Commit Graph

14 Commits

Author SHA1 Message Date
Javier González
2deeefc02d lightnvm: pblk: fail gracefully on line alloc. failure
In the event of a line failing to allocate, fail gracefully and stop the
pipeline to avoid more write failing in the same place.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01 07:43:53 -06:00
Javier González
6947151374 lightnvm: add support for 2.0 address format
Add support for 2.0 address format. Also, align address bits for 1.2 and
2.0 to be able to operate on channel and luns without requiring a format
conversion. Use a generic address format for this purpose.

Also, convert the generic operations to the generic format in pblk.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Hans Holmberg
76758390f8 lightnvm: pblk: export write amplification counters to sysfs
In a SSD, write amplification, WA, is defined as the average
number of page writes per user page write. Write amplification
negatively affects write performance and decreases the lifetime
of the disk, so it's a useful metric to add to sysfs.

In plkb's case, the number of writes per user sector is the sum of:

    (1) number of user writes
    (2) number of sectors written by the garbage collector
    (3) number of sectors padded (i.e. due to syncs)

This patch adds persistent counters for 1-3 and two sysfs attributes
to export these along with WA calculated with five decimals:

    write_amp_mileage: the accumulated write amplification stats
                      for the lifetime of the pblk instance

    write_amp_trip: resetable stats to facilitate delta measurements,
                    values reset at creation and if 0 is written
                    to the attribute.

64-bit counters are used as a 32 bit counter would wrap around
already after about 17 TB worth of user data. It will take a
long long time before the 64 bit sector counters wrap around.

The counters are stored after the bad block bitmap in the first
emeta sector of each written line. There is plenty of space in the
first emeta sector, so we don't need to bump the major version of
the line data format.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Matias Bjørling
26f76dce60 lightnvm: use internal pblk methods
Now that rrpc has been removed, the only users of the ppa helpers
is pblk. However, pblk already defines similar functions.

Switch pblk to use the internal ones, and remove the generic ppa
helpers.

Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Hans Holmberg
03e868eb8a lightnvm: pblk: correct valid lba count calculation
During garbage collect, lbas being written can end up
being invalidated. Make sure that this is reflected in
the valid lba count.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González
21d2287119 lightnvm: pblk: enable 1 LUN configuration
Metadata I/Os are scheduled to minimize their impact on user data I/Os.
When there are enough LUNs instantiated (i.e., enough bandwidth), it is
easy to interleave metadata and data one after the other so that
metadata I/Os are the ones being blocked and not vice-versa.

We do this by calculating the distance between the I/Os in terms of the
LUNs that are not in used, and selecting a free LUN that satisfies a
the simple heuristic that metadata is scheduled behind. The per-LUN
semaphores guarantee consistency. This works fine on >1 LUN
configuration. However, when a single LUN is instantiated, this design
leads to a deadlock, where metadata waits to be scheduled on a free LUN.

This patch implements the 1 LUN case by simply scheduling the metadada
I/O after the data I/O. In the process, we refactor the way a line is
replaced to ensure that metadata writes are submitted after data writes
in order to guarantee block sequentiality. Note that, since there is
only one LUN, both I/Os will block each other by design. However, such
configuration only pursues tight read latencies, not write bandwidth.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González
f417aa0bd8 lightnvm: pblk: fix bad le64 assignations
Use the right types and conversions on le64 variables. Reported by
sparse.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30 11:08:18 -06:00
Javier González
588726d3ec lightnvm: pblk: fail gracefully on irrec. error
Due to user writes being decoupled from media writes because of the need
of an intermediate write buffer, irrecoverable media write errors lead
to pblk stalling; user writes fill up the buffer and end up in an
infinite retry loop.

In order to let user writes fail gracefully, it is necessary for pblk to
keep track of its own internal state and prevent further writes from
being placed into the write buffer.

This patch implements a state machine to keep track of internal errors
and, in case of failure, fail further user writes in an standard way.
Depending on the type of error, pblk will do its best to persist
buffered writes (which are already acknowledged) and close down on a
graceful manner. This way, data might be recovered by re-instantiating
pblk. Such state machine paves out the way for a state-based FTL log.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González
0880a9aa2d lightnvm: pblk: delete redundant buffer pointer
After refactoring the metadata path, the backpointer controlling
synced I/Os in a line becomes unnecessary; metadata is scheduled
on the write thread, thus we know when the end of the line is reached
and act on it directly.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González
dd2a434373 lightnvm: pblk: sched. metadata on write thread
At the moment, line metadata is persisted on a separate work queue, that
is kicked each time that a line is closed. The assumption when designing
this was that freeing the write thread from creating a new write request
was better than the potential impact of writes colliding on the media
(user I/O and metadata I/O). Experimentation has proven that this
assumption is wrong; collision can cause up to 25% of bandwidth and
introduce long tail latencies on the write thread, which potentially
cause user write threads to spend more time spinning to get a free entry
on the write buffer.

This patch moves the metadata logic to the write thread. When a line is
closed, remaining metadata is written in memory and is placed on a
metadata queue. The write thread then takes the metadata corresponding
to the previous line, creates the write request and schedules it to
minimize collisions on the media. Using this approach, we see that we
can saturate the media's bandwidth, which helps reducing both write
latencies and the spinning time for user writer threads.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González
d624f371d5 lightnvm: pblk: generalize erase path
Erase I/Os are scheduled with the following goals in mind: (i) minimize
LUNs collisions with write I/Os, and (ii) even out the price of erasing
on every write, instead of putting all the burden on when garbage
collection runs. This works well on the current design, but is specific
to the default mapping algorithm.

This patch generalizes the erase path so that other mapping algorithms
can select an arbitrary line to be erased instead. It also gets rid of
the erase semaphore since it creates jittering for user writes.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:24:53 -06:00
Javier González
caa69fa560 lightnvm: pblk: spare double cpu_to_le64 calc.
Spare a double calculation on the fast write path.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:24:53 -06:00
Javier González
a44f53faf4 lightnvm: pblk: fix erase counters on error fail
When block erases fail, these blocks are marked bad. The number of valid
blocks in the line was not updated, which could cause an infinite loop
on the erase path.

Fix this atomic counter and, in order to avoid taking an irq lock on the
interrupt context, make the erase counters atomic too.

Also, in the case that a significant number of blocks become bad in a
line, the result is the double shared metadata buffer (emeta) to stop
the pipeline until all metadata is flushed to the media. Increase the
number of metadata lines from 2 to 4 to avoid this case.

Fixes: a4bd217b43 "lightnvm: physical block device (pblk) target"

Signed-off-by: Javier González <javier@cnexlabs.com>
Reviewed-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-23 16:57:52 -06:00
Javier González
a4bd217b43 lightnvm: physical block device (pblk) target
This patch introduces pblk, a host-side translation layer for
Open-Channel SSDs to expose them like block devices. The translation
layer allows data placement decisions, and I/O scheduling to be
managed by the host, enabling users to optimize the SSD for their
specific workloads.

An open-channel SSD has a set of LUNs (parallel units) and a
collection of blocks. Each block can be read in any order, but
writes must be sequential. Writes may also fail, and if a block
requires it, must also be reset before new writes can be
applied.

To manage the constraints, pblk maintains a logical to
physical address (L2P) table,  write cache, garbage
collection logic, recovery scheme, and logic to rate-limit
user I/Os versus garbage collection I/Os.

The L2P table is fully-associative and manages sectors at a
4KB granularity. Pblk stores the L2P table in two places, in
the out-of-band area of the media and on the last page of a
line. In the cause of a power failure, pblk will perform a
scan to recover the L2P table.

The user data is organized into lines. A line is data
striped across blocks and LUNs. The lines enable the host to
reduce the amount of metadata to maintain besides the user
data and makes it easier to implement RAID or erasure coding
in the future.

pblk implements multi-tenant support and can be instantiated
multiple times on the same drive. Each instance owns a
portion of the SSD - both regarding I/O bandwidth and
capacity - providing I/O isolation for each case.

Finally, pblk also exposes a sysfs interface that allows
user-space to peek into the internals of pblk. The interface
is available at /dev/block/*/pblk/ where * is the block
device name exposed.

This work also contains contributions from:
  Matias Bjørling <matias@cnexlabs.com>
  Simon A. F. Lund <slund@cnexlabs.com>
  Young Tack Jin <youngtack.jin@gmail.com>
  Huaicheng Li <huaicheng@cs.uchicago.edu>

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 10:06:33 -06:00