleep but it's over-eager in that the bit is
cleared for migration sources with no LRU pages and migration targets
with no free pages. As pageblock skip hint flushes are relatively rare
and out-of-band with respect to kswapd, this patch makes a few more
expensive checks to see if it's appropriate to even clear the bit.
Every pageblock that is not cleared will avoid 512 pages being scanned
unnecessarily on x86-64.
The impact is variable with different workloads showing small
differences in latency, success rates and scan rates. This is expected
as clearing the hints is not that common but doing a small amount of
work out-of-band to avoid a large amount of work in-band later is
generally a good thing.
Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
[cai@lca.pw: no stuck in __reset_isolation_pfn()]
Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once fast searching finishes, there is a possibility that the linear
scanner is scanning full blocks found by the fast scanner earlier. This
patch uses an adaptive stride to sample pageblocks for free pages. The
more consecutive full pageblocks encountered, the larger the stride
until a pageblock with free pages is found. The scanners might meet
slightly sooner but it is an acceptable risk given that the search of
the free lists may still encounter the pages and adjust the cached PFN
of the free scanner accordingly.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2752.37 ( 0.00%) 2729.95 ( 0.81%)
Amean fault-both-5 4341.69 ( 0.00%) 4397.80 ( -1.29%)
Amean fault-both-7 6308.75 ( 0.00%) 6097.61 ( 3.35%)
Amean fault-both-12 10241.81 ( 0.00%) 9407.15 ( 8.15%)
Amean fault-both-18 13736.09 ( 0.00%) 10857.63 * 20.96%*
Amean fault-both-24 16853.95 ( 0.00%) 13323.24 * 20.95%*
Amean fault-both-30 15862.61 ( 0.00%) 17345.44 ( -9.35%)
Amean fault-both-32 18450.85 ( 0.00%) 16892.00 ( 8.45%)
The latency is mildly improved offseting some overhead from earlier
patches that are prerequisites for the rest of the series. However, a
major impact is on the free scan rate with an 82% reduction.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Compaction migrate scanned 21607271 20116887
Compaction free scanned 95336406 16668703
It's also the first time in the series where the number of pages scanned
by the migration scanner is greater than the free scanner due to the
increased search efficiency.
Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As compaction proceeds and creates high-order blocks, the free list
search gets less efficient as the larger blocks are used as compaction
targets. Eventually, the larger blocks will be behind the migration
scanner for partially migrated pageblocks and the search fails. This
patch round-robins what orders are searched so that larger blocks can be
ignored and find smaller blocks that can be used as migration targets.
The overall impact was small on 1-socket but it avoids corner cases
where the migration/free scanners meet prematurely or situations where
many of the pageblocks encountered by the free scanner are almost full
instead of being properly packed. Previous testing had indicated that
without this patch there were occasional large spikes in the free
scanner without this patch.
[dan.carpenter@oracle.com: fix static checker warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fast isolation of free pages allows the cached PFN of the free
scanner to advance faster than necessary depending on the contents of
the free list. The key is that fast_isolate_freepages() can update
zone->compact_cached_free_pfn via isolate_freepages_block(). When the
fast search fails, the linear scan can start from a point that has
skipped valid migration targets, particularly pageblocks with just
low-order free pages. This can cause the migration source/target
scanners to meet prematurely causing a reset.
This patch starts by avoiding an update of the pageblock skip
information and cached PFN from isolate_freepages_block() and puts the
responsibility of updating that information in the callers. The fast
scanner will update the cached PFN if and only if it finds a block that
is higher than the existing cached PFN and sets the skip if the
pageblock is full or nearly full. The linear scanner will update
skipped information and the cached PFN only when a block is completely
scanned. The total impact is that the free scanner advances more slowly
as it is primarily driven by the linear scanner instead of the fast
search.
5.0.0-rc1 5.0.0-rc1
noresched-v3r17 slowfree-v3r17
Amean fault-both-3 2965.68 ( 0.00%) 3036.75 ( -2.40%)
Amean fault-both-5 3995.90 ( 0.00%) 4522.24 * -13.17%*
Amean fault-both-7 5842.12 ( 0.00%) 6365.35 ( -8.96%)
Amean fault-both-12 9550.87 ( 0.00%) 10340.93 ( -8.27%)
Amean fault-both-18 13304.72 ( 0.00%) 14732.46 ( -10.73%)
Amean fault-both-24 14618.59 ( 0.00%) 16288.96 ( -11.43%)
Amean fault-both-30 16650.96 ( 0.00%) 16346.21 ( 1.83%)
Amean fault-both-32 17145.15 ( 0.00%) 19317.49 ( -12.67%)
The impact to latency is higher than the last version but it appears to
be due to a slight increase in the free scan rates which is a potential
side-effect of the patch. However, this is necessary for later patches
that are more careful about how pageblocks are treated as earlier
iterations of those patches hit corner cases where the restarts were
punishing and very visible.
Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Scanning on large machines can take a considerable length of time and
eventually need to be rescheduled. This is treated as an abort event
but that's not appropriate as the attempt is likely to be retried after
making numerous checks and taking another cycle through the page
allocator. This patch will check the need to reschedule if necessary
but continue the scanning.
The main benefit is reduced scanning when compaction is taking a long
time or the machine is over-saturated. It also avoids an unnecessary
exit of compaction that ends up being retried by the page allocator in
the outer loop.
5.0.0-rc1 5.0.0-rc1
synccached-v3r16 noresched-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2958.27 ( 0.00%) 2965.68 ( -0.25%)
Amean fault-both-5 4091.90 ( 0.00%) 3995.90 ( 2.35%)
Amean fault-both-7 5803.05 ( 0.00%) 5842.12 ( -0.67%)
Amean fault-both-12 9481.06 ( 0.00%) 9550.87 ( -0.74%)
Amean fault-both-18 14141.51 ( 0.00%) 13304.72 ( 5.92%)
Amean fault-both-24 16438.00 ( 0.00%) 14618.59 ( 11.07%)
Amean fault-both-30 17531.72 ( 0.00%) 16650.96 ( 5.02%)
Amean fault-both-32 17101.96 ( 0.00%) 17145.15 ( -0.25%)
Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With incremental changes, compact_should_abort no longer makes any
documented sense. Rename to compact_check_resched and update the
associated comments. There is no benefit other than reducing redundant
code and making the intent slightly clearer. It could potentially be
merged with earlier patches but it just makes the review slightly
harder.
Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrate has separate cached PFNs for ASYNC and SYNC* migration on the
basis that some migrations will fail in ASYNC mode. However, if the
cached PFNs match at the start of scanning and pageblocks are skipped
due to having no isolation candidates, then the sync state does not
matter. This patch keeps matching cached PFNs in sync until a pageblock
with isolation candidates is found.
The actual benefit is marginal given that the sync scanner following the
async scanner will often skip a number of pageblocks but it's useless
work. Any benefit depends heavily on whether the scanners restarted
recently.
Link: http://lkml.kernel.org/r/20190118175136.31341-16-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When scanning for sources or targets, PageCompound is checked for huge
pages as they can be skipped quickly but it happens relatively late
after a lot of setup and checking. This patch short-cuts the check to
make it earlier. It might still change when the lock is acquired but
this has less overhead overall. The free scanner advances but the
migration scanner does not. Typically the free scanner encounters more
movable blocks that change state over the lifetime of the system and
also tends to scan more aggressively as it's actively filling its
portion of the physical address space with data. This could change in
the future but for the moment, this worked better in practice and
incurred fewer scan restarts.
The impact on latency and allocation success rates is marginal but the
free scan rates are reduced by 15% and system CPU usage is reduced by
3.3%. The 2-socket results are not materially different.
Link: http://lkml.kernel.org/r/20190118175136.31341-15-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async migration aborts on spinlock contention but contention can be high
when there are multiple compaction attempts and kswapd is active. The
consequence is that the migration scanners move forward uselessly while
still contending on locks for longer while leaving suitable migration
sources behind.
This patch will acquire the lock but track when contention occurs. When
it does, the current pageblock will finish as compaction may succeed for
that block and then abort. This will have a variable impact on latency
as in some cases useless scanning is avoided (reduces latency) but a
lock will be contended (increase latency) or a single contended
pageblock is scanned that would otherwise have been skipped (increase
latency).
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3002.07 ( 0.00%) 3153.17 ( -5.03%)
Amean fault-both-5 4684.47 ( 0.00%) 4280.52 ( 8.62%)
Amean fault-both-7 6815.54 ( 0.00%) 5811.50 * 14.73%*
Amean fault-both-12 10864.02 ( 0.00%) 9276.85 ( 14.61%)
Amean fault-both-18 12247.52 ( 0.00%) 11032.67 ( 9.92%)
Amean fault-both-24 15683.99 ( 0.00%) 14285.70 ( 8.92%)
Amean fault-both-30 18620.02 ( 0.00%) 16293.76 * 12.49%*
Amean fault-both-32 19250.28 ( 0.00%) 16721.02 * 13.14%*
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Percentage huge-3 95.00 ( 0.00%) 96.82 ( 1.92%)
Percentage huge-5 94.22 ( 0.00%) 95.40 ( 1.26%)
Percentage huge-7 92.35 ( 0.00%) 95.92 ( 3.86%)
Percentage huge-12 91.90 ( 0.00%) 96.73 ( 5.25%)
Percentage huge-18 89.58 ( 0.00%) 96.77 ( 8.03%)
Percentage huge-24 90.03 ( 0.00%) 96.05 ( 6.69%)
Percentage huge-30 89.14 ( 0.00%) 96.81 ( 8.60%)
Percentage huge-32 90.58 ( 0.00%) 97.41 ( 7.54%)
There is a variable impact that is mostly good on latency while allocation
success rates are slightly higher. System CPU usage is reduced by about
10% but scan rate impact is mixed
Compaction migrate scanned 27997659.00 20148867
Compaction free scanned 120782791.00 118324914
Migration scan rates are reduced 28% which is expected as a pageblock is
used by the async scanner instead of skipped. The impact on the free
scanner is known to be variable. Overall the primary justification for
this patch is that completing scanning of a pageblock is very important
for later patches.
[yuehaibing@huawei.com: fix unused variable warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-14-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: YueHaibing <yuehaibing@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblocks are marked for skip when no pages are isolated after a scan.
However, it's possible to hit corner cases where the migration scanner
gets stuck near the boundary between the source and target scanner. Due
to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are
migrated can be reallocated before the pageblock is complete. The
pageblock is not necessarily skipped so it can be rescanned multiple
times. Similarly, a pageblock with some dirty/writeback pages may fail
to migrate and be rescanned until writeback completes which is wasteful.
This patch tracks if a pageblock is being rescanned. If so, then the
entire pageblock will be migrated as one operation. This narrows the
race window during which pages can be reallocated during migration.
Secondly, if there are pages that cannot be isolated then the pageblock
will still be fully scanned and marked for skipping. On the second
rescan, the pageblock skip is set and the migration scanner makes
progress.
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%)
Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%)
Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%)
Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%)
Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%)
Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%)
Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%)
Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%*
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%)
Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%)
Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%)
Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%)
Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%)
Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%)
Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%)
Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%)
Negligible difference but this was likely a case when the specific
corner case was not hit. A previous run of the same patch based on an
earlier iteration of the series showed large differences where migration
rates could be halved when the corner case was hit.
The specific corner case where migration scan rates go through the roof
was due to a dirty/writeback pageblock located at the boundary of the
migration/free scanner did not happen in this case. When it does
happen, the scan rates multipled by massive margins.
Link: http://lkml.kernel.org/r/20190118175136.31341-13-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the migration scanner, this patch uses the free lists to
quickly locate a migration target. The search is different in that
lower orders will be searched for a suitable high PFN if necessary but
the search is still bound. This is justified on the grounds that the
free scanner typically scans linearly much more than the migration
scanner.
If a free page is found, it is isolated and compaction continues if
enough pages were isolated. For SYNC* scanning, the full pageblock is
scanned for any remaining free pages so that is can be marked for
skipping in the near future.
1-socket thpfioscale
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Amean fault-both-3 3024.41 ( 0.00%) 3200.68 ( -5.83%)
Amean fault-both-5 4749.30 ( 0.00%) 4847.75 ( -2.07%)
Amean fault-both-7 6454.95 ( 0.00%) 6658.92 ( -3.16%)
Amean fault-both-12 10324.83 ( 0.00%) 11077.62 ( -7.29%)
Amean fault-both-18 12896.82 ( 0.00%) 12403.97 ( 3.82%)
Amean fault-both-24 13470.60 ( 0.00%) 15607.10 * -15.86%*
Amean fault-both-30 17143.99 ( 0.00%) 18752.27 ( -9.38%)
Amean fault-both-32 17743.91 ( 0.00%) 21207.54 * -19.52%*
The impact on latency is variable but the search is optimistic and
sensitive to the exact system state. Success rates are similar but the
major impact is to the rate of scanning
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Compaction migrate scanned 25646769 29507205
Compaction free scanned 201558184 100359571
The free scan rates are reduced by 50%. The 2-socket reductions for the
free scanner are more dramatic which is a likely reflection that the
machine has more memory.
[dan.carpenter@oracle.com: fix static checker warning]
[vbabka@suse.cz: correct number of pages scanned for lower orders]
Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to either a fast search of the free list or a linear scan, it is
possible for multiple compaction instances to pick the same pageblock
for migration. This is lucky for one scanner and increased scanning for
all the others. It also allows a race between requests on which first
allocates the resulting free block.
This patch tests and updates the pageblock skip for the migration
scanner carefully. When isolating a block, it will check and skip if
the block is already in use. Once the zone lock is acquired, it will be
rechecked so that only one scanner can set the pageblock skip for
exclusive use. Any scanner contending will continue with a linear scan.
The skip bit is still set if no pages can be isolated in a range. While
this may result in redundant scanning, it avoids unnecessarily acquiring
the zone lock when there are no suitable migration sources.
1-socket thpscale
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3390.40 ( 0.00%) 3024.41 ( 10.80%)
Amean fault-both-5 5082.28 ( 0.00%) 4749.30 ( 6.55%)
Amean fault-both-7 7012.51 ( 0.00%) 6454.95 ( 7.95%)
Amean fault-both-12 11346.63 ( 0.00%) 10324.83 ( 9.01%)
Amean fault-both-18 15324.19 ( 0.00%) 12896.82 * 15.84%*
Amean fault-both-24 16088.50 ( 0.00%) 13470.60 * 16.27%*
Amean fault-both-30 18723.42 ( 0.00%) 17143.99 ( 8.44%)
Amean fault-both-32 18612.01 ( 0.00%) 17743.91 ( 4.66%)
5.0.0-rc1 5.0.0-rc1
findmig-v3r15 isolmig-v3r15
Percentage huge-3 89.83 ( 0.00%) 92.96 ( 3.48%)
Percentage huge-5 91.96 ( 0.00%) 93.26 ( 1.41%)
Percentage huge-7 92.85 ( 0.00%) 93.63 ( 0.84%)
Percentage huge-12 92.74 ( 0.00%) 92.80 ( 0.07%)
Percentage huge-18 91.71 ( 0.00%) 91.62 ( -0.10%)
Percentage huge-24 92.13 ( 0.00%) 91.50 ( -0.69%)
Percentage huge-30 93.79 ( 0.00%) 92.73 ( -1.13%)
Percentage huge-32 91.27 ( 0.00%) 91.94 ( 0.74%)
This shows a reasonable reduction in latency as multiple compaction
scanners do not operate on the same blocks with a similar allocation
success rate.
Compaction migrate scanned 41093126 25646769
Migration scan rates are reduced by 38%.
Link: http://lkml.kernel.org/r/20190118175136.31341-11-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner is a linear scan of a zone with a potentiall large
search space. Furthermore, many pageblocks are unusable such as those
filled with reserved pages or partially filled with pages that cannot
migrate. These still get scanned in the common case of allocating a THP
and the cost accumulates.
The patch uses a partial search of the free lists to locate a migration
source candidate that is marked as MOVABLE when allocating a THP. It
prefers picking a block with a larger number of free pages already on
the basis that there are fewer pages to migrate to free the entire
block. The lowest PFN found during searches is tracked as the basis of
the start for the linear search after the first search of the free list
fails. After the search, the free list is shuffled so that the next
search will not encounter the same page. If the search fails then the
subsequent searches will be shorter and the linear scanner is used.
If this search fails, or if the request is for a small or
unmovable/reclaimable allocation then the linear scanner is still used.
It is somewhat pointless to use the list search in those cases. Small
free pages must be used for the search and there is no guarantee that
movable pages are located within that block that are contiguous.
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%)
Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%)
Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%)
Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%)
Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%)
Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%*
Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%*
Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%*
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%)
Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%)
Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%)
Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%)
Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%)
Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%)
Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%)
Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%)
This shows an improvement in allocation latencies with similar
allocation success rates. While not presented, there was a 31%
reduction in migration scanning and a 8% reduction on system CPU usage.
A 2-socket machine showed similar benefits.
[mgorman@techsingularity.net: several fixes]
Link: http://lkml.kernel.org/r/20190204120111.GL9565@techsingularity.net
[vbabka@suse.cz: migrate block that was found-fast, some optimisations]
Link: http://lkml.kernel.org/r/20190118175136.31341-10-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <Vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pageblocks get fragmented, watermarks are artifically boosted to
reclaim pages to avoid further fragmentation events. However,
compaction is often either fragmentation-neutral or moving movable pages
away from unmovable/reclaimable pages. As the true watermarks are
preserved, allow compaction to ignore the boost factor.
The expected impact is very slight as the main benefit is that
compaction is slightly more likely to succeed when the system has been
fragmented very recently. On both 1-socket and 2-socket machines for
THP-intensive allocation during fragmentation the success rate was
increased by less than 1% which is marginal. However, detailed tracing
indicated that failure of migration due to a premature ENOMEM triggered
by watermark checks were eliminated.
Link: http://lkml.kernel.org/r/20190118175136.31341-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When compaction is finishing, it uses a flag to ensure the pageblock is
complete but it makes sense to always complete migration of a pageblock.
Minimally, skip information is based on a pageblock and partially
scanned pageblocks may incur more scanning in the future. The pageblock
skip handling also becomes more strict later in the series and the hint
is more useful if a complete pageblock was always scanned.
The potentially impacts latency as more scanning is done but it's not a
consistent win or loss as the scanning is not always a high percentage
of the pageblock and sometimes it is offset by future reductions in
scanning. Hence, the results are not presented this time due to a
misleading mix of gains/losses without any clear pattern. However, full
scanning of the pageblock is important for later patches.
Link: http://lkml.kernel.org/r/20190118175136.31341-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages with no migration handler use a fallback handler which sometimes
works and sometimes persistently retries. A historical example was
blockdev pages but there are others such as odd refcounting when
page->private is used. These are retried multiple times which is
wasteful during compaction so this patch will fail migration faster
unless the caller specifies MIGRATE_SYNC.
This is not expected to help THP allocation success rates but it did
reduce latencies very slightly in some cases.
1-socket thpfioscale
4.20.0 4.20.0
noreserved-v2r15 failfast-v2r15
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%)
Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%)
Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%)
Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%)
Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%)
Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%)
Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%)
Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%)
The 2-socket results are not materially different. Scan rates are
similar as expected.
Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's non-obvious that high-order free pages are split into order-0 pages
from the function name. Fix it.
Link: http://lkml.kernel.org/r/20190118175136.31341-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A zone parameter is passed into a number of top-level compaction
functions despite the fact that it's already in compact_control. This
is harmless but it did need an audit to check if zone actually ever
changes meaningfully. This patches removes the parameter in a number of
top-level functions. The change could be much deeper but this was
enough to briefly clarify the flow.
No functional change.
Link: http://lkml.kernel.org/r/20190118175136.31341-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last_migrated_pfn field is a bit dubious as to whether it really
helps but either way, the information from it can be inferred without
increasing the size of compact_control so remove the field.
Link: http://lkml.kernel.org/r/20190118175136.31341-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
compact_control spans two cache lines with write-intensive lines on
both. Rearrange so the most write-intensive fields are in the same
cache line. This has a negligible impact on the overall performance of
compaction and is more a tidying exercise than anything.
Link: http://lkml.kernel.org/r/20190118175136.31341-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Increase success rates and reduce latency of compaction", v3.
This series reduces scan rates and success rates of compaction,
primarily by using the free lists to shorten scans, better controlling
of skip information and whether multiple scanners can target the same
block and capturing pageblocks before being stolen by parallel requests.
The series is based on mmotm from January 9th, 2019 with the previous
compaction series reverted.
I'm mostly using thpscale to measure the impact of the series. The
benchmark creates a large file, maps it, faults it, punches holes in the
mapping so that the virtual address space is fragmented and then tries
to allocate THP. It re-executes for different numbers of threads. From
a fragmentation perspective, the workload is relatively benign but it
does stress compaction.
The overall impact on latencies for a 1-socket machine is
baseline patches
Amean fault-both-3 3832.09 ( 0.00%) 2748.56 * 28.28%*
Amean fault-both-5 4933.06 ( 0.00%) 4255.52 ( 13.73%)
Amean fault-both-7 7017.75 ( 0.00%) 6586.93 ( 6.14%)
Amean fault-both-12 11610.51 ( 0.00%) 9162.34 * 21.09%*
Amean fault-both-18 17055.85 ( 0.00%) 11530.06 * 32.40%*
Amean fault-both-24 19306.27 ( 0.00%) 17956.13 ( 6.99%)
Amean fault-both-30 22516.49 ( 0.00%) 15686.47 * 30.33%*
Amean fault-both-32 23442.93 ( 0.00%) 16564.83 * 29.34%*
The allocation success rates are much improved
baseline patches
Percentage huge-3 85.99 ( 0.00%) 97.96 ( 13.92%)
Percentage huge-5 88.27 ( 0.00%) 96.87 ( 9.74%)
Percentage huge-7 85.87 ( 0.00%) 94.53 ( 10.09%)
Percentage huge-12 82.38 ( 0.00%) 98.44 ( 19.49%)
Percentage huge-18 83.29 ( 0.00%) 99.14 ( 19.04%)
Percentage huge-24 81.41 ( 0.00%) 97.35 ( 19.57%)
Percentage huge-30 80.98 ( 0.00%) 98.05 ( 21.08%)
Percentage huge-32 80.53 ( 0.00%) 97.06 ( 20.53%)
That's a nearly perfect allocation success rate.
The biggest impact is on the scan rates
Compaction migrate scanned 55893379 19341254
Compaction free scanned 474739990 11903963
The number of pages scanned for migration was reduced by 65% and the
free scanner was reduced by 97.5%. So much less work in exchange for
lower latency and better success rates.
The series was also evaluated using a workload that heavily fragments
memory but the benefits there are also significant, albeit not
presented.
It was commented that we should be rethinking scanning entirely and to a
large extent I agree. However, to achieve that you need a lot of this
series in place first so it's best to make the linear scanners as best
as possible before ripping them out.
This patch (of 22):
The isolate and migrate scanners should never isolate more than a
pageblock of pages so unsigned int is sufficient saving 8 bytes on a
64-bit build.
Link: http://lkml.kernel.org/r/20190118175136.31341-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'end_byte' parameter of filemap_range_has_page is required to be
inclusive, so follow the rule.
Link: http://lkml.kernel.org/r/1548678679-18122-1-git-send-email-zhengbin13@huawei.com
Fixes: 6be96d3ad3 ("fs: return if direct I/O will trigger writeback")
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hou Tao <houtao1@huawei.com>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_vma_readahead()'s comment is missing, just add it.
Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead would read in a few pages regardless if the underlying
device is busy or not. It may incur long waiting time if the device is
congested, and it may also exacerbate the congestion.
Use inode_read_congested() to check if the underlying device is busy or
not like what file page readahead does. Get inode from
swap_info_struct.
Although we can add inode information in swap_address_space
(address_space->host), it may lead some unexpected side effect, i.e. it
may break mapping_cap_account_dirty(). Using inode from
swap_info_struct seems simple and good enough.
Just does the check in vma_cluster_readahead() since
swap_vma_readahead() is just used for non-rotational device which much
less likely has congestion than traditional HDD.
Although swap slots may be consecutive on swap partition, it still may
be fragmented on swap file. This check would help to reduce excessive
stall for such case.
The test with page_fault1 of will-it-scale (sometimes tracing may just
show runtest.py that is the wrapper script of page_fault1), which
basically launches NR_CPU threads to generate 128MB anonymous pages for
each thread, on my virtual machine with congested HDD shows long tail
latency is reduced significantly.
Without the patch
page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page();
page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page();
page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page();
page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page();
page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page();
page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page();
page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page();
page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page();
With the patch
runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page();
runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page();
runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page();
runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page();
runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page();
runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page();
runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page();
runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page();
[akpm@linux-foundation.org: code cleanup]
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com
Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After we establish a reference on the page, we check the pointer
continues to be in the correct position in i_pages. Checking
page->index afterwards is unnecessary; if it were to change, then the
pointer to it from the page cache would also move. The check used to be
done before grabbing a reference on the page which was racy (see commit
9cbb4cb21b ("mm: find_get_pages_contig fixlet")), but nobody noticed
that moving the check after grabbing the reference was redundant.
Link: http://lkml.kernel.org/r/20190107200224.13260-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation, there are two places to isolate a range
of page: __offline_pages() and alloc_contig_range(). During this
procedure, it will drain pages on pcp list.
Below is a brief call flow:
__offline_pages()/alloc_contig_range()
start_isolate_page_range()
set_migratetype_isolate()
drain_all_pages()
drain_all_pages() <--- A
This snippet shows the current logic is isolate and drain pcp list for
each pageblock and drain pcp list again for the whole range.
start_isolate_page_range is responsible for isolating the given pfn
range. One part of that job is to make sure that also pages that are on
the allocator pcp lists are properly isolated. Otherwise they could be
reused and the range wouldn't be completely isolated until the memory is
freed back. While there is no strict guarantee here because pages might
get allocated at any time before drain_all_pages is called there doesn't
seem to be any strong demand for such a guarantee.
In any case, draining is already done at the isolation level and there
is no need to do it again later by start_isolate_page_range callers
(memory hotplug and CMA allocator currently). Therefore remove
pointless draining in existing callers to make the code more clear and
functionally correct.
[mhocko@suse.com: provide a clearer changelog for the last two paragraphs]
Link: http://lkml.kernel.org/r/20190105233141.2329-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "arm64/mm: Enable HugeTLB migration", v4.
This patch series enables HugeTLB migration support for all supported
huge page sizes at all levels including contiguous bit implementation.
Following HugeTLB migration support matrix has been enabled with this
patch series. All permutations have been tested except for the 16GB.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
First the series adds migration support for PUD based huge pages. It
then adds a platform specific hook to query an architecture if a given
huge page size is supported for migration while also providing a default
fallback option preserving the existing semantics which just checks for
(PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB
migration on arm64 and subscribe to this new platform specific hook by
defining an override.
The second patch differentiates between movability and migratability
aspects of huge pages and implements hugepage_movable_supported() which
can then be used during allocation to decide whether to place the huge
page in movable zone or not.
This patch (of 5):
During huge page allocation it's migratability is checked to determine
if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE.
But the movability aspect of the huge page could depend on other factors
than just migratability. Movability in itself is a distinct property
which should not be tied with migratability alone.
This differentiates these two and implements an enhanced movability check
which also considers huge page size to determine if it is feasible to be
placed under a movable zone. At present it just checks for gigantic pages
but going forward it can incorporate other enhanced checks.
Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysctl_extfrag_handler() neglects to propagate the return value from
proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need
to exist, so just use proc_dointvec_minmax() directly.
Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reported-by: Aditya Pakki <pakki001@umn.edu>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export __vmaloc_node_range() function if CONFIG_TEST_VMALLOC_MODULE is
enabled. Some test cases in vmalloc test suite module require and make
use of that function. Please note, that it is not supposed to be used
for other purposes.
We need it only for performance analysis, stressing and stability check
of vmalloc allocator.
Link: http://lkml.kernel.org/r/20190103142108.20744-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmalloc_user*() calls differ from normal vmalloc() only in that they set
VM_USERMAP flags for the area. During the whole history of vmalloc.c
changes now it is possible simply to pass VM_USERMAP flags directly to
__vmalloc_node_range() call instead of finding the area (which obviously
takes time) after the allocation.
Link: http://lkml.kernel.org/r/20190103145954.16942-4-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__vmalloc_area_node() calls vfree() on error path, which in turn calls
kmemleak_free(), but area is not yet accounted by kmemleak_vmalloc().
Link: http://lkml.kernel.org/r/20190103145954.16942-3-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When VM_NO_GUARD is not set area->size includes adjacent guard page,
thus for correct size checking get_vm_area_size() should be used, but
not area->size.
This fixes possible kernel oops when userspace tries to mmap an area on
1 page bigger than was allocated by vmalloc_user() call: the size check
inside remap_vmalloc_range_partial() accounts non-existing guard page
also, so check successfully passes but vmalloc_to_page() returns NULL
(guard page does not physically exist).
The following code pattern example should trigger an oops:
static int oops_mmap(struct file *file, struct vm_area_struct *vma)
{
void *mem;
mem = vmalloc_user(4096);
BUG_ON(!mem);
/* Do not care about mem leak */
return remap_vmalloc_range(vma, mem, 0);
}
And userspace simply mmaps size + PAGE_SIZE:
mmap(NULL, 8192, PROT_WRITE|PROT_READ, MAP_PRIVATE, fd, 0);
Possible candidates for oops which do not have any explicit size
checks:
*** drivers/media/usb/stkwebcam/stk-webcam.c:
v4l_stk_mmap[789] ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
Or the following one:
*** drivers/video/fbdev/core/fbmem.c
static int
fb_mmap(struct file *file, struct vm_area_struct * vma)
...
res = fb->fb_mmap(info, vma);
Where fb_mmap callback calls remap_vmalloc_range() directly without any
explicit checks:
*** drivers/video/fbdev/vfb.c
static int vfb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
return remap_vmalloc_range(vma, (void *)info->fix.smem_start, vma->vm_pgoff);
}
Link: http://lkml.kernel.org/r/20190103145954.16942-2-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch repeats the original one from David S Miller:
2dca6999ee ("mm, perf_event: Make vmalloc_user() align base kernel virtual address to SHMLBA")
but for missed vmalloc_32_user() case, which also requires correct
alignment of virtual address on kernel side to avoid D-caches aliases.
A bit of copy-paste from original patch to recover in memory of what is
all about:
When a vmalloc'd area is mmap'd into userspace, some kind of
co-ordination is necessary for this to work on platforms with cpu
D-caches which can have aliases.
Otherwise kernel side writes won't be seen properly in userspace and
vice versa.
If the kernel side mapping and the user side one have the same
alignment, modulo SHMLBA, this can work as long as VM_SHARED is shared
of VMA and for all current users this is true. VM_SHARED will force
SHMLBA alignment of the user side mmap on platforms with D-cache
aliasing matters.
David S. Miller
> What are the user-visible runtime effects of this change?
In simple words: proper alignment avoids possible difference in data,
seen by different virtual mapings: userspace and kernel in our case.
I.e. userspace reads cache line A, kernel writes to cache line B. Both
cache lines correspond to the same physical memory (thus aliases).
So this should fix data corruption for archs with vivt and vipt caches,
e.g. armv6. Personally I've never worked with this archs, I just
spotted the strange difference in code: for one case we do alignment,
for another - not. I have a strong feeling that David simply missed
vmalloc_32_user() case.
>
> Is a -stable backport needed?
No, I do not think so. The only one user of vmalloc_32_user() is
virtual frame buffer device drivers/video/fbdev/vfb.c, which has in the
description "The main use of this frame buffer device is testing and
debugging the frame buffer subsystem. Do NOT enable it for normal
systems!".
And it seems to me that this vfb.c does not need 32bit addressable pages
(vmalloc_32_user() case), because it is virtual device and should not
care about things like dma32 zones, etc. Probably is better to clean
the code and switch vfb.c from vmalloc_32_user() to vmalloc_user() case
and wipe out vmalloc_32_user() from vmalloc.c completely. But I'm not
very much sure that this is worth to do, that's so minor, so we can
leave it as is.
Link: http://lkml.kernel.org/r/20190108110944.23591-1-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two cases when put_cpu_partial() is invoked.
* __slab_free
* get_partial_node
This patch just makes it cover these two cases.
Link: http://lkml.kernel.org/r/20181025094437.18951-3-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an optimization for KSM pages almost in the same way that we have
for ordinary anonymous pages. If there is a write fault in a page,
which is mapped to an only pte, and it is not related to swap cache; the
page may be reused without copying its content.
[ Note that we do not consider PageSwapCache() pages at least for now,
since we don't want to complicate __get_ksm_page(), which has nice
optimization based on this (for the migration case). Currenly it is
spinning on PageSwapCache() pages, waiting for when they have
unfreezed counters (i.e., for the migration finish). But we don't want
to make it also spinning on swap cache pages, which we try to reuse,
since there is not a very high probability to reuse them. So, for now
we do not consider PageSwapCache() pages at all. ]
So in reuse_ksm_page() we check for 1) PageSwapCache() and 2)
page_stable_node(), to skip a page, which KSM is currently trying to
link to stable tree. Then we do page_ref_freeze() to prohibit KSM to
merge one more page into the page, we are reusing. After that, nobody
can refer to the reusing page: KSM skips !PageSwapCache() pages with
zero refcount; and the protection against of all other participants is
the same as for reused ordinary anon pages pte lock, page lock and
mmap_sem.
[akpm@linux-foundation.org: replace BUG_ON()s with WARN_ON()s]
Link: http://lkml.kernel.org/r/154471491016.31352.1168978849911555609.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_vmap_area() can return a NULL pointer and we're going to
dereference it without checking it first. Use the existing
find_vm_area() function which does exactly what we want and checks for
the NULL pointer.
Link: http://lkml.kernel.org/r/20181228171009.22269-1-liviu@dudau.co.uk
Fixes: f3c01d2f3a ("mm: vmalloc: avoid racy handling of debugobjects in vunmap")
Signed-off-by: Liviu Dudau <liviu@dudau.co.uk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When freeing pages are done with higher order, time spent on coalescing
pages by buddy allocator can be reduced. With section size of 256MB,
hot add latency of a single section shows improvement from 50-60 ms to
less than 1 ms, hence improving the hot add latency by 60 times. Modify
external providers of online callback to align with the change.
[arunks@codeaurora.org: v11]
Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org
[akpm@linux-foundation.org: remove unused local, per Arun]
[akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar]
[akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch]
[arunks@codeaurora.org: v8]
Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org
[arunks@codeaurora.org: v9]
Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org
Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"addr" function argument is not used in alloc_consistency_checks() at
all, so remove it.
Link: http://lkml.kernel.org/r/20190211123214.35592-1-cai@lca.pw
Fixes: becfda68ab ("slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak throws endless warnings during boot due to in
__alloc_alien_cache(),
alc = kmalloc_node(memsize, gfp, node);
init_arraycache(&alc->ac, entries, batch);
kmemleak_no_scan(ac);
Kmemleak does not track the array cache (alc->ac) but the alien cache
(alc) instead, so let it track the latter by lifting kmemleak_no_scan()
out of init_arraycache().
There is another place that calls init_arraycache(), but
alloc_kmem_cache_cpus() uses the percpu allocation where will never be
considered as a leak.
kmemleak: Found object by alias at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
lookup_object+0x84/0xac
find_and_get_object+0x84/0xe4
kmemleak_no_scan+0x74/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
kmemleak: Object 0xffff8007b9aa7e00 (size 256):
kmemleak: comm "swapper/0", pid 1, jiffies 4294697137
kmemleak: min_count = 1
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
kmemleak_alloc+0x84/0xb8
kmem_cache_alloc_node_trace+0x31c/0x3a0
__kmalloc_node+0x58/0x78
setup_kmem_cache_node+0x26c/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
kmemleak_no_scan+0x90/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw
Fixes: 1fe00d50a9 ("slab: factor out initialization of array cache")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
new_slab_objects() will return immediately if freelist is not NULL.
if (freelist)
return freelist;
One more assignment operation could be avoided.
Link: http://lkml.kernel.org/r/20181229062512.30469-1-rocking@whu.edu.cn
Signed-off-by: Peng Wang <rocking@whu.edu.cn>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kasan_p4d_table(), kasan_pmd_table() and kasan_pud_table() are declared
as returning bool, but return 0 instead of false, which produces a
coccinelle warning. Fix it.
Link: http://lkml.kernel.org/r/1fa6fadf644859e8a6a8ecce258444b49be8c7ee.1551716733.git.andreyknvl@google.com
Fixes: 0207df4fa1 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Building little-endian allmodconfig kernels on arm64 started failing
with the generated atomic.h implementation, since we now try to call
kasan helpers from the EFI stub:
aarch64-linux-gnu-ld: drivers/firmware/efi/libstub/arm-stub.stub.o: in function `atomic_set':
include/generated/atomic-instrumented.h:44: undefined reference to `__efistub_kasan_check_write'
I suspect that we get similar problems in other files that explicitly
disable KASAN for some reason but call atomic_t based helper functions.
We can fix this by checking the predefined __SANITIZE_ADDRESS__ macro
that the compiler sets instead of checking CONFIG_KASAN, but this in
turn requires a small hack in mm/kasan/common.c so we do see the extern
declaration there instead of the inline function.
Link: http://lkml.kernel.org/r/20181211133453.2835077-1-arnd@arndb.de
Fixes: b1864b828644 ("locking/atomics: build atomic headers as required")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>,
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN does not play well with the page poisoning (CONFIG_PAGE_POISONING).
It triggers false positives in the allocation path:
BUG: KASAN: use-after-free in memchr_inv+0x2ea/0x330
Read of size 8 at addr ffff88881f800000 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Not tainted 5.0.0-rc1+ #54
Call Trace:
dump_stack+0xe0/0x19a
print_address_description.cold.2+0x9/0x28b
kasan_report.cold.3+0x7a/0xb5
__asan_report_load8_noabort+0x19/0x20
memchr_inv+0x2ea/0x330
kernel_poison_pages+0x103/0x3d5
get_page_from_freelist+0x15e7/0x4d90
because KASAN has not yet unpoisoned the shadow page for allocation
before it checks memchr_inv() but only found a stale poison pattern.
Also, false positives in free path,
BUG: KASAN: slab-out-of-bounds in kernel_poison_pages+0x29e/0x3d5
Write of size 4096 at addr ffff8888112cc000 by task swapper/0/1
CPU: 5 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc1+ #55
Call Trace:
dump_stack+0xe0/0x19a
print_address_description.cold.2+0x9/0x28b
kasan_report.cold.3+0x7a/0xb5
check_memory_region+0x22d/0x250
memset+0x28/0x40
kernel_poison_pages+0x29e/0x3d5
__free_pages_ok+0x75f/0x13e0
due to KASAN adds poisoned redzones around slab objects, but the page
poisoning needs to poison the whole page.
Link: http://lkml.kernel.org/r/20190114233405.67843-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use after scope bugs detector seems to be almost entirely useless for
the linux kernel. It exists over two years, but I've seen only one
valid bug so far [1]. And the bug was fixed before it has been
reported. There were some other use-after-scope reports, but they were
false-positives due to different reasons like incompatibility with
structleak plugin.
This feature significantly increases stack usage, especially with GCC <
9 version, and causes a 32K stack overflow. It probably adds
performance penalty too.
Given all that, let's remove use-after-scope detector entirely.
While preparing this patch I've noticed that we mistakenly enable
use-after-scope detection for clang compiler regardless of
CONFIG_KASAN_EXTRA setting. This is also fixed now.
[1] http://lkml.kernel.org/r/<20171129052106.rhgbjhhis53hkgfn@wfg-t540p.sh.intel.com>
Link: http://lkml.kernel.org/r/20190111185842.13978-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Will Deacon <will.deacon@arm.com> [arm64]
Cc: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When soft_offline_in_use_page() runs on a thp tail page after pmd is
split, we trigger the following VM_BUG_ON_PAGE():
Memory failure: 0x3755ff: non anonymous thp
__get_any_page: 0x3755ff: unknown zero refcount page type 2fffff80000000
Soft offlining pfn 0x34d805 at process virtual address 0x20fff000
page:ffffea000d360140 count:0 mapcount:0 mapping:0000000000000000 index:0x1
flags: 0x2fffff80000000()
raw: 002fffff80000000 ffffea000d360108 ffffea000d360188 0000000000000000
raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(page_ref_count(page) == 0)
------------[ cut here ]------------
kernel BUG at ./include/linux/mm.h:519!
soft_offline_in_use_page() passed refcount and page lock from tail page
to head page, which is not needed because we can pass any subpage to
split_huge_page().
Naoya had fixed a similar issue in c3901e722b ("mm: hwpoison: fix thp
split handling in memory_failure()"). But he missed fixing soft
offline.
Link: http://lkml.kernel.org/r/1551452476-24000-1-git-send-email-zhongjiang@huawei.com
Fixes: 61f5d698cc ("mm: re-enable THP")
Signed-off-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton:
"2 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
hugetlbfs: fix races and page leaks during migration
kasan: turn off asan-stack for clang-8 and earlier
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc5422230 ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm/resource.c code is used to manage the physical address
space. The current resource configuration can be viewed in
/proc/iomem. An example of this is at the bottom of this
description.
The nvdimm subsystem "owns" the physical address resources which
map to persistent memory and has resources inserted for them as
"Persistent Memory". The best way to repurpose this for volatile
use is to leave the existing resource in place, but add a "System
RAM" resource underneath it. This clearly communicates the
ownership relationship of this memory.
The request_resource_conflict() API only deals with the
top-level resources. Replace it with __request_region() which
will search for !IORESOURCE_BUSY areas lower in the resource
tree than the top level.
We *could* also simply truncate the existing top-level
"Persistent Memory" resource and take over the released address
space. But, this means that if we ever decide to hot-unplug the
"RAM" and give it back, we need to recreate the original setup,
which may mean going back to the BIOS tables.
This should have no real effect on the existing collision
detection because the areas that truly conflict should be marked
IORESOURCE_BUSY.
00000000-00000fff : Reserved
00001000-0009fbff : System RAM
0009fc00-0009ffff : Reserved
000a0000-000bffff : PCI Bus 0000:00
000c0000-000c97ff : Video ROM
000c9800-000ca5ff : Adapter ROM
000f0000-000fffff : Reserved
000f0000-000fffff : System ROM
00100000-9fffffff : System RAM
01000000-01e071d0 : Kernel code
01e071d1-027dfdff : Kernel data
02dc6000-0305dfff : Kernel bss
a0000000-afffffff : Persistent Memory (legacy)
a0000000-a7ffffff : System RAM
b0000000-bffdffff : System RAM
bffe0000-bfffffff : Reserved
c0000000-febfffff : PCI Bus 0000:00
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
HMM consumes physical address space for its own use, even
though nothing is mapped or accessible there. It uses a
special resource description (IORES_DESC_DEVICE_PRIVATE_MEMORY)
to uniquely identify these areas.
When HMM consumes address space, it makes a best guess about
what to consume. However, it is possible that a future memory
or device hotplug can collide with the reserved area. In the
case of these conflicts, there is an error message in
register_memory_resource().
Later patches in this series move register_memory_resource()
from using request_resource_conflict() to __request_region().
Unfortunately, __request_region() does not return the conflict
like the previous function did, which makes it impossible to
check for IORES_DESC_DEVICE_PRIVATE_MEMORY in a conflicting
resource.
Instead of warning in register_memory_resource(), move the
check into the core resource code itself (__request_region())
where the conflicting resource _is_ available. This has the
added bonus of producing a warning in case of HMM conflicts
with devices *or* RAM address space, as opposed to the RAM-
only warnings that were there previously.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
security_mmap_addr() does a capability check with current_cred(), but
we can reach this code from contexts like a VFS write handler where
current_cred() must not be used.
This can be abused on systems without SMAP to make NULL pointer
dereferences exploitable again.
Fixes: 8869477a49 ("security: protect from stack expansion into low vm addresses")
Cc: stable@kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu-km is used on UP systems which only has one group,
so the group offset will be always 0, there is no need
to subtract pcpu_group_offsets[0] when assigning chunk->base_addr
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
When we made the shmem_reserve_inode call in shmem_link conditional, we
forgot to update the declaration for ret so that it always has a known
value. Dan Carpenter pointed out this deficiency in the original patch.
Fixes: 1062af920c ("tmpfs: fix link accounting when a tmpfile is linked in")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Matej Kupljen <matej.kupljen@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 9da3f2b740.
It was well-intentioned, but wrong. Overriding the exception tables for
instructions for random reasons is just wrong, and that is what the new
code did.
It caused problems for tracing, and it caused problems for strncpy_from_user(),
because the new checks made perfectly valid use cases break, rather than
catch things that did bad things.
Unchecked user space accesses are a problem, but that's not a reason to
add invalid checks that then people have to work around with silly flags
(in this case, that 'kernel_uaccess_faults_ok' flag, which is just an
odd way to say "this commit was wrong" and was sprinked into random
places to hide the wrongness).
The real fix to unchecked user space accesses is to get rid of the
special "let's not check __get_user() and __put_user() at all" logic.
Make __{get|put}_user() be just aliases to the regular {get|put}_user()
functions, and make it impossible to access user space without having
the proper checks in places.
The raison d'être of the special double-underscore versions used to be
that the range check was expensive, and if you did multiple user
accesses, you'd do the range check up front (like the signal frame
handling code, for example). But SMAP (on x86) and PAN (on ARM) have
made that optimization pointless, because the _real_ expense is the "set
CPU flag to allow user space access".
Do let's not break the valid cases to catch invalid cases that shouldn't
even exist.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
group_cnt array is defined with NR_CPUS entries, but normally
nr_groups will not reach up to NR_CPUS. So there is no issue
to the current code.
Checking other parts of pcpu_build_alloc_info, use nr_groups as
check condition, so make it consistent to use 'group < nr_groups'
as for loop check. In case we do have nr_groups equals with NR_CPUS,
we could also avoid memory access out of bounds.
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Rong Chen has reported the following boot crash:
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
RIP: 0010:page_mapping+0x12/0x80
Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48
RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202
RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a
RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000
RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13
R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000
R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001
FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0
Call Trace:
__dump_page+0x14/0x2c0
is_mem_section_removable+0x24c/0x2c0
removable_show+0x87/0xa0
dev_attr_show+0x25/0x60
sysfs_kf_seq_show+0xba/0x110
seq_read+0x196/0x3f0
__vfs_read+0x34/0x180
vfs_read+0xa0/0x150
ksys_read+0x44/0xb0
do_syscall_64+0x5e/0x4a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
and bisected it down to commit efad4e475c ("mm, memory_hotplug:
is_mem_section_removable do not pass the end of a zone").
The reason for the crash is that the mapping is garbage for poisoned
(uninitialized) page. This shouldn't happen as all pages in the zone's
boundary should be initialized.
Later debugging revealed that the actual problem is an off-by-one when
evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn'
refers to a pfn after the range and as such it might belong to a
differen memory section.
This along with CONFIG_SPARSEMEM then makes the loop condition
completely bogus because a pointer arithmetic doesn't work for pages
from two different sections in that memory model.
Fix the issue by reworking is_pageblock_removable to be pfn based and
only use struct page where necessary. This makes the code slightly
easier to follow and we will remove the problematic pointer arithmetic
completely.
Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org
Fixes: efad4e475c ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: <rong.a.chen@intel.com>
Tested-by: <rong.a.chen@intel.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memdump_user usually gets fed unchecked userspace input. Blasting a
full backtrace into dmesg every time is a bit excessive - I'm not sure
on the kernel rule in general, but at least in drm we're trying not to
let unpriviledge userspace spam the logs freely. Definitely not entire
warning backtraces.
It also means more filtering for our CI, because our testsuite exercises
these corner cases and so hits these a lot.
Link: http://lkml.kernel.org/r/20190220204058.11676-1-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Stancek <jstancek@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Bartosz Golaszewski <brgl@bgdev.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similarly to commit 96fedce27e ("kasan: make tag based mode work with
CONFIG_HARDENED_USERCOPY"), we need to reset pointer tags in
__check_heap_object() in mm/slab.c before doing any pointer math.
Link: http://lkml.kernel.org/r/9a5c0f958db10e69df5ff9f2b997866b56b7effc.1550602886.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two issues with assigning random percpu seeds right now:
1. We use for_each_possible_cpu() to iterate over cpus, but cpumask is
not set up yet at the moment of kasan_init(), and thus we only set
the seed for cpu #0.
2. A call to get_random_u32() always returns the same number and produces
a message in dmesg, since the random subsystem is not yet initialized.
Fix 1 by calling kasan_init_tags() after cpumask is set up.
Fix 2 by using get_cycles() instead of get_random_u32(). This gives us
lower quality random numbers, but it's good enough, as KASAN is meant to
be used as a debugging tool and not a mitigation.
Link: http://lkml.kernel.org/r/1f815cc914b61f3516ed4cc9bfd9eeca9bd5d9de.1550677973.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tmpfs has a peculiarity of accounting hard links as if they were
separate inodes: so that when the number of inodes is limited, as it is
by default, a user cannot soak up an unlimited amount of unreclaimable
dcache memory just by repeatedly linking a file.
But when v3.11 added O_TMPFILE, and the ability to use linkat() on the
fd, we missed accommodating this new case in tmpfs: "df -i" shows that
an extra "inode" remains accounted after the file is unlinked and the fd
closed and the actual inode evicted. If a user repeatedly links
tmpfiles into a tmpfs, the limit will be hit (ENOSPC) even after they
are deleted.
Just skip the extra reservation from shmem_link() in this case: there's
a sense in which this first link of a tmpfile is then cheaper than a
hard link of another file, but the accounting works out, and there's
still good limiting, so no need to do anything more complicated.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1902182134370.7035@eggly.anvils
Fixes: f4e0c30c19 ("allow the temp files created by open() to be linked to")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Matej Kupljen <matej.kupljen@gmail.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since for_each_cpu(cpu, mask) added by commit 2d3854a37e
("cpumask: introduce new API, without changing anything") did not
evaluate the mask argument if NR_CPUS == 1 due to CONFIG_SMP=n,
lru_add_drain_all() is hitting WARN_ON() at __flush_work() added by
commit 4d43d395fe ("workqueue: Try to catch flush_work() without
INIT_WORK().") by unconditionally calling flush_work() [1].
Workaround this issue by using CONFIG_SMP=n specific lru_add_drain_all
implementation. There is no real need to defer the implementation to
the workqueue as the draining is going to happen on the local cpu. So
alias lru_add_drain_all to lru_add_drain which does all the necessary
work.
[akpm@linux-foundation.org: fix various build warnings]
[1] https://lkml.kernel.org/r/18a30387-6aa5-6123-e67c-57579ecc3f38@roeck-us.net
Link: http://lkml.kernel.org/r/20190213124334.GH4525@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Debugged-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yury Norov reported that an arm64 KVM instance could not boot since
after v5.0-rc1 and could addressed by reverting the patches
1c30844d2d ("mm: reclaim small amounts of memory when an external
73444bc4d8 ("mm, page_alloc: do not wake kswapd with zone lock held")
The problem is that a division by zero error is possible if boosting
occurs very early in boot if the system has very little memory. This
patch avoids the division by zero error.
Link: http://lkml.kernel.org/r/20190213143012.GT9565@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Evaluating page_mapping() on a poisoned page ends up dereferencing junk
and making PF_POISONED_CHECK() considerably crashier than intended:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000006
Mem abort info:
ESR = 0x96000005
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000005
CM = 0, WnR = 0
user pgtable: 4k pages, 39-bit VAs, pgdp = 00000000c2f6ac38
[0000000000000006] pgd=0000000000000000, pud=0000000000000000
Internal error: Oops: 96000005 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 491 Comm: bash Not tainted 5.0.0-rc1+ #1
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Dec 17 2018
pstate: 00000005 (nzcv daif -PAN -UAO)
pc : page_mapping+0x18/0x118
lr : __dump_page+0x1c/0x398
Process bash (pid: 491, stack limit = 0x000000004ebd4ecd)
Call trace:
page_mapping+0x18/0x118
__dump_page+0x1c/0x398
dump_page+0xc/0x18
remove_store+0xbc/0x120
dev_attr_store+0x18/0x28
sysfs_kf_write+0x40/0x50
kernfs_fop_write+0x130/0x1d8
__vfs_write+0x30/0x180
vfs_write+0xb4/0x1a0
ksys_write+0x60/0xd0
__arm64_sys_write+0x18/0x20
el0_svc_common+0x94/0xf8
el0_svc_handler+0x68/0x70
el0_svc+0x8/0xc
Code: f9400401 d1000422 f240003f 9a801040 (f9400402)
---[ end trace cdb5eb5bf435cecb ]---
Fix that by not inspecting the mapping until we've determined that it's
likely to be valid. Now the above condition still ends up stopping the
kernel, but in the correct manner:
page:ffffffbf20000000 is uninitialized and poisoned
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
------------[ cut here ]------------
kernel BUG at ./include/linux/mm.h:1006!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 483 Comm: bash Not tainted 5.0.0-rc1+ #3
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Dec 17 2018
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : remove_store+0xbc/0x120
lr : remove_store+0xbc/0x120
...
Link: http://lkml.kernel.org/r/03b53ee9d7e76cda4b9b5e1e31eea080db033396.1550071778.git.robin.murphy@arm.com
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. Normally,
this doesn't cause any issues, as both set_freepointer() and
get_freepointer() are called with a pointer with the same tag. However,
there are some issues with CONFIG_SLUB_DEBUG code. For example, when
__free_slub() iterates over objects in a cache, it passes untagged
pointers to check_object(). check_object() in turns calls
get_freepointer() with an untagged pointer, which causes the freepointer
to be restored incorrectly.
Add kasan_reset_tag to freelist_ptr(). Also add a detailed comment.
Link: http://lkml.kernel.org/r/bf858f26ef32eb7bd24c665755b3aee4bc58d0e4.1550103861.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Qian Cai <cai@lca.pw>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_SLAB_FREELIST_HARDENED hashes freelist pointer with the address of
the object where the pointer gets stored. With tag based KASAN we don't
account for that when building freelist, as we call set_freepointer() with
the first argument untagged. This patch changes the code to properly
propagate tags throughout the loop.
Link: http://lkml.kernel.org/r/3df171559c52201376f246bf7ce3184fe21c1dc7.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Qian Cai <cai@lca.pw>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With tag based KASAN page_address() looks at the page flags to see whether
the resulting pointer needs to have a tag set. Since we don't want to set
a tag when page_address() is called on SLAB pages, we call
page_kasan_tag_reset() in kasan_poison_slab(). However in allocate_slab()
page_address() is called before kasan_poison_slab(). Fix it by changing
the order.
[andreyknvl@google.com: fix compilation error when CONFIG_SLUB_DEBUG=n]
Link: http://lkml.kernel.org/r/ac27cc0bbaeb414ed77bcd6671a877cf3546d56e.1550066133.git.andreyknvl@google.com
Link: http://lkml.kernel.org/r/cd895d627465a3f1c712647072d17f10883be2a1.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmemleak keeps two global variables, min_addr and max_addr, which store
the range of valid (encountered by kmemleak) pointer values, which it
later uses to speed up pointer lookup when scanning blocks.
With tagged pointers this range will get bigger than it needs to be. This
patch makes kmemleak untag pointers before saving them to min_addr and
max_addr and when performing a lookup.
Link: http://lkml.kernel.org/r/16e887d442986ab87fe87a755815ad92fa431a5f.1550066133.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Qian Cai <cai@lca.pw>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now we call kmemleak hooks before assigning tags to pointers in
KASAN hooks. As a result, when an objects gets allocated, kmemleak sees a
differently tagged pointer, compared to the one it sees when the object
gets freed. Fix it by calling KASAN hooks before kmemleak's ones.
Link: http://lkml.kernel.org/r/cd825aa4897b0fc37d3316838993881daccbe9f5.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an object is kmalloc()'ed, two hooks are called: kasan_slab_alloc()
and kasan_kmalloc(). Right now we assign a tag twice, once in each of the
hooks. Fix it by assigning a tag only in the former hook.
Link: http://lkml.kernel.org/r/ce8c6431da735aa7ec051fd6497153df690eb021.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The system call, get_mempolicy() [1], passes an unsigned long *nodemask
pointer and an unsigned long maxnode argument which specifies the length
of the user's nodemask array in bits (which is rounded up). The manual
page says that if the maxnode value is too small, get_mempolicy will
return EINVAL but there is no system call to return this minimum value.
To determine this value, some programs search /proc/<pid>/status for a
line starting with "Mems_allowed:" and use the number of digits in the
mask to determine the minimum value. A recent change to the way this line
is formatted [2] causes these programs to compute a value less than
MAX_NUMNODES so get_mempolicy() returns EINVAL.
Change get_mempolicy(), the older compat version of get_mempolicy(), and
the copy_nodes_to_user() function to use nr_node_ids instead of
MAX_NUMNODES, thus preserving the defacto method of computing the minimum
size for the nodemask array and the maxnode argument.
[1] http://man7.org/linux/man-pages/man2/get_mempolicy.2.html
[2] https://lore.kernel.org/lkml/1545405631-6808-1-git-send-email-longman@redhat.com
Link: http://lkml.kernel.org/r/20190211180245.22295-1-rcampbell@nvidia.com
Fixes: 4fb8e5b89bcbbbb ("include/linux/nodemask.h: use nr_node_ids (not MAX_NUMNODES) in __nodemask_pr_numnodes()")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Suggested-by: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking fixes from David Miller:
1) Fix suspend and resume in mt76x0u USB driver, from Stanislaw
Gruszka.
2) Missing memory barriers in xsk, from Magnus Karlsson.
3) rhashtable fixes in mac80211 from Herbert Xu.
4) 32-bit MIPS eBPF JIT fixes from Paul Burton.
5) Fix for_each_netdev_feature() on big endian, from Hauke Mehrtens.
6) GSO validation fixes from Willem de Bruijn.
7) Endianness fix for dwmac4 timestamp handling, from Alexandre Torgue.
8) More strict checks in tcp_v4_err(), from Eric Dumazet.
9) af_alg_release should NULL out the sk after the sock_put(), from Mao
Wenan.
10) Missing unlock in mac80211 mesh error path, from Wei Yongjun.
11) Missing device put in hns driver, from Salil Mehta.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (44 commits)
sky2: Increase D3 delay again
vhost: correctly check the return value of translate_desc() in log_used()
net: netcp: Fix ethss driver probe issue
net: hns: Fixes the missing put_device in positive leg for roce reset
net: stmmac: Fix a race in EEE enable callback
qed: Fix iWARP syn packet mac address validation.
qed: Fix iWARP buffer size provided for syn packet processing.
r8152: Add support for MAC address pass through on RTL8153-BD
mac80211: mesh: fix missing unlock on error in table_path_del()
net/mlx4_en: fix spelling mistake: "quiting" -> "quitting"
net: crypto set sk to NULL when af_alg_release.
net: Do not allocate page fragments that are not skb aligned
mm: Use fixed constant in page_frag_alloc instead of size + 1
tcp: tcp_v4_err() should be more careful
tcp: clear icsk_backoff in tcp_write_queue_purge()
net: mv643xx_eth: disable clk on error path in mv643xx_eth_shared_probe()
qmi_wwan: apply SET_DTR quirk to Sierra WP7607
net: stmmac: handle endianness in dwmac4_get_timestamp
doc: Mention MSG_ZEROCOPY implementation for UDP
mlxsw: __mlxsw_sp_port_headroom_set(): Fix a use of local variable
...
When limiting memory size via kernel parameter "mem=" this should be
respected even in case of memory made accessible via a PCI card.
Today this kind of memory won't be made usable in initial memory
setup as the memory won't be visible in E820 map, but it might be
added when adding PCI devices due to corresponding ACPI table entries.
Not respecting "mem=" can be corrected by adding a global max_mem_size
variable set by parse_memopt() which will result in rejecting adding
memory areas resulting in a memory size above the allowed limit.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
This patch replaces the size + 1 value introduced with the recent fix for 1
byte allocs with a constant value.
The idea here is to reduce code overhead as the previous logic would have
to read size into a register, then increment it, and write it back to
whatever field was being used. By using a constant we can avoid those
memory reads and arithmetic operations in favor of just encoding the
maximum value into the operation itself.
Fixes: 2c2ade8174 ("mm: page_alloc: fix ref bias in page_frag_alloc() for 1-byte allocs")
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the irqchip and EFI code, we have what basically amounts to a quirk
to work around a peculiarity in the GICv3 architecture, which permits
the system memory address of LPI tables to be programmable only once
after a CPU reset. This means kexec kernels must use the same memory
as the first kernel, and thus ensure that this memory has not been
given out for other purposes by the time the ITS init code runs, which
is not very early for secondary CPUs.
On systems with many CPUs, these reservations could overflow the
memblock reservation table, and this was addressed in commit:
eff8962888 ("efi/arm: Defer persistent reservations until after paging_init()")
However, this turns out to have made things worse, since the allocation
of page tables and heap space for the resized memblock reservation table
itself may overwrite the regions we are attempting to reserve, which may
cause all kinds of corruption, also considering that the ITS will still
be poking bits into that memory in response to incoming MSIs.
So instead, let's grow the static memblock reservation table on such
systems so it can accommodate these reservations at an earlier time.
This will permit us to revert the above commit in a subsequent patch.
[ mingo: Minor cleanups. ]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215123333.21209-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull networking fixes from David Miller:
1) Fix MAC address setting in mac80211 pmsr code, from Johannes Berg.
2) Probe SFP modules after being attached, from Russell King.
3) Byte ordering bug in SMC rx_curs_confirmed code, from Ursula Braun.
4) Revert some r8169 changes that are causing regressions, from Heiner
Kallweit.
5) Fix spurious connection timeouts in netfilter nat code, from Florian
Westphal.
6) SKB leak in tipc, from Hoang Le.
7) Short packet checkum issue in mlx4, similar to a previous mlx5
change, from Saeed Mahameed. The issue is that whilst padding bytes
are usually zero, it is not guarateed and the hardware doesn't take
the padding bytes into consideration when generating the checksum.
8) Fix various races in cls_tcindex, from Cong Wang.
9) Need to set stream ext to NULL before freeing in SCTP code, from Xin
Long.
10) Fix locking in phy_is_started, from Heiner Kallweit.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (54 commits)
net: ethernet: freescale: set FEC ethtool regs version
net: hns: Fix object reference leaks in hns_dsaf_roce_reset()
mm: page_alloc: fix ref bias in page_frag_alloc() for 1-byte allocs
net: phy: fix potential race in the phylib state machine
net: phy: don't use locking in phy_is_started
selftests: fix timestamping Makefile
net: dsa: bcm_sf2: potential array overflow in bcm_sf2_sw_suspend()
net: fix possible overflow in __sk_mem_raise_allocated()
dsa: mv88e6xxx: Ensure all pending interrupts are handled prior to exit
net: phy: fix interrupt handling in non-started states
sctp: set stream ext to NULL after freeing it in sctp_stream_outq_migrate
sctp: call gso_reset_checksum when computing checksum in sctp_gso_segment
net/mlx5e: XDP, fix redirect resources availability check
net/mlx5: Fix a compilation warning in events.c
net/mlx5: No command allowed when command interface is not ready
net/mlx5e: Fix NULL pointer derefernce in set channels error flow
netfilter: nft_compat: use-after-free when deleting targets
team: avoid complex list operations in team_nl_cmd_options_set()
net_sched: fix two more memory leaks in cls_tcindex
net_sched: fix a memory leak in cls_tcindex
...
The basic idea behind ->pagecnt_bias is: If we pre-allocate the maximum
number of references that we might need to create in the fastpath later,
the bump-allocation fastpath only has to modify the non-atomic bias value
that tracks the number of extra references we hold instead of the atomic
refcount. The maximum number of allocations we can serve (under the
assumption that no allocation is made with size 0) is nc->size, so that's
the bias used.
However, even when all memory in the allocation has been given away, a
reference to the page is still held; and in the `offset < 0` slowpath, the
page may be reused if everyone else has dropped their references.
This means that the necessary number of references is actually
`nc->size+1`.
Luckily, from a quick grep, it looks like the only path that can call
page_frag_alloc(fragsz=1) is TAP with the IFF_NAPI_FRAGS flag, which
requires CAP_NET_ADMIN in the init namespace and is only intended to be
used for kernel testing and fuzzing.
To test for this issue, put a `WARN_ON(page_ref_count(page) == 0)` in the
`offset < 0` path, below the virt_to_page() call, and then repeatedly call
writev() on a TAP device with IFF_TAP|IFF_NO_PI|IFF_NAPI_FRAGS|IFF_NAPI,
with a vector consisting of 15 elements containing 1 byte each.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit fe53ca5427 ("mm: use early_pfn_to_nid in
page_ext_init").
When booting a system with "page_owner=on",
start_kernel
page_ext_init
invoke_init_callbacks
init_section_page_ext
init_page_owner
init_early_allocated_pages
init_zones_in_node
init_pages_in_zone
lookup_page_ext
page_to_nid
The issue here is that page_to_nid() will not work since some page flags
have no node information until later in page_alloc_init_late() due to
DEFERRED_STRUCT_PAGE_INIT. Hence, it could trigger an out-of-bounds
access with an invalid nid.
UBSAN: Undefined behaviour in ./include/linux/mm.h:1104:50
index 7 is out of range for type 'zone [5]'
Also, kernel will panic since flags were poisoned earlier with,
CONFIG_DEBUG_VM_PGFLAGS=y
CONFIG_NODE_NOT_IN_PAGE_FLAGS=n
start_kernel
setup_arch
pagetable_init
paging_init
sparse_init
sparse_init_nid
memblock_alloc_try_nid_raw
It did not handle it well in init_pages_in_zone() which ends up calling
page_to_nid().
page:ffffea0004200000 is uninitialized and poisoned
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
page_owner info is not active (free page?)
kernel BUG at include/linux/mm.h:990!
RIP: 0010:init_page_owner+0x486/0x520
This means that assumptions behind commit fe53ca5427 ("mm: use
early_pfn_to_nid in page_ext_init") are incomplete. Therefore, revert
the commit for now. A proper way to move the page_owner initialization
to sooner is to hook into memmap initialization.
Link: http://lkml.kernel.org/r/20190115202812.75820-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For dax pmd, pmd_trans_huge() returns false but pmd_huge() returns true
on x86. So the function works as long as hugetlb is configured.
However, dax doesn't depend on hugetlb.
Link: http://lkml.kernel.org/r/20190111034033.601-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 172b06c32b ("mm: slowly shrink slabs with a
relatively small number of objects").
This change changes the agressiveness of shrinker reclaim, causing small
cache and low priority reclaim to greatly increase scanning pressure on
small caches. As a result, light memory pressure has a disproportionate
affect on small caches, and causes large caches to be reclaimed much
faster than previously.
As a result, it greatly perturbs the delicate balance of the VFS caches
(dentry/inode vs file page cache) such that the inode/dentry caches are
reclaimed much, much faster than the page cache and this drives us into
several other caching imbalance related problems.
As such, this is a bad change and needs to be reverted.
[ Needs some massaging to retain the later seekless shrinker
modifications.]
Link: http://lkml.kernel.org/r/20190130041707.27750-3-david@fromorbit.com
Fixes: 172b06c32b ("mm: slowly shrink slabs with a relatively small number of objects")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: Wolfgang Walter <linux@stwm.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Spock <dairinin@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'write' parameter is unused in gup_fast_permitted() so remove it.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20190210223424.13934-1-ira.weiny@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Taking a sleeping lock to _only_ increment a variable is quite the
overkill, and pretty much all users do this. Furthermore, some drivers
(ie: infiniband and scif) that need pinned semantics can go to quite
some trouble to actually delay via workqueue (un)accounting for pinned
pages when not possible to acquire it.
By making the counter atomic we no longer need to hold the mmap_sem and
can simply some code around it for pinned_vm users. The counter is 64-bit
such that we need not worry about overflows such as rdma user input
controlled from userspace.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
We had a race in the old balloon compaction code before b1123ea6d3
("mm: balloon: use general non-lru movable page feature") refactored it
that became visible after backporting 195a8c43e9 ("virtio-balloon:
deflate via a page list") without the refactoring.
The bug existed from commit d6d86c0a7f ("mm/balloon_compaction:
redesign ballooned pages management") till b1123ea6d3 ("mm: balloon:
use general non-lru movable page feature"). d6d86c0a7f
("mm/balloon_compaction: redesign ballooned pages management") was
backported to 3.12, so the broken kernels are stable kernels [3.12 -
4.7].
There was a subtle race between dropping the page lock of the newpage in
__unmap_and_move() and checking for __is_movable_balloon_page(newpage).
Just after dropping this page lock, virtio-balloon could go ahead and
deflate the newpage, effectively dequeueing it and clearing PageBalloon,
in turn making __is_movable_balloon_page(newpage) fail.
This resulted in dropping the reference of the newpage via
putback_lru_page(newpage) instead of put_page(newpage), leading to
page->lru getting modified and a !LRU page ending up in the LRU lists.
With 195a8c43e9 ("virtio-balloon: deflate via a page list")
backported, one would suddenly get corrupted lists in
release_pages_balloon():
- WARNING: CPU: 13 PID: 6586 at lib/list_debug.c:59 __list_del_entry+0xa1/0xd0
- list_del corruption. prev->next should be ffffe253961090a0, but was dead000000000100
Nowadays this race is no longer possible, but it is hidden behind very
ugly handling of __ClearPageMovable() and __PageMovable().
__ClearPageMovable() will not make __PageMovable() fail, only
PageMovable(). So the new check (__PageMovable(newpage)) will still
hold even after newpage was dequeued by virtio-balloon.
If anybody would ever change that special handling, the BUG would be
introduced again. So instead, make it explicit and use the information
of the original isolated page before migration.
This patch can be backported fairly easy to stable kernels (in contrast
to the refactoring).
Link: http://lkml.kernel.org/r/20190129233217.10747-1-david@redhat.com
Fixes: d6d86c0a7f ("mm/balloon_compaction: redesign ballooned pages management")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Vratislav Bendel <vbendel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vratislav Bendel <vbendel@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org> [3.12 - 4.7]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan has noticed that we do double unlock on some failure paths when
offlining a page range. This is indeed the case when
test_pages_in_a_zone respp. start_isolate_page_range fail. This was an
omission when forward porting the debugging patch from an older kernel.
Fix the issue by dropping mem_hotplug_done from the failure condition
and keeping the single unlock in the catch all failure path.
Link: http://lkml.kernel.org/r/20190115120307.22768-1-mhocko@kernel.org
Fixes: 7960509329 ("mm, memory_hotplug: print reason for the offlining failure")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memory_failure() is racy against process's exiting, which
results in kernel crash by null pointer dereference.
The root cause is that memory_failure() uses force_sig() to forcibly
kill asynchronous (meaning not in the current context) processes. As
discussed in thread https://lkml.org/lkml/2010/6/8/236 years ago for OOM
fixes, this is not a right thing to do. OOM solves this issue by using
do_send_sig_info() as done in commit d2d393099d ("signal:
oom_kill_task: use SEND_SIG_FORCED instead of force_sig()"), so this
patch is suggesting to do the same for hwpoison. do_send_sig_info()
properly accesses to siglock with lock_task_sighand(), so is free from
the reported race.
I confirmed that the reported bug reproduces with inserting some delay
in kill_procs(), and it never reproduces with this patch.
Note that memory_failure() can send another type of signal using
force_sig_mceerr(), and the reported race shouldn't happen on it because
force_sig_mceerr() is called only for synchronous processes (i.e.
BUS_MCEERR_AR happens only when some process accesses to the corrupted
memory.)
Link: http://lkml.kernel.org/r/20190116093046.GA29835@hori1.linux.bs1.fc.nec.co.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When option CONFIG_KASAN is enabled toghether with ftrace, function
ftrace_graph_caller() gets in to a recursion, via functions
kasan_check_read() and kasan_check_write().
Breakpoint 2, ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179
179 mcount_get_pc x0 // function's pc
(gdb) bt
#0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179
#1 0xffffff90101406c8 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:151
#2 0xffffff90106fd084 in kasan_check_write (p=0xffffffc06c170878, size=4) at ../mm/kasan/common.c:105
#3 0xffffff90104a2464 in atomic_add_return (v=<optimized out>, i=<optimized out>) at ./include/generated/atomic-instrumented.h:71
#4 atomic_inc_return (v=<optimized out>) at ./include/generated/atomic-fallback.h:284
#5 trace_graph_entry (trace=0xffffffc03f5ff380) at ../kernel/trace/trace_functions_graph.c:441
#6 0xffffff9010481774 in trace_graph_entry_watchdog (trace=<optimized out>) at ../kernel/trace/trace_selftest.c:741
#7 0xffffff90104a185c in function_graph_enter (ret=<optimized out>, func=<optimized out>, frame_pointer=18446743799894897728, retp=<optimized out>) at ../kernel/trace/trace_functions_graph.c:196
#8 0xffffff9010140628 in prepare_ftrace_return (self_addr=18446743592948977792, parent=0xffffffc03f5ff418, frame_pointer=18446743799894897728) at ../arch/arm64/kernel/ftrace.c:231
#9 0xffffff90101406f4 in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:182
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(gdb)
Rework so that the kasan implementation isn't traced.
Link: http://lkml.kernel.org/r/20181212183447.15890-1-anders.roxell@linaro.org
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot instance running on upstream kernel found a use-after-free bug in
oom_kill_process. On further inspection it seems like the process
selected to be oom-killed has exited even before reaching
read_lock(&tasklist_lock) in oom_kill_process(). More specifically the
tsk->usage is 1 which is due to get_task_struct() in oom_evaluate_task()
and the put_task_struct within for_each_thread() frees the tsk and
for_each_thread() tries to access the tsk. The easiest fix is to do
get/put across the for_each_thread() on the selected task.
Now the next question is should we continue with the oom-kill as the
previously selected task has exited? However before adding more
complexity and heuristics, let's answer why we even look at the children
of oom-kill selected task? The select_bad_process() has already selected
the worst process in the system/memcg. Due to race, the selected
process might not be the worst at the kill time but does that matter?
The userspace can use the oom_score_adj interface to prefer children to
be killed before the parent. I looked at the history but it seems like
this is there before git history.
Link: http://lkml.kernel.org/r/20190121215850.221745-1-shakeelb@google.com
Reported-by: syzbot+7fbbfa368521945f0e3d@syzkaller.appspotmail.com
Fixes: 6b0c81b3be ("mm, oom: reduce dependency on tasklist_lock")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the same sort of error we saw in commit 17e2e7d7e1 ("mm,
page_alloc: fix has_unmovable_pages for HugePages").
Gigantic hugepages cross several memblocks, so it can be that the page
we get in scan_movable_pages() is a page-tail belonging to a
1G-hugepage. If that happens, page_hstate()->size_to_hstate() will
return NULL, and we will blow up in hugepage_migration_supported().
The splat is as follows:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
#PF error: [normal kernel read fault]
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 1 PID: 1350 Comm: bash Tainted: G E 5.0.0-rc1-mm1-1-default+ #27
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014
RIP: 0010:__offline_pages+0x6ae/0x900
Call Trace:
memory_subsys_offline+0x42/0x60
device_offline+0x80/0xa0
state_store+0xab/0xc0
kernfs_fop_write+0x102/0x180
__vfs_write+0x26/0x190
vfs_write+0xad/0x1b0
ksys_write+0x42/0x90
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: af_packet(E) xt_tcpudp(E) ipt_REJECT(E) xt_conntrack(E) nf_conntrack(E) nf_defrag_ipv4(E) ip_set(E) nfnetlink(E) ebtable_nat(E) ebtable_broute(E) bridge(E) stp(E) llc(E) iptable_mangle(E) iptable_raw(E) iptable_security(E) ebtable_filter(E) ebtables(E) iptable_filter(E) ip_tables(E) x_tables(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) bochs_drm(E) ttm(E) aesni_intel(E) drm_kms_helper(E) aes_x86_64(E) crypto_simd(E) cryptd(E) glue_helper(E) drm(E) virtio_net(E) syscopyarea(E) sysfillrect(E) net_failover(E) sysimgblt(E) pcspkr(E) failover(E) i2c_piix4(E) fb_sys_fops(E) parport_pc(E) parport(E) button(E) btrfs(E) libcrc32c(E) xor(E) zstd_decompress(E) zstd_compress(E) xxhash(E) raid6_pq(E) sd_mod(E) ata_generic(E) ata_piix(E) ahci(E) libahci(E) libata(E) crc32c_intel(E) serio_raw(E) virtio_pci(E) virtio_ring(E) virtio(E) sg(E) scsi_mod(E) autofs4(E)
[akpm@linux-foundation.org: fix brace layout, per David. Reduce indentation]
Link: http://lkml.kernel.org/r/20190122154407.18417-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If memory end is not aligned with the sparse memory section boundary,
the mapping of such a section is only partly initialized. This may lead
to VM_BUG_ON due to uninitialized struct pages access from
test_pages_in_a_zone() function triggered by memory_hotplug sysfs
handlers.
Here are the the panic examples:
CONFIG_DEBUG_VM_PGFLAGS=y
kernel parameter mem=2050M
--------------------------
page:000003d082008000 is uninitialized and poisoned
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
Call Trace:
test_pages_in_a_zone+0xde/0x160
show_valid_zones+0x5c/0x190
dev_attr_show+0x34/0x70
sysfs_kf_seq_show+0xc8/0x148
seq_read+0x204/0x480
__vfs_read+0x32/0x178
vfs_read+0x82/0x138
ksys_read+0x5a/0xb0
system_call+0xdc/0x2d8
Last Breaking-Event-Address:
test_pages_in_a_zone+0xde/0x160
Kernel panic - not syncing: Fatal exception: panic_on_oops
Fix this by checking whether the pfn to check is within the zone.
[mhocko@suse.com: separated this change from http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com]
Link: http://lkml.kernel.org/r/20190128144506.15603-3-mhocko@kernel.org
[mhocko@suse.com: separated this change from
http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, memory_hotplug: fix uninitialized pages fallouts", v2.
Mikhail Zaslonko has posted fixes for the two bugs quite some time ago
[1]. I have pushed back on those fixes because I believed that it is
much better to plug the problem at the initialization time rather than
play whack-a-mole all over the hotplug code and find all the places
which expect the full memory section to be initialized.
We have ended up with commit 2830bf6f05 ("mm, memory_hotplug:
initialize struct pages for the full memory section") merged and cause a
regression [2][3]. The reason is that there might be memory layouts
when two NUMA nodes share the same memory section so the merged fix is
simply incorrect.
In order to plug this hole we really have to be zone range aware in
those handlers. I have split up the original patch into two. One is
unchanged (patch 2) and I took a different approach for `removable'
crash.
[1] http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com
[2] https://bugzilla.redhat.com/show_bug.cgi?id=1666948
[3] http://lkml.kernel.org/r/20190125163938.GA20411@dhcp22.suse.cz
This patch (of 2):
Mikhail has reported the following VM_BUG_ON triggered when reading sysfs
removable state of a memory block:
page:000003d08300c000 is uninitialized and poisoned
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
Call Trace:
is_mem_section_removable+0xb4/0x190
show_mem_removable+0x9a/0xd8
dev_attr_show+0x34/0x70
sysfs_kf_seq_show+0xc8/0x148
seq_read+0x204/0x480
__vfs_read+0x32/0x178
vfs_read+0x82/0x138
ksys_read+0x5a/0xb0
system_call+0xdc/0x2d8
Last Breaking-Event-Address:
is_mem_section_removable+0xb4/0x190
Kernel panic - not syncing: Fatal exception: panic_on_oops
The reason is that the memory block spans the zone boundary and we are
stumbling over an unitialized struct page. Fix this by enforcing zone
range in is_mem_section_removable so that we never run away from a zone.
Link: http://lkml.kernel.org/r/20190128144506.15603-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Debugged-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Arkadiusz reported that enabling memcg's group oom killing causes
strange memcg statistics where there is no task in a memcg despite the
number of tasks in that memcg is not 0. It turned out that there is a
bug in wake_oom_reaper() which allows enqueuing same task twice which
makes impossible to decrease the number of tasks in that memcg due to a
refcount leak.
This bug existed since the OOM reaper became invokable from
task_will_free_mem(current) path in out_of_memory() in Linux 4.7,
T1@P1 |T2@P1 |T3@P1 |OOM reaper
----------+----------+----------+------------
# Processing an OOM victim in a different memcg domain.
try_charge()
mem_cgroup_out_of_memory()
mutex_lock(&oom_lock)
try_charge()
mem_cgroup_out_of_memory()
mutex_lock(&oom_lock)
try_charge()
mem_cgroup_out_of_memory()
mutex_lock(&oom_lock)
out_of_memory()
oom_kill_process(P1)
do_send_sig_info(SIGKILL, @P1)
mark_oom_victim(T1@P1)
wake_oom_reaper(T1@P1) # T1@P1 is enqueued.
mutex_unlock(&oom_lock)
out_of_memory()
mark_oom_victim(T2@P1)
wake_oom_reaper(T2@P1) # T2@P1 is enqueued.
mutex_unlock(&oom_lock)
out_of_memory()
mark_oom_victim(T1@P1)
wake_oom_reaper(T1@P1) # T1@P1 is enqueued again due to oom_reaper_list == T2@P1 && T1@P1->oom_reaper_list == NULL.
mutex_unlock(&oom_lock)
# Completed processing an OOM victim in a different memcg domain.
spin_lock(&oom_reaper_lock)
# T1P1 is dequeued.
spin_unlock(&oom_reaper_lock)
but memcg's group oom killing made it easier to trigger this bug by
calling wake_oom_reaper() on the same task from one out_of_memory()
request.
Fix this bug using an approach used by commit 855b018325 ("oom,
oom_reaper: disable oom_reaper for oom_kill_allocating_task"). As a
side effect of this patch, this patch also avoids enqueuing multiple
threads sharing memory via task_will_free_mem(current) path.
Link: http://lkml.kernel.org/r/e865a044-2c10-9858-f4ef-254bc71d6cc2@i-love.sakura.ne.jp
Link: http://lkml.kernel.org/r/5ee34fc6-1485-34f8-8790-903ddabaa809@i-love.sakura.ne.jp
Fixes: af8e15cc85 ("oom, oom_reaper: do not enqueue task if it is on the oom_reaper_list head")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Aleksa Sarai <asarai@suse.de>
Cc: Jay Kamat <jgkamat@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, buffer_migrate_page_norefs() was constantly failing because
buffer_migrate_lock_buffers() grabbed reference on each buffer. In
fact, there's no reason for buffer_migrate_lock_buffers() to grab any
buffer references as the page is locked during all our operation and
thus nobody can reclaim buffers from the page.
So remove grabbing of buffer references which also makes
buffer_migrate_page_norefs() succeed.
Link: http://lkml.kernel.org/r/20190116131217.7226-1-jack@suse.cz
Fixes: 89cb0888ca "mm: migrate: provide buffer_migrate_page_norefs()"
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb needs the same fix as faultin_nopage (which was applied in
commit 96312e6128 ("mm/gup.c: teach get_user_pages_unlocked to handle
FOLL_NOWAIT")) or KVM hangs because it thinks the mmap_sem was already
released by hugetlb_fault() if it returned VM_FAULT_RETRY, but it wasn't
in the FOLL_NOWAIT case.
Link: http://lkml.kernel.org/r/20190109020203.26669-2-aarcange@redhat.com
Fixes: ce53053ce3 ("kvm: switch get_user_page_nowait() to get_user_pages_unlocked()")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Reported-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_migrate_range() takes a memory range and tries to isolate the pages
to put them into a list. This list will be later on used in
migrate_pages() to know the pages we need to migrate.
Currently, if we fail to isolate a single page, we put all already
isolated pages back to their LRU and we bail out from the function.
This is quite suboptimal, as this will force us to start over again
because scan_movable_pages will give us the same range. If there is no
chance that we can isolate that page, we will loop here forever.
Issue debugged in [1] has proved that. During the debugging of that
issue, it was noticed that if do_migrate_ranges() fails to isolate a
single page, we will just discard the work we have done so far and bail
out, which means that scan_movable_pages() will find again the same set
of pages.
Instead, we can just skip the error, keep isolating as much pages as
possible and then proceed with the call to migrate_pages().
This will allow us to do as much work as possible at once.
[1] https://lkml.org/lkml/2018/12/6/324
Michal said:
: I still think that this doesn't give us a whole picture. Looping for
: ever is a bug. Failing the isolation is quite possible and it should
: be a ephemeral condition (e.g. a race with freeing the page or
: somebody else isolating the page for whatever reason). And here comes
: the disadvantage of the current implementation. We simply throw
: everything on the floor just because of a ephemeral condition. The
: racy page_count check is quite dubious to prevent from that.
Link: http://lkml.kernel.org/r/20181211135312.27034-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 2830bf6f05.
The underlying assumption that one sparse section belongs into a single
numa node doesn't hold really. Robert Shteynfeld has reported a boot
failure. The boot log was not captured but his memory layout is as
follows:
Early memory node ranges
node 1: [mem 0x0000000000001000-0x0000000000090fff]
node 1: [mem 0x0000000000100000-0x00000000dbdf8fff]
node 1: [mem 0x0000000100000000-0x0000001423ffffff]
node 0: [mem 0x0000001424000000-0x0000002023ffffff]
This means that node0 starts in the middle of a memory section which is
also in node1. memmap_init_zone tries to initialize padding of a
section even when it is outside of the given pfn range because there are
code paths (e.g. memory hotplug) which assume that the full worth of
memory section is always initialized.
In this particular case, though, such a range is already intialized and
most likely already managed by the page allocator. Scribbling over
those pages corrupts the internal state and likely blows up when any of
those pages gets used.
Reported-by: Robert Shteynfeld <robert.shteynfeld@gmail.com>
Fixes: 2830bf6f05 ("mm, memory_hotplug: initialize struct pages for the full memory section")
Cc: stable@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlxLdgsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoVGD/4sGYQqfiXogQIJYbPH2RRPrJuLIIITjiAv
lPXX1wx/tvz/ktwKJE2OiWTES0JjdH1HlC+7/0L/fLb8DXiKBmFuUHlwhureoL9Y
o//BIQKuaje35kyHITTy2UAJOOqnNtJTaAP2AfkL+eOcj/V/G5rJIfLGs9QtuAR7
sRJ+uhg1EbW/+uO0bULDmG6WUjxFu8mqcw3i6g0VVLVOnXB2EKcZTl3KPrdAXrUp
XtmouERga6OfAUSJyZmTSV136mL+opRB2WFFVeIzjQfLmyItDGbSX/YPS8oJ2pow
v7630F+CMrd4aKpqqtnAhfWpGqd0Xw7cYfZ9MKTJmZPmGzf9a1fQFpmgZosD4Dh3
7MrhboU4TUt9PdXESA7CmE7LkTp99ghfj5/ysKrSV5h3HsH2RbLxJk91Rx3vmAWD
u1xWRYL+GYLH6ZwOLvM1iqBrrLN3mUyrx98SaMgoXuqNzmQmgz9LPeA0Gt09FJbo
uj+ebg4dRwuThjni4xQhl3zL2RQy7nlTDFDdKOz/XoiYk2NUVksss+sxGjNarHj0
b5pCD4HOp57OreGExaOARpBRah5HSNdQtBRsIOnbyEq6f/e1LsIY23Z9nNF0deGO
sZzgsbnsn+zg8bC6T/Gk4UY6XdCcgaS3SL04SVKAE3lO6A4C/Awo8DgD9Bl1zpC1
HQlNkl5fBg==
=iucY
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20190125' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"A collection of fixes for this release. This contains:
- Silence sparse rightfully complaining about non-static wbt
functions (Bart)
- Fixes for the zoned comments/ioctl documentation (Damien)
- direct-io fix that's been lingering for a while (Ernesto)
- cgroup writeback fix (Tejun)
- Set of NVMe patches for nvme-rdma/tcp (Sagi, Hannes, Raju)
- Block recursion tracking fix (Ming)
- Fix debugfs command flag naming for a few flags (Jianchao)"
* tag 'for-linus-20190125' of git://git.kernel.dk/linux-block:
block: Fix comment typo
uapi: fix ioctl documentation
blk-wbt: Declare local functions static
blk-mq: fix the cmd_flag_name array
nvme-multipath: drop optimization for static ANA group IDs
nvmet-rdma: fix null dereference under heavy load
nvme-rdma: rework queue maps handling
nvme-tcp: fix timeout handler
nvme-rdma: fix timeout handler
writeback: synchronize sync(2) against cgroup writeback membership switches
block: cover another queue enter recursion via BIO_QUEUE_ENTERED
direct-io: allow direct writes to empty inodes
This reverts commit 574823bfab.
It turns out that my hope that we could just remove the code that
exposes the cache residency status from mincore() was too optimistic.
There are various random users that want it, and one example would be
the Netflix database cluster maintenance. To quote Josh Snyder:
"For Netflix, losing accurate information from the mincore syscall
would lengthen database cluster maintenance operations from days to
months. We rely on cross-process mincore to migrate the contents of a
page cache from machine to machine, and across reboots.
To do this, I wrote and maintain happycache [1], a page cache
dumper/loader tool. It is quite similar in architecture to pgfincore,
except that it is agnostic to workload. The gist of happycache's
operation is "produce a dump of residence status for each page, do
some operation, then reload exactly the same pages which were present
before." happycache is entirely dependent on accurate reporting of the
in-core status of file-backed pages, as accessed by another process.
We primarily use happycache with Cassandra, which (like Postgres +
pgfincore) relies heavily on OS page cache to reduce disk accesses.
Because our workloads never experience a cold page cache, we are able
to provision hardware for a peak utilization level that is far lower
than the hypothetical "every query is a cache miss" peak.
A database warmed by happycache can be ready for service in seconds
(bounded only by the performance of the drives and the I/O subsystem),
with no period of in-service degradation. By contrast, putting a
database in service without a page cache entails a potentially
unbounded period of degradation (at Netflix, the time to populate a
single node's cache via natural cache misses varies by workload from
hours to weeks). If a single node upgrade were to take weeks, then
upgrading an entire cluster would take months. Since we want to apply
security upgrades (and other things) on a somewhat tighter schedule,
we would have to develop more complex solutions to provide the same
functionality already provided by mincore.
At the bottom line, happycache is designed to benignly exploit the
same information leak documented in the paper [2]. I think it makes
perfect sense to remove cross-process mincore functionality from
unprivileged users, but not to remove it entirely"
We do have an alternate approach that limits the cache residency
reporting only to processes that have write permissions to the file, so
we can fix the original information leak issue that way. It involves
_adding_ code rather than removing it, which is sad, but hey, at least
we haven't found any users that would find the restrictions
unacceptable.
So revert the optimistic first approach to make room for that alternate
fix instead.
Reported-by: Josh Snyder <joshs@netflix.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daniel Gruss <daniel@gruss.cc>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sync_inodes_sb() can race against cgwb (cgroup writeback) membership
switches and fail to writeback some inodes. For example, if an inode
switches to another wb while sync_inodes_sb() is in progress, the new
wb might not be visible to bdi_split_work_to_wbs() at all or the inode
might jump from a wb which hasn't issued writebacks yet to one which
already has.
This patch adds backing_dev_info->wb_switch_rwsem to synchronize cgwb
switch path against sync_inodes_sb() so that sync_inodes_sb() is
guaranteed to see all the target wbs and inodes can't jump wbs to
escape syncing.
v2: Fixed misplaced rwsem init. Spotted by Jiufei.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jiufei Xue <xuejiufei@gmail.com>
Link: http://lkml.kernel.org/r/dc694ae2-f07f-61e1-7097-7c8411cee12d@gmail.com
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The conversion to use a structure for mmu_notifier_invalidate_range_*()
unintentionally changed the usage in try_to_unmap_one() to init the
'struct mmu_notifier_range' with vma->vm_start instead of @address,
i.e. it invalidates the wrong address range. Revert to the correct
address range.
Manifests as KVM use-after-free WARNINGs and subsequent "BUG: Bad page
state in process X" errors when reclaiming from a KVM guest due to KVM
removing the wrong pages from its own mappings.
Reported-by: leozinho29_eu@hotmail.com
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-and-tested-by: Adam Borowski <kilobyte@angband.pl>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Pankaj gupta <pagupta@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: ac46d4f3c4 ("mm/mmu_notifier: use structure for invalidate_range_start/end calls v2")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
syzbot reported the following regression in the latest merge window and
it was confirmed by Qian Cai that a similar bug was visible from a
different context.
======================================================
WARNING: possible circular locking dependency detected
4.20.0+ #297 Not tainted
------------------------------------------------------
syz-executor0/8529 is trying to acquire lock:
000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
__wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
but task is already holding lock:
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
include/linux/spinlock.h:329 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
mm/page_alloc.c:2548 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
mm/page_alloc.c:3021 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
mm/page_alloc.c:3050 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
mm/page_alloc.c:3072 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
It appears to be a false positive in that the only way the lock ordering
should be inverted is if kswapd is waking itself and the wakeup
allocates debugging objects which should already be allocated if it's
kswapd doing the waking. Nevertheless, the possibility exists and so
it's best to avoid the problem.
This patch flags a zone as needing a kswapd using the, surprisingly,
unused zone flag field. The flag is read without the lock held to do
the wakeup. It's possible that the flag setting context is not the same
as the flag clearing context or for small races to occur. However, each
race possibility is harmless and there is no visible degredation in
fragmentation treatment.
While zone->flag could have continued to be unused, there is potential
for moving some existing fields into the flags field instead.
Particularly read-mostly ones like zone->initialized and
zone->contiguous.
Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts b43a999005
The reverted commit caused issues with migration and poisoning of anon
huge pages. The LTP move_pages12 test will cause an "unable to handle
kernel NULL pointer" BUG would occur with stack similar to:
RIP: 0010:down_write+0x1b/0x40
Call Trace:
migrate_pages+0x81f/0xb90
__ia32_compat_sys_migrate_pages+0x190/0x190
do_move_pages_to_node.isra.53.part.54+0x2a/0x50
kernel_move_pages+0x566/0x7b0
__x64_sys_move_pages+0x24/0x30
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The purpose of the reverted patch was to fix some long existing races
with huge pmd sharing. It used i_mmap_rwsem for this purpose with the
idea that this could also be used to address truncate/page fault races
with another patch. Further analysis has determined that i_mmap_rwsem
can not be used to address all these hugetlbfs synchronization issues.
Therefore, revert this patch while working an another approach to the
underlying issues.
Link: http://lkml.kernel.org/r/20190103235452.29335-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts c86aa7bbfd
The reverted commit caused ABBA deadlocks when file migration raced with
file eviction for specific hugetlbfs files. This was discovered with a
modified version of the LTP move_pages12 test.
The purpose of the reverted patch was to close a long existing race
between hugetlbfs file truncation and page faults. After more analysis
of the patch and impacted code, it was determined that i_mmap_rwsem can
not be used for all required synchronization. Therefore, revert this
patch while working an another approach to the underlying issue.
Link: http://lkml.kernel.org/r/20190103235452.29335-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP proc01 testcase has been observed to rarely trigger crashes
on arm64:
page_mapped+0x78/0xb4
stable_page_flags+0x27c/0x338
kpageflags_read+0xfc/0x164
proc_reg_read+0x7c/0xb8
__vfs_read+0x58/0x178
vfs_read+0x90/0x14c
SyS_read+0x60/0xc0
The issue is that page_mapped() assumes that if compound page is not
huge, then it must be THP. But if this is 'normal' compound page
(COMPOUND_PAGE_DTOR), then following loop can keep running (for
HPAGE_PMD_NR iterations) until it tries to read from memory that isn't
mapped and triggers a panic:
for (i = 0; i < hpage_nr_pages(page); i++) {
if (atomic_read(&page[i]._mapcount) >= 0)
return true;
}
I could replicate this on x86 (v4.20-rc4-98-g60b548237fed) only
with a custom kernel module [1] which:
- allocates compound page (PAGEC) of order 1
- allocates 2 normal pages (COPY), which are initialized to 0xff (to
satisfy _mapcount >= 0)
- 2 PAGEC page structs are copied to address of first COPY page
- second page of COPY is marked as not present
- call to page_mapped(COPY) now triggers fault on access to 2nd COPY
page at offset 0x30 (_mapcount)
[1] https://github.com/jstancek/reproducers/blob/master/kernel/page_mapped_crash/repro.c
Fix the loop to iterate for "1 << compound_order" pages.
Kirrill said "IIRC, sound subsystem can producuce custom mapped compound
pages".
Link: http://lkml.kernel.org/r/c440d69879e34209feba21e12d236d06bc0a25db.1543577156.git.jstancek@redhat.com
Fixes: e1534ae950 ("mm: differentiate page_mapped() from page_mapcount() for compound pages")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Debugged-by: Laszlo Ersek <lersek@redhat.com>
Suggested-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the paths in follow_pte_pmd() initialised the mmu_notifier_range
incorrectly.
Link: http://lkml.kernel.org/r/20190103002126.GM6310@bombadil.infradead.org
Fixes: ac46d4f3c4 ("mm/mmu_notifier: use structure for invalidate_range_start/end calls v2")
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now tag-based KASAN can retag the memory that is reallocated via
krealloc and return a differently tagged pointer even if the same slab
object gets used and no reallocated technically happens.
There are a few issues with this approach. One is that krealloc callers
can't rely on comparing the return value with the passed argument to
check whether reallocation happened. Another is that if a caller knows
that no reallocation happened, that it can access object memory through
the old pointer, which leads to false positives. Look at
nf_ct_ext_add() to see an example.
Fix this by keeping the same tag if the memory don't actually gets
reallocated during krealloc.
Link: http://lkml.kernel.org/r/bb2a71d17ed072bcc528cbee46fcbd71a6da3be4.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_HARDENED_USERCOPY enabled __check_heap_object() compares and
then subtracts a potentially tagged pointer with a non-tagged address of
the page that this pointer belongs to, which leads to unexpected
behavior.
Untag the pointer in __check_heap_object() before doing any of these
operations.
Link: http://lkml.kernel.org/r/7e756a298d514c4482f52aea6151db34818d395d.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of changing cache->align to be aligned to KASAN_SHADOW_SCALE_SIZE
in kasan_cache_create() we can reuse the ARCH_SLAB_MINALIGN macro.
Link: http://lkml.kernel.org/r/52ddd881916bcc153a9924c154daacde78522227.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Suggested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Liu Bo has experienced a deadlock between memcg (legacy) reclaim and the
ext4 writeback
task1:
wait_on_page_bit+0x82/0xa0
shrink_page_list+0x907/0x960
shrink_inactive_list+0x2c7/0x680
shrink_node_memcg+0x404/0x830
shrink_node+0xd8/0x300
do_try_to_free_pages+0x10d/0x330
try_to_free_mem_cgroup_pages+0xd5/0x1b0
try_charge+0x14d/0x720
memcg_kmem_charge_memcg+0x3c/0xa0
memcg_kmem_charge+0x7e/0xd0
__alloc_pages_nodemask+0x178/0x260
alloc_pages_current+0x95/0x140
pte_alloc_one+0x17/0x40
__pte_alloc+0x1e/0x110
alloc_set_pte+0x5fe/0xc20
do_fault+0x103/0x970
handle_mm_fault+0x61e/0xd10
__do_page_fault+0x252/0x4d0
do_page_fault+0x30/0x80
page_fault+0x28/0x30
task2:
__lock_page+0x86/0xa0
mpage_prepare_extent_to_map+0x2e7/0x310 [ext4]
ext4_writepages+0x479/0xd60
do_writepages+0x1e/0x30
__writeback_single_inode+0x45/0x320
writeback_sb_inodes+0x272/0x600
__writeback_inodes_wb+0x92/0xc0
wb_writeback+0x268/0x300
wb_workfn+0xb4/0x390
process_one_work+0x189/0x420
worker_thread+0x4e/0x4b0
kthread+0xe6/0x100
ret_from_fork+0x41/0x50
He adds
"task1 is waiting for the PageWriteback bit of the page that task2 has
collected in mpd->io_submit->io_bio, and tasks2 is waiting for the
LOCKED bit the page which tasks1 has locked"
More precisely task1 is handling a page fault and it has a page locked
while it charges a new page table to a memcg. That in turn hits a
memory limit reclaim and the memcg reclaim for legacy controller is
waiting on the writeback but that is never going to finish because the
writeback itself is waiting for the page locked in the #PF path. So
this is essentially ABBA deadlock:
lock_page(A)
SetPageWriteback(A)
unlock_page(A)
lock_page(B)
lock_page(B)
pte_alloc_pne
shrink_page_list
wait_on_page_writeback(A)
SetPageWriteback(B)
unlock_page(B)
# flush A, B to clear the writeback
This accumulating of more pages to flush is used by several filesystems
to generate a more optimal IO patterns.
Waiting for the writeback in legacy memcg controller is a workaround for
pre-mature OOM killer invocations because there is no dirty IO
throttling available for the controller. There is no easy way around
that unfortunately. Therefore fix this specific issue by pre-allocating
the page table outside of the page lock. We have that handy
infrastructure for that already so simply reuse the fault-around pattern
which already does this.
There are probably other hidden __GFP_ACCOUNT | GFP_KERNEL allocations
from under a fs page locked but they should be really rare. I am not
aware of a better solution unfortunately.
[akpm@linux-foundation.org: fix mm/memory.c:__do_fault()]
[akpm@linux-foundation.org: coding-style fixes]
[mhocko@kernel.org: enhance comment, per Johannes]
Link: http://lkml.kernel.org/r/20181214084948.GA5624@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20181213092221.27270-1-mhocko@kernel.org
Fixes: c3b94f44fc ("memcg: further prevent OOM with too many dirty pages")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Liu Bo <bo.liu@linux.alibaba.com>
Debugged-by: Liu Bo <bo.liu@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is easy to trigger this with CONFIG_HARDENED_USERCOPY_PAGESPAN=y,
usercopy: Kernel memory overwrite attempt detected to spans multiple pages (offset 0, size 23)!
kernel BUG at mm/usercopy.c:102!
For example,
print_worker_info
char name[WQ_NAME_LEN] = { };
char desc[WORKER_DESC_LEN] = { };
probe_kernel_read(name, wq->name, sizeof(name) - 1);
probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
__copy_from_user_inatomic
check_object_size
check_heap_object
check_page_span
This is because on-stack variables could cross PAGE_SIZE boundary, and
failed this check,
if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) ==
((unsigned long)end & (unsigned long)PAGE_MASK)))
ptr = FFFF889007D7EFF8
end = FFFF889007D7F00E
Hence, fix it by checking if it is a stack object first.
[keescook@chromium.org: improve comments after reorder]
Link: http://lkml.kernel.org/r/20190103165151.GA32845@beast
Link: http://lkml.kernel.org/r/20181231030254.99441-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of __alloc_alien() check for NULL. We must do the same check in
__alloc_alien_cache to avoid NULL pointer dereferences on allocation
failures.
Link: http://lkml.kernel.org/r/010001680f42f192-82b4e12e-1565-4ee0-ae1f-1e98974906aa-000000@email.amazonses.com
Fixes: 49dfc304ba ("slab: use the lock on alien_cache, instead of the lock on array_cache")
Fixes: c8522a3a58 ("Slab: introduce alloc_alien")
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: syzbot+d6ed4ec679652b4fd4e4@syzkaller.appspotmail.com
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The semantics of what "in core" means for the mincore() system call are
somewhat unclear, but Linux has always (since 2.3.52, which is when
mincore() was initially done) treated it as "page is available in page
cache" rather than "page is mapped in the mapping".
The problem with that traditional semantic is that it exposes a lot of
system cache state that it really probably shouldn't, and that users
shouldn't really even care about.
So let's try to avoid that information leak by simply changing the
semantics to be that mincore() counts actual mapped pages, not pages
that might be cheaply mapped if they were faulted (note the "might be"
part of the old semantics: being in the cache doesn't actually guarantee
that you can access them without IO anyway, since things like network
filesystems may have to revalidate the cache before use).
In many ways the old semantics were somewhat insane even aside from the
information leak issue. From the very beginning (and that beginning is
a long time ago: 2.3.52 was released in March 2000, I think), the code
had a comment saying
Later we can get more picky about what "in core" means precisely.
and this is that "later". Admittedly it is much later than is really
comfortable.
NOTE! This is a real semantic change, and it is for example known to
change the output of "fincore", since that program literally does a
mmmap without populating it, and then doing "mincore()" on that mapping
that doesn't actually have any pages in it.
I'm hoping that nobody actually has any workflow that cares, and the
info leak is real.
We may have to do something different if it turns out that people have
valid reasons to want the old semantics, and if we can limit the
information leak sanely.
Cc: Kevin Easton <kevin@guarana.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Masatake YAMATO <yamato@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
- procfs updates
- various misc bits
- lib/ updates
- epoll updates
- autofs
- fatfs
- a few more MM bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits)
mm/page_io.c: fix polled swap page in
checkpatch: add Co-developed-by to signature tags
docs: fix Co-Developed-by docs
drivers/base/platform.c: kmemleak ignore a known leak
fs: don't open code lru_to_page()
fs/: remove caller signal_pending branch predictions
mm/: remove caller signal_pending branch predictions
arch/arc/mm/fault.c: remove caller signal_pending_branch predictions
kernel/sched/: remove caller signal_pending branch predictions
kernel/locking/mutex.c: remove caller signal_pending branch predictions
mm: select HAVE_MOVE_PMD on x86 for faster mremap
mm: speed up mremap by 20x on large regions
mm: treewide: remove unused address argument from pte_alloc functions
initramfs: cleanup incomplete rootfs
scripts/gdb: fix lx-version string output
kernel/kcov.c: mark write_comp_data() as notrace
kernel/sysctl: add panic_print into sysctl
panic: add options to print system info when panic happens
bfs: extra sanity checking and static inode bitmap
exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
...
swap_readpage() wants to do polling to bring in pages if asked to, but
it doesn't mark the bio as being polled. Additionally, the looping
around the blk_poll() check isn't correct - if we get a zero return, we
should call io_schedule(), we can't just assume that the bio has
completed. The regular bio->bi_private check should be used for that.
Link: http://lkml.kernel.org/r/e15243a8-2cdf-c32c-ecee-f289377c8ef9@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Multiple filesystems open code lru_to_page(). Rectify this by moving
the macro from mm_inline (which is specific to lru stuff) to the more
generic mm.h header and start using the macro where appropriate.
No functional changes.
Link: http://lkml.kernel.org/r/20181129104810.23361-1-nborisov@suse.com
Link: https://lkml.kernel.org/r/20181129075301.29087-1-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Pankaj gupta <pagupta@redhat.com>
Acked-by: "Yan, Zheng" <zyan@redhat.com> [ceph]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is already done for us internally by the signal machinery.
Link: http://lkml.kernel.org/r/20181116002713.8474-5-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android needs to mremap large regions of memory during memory management
related operations. The mremap system call can be really slow if THP is
not enabled. The bottleneck is move_page_tables, which is copying each
pte at a time, and can be really slow across a large map. Turning on
THP may not be a viable option, and is not for us. This patch speeds up
the performance for non-THP system by copying at the PMD level when
possible.
The speedup is an order of magnitude on x86 (~20x). On a 1GB mremap,
the mremap completion times drops from 3.4-3.6 milliseconds to 144-160
microseconds.
Before:
Total mremap time for 1GB data: 3521942 nanoseconds.
Total mremap time for 1GB data: 3449229 nanoseconds.
Total mremap time for 1GB data: 3488230 nanoseconds.
After:
Total mremap time for 1GB data: 150279 nanoseconds.
Total mremap time for 1GB data: 144665 nanoseconds.
Total mremap time for 1GB data: 158708 nanoseconds.
If THP is enabled the optimization is mostly skipped except in certain
situations.
[joel@joelfernandes.org: fix 'move_normal_pmd' unused function warning]
Link: http://lkml.kernel.org/r/20181108224457.GB209347@google.com
Link: http://lkml.kernel.org/r/20181108181201.88826-3-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add support for fast mremap".
This series speeds up the mremap(2) syscall by copying page tables at
the PMD level even for non-THP systems. There is concern that the extra
'address' argument that mremap passes to pte_alloc may do something
subtle architecture related in the future that may make the scheme not
work. Also we find that there is no point in passing the 'address' to
pte_alloc since its unused. This patch therefore removes this argument
tree-wide resulting in a nice negative diff as well. Also ensuring
along the way that the enabled architectures do not do anything funky
with the 'address' argument that goes unnoticed by the optimization.
Build and boot tested on x86-64. Build tested on arm64. The config
enablement patch for arm64 will be posted in the future after more
testing.
The changes were obtained by applying the following Coccinelle script.
(thanks Julia for answering all Coccinelle questions!).
Following fix ups were done manually:
* Removal of address argument from pte_fragment_alloc
* Removal of pte_alloc_one_fast definitions from m68k and microblaze.
// Options: --include-headers --no-includes
// Note: I split the 'identifier fn' line, so if you are manually
// running it, please unsplit it so it runs for you.
virtual patch
@pte_alloc_func_def depends on patch exists@
identifier E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
type T2;
@@
fn(...
- , T2 E2
)
{ ... }
@pte_alloc_func_proto_noarg depends on patch exists@
type T1, T2, T3, T4;
identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1, T2);
+ T3 fn(T1);
|
- T3 fn(T1, T2, T4);
+ T3 fn(T1, T2);
)
@pte_alloc_func_proto depends on patch exists@
identifier E1, E2, E4;
type T1, T2, T3, T4;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1 E1, T2 E2);
+ T3 fn(T1 E1);
|
- T3 fn(T1 E1, T2 E2, T4 E4);
+ T3 fn(T1 E1, T2 E2);
)
@pte_alloc_func_call depends on patch exists@
expression E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
fn(...
-, E2
)
@pte_alloc_macro depends on patch exists@
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
identifier a, b, c;
expression e;
position p;
@@
(
- #define fn(a, b, c) e
+ #define fn(a, b) e
|
- #define fn(a, b) e
+ #define fn(a) e
)
Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This mostly reverts commit 849a370016 ("block: avoid ordered task
state change for polled IO"). It was wrongly claiming that the ordering
wasn't necessary. The memory barrier _is_ necessary.
If something is truly polling and not going to sleep, it's the whole
state setting that is unnecessary, not the memory barrier. Whenever you
set your state to a sleeping state, you absolutely need the memory
barrier.
Note that sometimes the memory barrier can be elsewhere. For example,
the ordering might be provided by an external lock, or by setting the
process state to sleeping before adding yourself to the wait queue list
that is used for waking up (where the wait queue lock itself will
guarantee that any wakeup will correctly see the sleeping state).
But none of those cases were true here.
NOTE! Some of the polling paths may indeed be able to drop the state
setting entirely, at which point the memory barrier also goes away.
(Also note that this doesn't revert the TASK_RUNNING cases: there is no
race between a wakeup and setting the process state to TASK_RUNNING,
since the end result doesn't depend on ordering).
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
document on perf security, more Italian translations, more
improvements to the memory-management docs, improvements to the
pathname lookup documentation, and the usual array of smaller
fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
=vtwu
-----END PGP SIGNATURE-----
Merge tag 'docs-5.0' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"A fairly normal cycle for documentation stuff. We have a new document
on perf security, more Italian translations, more improvements to the
memory-management docs, improvements to the pathname lookup
documentation, and the usual array of smaller fixes.
As is often the case, there are a few reaches outside of
Documentation/ to adjust kerneldoc comments"
* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
docs: improve pathname-lookup document structure
configfs: fix wrong name of struct in documentation
docs/mm-api: link slab_common.c to "The Slab Cache" section
slab: make kmem_cache_create{_usercopy} description proper kernel-doc
doc:process: add links where missing
docs/core-api: make mm-api.rst more structured
x86, boot: documentation whitespace fixup
Documentation: devres: note checking needs when converting
doc🇮🇹 add some process/* translations
doc🇮🇹 fixes in process/1.Intro
Documentation: convert path-lookup from markdown to resturctured text
Documentation/admin-guide: update admin-guide index.rst
Documentation/admin-guide: introduce perf-security.rst file
scripts/kernel-doc: Fix struct and struct field attribute processing
Documentation: dev-tools: Fix typos in index.rst
Correct gen_init_cpio tool's documentation
Document /proc/pid PID reuse behavior
Documentation: update path-lookup.md for parallel lookups
Documentation: Use "while" instead of "whilst"
dmaengine: Add mailing list address to the documentation
...
Pull percpu update from Dennis Zhou:
"Michael Cree noted generic UP Alpha has been broken since v3.18. This
is a small fix for locking in UP percpu code that fixes the issue"
* 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: convert spin_lock_irq to spin_lock_irqsave.
Merge misc updates from Andrew Morton:
- large KASAN update to use arm's "software tag-based mode"
- a few misc things
- sh updates
- ocfs2 updates
- just about all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (167 commits)
kernel/fork.c: mark 'stack_vm_area' with __maybe_unused
memcg, oom: notify on oom killer invocation from the charge path
mm, swap: fix swapoff with KSM pages
include/linux/gfp.h: fix typo
mm/hmm: fix memremap.h, move dev_page_fault_t callback to hmm
hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
memory_hotplug: add missing newlines to debugging output
mm: remove __hugepage_set_anon_rmap()
include/linux/vmstat.h: remove unused page state adjustment macro
mm/page_alloc.c: allow error injection
mm: migrate: drop unused argument of migrate_page_move_mapping()
blkdev: avoid migration stalls for blkdev pages
mm: migrate: provide buffer_migrate_page_norefs()
mm: migrate: move migrate_page_lock_buffers()
mm: migrate: lock buffers before migrate_page_move_mapping()
mm: migration: factor out code to compute expected number of page references
mm, page_alloc: enable pcpu_drain with zone capability
kmemleak: add config to select auto scan
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlwb7R8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjiID/97oDjMhNT7rwpuMbHw855h62j1hEN/m+N3
FI0uxivYoYZLD+eJRnMcBwHlKjrCX8iJQAcv9ffI3ThtFW7dnZT3atUacaZVR/Dt
IrxdymdBP3qsmuaId5NYBug7rJ+AiqFJKjEvCcSPu5X397J4I3SEbzhfvYLJ/aZX
16o0HJlVVIrcbmq1IP4HwiIIOaKXvPaw04L4z4fpeynRSWG7EAi8NLSnhlR4Rxbb
BTiMkCTsjRCFdyO6da4fvNQKWmPGPa3bJkYy3qR99cvJCeIbQjRyCloQlWNJRRgi
3eJpCHVxqFmN0/+DNTJVQEEr4H8o0AVucrLVct1Jc4pessenkpoUniP8vELqwlng
Z2VHLkhTfCEmvFlk82grrYdNvGATRsrbswt/PlP4T7rBfr1IpDk8kXDWF59EL2dy
ly35Sk3wJGHBl8qa+vEPXOAnaWdqJXuVGpwB4ifOIatOls8mOxwfZjiRc7x05/fC
1O4rR2IfLwRqwoYHs0AJ+h6ohOSn1mkGezl2Tch1VSFcJUOHmuYvraTaUi6hblpA
SslaAoEhO39hRBL0HsvsMeqVWM9uzqvFkLDCfNPdiA81H1258CIbo4vF8z6czCIS
eeXnTJxVhPVbZgb3a1a93SPwM6KIDZFoIijyd+NqjpU94thlnhYD0QEcKJIKH7os
2p4aHs6ktw==
=TRdW
-----END PGP SIGNATURE-----
Merge tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main pull request for block/storage for 4.21.
Larger than usual, it was a busy round with lots of goodies queued up.
Most notable is the removal of the old IO stack, which has been a long
time coming. No new features for a while, everything coming in this
week has all been fixes for things that were previously merged.
This contains:
- Use atomic counters instead of semaphores for mtip32xx (Arnd)
- Cleanup of the mtip32xx request setup (Christoph)
- Fix for circular locking dependency in loop (Jan, Tetsuo)
- bcache (Coly, Guoju, Shenghui)
* Optimizations for writeback caching
* Various fixes and improvements
- nvme (Chaitanya, Christoph, Sagi, Jay, me, Keith)
* host and target support for NVMe over TCP
* Error log page support
* Support for separate read/write/poll queues
* Much improved polling
* discard OOM fallback
* Tracepoint improvements
- lightnvm (Hans, Hua, Igor, Matias, Javier)
* Igor added packed metadata to pblk. Now drives without metadata
per LBA can be used as well.
* Fix from Geert on uninitialized value on chunk metadata reads.
* Fixes from Hans and Javier to pblk recovery and write path.
* Fix from Hua Su to fix a race condition in the pblk recovery
code.
* Scan optimization added to pblk recovery from Zhoujie.
* Small geometry cleanup from me.
- Conversion of the last few drivers that used the legacy path to
blk-mq (me)
- Removal of legacy IO path in SCSI (me, Christoph)
- Removal of legacy IO stack and schedulers (me)
- Support for much better polling, now without interrupts at all.
blk-mq adds support for multiple queue maps, which enables us to
have a map per type. This in turn enables nvme to have separate
completion queues for polling, which can then be interrupt-less.
Also means we're ready for async polled IO, which is hopefully
coming in the next release.
- Killing of (now) unused block exports (Christoph)
- Unification of the blk-rq-qos and blk-wbt wait handling (Josef)
- Support for zoned testing with null_blk (Masato)
- sx8 conversion to per-host tag sets (Christoph)
- IO priority improvements (Damien)
- mq-deadline zoned fix (Damien)
- Ref count blkcg series (Dennis)
- Lots of blk-mq improvements and speedups (me)
- sbitmap scalability improvements (me)
- Make core inflight IO accounting per-cpu (Mikulas)
- Export timeout setting in sysfs (Weiping)
- Cleanup the direct issue path (Jianchao)
- Export blk-wbt internals in block debugfs for easier debugging
(Ming)
- Lots of other fixes and improvements"
* tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block: (364 commits)
kyber: use sbitmap add_wait_queue/list_del wait helpers
sbitmap: add helpers for add/del wait queue handling
block: save irq state in blkg_lookup_create()
dm: don't reuse bio for flushes
nvme-pci: trace SQ status on completions
nvme-rdma: implement polling queue map
nvme-fabrics: allow user to pass in nr_poll_queues
nvme-fabrics: allow nvmf_connect_io_queue to poll
nvme-core: optionally poll sync commands
block: make request_to_qc_t public
nvme-tcp: fix spelling mistake "attepmpt" -> "attempt"
nvme-tcp: fix endianess annotations
nvmet-tcp: fix endianess annotations
nvme-pci: refactor nvme_poll_irqdisable to make sparse happy
nvme-pci: only set nr_maps to 2 if poll queues are supported
nvmet: use a macro for default error location
nvmet: fix comparison of a u16 with -1
blk-mq: enable IO poll if .nr_queues of type poll > 0
blk-mq: change blk_mq_queue_busy() to blk_mq_queue_inflight()
blk-mq: skip zero-queue maps in blk_mq_map_swqueue
...
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM pages may be mapped to the multiple VMAs that cannot be reached from
one anon_vma. So during swapin, a new copy of the page need to be
generated if a different anon_vma is needed, please refer to comments of
ksm_might_need_to_copy() for details.
During swapoff, unuse_vma() uses anon_vma (if available) to locate VMA and
virtual address mapped to the page, so not all mappings to a swapped out
KSM page could be found. So in try_to_unuse(), even if the swap count of
a swap entry isn't zero, the page needs to be deleted from swap cache, so
that, in the next round a new page could be allocated and swapin for the
other mappings of the swapped out KSM page.
But this contradicts with the THP swap support. Where the THP could be
deleted from swap cache only after the swap count of every swap entry in
the huge swap cluster backing the THP has reach 0. So try_to_unuse() is
changed in commit e07098294a ("mm, THP, swap: support to reclaim swap
space for THP swapped out") to check that before delete a page from swap
cache, but this has broken KSM swapoff too.
Fortunately, KSM is for the normal pages only, so the original behavior
for KSM pages could be restored easily via checking PageTransCompound().
That is how this patch works.
The bug is introduced by e07098294a ("mm, THP, swap: support to reclaim
swap space for THP swapped out"), which is merged by v4.14-rc1. So I
think we should backport the fix to from 4.14 on. But Hugh thinks it may
be rare for the KSM pages being in the swap device when swapoff, so nobody
reports the bug so far.
Link: http://lkml.kernel.org/r/20181226051522.28442-1-ying.huang@intel.com
Fixes: e07098294a ("mm, THP, swap: support to reclaim swap space for THP swapped out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kbuild robot reported the following on a development branch that used
memremap.h in a new path:
In file included from arch/m68k/include/asm/pgtable_mm.h:148:0,
from arch/m68k/include/asm/pgtable.h:5,
from include/linux/memremap.h:7,
from drivers//dax/bus.c:3:
arch/m68k/include/asm/motorola_pgtable.h: In function 'pgd_offset':
>> arch/m68k/include/asm/motorola_pgtable.h:199:11: error: dereferencing pointer to incomplete type 'const struct mm_struct'
return mm->pgd + pgd_index(address);
^~
The ->page_fault() callback is specific to HMM. Move it to 'struct
hmm_devmem' where the unusual asm/pgtable.h dependency can be contained in
include/linux/hmm.h. Longer term refactoring this dependency out of HMM
is recommended, but in the meantime memremap.h remains generic.
Link: http://lkml.kernel.org/r/154534090899.3120190.6652620807617715272.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 5042db43cc ("mm/ZONE_DEVICE: new type of ZONE_DEVICE memory...")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race. One obvious omission in the
current code is removing a page newly added to the page cache. This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations. To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out. There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv. Backing out a reservation may
require memory allocation which could fail so that needs to be taken into
account as well.
Instead of writing the required complicated code for this rare occurrence,
just eliminate the race. i_mmap_rwsem is now held in read mode for the
duration of page fault processing. Hold i_mmap_rwsem longer in truncation
and hold punch code to cover the call to remove_inode_hugepages.
With this modification, code in remove_inode_hugepages checking for races
becomes 'dead' as it can not longer happen. Remove the dead code and
expand comments to explain reasoning. Similarly, checks for races with
truncation in the page fault path can be simplified and removed.
[mike.kravetz@oracle.com: incorporat suggestions from Kirill]
Link: http://lkml.kernel.org/r/20181222223013.22193-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20181218223557.5202-3-mike.kravetz@oracle.com
Fixes: ebed4bfc8d ("hugetlb: fix absurd HugePages_Rsvd")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with the
ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
called.
[mike.kravetz@oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is identical to __page_set_anon_rmap() since the time, when
it was introduced (8 years ago). The patch removes the function, and
makes its users to use __page_set_anon_rmap() instead.
Link: http://lkml.kernel.org/r/154504875359.30235.6237926369392564851.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Model call chain after should_failslab(). Likewise, we can now use a
kprobe to override the return value of should_fail_alloc_page() and inject
allocation failures into alloc_page*().
This will allow injecting allocation failures using the BCC tools even
without building kernel with CONFIG_FAIL_PAGE_ALLOC and booting it with a
fail_page_alloc= parameter, which incurs some overhead even when failures
are not being injected. On the other hand, this patch adds an
unconditional call to should_fail_alloc_page() from page allocation
hotpath. That overhead should be rather negligible with
CONFIG_FAIL_PAGE_ALLOC=n when there's no kprobe attached, though.
[vbabka@suse.cz: changelog addition]
Link: http://lkml.kernel.org/r/20181214074330.18917-1-bpoirier@suse.com
Signed-off-by: Benjamin Poirier <bpoirier@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of migrate_page_move_mapping() now pass NULL for 'head'
argument. Drop it.
Link: http://lkml.kernel.org/r/20181211172143.7358-7-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a variant of buffer_migrate_page() that also checks whether there
are no unexpected references to buffer heads. This function will then be
safe to use for block device pages.
[akpm@linux-foundation.org: remove EXPORT_SYMBOL(buffer_migrate_page_norefs)]
Link: http://lkml.kernel.org/r/20181211172143.7358-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
buffer_migrate_page() is the only caller of migrate_page_lock_buffers()
move it close to it and also drop the now unused stub for !CONFIG_BLOCK.
Link: http://lkml.kernel.org/r/20181211172143.7358-4-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lock buffers before calling into migrate_page_move_mapping() so that that
function doesn't have to know about buffers (which is somewhat unexpected
anyway) and all the buffer head logic is in buffer_migrate_page().
Link: http://lkml.kernel.org/r/20181211172143.7358-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: migrate: Fix page migration stalls for blkdev pages".
This patchset deals with page migration stalls that were reported by our
customer due to a block device page that had a bufferhead that was in the
bh LRU cache.
The patchset modifies the page migration code so that bufferheads are
completely handled inside buffer_migrate_page() and then provides a new
migration helper for pages with buffer heads that is safe to use even for
block device pages and that also deals with bh lrus.
This patch (of 6):
Factor out function to compute number of expected page references in
migrate_page_move_mapping(). Note that we move hpage_nr_pages() and
page_has_private() checks from under xas_lock_irq() however this is safe
since we hold page lock.
[jack@suse.cz: fix expected_page_refs()]
Link: http://lkml.kernel.org/r/20181217131710.GB8611@quack2.suse.cz
Link: http://lkml.kernel.org/r/20181211172143.7358-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_pages is documented to drain per-cpu pages for a given zone (if
non-NULL). The current implementation doesn't match the description
though. It will drain all pcp pages for all zones that happen to have
cached pages on the same cpu as the given zone. This will lead to
premature pcp cache draining for zones that are not of any interest to the
caller - e.g. compaction, hwpoison or memory offline.
This forces the page allocator to take locks and potential lock contention
as a result.
There is no real reason for this sub-optimal implementation. Replace
per-cpu work item with a dedicated structure which contains a pointer to
the zone and pass it over to the worker. This will get the zone
information all the way down to the worker function and do the right job.
[akpm@linux-foundation.org: avoid 80-col tricks]
[mhocko@suse.com: refactor the whole changelog]
Link: http://lkml.kernel.org/r/20181212142550.61686-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak scan can be cpu intensive and can stall user tasks at times. To
prevent this, add config DEBUG_KMEMLEAK_AUTO_SCAN to enable/disable auto
scan on boot up. Also protect first_run with DEBUG_KMEMLEAK_AUTO_SCAN as
this is meant for only first automatic scan.
Link: http://lkml.kernel.org/r/1540231723-7087-1-git-send-email-prpatel@nvidia.com
Signed-off-by: Sri Krishna chowdary <schowdary@nvidia.com>
Signed-off-by: Sachin Nikam <snikam@nvidia.com>
Signed-off-by: Prateek <prpatel@nvidia.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>