Commit Graph

542 Commits

Author SHA1 Message Date
Mike Rapoport
ee65728e10 docs: rename Documentation/vm to Documentation/mm
so it will be consistent with code mm directory and with
Documentation/admin-guide/mm and won't be confused with virtual machines.

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Acked-by: Wu XiangCheng <bobwxc@email.cn>
2022-06-27 12:52:53 -07:00
Minchan Kim
6d4675e601 mm: don't be stuck to rmap lock on reclaim path
The rmap locks(i_mmap_rwsem and anon_vma->root->rwsem) could be contended
under memory pressure if processes keep working on their vmas(e.g., fork,
mmap, munmap).  It makes reclaim path stuck.  In our real workload traces,
we see kswapd is waiting the lock for 300ms+(worst case, a sec) and it
makes other processes entering direct reclaim, which were also stuck on
the lock.

This patch makes lru aging path try_lock mode like shink_page_list so the
reclaim context will keep working with next lru pages without being stuck.
if it found the rmap lock contended, it rotates the page back to head of
lru in both active/inactive lrus to make them consistent behavior, which
is basic starting point rather than adding more heristic.

Since this patch introduces a new "contended" field as out-param along
with try_lock in-param in rmap_walk_control, it's not immutable any longer
if the try_lock is set so remove const keywords on rmap related functions.
Since rmap walking is already expensive operation, I doubt the const
would help sizable benefit( And we didn't have it until 5.17).

In a heavy app workload in Android, trace shows following statistics.  It
almost removes rmap lock contention from reclaim path.

Martin Liu reported:

Before:

   max_dur(ms)  min_dur(ms)  max-min(dur)ms  avg_dur(ms)  sum_dur(ms)  count blocked_function
         1632            0            1631   151.542173        31672    209  page_lock_anon_vma_read
          601            0             601   145.544681        28817    198  rmap_walk_file

After:

   max_dur(ms)  min_dur(ms)  max-min(dur)ms  avg_dur(ms)  sum_dur(ms)  count blocked_function
          NaN          NaN              NaN          NaN          NaN    0.0             NaN
            0            0                0     0.127645            1     12  rmap_walk_file

[minchan@kernel.org: add comment, per Matthew]
  Link: https://lkml.kernel.org/r/YnNqeB5tUf6LZ57b@google.com
Link: https://lkml.kernel.org/r/20220510215423.164547-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Martin Liu <liumartin@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-19 14:08:54 -07:00
Baolin Wang
a00a875925 mm: rmap: fix CONT-PTE/PMD size hugetlb issue when unmapping
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb: 2M and
1G, but also CONT-PTE/PMD size: 64K and 32M if a 4K page size specified.

When unmapping a hugetlb page, we will get the relevant page table entry
by huge_pte_offset() only once to nuke it.  This is correct for PMD or PUD
size hugetlb, since they always contain only one pmd entry or pud entry in
the page table.

However this is incorrect for CONT-PTE and CONT-PMD size hugetlb, since
they can contain several continuous pte or pmd entry with same page table
attributes, so we will nuke only one pte or pmd entry for this
CONT-PTE/PMD size hugetlb page.

And now try_to_unmap() is only passed a hugetlb page in the case where the
hugetlb page is poisoned.  Which means now we will unmap only one pte
entry for a CONT-PTE or CONT-PMD size poisoned hugetlb page, and we can
still access other subpages of a CONT-PTE or CONT-PMD size poisoned
hugetlb page, which will cause serious issues possibly.

So we should change to use huge_ptep_clear_flush() to nuke the hugetlb
page table to fix this issue, which already considered CONT-PTE and
CONT-PMD size hugetlb.

We've already used set_huge_swap_pte_at() to set a poisoned swap entry for
a poisoned hugetlb page.  Meanwhile adding a VM_BUG_ON() to make sure the
passed hugetlb page is poisoned in try_to_unmap().

Link: https://lkml.kernel.org/r/0a2e547238cad5bc153a85c3e9658cb9d55f9cac.1652270205.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/730ea4b6d292f32fb10b7a4e87dad49b0eb30474.1652147571.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 16:48:56 -07:00
Baolin Wang
5d4af6195c mm: rmap: fix CONT-PTE/PMD size hugetlb issue when migration
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb: 2M and
1G, but also CONT-PTE/PMD size: 64K and 32M if a 4K page size specified.

When migrating a hugetlb page, we will get the relevant page table entry
by huge_pte_offset() only once to nuke it and remap it with a migration
pte entry.  This is correct for PMD or PUD size hugetlb, since they always
contain only one pmd entry or pud entry in the page table.

However this is incorrect for CONT-PTE and CONT-PMD size hugetlb, since
they can contain several continuous pte or pmd entry with same page table
attributes.  So we will nuke or remap only one pte or pmd entry for this
CONT-PTE/PMD size hugetlb page, which is not expected for hugetlb
migration.  The problem is we can still continue to modify the subpages'
data of a hugetlb page during migrating a hugetlb page, which can cause a
serious data consistent issue, since we did not nuke the page table entry
and set a migration pte for the subpages of a hugetlb page.

To fix this issue, we should change to use huge_ptep_clear_flush() to nuke
a hugetlb page table, and remap it with set_huge_pte_at() and
set_huge_swap_pte_at() when migrating a hugetlb page, which already
considered the CONT-PTE or CONT-PMD size hugetlb.

[akpm@linux-foundation.org: fix nommu build]
[baolin.wang@linux.alibaba.com: fix build errors for !CONFIG_MMU]
  Link: https://lkml.kernel.org/r/a4baca670aca637e7198d9ae4543b8873cb224dc.1652270205.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/ea5abf529f0997b5430961012bfda6166c1efc8c.1652147571.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 16:48:55 -07:00
Peter Xu
999dad824c mm/shmem: persist uffd-wp bit across zapping for file-backed
File-backed memory is prone to being unmapped at any time.  It means all
information in the pte will be dropped, including the uffd-wp flag.

To persist the uffd-wp flag, we'll use the pte markers.  This patch
teaches the zap code to understand uffd-wp and know when to keep or drop
the uffd-wp bit.

Add a new flag ZAP_FLAG_DROP_MARKER and set it in zap_details when we
don't want to persist such an information, for example, when destroying
the whole vma, or punching a hole in a shmem file.  For the rest cases we
should never drop the uffd-wp bit, or the wr-protect information will get
lost.

The new ZAP_FLAG_DROP_MARKER needs to be put into mm.h rather than
memory.c because it'll be further referenced in hugetlb files later.

Link: https://lkml.kernel.org/r/20220405014847.14295-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:10 -07:00
Adrian Huang
dd0623020e mm/rmap: Fix typos in comments
Fix spelling/grammar mistakes in comments.

Link: https://lkml.kernel.org/r/20220428061522.666-1-adrianhuang0701@gmail.com
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:07 -07:00
Baolin Wang
dfc7ab5756 mm: rmap: use flush_cache_range() to flush cache for hugetlb pages
Now we will use flush_cache_page() to flush cache for anonymous hugetlb
pages when unmapping or migrating a hugetlb page mapping, but the
flush_cache_page() only handles a PAGE_SIZE range on some architectures
(like arm32, arc and so on), which will cause potential cache issues. 
Thus change to use flush_cache_range() to cover the whole size of a
hugetlb page.

Link: https://lkml.kernel.org/r/dc903b378d1e2d26bbbe85409ab9d009631f175c.1651056365.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:07 -07:00
Baolin Wang
54205e9c54 mm: rmap: move the cache flushing to the correct place for hugetlb PMD sharing
The cache level flush will always be first when changing an existing
virtual–>physical mapping to a new value, since this allows us to
properly handle systems whose caches are strict and require a
virtual–>physical translation to exist for a virtual address.  So we
should move the cache flushing before huge_pmd_unshare().

As Muchun pointed out[1], now the architectures whose supporting hugetlb
PMD sharing have no cache flush issues in practice.  But I think we should
still follow the cache/TLB flushing rules when changing a valid virtual
address mapping in case of potential issues in future.

[1] https://lore.kernel.org/all/YmT%2F%2FhuUbFX+KHcy@FVFYT0MHHV2J.usts.net/

Link: https://lkml.kernel.org/r/4f7ae6dfdc838ab71e1655188b657c032ff1f28f.1651056365.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:07 -07:00
David Hildenbrand
1493a1913e mm/swap: remember PG_anon_exclusive via a swp pte bit
Patch series "mm: COW fixes part 3: reliable GUP R/W FOLL_GET of anonymous pages", v2.

This series fixes memory corruptions when a GUP R/W reference (FOLL_WRITE
| FOLL_GET) was taken on an anonymous page and COW logic fails to detect
exclusivity of the page to then replacing the anonymous page by a copy in
the page table: The GUP reference lost synchronicity with the pages mapped
into the page tables.  This series focuses on x86, arm64, s390x and
ppc64/book3s -- other architectures are fairly easy to support by
implementing __HAVE_ARCH_PTE_SWP_EXCLUSIVE.

This primarily fixes the O_DIRECT memory corruptions that can happen on
concurrent swapout, whereby we lose DMA reads to a page (modifying the
user page by writing to it).

O_DIRECT currently uses FOLL_GET for short-term (!FOLL_LONGTERM) DMA
from/to a user page.  In the long run, we want to convert it to properly
use FOLL_PIN, and John is working on it, but that might take a while and
might not be easy to backport.  In the meantime, let's restore what used
to work before we started modifying our COW logic: make R/W FOLL_GET
references reliable as long as there is no fork() after GUP involved.

This is just the natural follow-up of part 2, that will also further
reduce "wrong COW" on the swapin path, for example, when we cannot remove
a page from the swapcache due to concurrent writeback, or if we have two
threads faulting on the same swapped-out page.  Fixing O_DIRECT is just a
nice side-product

This issue, including other related COW issues, has been summarized in [3]
under 2):
"
  2. Intra Process Memory Corruptions due to Wrong COW (FOLL_GET)

  It was discovered that we can create a memory corruption by reading a
  file via O_DIRECT to a part (e.g., first 512 bytes) of a page,
  concurrently writing to an unrelated part (e.g., last byte) of the same
  page, and concurrently write-protecting the page via clear_refs
  SOFTDIRTY tracking [6].

  For the reproducer, the issue is that O_DIRECT grabs a reference of the
  target page (via FOLL_GET) and clear_refs write-protects the relevant
  page table entry. On successive write access to the page from the
  process itself, we wrongly COW the page when resolving the write fault,
  resulting in a loss of synchronicity and consequently a memory corruption.

  While some people might think that using clear_refs in this combination
  is a corner cases, it turns out to be a more generic problem unfortunately.

  For example, it was just recently discovered that we can similarly
  create a memory corruption without clear_refs, simply by concurrently
  swapping out the buffer pages [7]. Note that we nowadays even use the
  swap infrastructure in Linux without an actual swap disk/partition: the
  prime example is zram which is enabled as default under Fedora [10].

  The root issue is that a write-fault on a page that has additional
  references results in a COW and thereby a loss of synchronicity
  and consequently a memory corruption if two parties believe they are
  referencing the same page.
"

We don't particularly care about R/O FOLL_GET references: they were never
reliable and O_DIRECT doesn't expect to observe modifications from a page
after DMA was started.

Note that:
* this only fixes the issue on x86, arm64, s390x and ppc64/book3s
  ("enterprise architectures"). Other architectures have to implement
  __HAVE_ARCH_PTE_SWP_EXCLUSIVE to achieve the same.
* this does *not * consider any kind of fork() after taking the reference:
  fork() after GUP never worked reliably with FOLL_GET.
* Not losing PG_anon_exclusive during swapout was the last remaining
  piece. KSM already makes sure that there are no other references on
  a page before considering it for sharing. Page migration maintains
  PG_anon_exclusive and simply fails when there are additional references
  (freezing the refcount fails). Only swapout code dropped the
  PG_anon_exclusive flag because it requires more work to remember +
  restore it.

With this series in place, most COW issues of [3] are fixed on said
architectures. Other architectures can implement
__HAVE_ARCH_PTE_SWP_EXCLUSIVE fairly easily.

[1] https://lkml.kernel.org/r/20220329160440.193848-1-david@redhat.com
[2] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com
[3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com


This patch (of 8):

Currently, we clear PG_anon_exclusive in try_to_unmap() and forget about
it.  We do this, to keep fork() logic on swap entries easy and efficient:
for example, if we wouldn't clear it when unmapping, we'd have to lookup
the page in the swapcache for each and every swap entry during fork() and
clear PG_anon_exclusive if set.

Instead, we want to store that information directly in the swap pte,
protected by the page table lock, similarly to how we handle
SWP_MIGRATION_READ_EXCLUSIVE for migration entries.  However, for actual
swap entries, we don't want to mess with the swap type (e.g., still one
bit) because it overcomplicates swap code.

In try_to_unmap(), we already reject to unmap in case the page might be
pinned, because we must not lose PG_anon_exclusive on pinned pages ever. 
Checking if there are other unexpected references reliably *before*
completely unmapping a page is unfortunately not really possible: THP
heavily overcomplicate the situation.  Once fully unmapped it's easier --
we, for example, make sure that there are no unexpected references *after*
unmapping a page before starting writeback on that page.

So, we currently might end up unmapping a page and clearing
PG_anon_exclusive if that page has additional references, for example, due
to a FOLL_GET.

do_swap_page() has to re-determine if a page is exclusive, which will
easily fail if there are other references on a page, most prominently GUP
references via FOLL_GET.  This can currently result in memory corruptions
when taking a FOLL_GET | FOLL_WRITE reference on a page even when fork()
is never involved: try_to_unmap() will succeed, and when refaulting the
page, it cannot be marked exclusive and will get replaced by a copy in the
page tables on the next write access, resulting in writes via the GUP
reference to the page being lost.

In an ideal world, everybody that uses GUP and wants to modify page
content, such as O_DIRECT, would properly use FOLL_PIN.  However, that
conversion will take a while.  It's easier to fix what used to work in the
past (FOLL_GET | FOLL_WRITE) remembering PG_anon_exclusive.  In addition,
by remembering PG_anon_exclusive we can further reduce unnecessary COW in
some cases, so it's the natural thing to do.

So let's transfer the PG_anon_exclusive information to the swap pte and
store it via an architecture-dependant pte bit; use that information when
restoring the swap pte in do_swap_page() and unuse_pte().  During fork(),
we simply have to clear the pte bit and are done.

Of course, there is one corner case to handle: swap backends that don't
support concurrent page modifications while the page is under writeback. 
Special case these, and drop the exclusive marker.  Add a comment why that
is just fine (also, reuse_swap_page() would have done the same in the
past).

In the future, we'll hopefully have all architectures support
__HAVE_ARCH_PTE_SWP_EXCLUSIVE, such that we can get rid of the empty stubs
and the define completely.  Then, we can also convert
SWP_MIGRATION_READ_EXCLUSIVE.  For architectures it's fairly easy to
support: either simply use a yet unused pte bit that can be used for swap
entries, steal one from the arch type bits if they exceed 5, or steal one
from the offset bits.

Note: R/O FOLL_GET references were never really reliable, especially when
taking one on a shared page and then writing to the page (e.g., GUP after
fork()).  FOLL_GET, including R/W references, were never really reliable
once fork was involved (e.g., GUP before fork(), GUP during fork()).  KSM
steps back in case it stumbles over unexpected references and is,
therefore, fine.

[david@redhat.com: fix SWP_STABLE_WRITES test]
  Link: https://lkml.kernel.org/r/ac725bcb-313a-4fff-250a-68ba9a8f85fb@redhat.comLink: https://lkml.kernel.org/r/20220329164329.208407-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220329164329.208407-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:45 -07:00
David Hildenbrand
7f5abe609b mm/rmap: fail try_to_migrate() early when setting a PMD migration entry fails
Let's fail right away in case we cannot clear PG_anon_exclusive because
the anon THP may be pinned.  Right now, we continue trying to install
migration entries and the caller of try_to_migrate() will realize that the
page is still mapped and has to restore the migration entries.  Let's just
fail fast just like for PTE migration entries.

Link: https://lkml.kernel.org/r/20220428083441.37290-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:44 -07:00
David Hildenbrand
6c287605fd mm: remember exclusively mapped anonymous pages with PG_anon_exclusive
Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as
exclusive, and use that information to make GUP pins reliable and stay
consistent with the page mapped into the page table even if the page table
entry gets write-protected.

With that information at hand, we can extend our COW logic to always reuse
anonymous pages that are exclusive.  For anonymous pages that might be
shared, the existing logic applies.

As already documented, PG_anon_exclusive is usually only expressive in
combination with a page table entry.  Especially PTE vs.  PMD-mapped
anonymous pages require more thought, some examples: due to mremap() we
can easily have a single compound page PTE-mapped into multiple page
tables exclusively in a single process -- multiple page table locks apply.
Further, due to MADV_WIPEONFORK we might not necessarily write-protect
all PTEs, and only some subpages might be pinned.  Long story short: once
PTE-mapped, we have to track information about exclusivity per sub-page,
but until then, we can just track it for the compound page in the head
page and not having to update a whole bunch of subpages all of the time
for a simple PMD mapping of a THP.

For simplicity, this commit mostly talks about "anonymous pages", while
it's for THP actually "the part of an anonymous folio referenced via a
page table entry".

To not spill PG_anon_exclusive code all over the mm code-base, we let the
anon rmap code to handle all PG_anon_exclusive logic it can easily handle.

If a writable, present page table entry points at an anonymous (sub)page,
that (sub)page must be PG_anon_exclusive.  If GUP wants to take a reliably
pin (FOLL_PIN) on an anonymous page references via a present page table
entry, it must only pin if PG_anon_exclusive is set for the mapped
(sub)page.

This commit doesn't adjust GUP, so this is only implicitly handled for
FOLL_WRITE, follow-up commits will teach GUP to also respect it for
FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully
reliable.

Whenever an anonymous page is to be shared (fork(), KSM), or when
temporarily unmapping an anonymous page (swap, migration), the relevant
PG_anon_exclusive bit has to be cleared to mark the anonymous page
possibly shared.  Clearing will fail if there are GUP pins on the page:

* For fork(), this means having to copy the page and not being able to
  share it.  fork() protects against concurrent GUP using the PT lock and
  the src_mm->write_protect_seq.

* For KSM, this means sharing will fail.  For swap this means, unmapping
  will fail, For migration this means, migration will fail early.  All
  three cases protect against concurrent GUP using the PT lock and a
  proper clear/invalidate+flush of the relevant page table entry.

This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a
pinned page gets mapped R/O and the successive write fault ends up
replacing the page instead of reusing it.  It improves the situation for
O_DIRECT/vmsplice/...  that still use FOLL_GET instead of FOLL_PIN, if
fork() is *not* involved, however swapout and fork() are still
problematic.  Properly using FOLL_PIN instead of FOLL_GET for these GUP
users will fix the issue for them.

I. Details about basic handling

I.1. Fresh anonymous pages

page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the
given page exclusive via __page_set_anon_rmap(exclusive=1).  As that is
the mechanism fresh anonymous pages come into life (besides migration code
where we copy the page->mapping), all fresh anonymous pages will start out
as exclusive.

I.2. COW reuse handling of anonymous pages

When a COW handler stumbles over a (sub)page that's marked exclusive, it
simply reuses it.  Otherwise, the handler tries harder under page lock to
detect if the (sub)page is exclusive and can be reused.  If exclusive,
page_move_anon_rmap() will mark the given (sub)page exclusive.

Note that hugetlb code does not yet check for PageAnonExclusive(), as it
still uses the old COW logic that is prone to the COW security issue
because hugetlb code cannot really tolerate unnecessary/wrong COW as huge
pages are a scarce resource.

I.3. Migration handling

try_to_migrate() has to try marking an exclusive anonymous page shared via
page_try_share_anon_rmap().  If it fails because there are GUP pins on the
page, unmap fails.  migrate_vma_collect_pmd() and
__split_huge_pmd_locked() are handled similarly.

Writable migration entries implicitly point at shared anonymous pages. 
For readable migration entries that information is stored via a new
"readable-exclusive" migration entry, specific to anonymous pages.

When restoring a migration entry in remove_migration_pte(), information
about exlusivity is detected via the migration entry type, and
RMAP_EXCLUSIVE is set accordingly for
page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information.

I.4. Swapout handling

try_to_unmap() has to try marking the mapped page possibly shared via
page_try_share_anon_rmap().  If it fails because there are GUP pins on the
page, unmap fails.  For now, information about exclusivity is lost.  In
the future, we might want to remember that information in the swap entry
in some cases, however, it requires more thought, care, and a way to store
that information in swap entries.

I.5. Swapin handling

do_swap_page() will never stumble over exclusive anonymous pages in the
swap cache, as try_to_migrate() prohibits that.  do_swap_page() always has
to detect manually if an anonymous page is exclusive and has to set
RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly.

I.6. THP handling

__split_huge_pmd_locked() has to move the information about exclusivity
from the PMD to the PTEs.

a) In case we have a readable-exclusive PMD migration entry, simply
   insert readable-exclusive PTE migration entries.

b) In case we have a present PMD entry and we don't want to freeze
   ("convert to migration entries"), simply forward PG_anon_exclusive to
   all sub-pages, no need to temporarily clear the bit.

c) In case we have a present PMD entry and want to freeze, handle it
   similar to try_to_migrate(): try marking the page shared first.  In
   case we fail, we ignore the "freeze" instruction and simply split
   ordinarily.  try_to_migrate() will properly fail because the THP is
   still mapped via PTEs.

When splitting a compound anonymous folio (THP), the information about
exclusivity is implicitly handled via the migration entries: no need to
replicate PG_anon_exclusive manually.

I.7.  fork() handling fork() handling is relatively easy, because
PG_anon_exclusive is only expressive for some page table entry types.

a) Present anonymous pages

page_try_dup_anon_rmap() will mark the given subpage shared -- which will
fail if the page is pinned.  If it failed, we have to copy (or PTE-map a
PMD to handle it on the PTE level).

Note that device exclusive entries are just a pointer at a PageAnon()
page.  fork() will first convert a device exclusive entry to a present
page table and handle it just like present anonymous pages.

b) Device private entry

Device private entries point at PageAnon() pages that cannot be mapped
directly and, therefore, cannot get pinned.

page_try_dup_anon_rmap() will mark the given subpage shared, which cannot
fail because they cannot get pinned.

c) HW poison entries

PG_anon_exclusive will remain untouched and is stale -- the page table
entry is just a placeholder after all.

d) Migration entries

Writable and readable-exclusive entries are converted to readable entries:
possibly shared.

I.8. mprotect() handling

mprotect() only has to properly handle the new readable-exclusive
migration entry:

When write-protecting a migration entry that points at an anonymous page,
remember the information about exclusivity via the "readable-exclusive"
migration entry type.

II. Migration and GUP-fast

Whenever replacing a present page table entry that maps an exclusive
anonymous page by a migration entry, we have to mark the page possibly
shared and synchronize against GUP-fast by a proper clear/invalidate+flush
to make the following scenario impossible:

1. try_to_migrate() places a migration entry after checking for GUP pins
   and marks the page possibly shared.

2. GUP-fast pins the page due to lack of synchronization

3. fork() converts the "writable/readable-exclusive" migration entry into a
   readable migration entry

4. Migration fails due to the GUP pin (failing to freeze the refcount)

5. Migration entries are restored. PG_anon_exclusive is lost

-> We have a pinned page that is not marked exclusive anymore.

Note that we move information about exclusivity from the page to the
migration entry as it otherwise highly overcomplicates fork() and
PTE-mapping a THP.

III. Swapout and GUP-fast

Whenever replacing a present page table entry that maps an exclusive
anonymous page by a swap entry, we have to mark the page possibly shared
and synchronize against GUP-fast by a proper clear/invalidate+flush to
make the following scenario impossible:

1. try_to_unmap() places a swap entry after checking for GUP pins and
   clears exclusivity information on the page.

2. GUP-fast pins the page due to lack of synchronization.

-> We have a pinned page that is not marked exclusive anymore.

If we'd ever store information about exclusivity in the swap entry,
similar to migration handling, the same considerations as in II would
apply.  This is future work.

Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:44 -07:00
David Hildenbrand
40f2bbf711 mm/rmap: drop "compound" parameter from page_add_new_anon_rmap()
New anonymous pages are always mapped natively: only THP/khugepaged code
maps a new compound anonymous page and passes "true".  Otherwise, we're
just dealing with simple, non-compound pages.

Let's give the interface clearer semantics and document these.  Remove the
PageTransCompound() sanity check from page_add_new_anon_rmap().

Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:43 -07:00
David Hildenbrand
28c5209dfd mm/rmap: pass rmap flags to hugepage_add_anon_rmap()
Let's prepare for passing RMAP_EXCLUSIVE, similarly as we do for
page_add_anon_rmap() now.  RMAP_COMPOUND is implicit for hugetlb pages and
ignored.

Link: https://lkml.kernel.org/r/20220428083441.37290-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:43 -07:00
David Hildenbrand
f1e2db12e4 mm/rmap: remove do_page_add_anon_rmap()
... and instead convert page_add_anon_rmap() to accept flags.

Passing flags instead of bools is usually nicer either way, and we want to
more often also pass RMAP_EXCLUSIVE in follow up patches when detecting
that an anonymous page is exclusive: for example, when restoring an
anonymous page from a writable migration entry.

This is a preparation for marking an anonymous page inside
page_add_anon_rmap() as exclusive when RMAP_EXCLUSIVE is passed.

Link: https://lkml.kernel.org/r/20220428083441.37290-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:43 -07:00
David Hildenbrand
14f9135d54 mm/rmap: convert RMAP flags to a proper distinct rmap_t type
We want to pass the flags to more than one anon rmap function, getting rid
of special "do_page_add_anon_rmap()".  So let's pass around a distinct
__bitwise type and refine documentation.

Link: https://lkml.kernel.org/r/20220428083441.37290-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:43 -07:00
David Hildenbrand
322842ea3c mm/rmap: fix missing swap_free() in try_to_unmap() after arch_unmap_one() failed
Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v4.

This series is the result of the discussion on the previous approach [2]. 
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889fb40 ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/20220131162940.210846-1-david@redhat.com
[2] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com
[3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616


This patch (of 17):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/20220428083441.37290-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220428083441.37290-2-david@redhat.com
Fixes: ca827d55eb ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:42 -07:00
Muchun Song
6a8e0596f0 mm: rmap: introduce pfn_mkclean_range() to cleans PTEs
The page_mkclean_one() is supposed to be used with the pfn that has a
associated struct page, but not all the pfns (e.g.  DAX) have a struct
page.  Introduce a new function pfn_mkclean_range() to cleans the PTEs
(including PMDs) mapped with range of pfns which has no struct page
associated with them.  This helper will be used by DAX device in the next
patch to make pfns clean.

Link: https://lkml.kernel.org/r/20220403053957.10770-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:16:10 -07:00
Muchun Song
7f9c9b607d mm: rmap: fix cache flush on THP pages
Patch series "Fix some bugs related to ramp and dax", v7.

Patch 1-2 fix a cache flush bug, because subsequent patches depend on
those on those changes, there are placed in this series.  Patch 3-4 are
preparation for fixing a dax bug in patch 5.  Patch 6 is code cleanup
since the previous patch removes the usage of follow_invalidate_pte().


This patch (of 6):

The flush_cache_page() only remove a PAGE_SIZE sized range from the cache.
However, it does not cover the full pages in a THP except a head page. 
Replace it with flush_cache_range() to fix this issue.  At least, no
problems were found due to this.  Maybe because the architectures that
have virtual indexed caches is less.

Link: https://lkml.kernel.org/r/20220403053957.10770-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220403053957.10770-2-songmuchun@bytedance.com
Fixes: f27176cfc3 ("mm: convert page_mkclean_one() to use page_vma_mapped_walk()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:16:09 -07:00
Sebastian Andrzej Siewior
adb11e78c5 mm/munlock: protect the per-CPU pagevec by a local_lock_t
The access to mlock_pvec is protected by disabling preemption via
get_cpu_var() or implicit by having preemption disabled by the caller
(in mlock_page_drain() case).  This breaks on PREEMPT_RT since
folio_lruvec_lock_irq() acquires a sleeping lock in this section.

Create struct mlock_pvec which consits of the local_lock_t and the
pagevec.  Acquire the local_lock() before accessing the per-CPU pagevec.
Replace mlock_page_drain() with a _local() version which is invoked on
the local CPU and acquires the local_lock_t and a _remote() version
which uses the pagevec from a remote CPU which offline.

Link: https://lkml.kernel.org/r/YjizWi9IY0mpvIfb@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-01 11:46:09 -07:00
Mauricio Faria de Oliveira
6c8e2a2569 mm: fix race between MADV_FREE reclaim and blkdev direct IO read
Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[mfo@canonical.com: v4]
  Link: https://lkml.kernel.org/r/20220209202659.183418-1-mfo@canonical.comLink: https://lkml.kernel.org/r/20220131230255.789059-1-mfo@canonical.com

Fixes: 802a3a92ad ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Hill <daniel.hill@canonical.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Dongdong Tao <dongdong.tao@canonical.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Gerald Yang <gerald.yang@canonical.com>
Cc: Heitor Alves de Siqueira <halves@canonical.com>
Cc: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Matthew Ruffell <matthew.ruffell@canonical.com>
Cc: Ponnuvel Palaniyappan <ponnuvel.palaniyappan@canonical.com>
Cc: <stable@vger.kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24 19:06:51 -07:00
Anshuman Khandual
4cc79b3303 mm/migration: add trace events for base page and HugeTLB migrations
This adds two trace events for base page and HugeTLB page migrations.
These events, closely follow the implementation details like setting and
removing of PTE migration entries, which are essential operations for
migration.  The new CREATE_TRACE_POINTS in <mm/rmap.c> covers both
<events/migration.h> and <events/tlb.h> based trace events.  Hence drop
redundant CREATE_TRACE_POINTS from other places which could have otherwise
conflicted during build.

Link: https://lkml.kernel.org/r/1643368182-9588-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24 19:06:45 -07:00
Hugh Dickins
5d543f13e2 mm/thp: fix NR_FILE_MAPPED accounting in page_*_file_rmap()
NR_FILE_MAPPED accounting in mm/rmap.c (for /proc/meminfo "Mapped" and
/proc/vmstat "nr_mapped" and the memcg's memory.stat "mapped_file") is
slightly flawed for file or shmem huge pages.

It is well thought out, and looks convincing, but there's a racy case when
the careful counting in page_remove_file_rmap() (without page lock) gets
discarded.  So that in a workload like two "make -j20" kernel builds under
memory pressure, with cc1 on hugepage text, "Mapped" can easily grow by a
spurious 5MB or more on each iteration, ending up implausibly bigger than
most other numbers in /proc/meminfo.  And, hypothetically, might grow to
the point of seriously interfering in mm/vmscan.c's heuristics, which do
take NR_FILE_MAPPED into some consideration.

Fixed by moving the __mod_lruvec_page_state() down to where it will not be
missed before return (and I've grown a bit tired of that oft-repeated
but-not-everywhere comment on the __ness: it gets lost in the move here).

Does page_add_file_rmap() need the same change?  I suspect not, because
page lock is held in all relevant cases, and its skipping case looks safe;
but it's much easier to be sure, if we do make the same change.

Link: https://lkml.kernel.org/r/e02e52a1-8550-a57c-ed29-f51191ea2375@google.com
Fixes: dd78fedde4 ("rmap: support file thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24 19:06:45 -07:00
Linus Torvalds
6b1f86f8e9 Filesystem folio changes for 5.18
Primarily this series converts some of the address_space operations
 to take a folio instead of a page.
 
 ->is_partially_uptodate() takes a folio instead of a page and changes the
 type of the 'from' and 'count' arguments to make it obvious they're bytes.
 ->invalidatepage() becomes ->invalidate_folio() and has a similar type change.
 ->launder_page() becomes ->launder_folio()
 ->set_page_dirty() becomes ->dirty_folio() and adds the address_space as
 an argument.
 
 There are a couple of other misc changes up front that weren't worth
 separating into their own pull request.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4hqMACgkQDpNsjXcp
 gj7r7Af/fVJ7m8kKqjP/IayX3HiJRuIDQw+vM++BlRNXdjz+IyED6whdmFGxJeOY
 BMyT+8ApOAz7ErS4G+7fAv4ScJK/aEgFUsnSeAiCp0PliiEJ5NNJzElp6sVmQ7H5
 SX7+Ek444FZUGsQuy0qL7/ELpR3ditnD7x+5U2g0p5TeaHGUQn84crRyfR4xuhNG
 EBD9D71BOb7OxUcOHe93pTkK51QsQ0aCrcIsB1tkK5KR0BAthn1HqF7ehL90Rvrr
 omx5M7aDWGY4oj7IKrhlAs+55Ah2WaOzrZBp0FXNbr4UENDBKWKyUxErwa4xPkf6
 Gm1iQG/CspOHnxN3YWsd5WjtlL3A+A==
 =cOiq
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache

Pull filesystem folio updates from Matthew Wilcox:
 "Primarily this series converts some of the address_space operations to
  take a folio instead of a page.

  Notably:

   - a_ops->is_partially_uptodate() takes a folio instead of a page and
     changes the type of the 'from' and 'count' arguments to make it
     obvious they're bytes.

   - a_ops->invalidatepage() becomes ->invalidate_folio() and has a
     similar type change.

   - a_ops->launder_page() becomes ->launder_folio()

   - a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
     address_space as an argument.

  There are a couple of other misc changes up front that weren't worth
  separating into their own pull request"

* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
  fs: Remove aops ->set_page_dirty
  fb_defio: Use noop_dirty_folio()
  fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
  fs: Convert __set_page_dirty_buffers to block_dirty_folio
  nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
  mm: Convert swap_set_page_dirty() to swap_dirty_folio()
  ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
  f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
  f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
  f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
  afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
  btrfs: Convert extent_range_redirty_for_io() to use folios
  fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
  btrfs: Convert from set_page_dirty to dirty_folio
  fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
  fs: Add aops->dirty_folio
  fs: Remove aops->launder_page
  orangefs: Convert launder_page to launder_folio
  nfs: Convert from launder_page to launder_folio
  fuse: Convert from launder_page to launder_folio
  ...
2022-03-22 18:26:56 -07:00
Linus Torvalds
9030fb0bb9 Folio changes for 5.18
- Rewrite how munlock works to massively reduce the contention
    on i_mmap_rwsem (Hugh Dickins):
    https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
  - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig):
    https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
  - Convert GUP to use folios and make pincount available for order-1
    pages. (Matthew Wilcox)
  - Convert a few more truncation functions to use folios (Matthew Wilcox)
  - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox)
  - Convert rmap_walk to use folios (Matthew Wilcox)
  - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
  - Add support for creating large folios in readahead (Matthew Wilcox)
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4ucgACgkQDpNsjXcp
 gj69Wgf6AwqwmO5Tmy+fLScDPqWxmXJofbocae1kyoGHf7Ui91OK4U2j6IpvAr+g
 P/vLIK+JAAcTQcrSCjymuEkf4HkGZOR03QQn7maPIEe4eLrZRQDEsmHC1L9gpeJp
 s/GMvDWiGE0Tnxu0EOzfVi/yT+qjIl/S8VvqtCoJv1HdzxitZ7+1RDuqImaMC5MM
 Qi3uHag78vLmCltLXpIOdpgZhdZexCdL2Y/1npf+b6FVkAJRRNUnA0gRbS7YpoVp
 CbxEJcmAl9cpJLuj5i5kIfS9trr+/QcvbUlzRxh4ggC58iqnmF2V09l2MJ7YU3XL
 v1O/Elq4lRhXninZFQEm9zjrri7LDQ==
 =n9Ad
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache

Pull folio updates from Matthew Wilcox:

 - Rewrite how munlock works to massively reduce the contention on
   i_mmap_rwsem (Hugh Dickins):

     https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/

 - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
   Hellwig):

     https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/

 - Convert GUP to use folios and make pincount available for order-1
   pages. (Matthew Wilcox)

 - Convert a few more truncation functions to use folios (Matthew
   Wilcox)

 - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
   Wilcox)

 - Convert rmap_walk to use folios (Matthew Wilcox)

 - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)

 - Add support for creating large folios in readahead (Matthew Wilcox)

* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
  mm/damon: minor cleanup for damon_pa_young
  selftests/vm/transhuge-stress: Support file-backed PMD folios
  mm/filemap: Support VM_HUGEPAGE for file mappings
  mm/readahead: Switch to page_cache_ra_order
  mm/readahead: Align file mappings for non-DAX
  mm/readahead: Add large folio readahead
  mm: Support arbitrary THP sizes
  mm: Make large folios depend on THP
  mm: Fix READ_ONLY_THP warning
  mm/filemap: Allow large folios to be added to the page cache
  mm: Turn can_split_huge_page() into can_split_folio()
  mm/vmscan: Convert pageout() to take a folio
  mm/vmscan: Turn page_check_references() into folio_check_references()
  mm/vmscan: Account large folios correctly
  mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
  mm/vmscan: Free non-shmem folios without splitting them
  mm/rmap: Constify the rmap_walk_control argument
  mm/rmap: Convert rmap_walk() to take a folio
  mm: Turn page_anon_vma() into folio_anon_vma()
  mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
  ...
2022-03-22 17:03:12 -07:00
Hugh Dickins
bd55b0c2d6 mm/thp: ClearPageDoubleMap in first page_add_file_rmap()
PageDoubleMap is maintained differently for anon and for shmem+file: the
shmem+file one was never cleared, because a safe place to do so could
not be found; so it would blight future use of the cached hugepage until
evicted.

See https://lore.kernel.org/lkml/1571938066-29031-1-git-send-email-yang.shi@linux.alibaba.com/

But page_add_file_rmap() does provide a safe place to do so (though later
than one might wish): allowing testing to return to an initial state
without a damaging drop_caches.

Link: https://lkml.kernel.org/r/61c5cf99-a962-9a25-597a-53ab1bd8fbc0@google.com
Fixes: 9a73f61bdb ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Matthew Wilcox (Oracle)
da358d5c0e mm/hwpoison: check the subpage, not the head page
Hardware poison is tracked on a per-page basis, not on the head page.

Link: https://lkml.kernel.org/r/20220130013042.1906881-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Matthew Wilcox (Oracle)
84fbbe2189 mm/rmap: Constify the rmap_walk_control argument
The rmap walking functions do not modify the rmap_walk_control, and
page_idle_clear_pte_refs() takes advantage of that to move construction
of the rmap_walk_control to compile time.  This lets us remove an
unclean cast.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle)
2f031c6f04 mm/rmap: Convert rmap_walk() to take a folio
This ripples all the way through to every calling and called function
from rmap.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle)
e05b34539d mm: Turn page_anon_vma() into folio_anon_vma()
Move the prototype from mm.h to mm/internal.h and convert all callers
to pass a folio.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle)
9595d76942 mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
Add back page_lock_anon_vma_read() as a wrapper.  This saves a few calls
to compound_head().  If any callers were passing a tail page before,
this would have failed to lock the anon VMA as page->mapping is not
valid for tail pages.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle)
0d2514859c mm/rmap: Convert make_device_exclusive_range() to use folios
Move the PageTail check earlier so we can avoid even taking the folio
lock on tail pages.  Otherwise, this is a straightforward use of
folios throughout.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle)
4b8554c527 mm/rmap: Convert try_to_migrate() to folios
Convert the callers to pass a folio and the try_to_migrate_one()
worker to use a folio throughout.  Fixes an assumption that a
folio must be <= PMD size.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:32 -04:00
Matthew Wilcox (Oracle)
869f7ee6f6 mm/rmap: Convert try_to_unmap() to take a folio
Change all three callers and the worker function try_to_unmap_one().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:03 -04:00
Matthew Wilcox (Oracle)
af28a988b3 mm/huge_memory: Convert __split_huge_pmd() to take a folio
Convert split_huge_pmd_address() at the same time since it only passes
the folio through, and its two callers already have a folio on hand.
Removes numerous calls to compound_head() and removes an assumption
that a page cannot be larger than a PMD.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:03 -04:00
Matthew Wilcox (Oracle)
b3ac04132c mm/rmap: Turn page_referenced() into folio_referenced()
Both its callers pass a page which was previously on an LRU list,
so were passing a folio by definition.  Use the type system to enforce
that and remove a few calls to compound_head().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-03-21 12:59:03 -04:00
Matthew Wilcox (Oracle)
e83c09a24e mm/rmap: Use a folio in page_mkclean_one()
folio_mkclean() already passes down a head page, so convert it
back to a folio.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-03-21 12:59:02 -04:00
Matthew Wilcox (Oracle)
2aff7a4755 mm: Convert page_vma_mapped_walk to work on PFNs
page_mapped_in_vma() really just wants to walk one page, but as the
code stands, if passed the head page of a compound page, it will
walk every page in the compound page.  Extract pfn/nr_pages/pgoff
from the struct page early, so they can be overridden by
page_mapped_in_vma().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:02 -04:00
Matthew Wilcox (Oracle)
eed05e54d2 mm: Add DEFINE_PAGE_VMA_WALK and DEFINE_FOLIO_VMA_WALK
Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:02 -04:00
Matthew Wilcox (Oracle)
5232c63f46 mm: Make compound_pincount always available
Move compound_pincount from the third page to the second page, which
means it's available for all compound pages.  That lets us delete
hpage_pincount_available().

On 32-bit systems, there isn't enough space for both compound_pincount
and compound_nr in the second page (it would collide with page->private,
which is in use for pages in the swap cache), so revert the optimisation
of storing both compound_order and compound_nr on 32-bit systems.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-03-21 12:56:35 -04:00
Matthew Wilcox (Oracle)
e621900ad2 fs: Convert __set_page_dirty_buffers to block_dirty_folio
Convert all callers; mostly this is just changing the aops to point
at it, but a few implementations need a little more work.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
2022-03-16 13:37:04 -04:00
Hugh Dickins
47d4f3eeef mm/thp: shrink_page_list() avoid splitting VM_LOCKED THP
4.8 commit 7751b2da6b ("vmscan: split file huge pages before paging
them out") inserted a split_huge_page_to_list() into shrink_page_list()
without considering the mlock case: no problem if the page has already
been marked as Mlocked (the !page_evictable check much higher up will
have skipped all this), but it has always been the case that races or
omissions in setting Mlocked can rely on page reclaim to detect this
and correct it before actually reclaiming - and that remains so, but
what a shame if a hugepage is needlessly split before discovering it.

It is surprising that page_check_references() returns PAGEREF_RECLAIM
when VM_LOCKED, but there was a good reason for that: try_to_unmap_one()
is where the condition is detected and corrected; and until now it could
not be done in page_referenced_one(), because that does not always have
the page locked.  Now that mlock's requirement for page lock has gone,
copy try_to_unmap_one()'s mlock restoration into page_referenced_one(),
and let page_check_references() return PAGEREF_ACTIVATE in this case.

But page_referenced_one() may find a pte mapping one part of a hugepage:
what hold should a pte mapped in a VM_LOCKED area exert over the entire
huge page?  That's debatable.  The approach taken here is to treat that
pte mapping in page_referenced_one() as if not VM_LOCKED, and if no
VM_LOCKED pmd mapping is found later in the walk, and lack of reference
permits, then PAGEREF_RECLAIM take it to attempted splitting as before.

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-17 11:59:50 -05:00
Hugh Dickins
b74355078b mm/munlock: page migration needs mlock pagevec drained
Page migration of a VM_LOCKED page tends to fail, because when the old
page is unmapped, it is put on the mlock pagevec with raised refcount,
which then fails the freeze.

At first I thought this would be fixed by a local mlock_page_drain() at
the upper rmap_walk() level - which would have nicely batched all the
munlocks of that page; but tests show that the task can too easily move
to another cpu, leaving pagevec residue behind which fails the migration.

So try_to_migrate_one() drain the local pagevec after page_remove_rmap()
from a VM_LOCKED vma; and do the same in try_to_unmap_one(), whose
TTU_IGNORE_MLOCK users would want the same treatment; and do the same
in remove_migration_pte() - not important when successfully inserting
a new page, but necessary when hoping to retry after failure.

Any new pagevec runs the risk of adding a new way of stranding, and we
might discover other corners where mlock_page_drain() or lru_add_drain()
would now help.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-17 11:59:40 -05:00
Hugh Dickins
b109b87050 mm/munlock: replace clear_page_mlock() by final clearance
Placing munlock_vma_page() at the end of page_remove_rmap() shifts most
of the munlocking to clear_page_mlock(), since PageMlocked is typically
still set when mapcount has fallen to 0.  That is not what we want: we
want /proc/vmstat's unevictable_pgs_cleared to remain as a useful check
on the integrity of of the mlock/munlock protocol - small numbers are
not surprising, but big numbers mean the protocol is not working.

That could be easily fixed by placing munlock_vma_page() at the start of
page_remove_rmap(); but later in the series we shall want to batch the
munlocking, and that too would tend to leave PageMlocked still set at
the point when it is checked.

So delete clear_page_mlock() now: leave it instead to release_pages()
(and __page_cache_release()) to do this backstop clearing of Mlocked,
when page refcount has fallen to 0.  If a pinned page occasionally gets
counted as Mlocked and Unevictable until it is unpinned, that's okay.

A slightly regrettable side-effect of this change is that, since
release_pages() and __page_cache_release() may be called at interrupt
time, those places which update NR_MLOCK with interrupts enabled
had better use mod_zone_page_state() than __mod_zone_page_state()
(but holding the lruvec lock always has interrupts disabled).

This change, forcing Mlocked off when refcount 0 instead of earlier
when mapcount 0, is not fundamental: it can be reversed if performance
or something else is found to suffer; but this is the easiest way to
separate the stats - let's not complicate that without good reason.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-17 11:56:53 -05:00
Hugh Dickins
cea86fe246 mm/munlock: rmap call mlock_vma_page() munlock_vma_page()
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them
inline functions which check (vma->vm_flags & VM_LOCKED) before calling
mlock_page() and munlock_page() in mm/mlock.c.

Add bool compound to mlock_vma_page() and munlock_vma_page(): this is
because we have understandable difficulty in accounting pte maps of THPs,
and if passed a PageHead page, mlock_page() and munlock_page() cannot
tell whether it's a pmd map to be counted or a pte map to be ignored.

Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the
others, and use that to call mlock_vma_page() at the end of the page
adds, and munlock_vma_page() at the end of page_remove_rmap() (end or
beginning? unimportant, but end was easier for assertions in testing).

No page lock is required (although almost all adds happen to hold it):
delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s.
Certainly page lock did serialize with page migration, but I'm having
difficulty explaining why that was ever important.

Mlock accounting on THPs has been hard to define, differed between anon
and file, involved PageDoubleMap in some places and not others, required
clear_page_mlock() at some points.  Keep it simple now: just count the
pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks.

page_add_new_anon_rmap() callers unchanged: they have long been calling
lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED
handling (it also checks for not VM_SPECIAL: I think that's overcautious,
and inconsistent with other checks, that mmap_region() already prevents
VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it).

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-17 11:56:48 -05:00
Hugh Dickins
ebcbc6ea7d mm/munlock: delete page_mlock() and all its works
We have recommended some applications to mlock their userspace, but that
turns out to be counter-productive: when many processes mlock the same
file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it
is needed for write, to remove any vma mapping that file from rmap's tree;
but hogged for read by those with mlocks calling page_mlock() (formerly
known as try_to_munlock()) on *each* page mapped from the file (the
purpose being to find out whether another process has the page mlocked,
so therefore it should not be unmlocked yet).

Several optimizations have been made in the past: one is to skip
page_mlock() when mapcount tells that nothing else has this page
mapped; but that doesn't help at all when others do have it mapped.
This time around, I initially intended to add a preliminary search
of the rmap tree for overlapping VM_LOCKED ranges; but that gets
messy with locking order, when in doubt whether a page is actually
present; and risks adding even more contention on the i_mmap_rwsem.

A solution would be much easier, if only there were space in struct page
for an mlock_count... but actually, most of the time, there is space for
it - an mlocked page spends most of its life on an unevictable LRU, but
since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has
been redundant.  Let's try to reuse its page->lru.

But leave that until a later patch: in this patch, clear the ground by
removing page_mlock(), and all the infrastructure that has gathered
around it - which mostly hinders understanding, and will make reviewing
new additions harder.  Don't mind those old comments about THPs, they
date from before 4.5's refcounting rework: splitting is not a risk here.

Just keep a minimal version of munlock_vma_page(), as reminder of what it
should attend to (in particular, the odd way PGSTRANDED is counted out of
PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range().  Move
unchanged __mlock_posix_error_return() out of the way, down to above its
caller: this series then makes no further change after mlock_fixup().

After this and each following commit, the kernel builds, boots and runs;
but with deficiencies which may show up in testing of mlock and munlock.
The system calls succeed or fail as before, and mlock remains effective
in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts
may be shown too low after mlock, grow, then stay too high after munlock:
with previously mlocked pages remaining unevictable for too long, until
finally unmapped and freed and counts corrected. Normal service will be
resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking".

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-17 11:56:13 -05:00
Huang Ying
5ee2fa2f06 mm/rmap: fix potential batched TLB flush race
In theory, the following race is possible for batched TLB flushing.

  CPU0                               CPU1
  ----                               ----
  shrink_page_list()
                                     unmap
                                       zap_pte_range()
                                         flush_tlb_batched_pending()
                                           flush_tlb_mm()
    try_to_unmap()
      set_tlb_ubc_flush_pending()
        mm->tlb_flush_batched = true
                                           mm->tlb_flush_batched = false

After the TLB is flushed on CPU1 via flush_tlb_mm() and before
mm->tlb_flush_batched is set to false, some PTE is unmapped on CPU0 and
the TLB flushing is pended.  Then the pended TLB flushing will be lost.
Although both set_tlb_ubc_flush_pending() and
flush_tlb_batched_pending() are called with PTL locked, different PTL
instances may be used.

Because the race window is really small, and the lost TLB flushing will
cause problem only if a TLB entry is inserted before the unmapping in
the race window, the race is only theoretical.  But the fix is simple
and cheap too.

Syzbot has reported this too as follows:

    ==================================================================
    BUG: KCSAN: data-race in flush_tlb_batched_pending / try_to_unmap_one

    write to 0xffff8881072cfbbc of 1 bytes by task 17406 on cpu 1:
     flush_tlb_batched_pending+0x5f/0x80 mm/rmap.c:691
     madvise_free_pte_range+0xee/0x7d0 mm/madvise.c:594
     walk_pmd_range mm/pagewalk.c:128 [inline]
     walk_pud_range mm/pagewalk.c:205 [inline]
     walk_p4d_range mm/pagewalk.c:240 [inline]
     walk_pgd_range mm/pagewalk.c:277 [inline]
     __walk_page_range+0x981/0x1160 mm/pagewalk.c:379
     walk_page_range+0x131/0x300 mm/pagewalk.c:475
     madvise_free_single_vma mm/madvise.c:734 [inline]
     madvise_dontneed_free mm/madvise.c:822 [inline]
     madvise_vma mm/madvise.c:996 [inline]
     do_madvise+0xe4a/0x1140 mm/madvise.c:1202
     __do_sys_madvise mm/madvise.c:1228 [inline]
     __se_sys_madvise mm/madvise.c:1226 [inline]
     __x64_sys_madvise+0x5d/0x70 mm/madvise.c:1226
     do_syscall_x64 arch/x86/entry/common.c:50 [inline]
     do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
     entry_SYSCALL_64_after_hwframe+0x44/0xae

    write to 0xffff8881072cfbbc of 1 bytes by task 71 on cpu 0:
     set_tlb_ubc_flush_pending mm/rmap.c:636 [inline]
     try_to_unmap_one+0x60e/0x1220 mm/rmap.c:1515
     rmap_walk_anon+0x2fb/0x470 mm/rmap.c:2301
     try_to_unmap+0xec/0x110
     shrink_page_list+0xe91/0x2620 mm/vmscan.c:1719
     shrink_inactive_list+0x3fb/0x730 mm/vmscan.c:2394
     shrink_list mm/vmscan.c:2621 [inline]
     shrink_lruvec+0x3c9/0x710 mm/vmscan.c:2940
     shrink_node_memcgs+0x23e/0x410 mm/vmscan.c:3129
     shrink_node+0x8f6/0x1190 mm/vmscan.c:3252
     kswapd_shrink_node mm/vmscan.c:4022 [inline]
     balance_pgdat+0x702/0xd30 mm/vmscan.c:4213
     kswapd+0x200/0x340 mm/vmscan.c:4473
     kthread+0x2c7/0x2e0 kernel/kthread.c:327
     ret_from_fork+0x1f/0x30

    value changed: 0x01 -> 0x00

    Reported by Kernel Concurrency Sanitizer on:
    CPU: 0 PID: 71 Comm: kswapd0 Not tainted 5.16.0-rc1-syzkaller #0
    Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
    ==================================================================

[akpm@linux-foundation.org: tweak comments]

Link: https://lkml.kernel.org/r/20211201021104.126469-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: syzbot+aa5bebed695edaccf0df@syzkaller.appspotmail.com
Cc: Nadav Amit <namit@vmware.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:31 +02:00
Linus Torvalds
512b7931ad Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "257 patches.

  Subsystems affected by this patch series: scripts, ocfs2, vfs, and
  mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
  gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
  pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
  memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
  vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
  cleanups, kfence, and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
  mm/damon: remove return value from before_terminate callback
  mm/damon: fix a few spelling mistakes in comments and a pr_debug message
  mm/damon: simplify stop mechanism
  Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
  Docs/admin-guide/mm/damon/start: simplify the content
  Docs/admin-guide/mm/damon/start: fix a wrong link
  Docs/admin-guide/mm/damon/start: fix wrong example commands
  mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
  mm/damon: remove unnecessary variable initialization
  Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
  mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
  selftests/damon: support watermarks
  mm/damon/dbgfs: support watermarks
  mm/damon/schemes: activate schemes based on a watermarks mechanism
  tools/selftests/damon: update for regions prioritization of schemes
  mm/damon/dbgfs: support prioritization weights
  mm/damon/vaddr,paddr: support pageout prioritization
  mm/damon/schemes: prioritize regions within the quotas
  mm/damon/selftests: support schemes quotas
  mm/damon/dbgfs: support quotas of schemes
  ...
2021-11-06 14:08:17 -07:00
Alistair Popple
3d88705c10 mm/rmap.c: avoid double faults migrating device private pages
During migration special page table entries are installed for each page
being migrated.  These entries store the pfn and associated permissions
of ptes mapping the page being migarted.

Device-private pages use special swap pte entries to distinguish
read-only vs.  writeable pages which the migration code checks when
creating migration entries.  Normally this follows a fast path in
migrate_vma_collect_pmd() which correctly copies the permissions of
device-private pages over to migration entries when migrating pages back
to the CPU.

However the slow-path falls back to using try_to_migrate() which
unconditionally creates read-only migration entries for device-private
pages.  This leads to unnecessary double faults on the CPU as the new
pages are always mapped read-only even when they could be mapped
writeable.  Fix this by correctly copying device-private permissions in
try_to_migrate_one().

Link: https://lkml.kernel.org/r/20211018045247.3128058-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reported-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Matthew Wilcox (Oracle)
d9c08e2232 mm/rmap: Add folio_mkclean()
Transform page_mkclean() into folio_mkclean() and add a page_mkclean()
wrapper around folio_mkclean().

folio_mkclean is 15 bytes smaller than page_mkclean, but the kernel
is enlarged by 33 bytes due to inlining page_folio() into each caller.
This will go away once the callers are converted to use folio_mkclean().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-18 07:49:39 -04:00
Matthew Wilcox (Oracle)
e809c3fede mm/memcg: Add folio_lruvec_lock() and similar functions
These are the folio equivalents of lock_page_lruvec() and similar
functions.  Also convert lruvec_memcg_debug() to take a folio.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27 09:27:31 -04:00
Linus Torvalds
2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
Muchun Song
fe3df441ef mm: remove redundant compound_head() calling
There is a READ_ONCE() in the macro of compound_head(), which will prevent
compiler from optimizing the code when there are more than once calling of
it in a function.  Remove the redundant calling of compound_head() from
page_to_index() and page_add_file_rmap() for better code generation.

Link: https://lkml.kernel.org/r/20210811101431.83940-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Linus Torvalds
aa99f3c2b9 \n
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAmEmTZcACgkQnJ2qBz9k
 QNkkmAgArW6XoF1CePds/ZaC9vfg/nk66/zVo0n+J8xXjMWAPxcKbWFfV0uWVixq
 yk4lcLV47a2Mu/B/1oLNd3vrSmhwU+srWqNwOFn1nv+lP/6wJqr8oztRHn/0L9Q3
 ZSRrukSejbQ6AvTL/WzTNnCjjCc2ne3Kyko6W41aU6uyJuzhSM32wbx7qlV6t54Z
 iint9OrB4gM0avLohNafTUq6I+tEGzBMNwpCG/tqCmkcvDcv3rTDVAnPSCTm0Tx2
 hdrYDcY/rLxo93pDBaW1rYA/fohR+mIVye6k2TjkPAL6T1x+rxeT5qnc+YijH5yF
 sFPDhlD+ZsfOLi8stWXLOJ+8+gLODg==
 =pDBR
 -----END PGP SIGNATURE-----

Merge tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs

Pull fs hole punching vs cache filling race fixes from Jan Kara:
 "Fix races leading to possible data corruption or stale data exposure
  in multiple filesystems when hole punching races with operations such
  as readahead.

  This is the series I was sending for the last merge window but with
  your objection fixed - now filemap_fault() has been modified to take
  invalidate_lock only when we need to create new page in the page cache
  and / or bring it uptodate"

* tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
  filesystems/locking: fix Malformed table warning
  cifs: Fix race between hole punch and page fault
  ceph: Fix race between hole punch and page fault
  fuse: Convert to using invalidate_lock
  f2fs: Convert to using invalidate_lock
  zonefs: Convert to using invalidate_lock
  xfs: Convert double locking of MMAPLOCK to use VFS helpers
  xfs: Convert to use invalidate_lock
  xfs: Refactor xfs_isilocked()
  ext2: Convert to using invalidate_lock
  ext4: Convert to use mapping->invalidate_lock
  mm: Add functions to lock invalidate_lock for two mappings
  mm: Protect operations adding pages to page cache with invalidate_lock
  documentation: Sync file_operations members with reality
  mm: Fix comments mentioning i_mutex
2021-08-30 10:24:50 -07:00
Jan Kara
730633f0b7 mm: Protect operations adding pages to page cache with invalidate_lock
Currently, serializing operations such as page fault, read, or readahead
against hole punching is rather difficult. The basic race scheme is
like:

fallocate(FALLOC_FL_PUNCH_HOLE)			read / fault / ..
  truncate_inode_pages_range()
						  <create pages in page
						   cache here>
  <update fs block mapping and free blocks>

Now the problem is in this way read / page fault / readahead can
instantiate pages in page cache with potentially stale data (if blocks
get quickly reused). Avoiding this race is not simple - page locks do
not work because we want to make sure there are *no* pages in given
range. inode->i_rwsem does not work because page fault happens under
mmap_sem which ranks below inode->i_rwsem. Also using it for reads makes
the performance for mixed read-write workloads suffer.

So create a new rw_semaphore in the address_space - invalidate_lock -
that protects adding of pages to page cache for page faults / reads /
readahead.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
2021-07-13 13:14:27 +02:00
Hugh Dickins
efdb6720b4 mm/rmap: fix munlocking Anon THP with mlocked ptes
Many thanks to Kirill for reminding that PageDoubleMap cannot be relied on
to warn of pte mappings in the Anon THP case; and a scan of subpages does
not seem appropriate here.  Note how follow_trans_huge_pmd() does not even
mark an Anon THP as mlocked when compound_mapcount != 1: multiple mlocking
of Anon THP is avoided, so simply return from page_mlock() in this case.

Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/
Fixes: d9770fcc1c ("mm/rmap: fix old bug: munlocking THP missed other mlocks")
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-12 11:30:56 -07:00
Jan Kara
9608703e48 mm: Fix comments mentioning i_mutex
inode->i_mutex has been replaced with inode->i_rwsem long ago. Fix
comments still mentioning i_mutex.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2021-07-12 18:31:16 +02:00
Hugh Dickins
6c855fce2e mm/rmap: try_to_migrate() skip zone_device !device_private
I know nothing about zone_device pages and !device_private pages; but if
try_to_migrate_one() will do nothing for them, then it's better that
try_to_migrate() filter them first, than trawl through all their vmas.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/1241d356-8ec9-f47b-a5ec-9b2bf66d242@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
023e1a8dd5 mm/rmap: fix new bug: premature return from page_mlock_one()
In the unlikely race case that page_mlock_one() finds VM_LOCKED has been
cleared by the time it got page table lock, page_vma_mapped_walk_done()
must be called before returning, either explicitly, or by a final call
to page_vma_mapped_walk() - otherwise the page table remains locked.

Fixes: cd62734ca6 ("mm/rmap: split try_to_munlock from try_to_unmap")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/20210711151446.GB4070@xsang-OptiPlex-9020/
Link: https://lore.kernel.org/lkml/f71f8523-cba7-3342-40a7-114abc5d1f51@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
d9770fcc1c mm/rmap: fix old bug: munlocking THP missed other mlocks
The kernel recovers in due course from missing Mlocked pages: but there
was no point in calling page_mlock() (formerly known as
try_to_munlock()) on a THP, because nothing got done even when it was
found to be mapped in another VM_LOCKED vma.

It's true that we need to be careful: Mlocked accounting of pte-mapped
THPs is too difficult (so consistently avoided); but Mlocked accounting
of only-pmd-mapped THPs is supposed to work, even when multiple mappings
are mlocked and munlocked or munmapped.  Refine the tests.

There is already a VM_BUG_ON_PAGE(PageDoubleMap) in page_mlock(), so
page_mlock_one() does not even have to worry about that complication.

(I said the kernel recovers: but would page reclaim be likely to split
THP before rediscovering that it's VM_LOCKED? I've not followed that up)

Fixes: 9a73f61bdb ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
64b586d192 mm/rmap: fix comments left over from recent changes
Parallel developments in mm/rmap.c have left behind some out-of-date
comments: try_to_migrate_one() also accepts TTU_SYNC (already commented
in try_to_migrate() itself), and try_to_migrate() returns nothing at
all.

TTU_SPLIT_FREEZE has just been deleted, so reword the comment about it
in mm/huge_memory.c; and TTU_IGNORE_ACCESS was removed in 5.11, so
delete the "recently referenced" comment from try_to_unmap_one() (once
upon a time the comment was near the removed codeblock, but they drifted
apart).

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/563ce5b2-7a44-5b4d-1dfd-59a0e65932a9@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Alistair Popple
b756a3b5e7 mm: device exclusive memory access
Some devices require exclusive write access to shared virtual memory (SVM)
ranges to perform atomic operations on that memory.  This requires CPU
page tables to be updated to deny access whilst atomic operations are
occurring.

In order to do this introduce a new swap entry type
(SWP_DEVICE_EXCLUSIVE).  When a SVM range needs to be marked for exclusive
access by a device all page table mappings for the particular range are
replaced with device exclusive swap entries.  This causes any CPU access
to the page to result in a fault.

Faults are resovled by replacing the faulting entry with the original
mapping.  This results in MMU notifiers being called which a driver uses
to update access permissions such as revoking atomic access.  After
notifiers have been called the device will no longer have exclusive access
to the region.

Walking of the page tables to find the target pages is handled by
get_user_pages() rather than a direct page table walk.  A direct page
table walk similar to what migrate_vma_collect()/unmap() does could also
have been utilised.  However this resulted in more code similar in
functionality to what get_user_pages() provides as page faulting is
required to make the PTEs present and to break COW.

[dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()]
  Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda

Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
a98a2f0c8c mm/rmap: split migration into its own function
Migration is currently implemented as a mode of operation for
try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag
or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE.

However it does not have much in common with the rest of the unmap
functionality of try_to_unmap_one() and thus splitting it into a separate
function reduces the complexity of try_to_unmap_one() making it more
readable.

Several simplifications can also be made in try_to_migrate_one() based on
the following observations:

 - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK.
 - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON.
 - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH.

TTU_SPLIT_FREEZE is a special case of migration used when splitting an
anonymous page.  This is most easily dealt with by calling the correct
function from unmap_page() in mm/huge_memory.c - either try_to_migrate()
for PageAnon or try_to_unmap().

Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
cd62734ca6 mm/rmap: split try_to_munlock from try_to_unmap
The behaviour of try_to_unmap_one() is difficult to follow because it
performs different operations based on a fairly large set of flags used in
different combinations.

TTU_MUNLOCK is one such flag.  However it is exclusively used by
try_to_munlock() which specifies no other flags.  Therefore rather than
overload try_to_unmap_one() with unrelated behaviour split this out into
it's own function and remove the flag.

Link: https://lkml.kernel.org/r/20210616105937.23201-4-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
4dd845b5a3 mm/swapops: rework swap entry manipulation code
Both migration and device private pages use special swap entries that are
manipluated by a range of inline functions.  The arguments to these are
somewhat inconsistent so rework them to remove flag type arguments and to
make the arguments similar for both read and write entry creation.

Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Yang Shi
1fb08ac63b mm: rmap: make try_to_unmap() void function
Currently try_to_unmap() return bool value by checking page_mapcount(),
however this may return false positive since page_mapcount() doesn't check
all subpages of compound page.  The total_mapcount() could be used
instead, but its cost is higher since it traverses all subpages.

Actually the most callers of try_to_unmap() don't care about the return
value at all.  So just need check if page is still mapped by page_mapped()
when necessary.  And page_mapped() does bail out early when it finds
mapped subpage.

Link: https://lkml.kernel.org/r/bb27e3fe-6036-b637-5086-272befbfe3da@google.com
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Jue Wang
31657170de mm/thp: fix page_address_in_vma() on file THP tails
Anon THP tails were already supported, but memory-failure may need to
use page_address_in_vma() on file THP tails, which its page->mapping
check did not permit: fix it.

hughd adds: no current usage is known to hit the issue, but this does
fix a subtle trap in a general helper: best fixed in stable sooner than
later.

Link: https://lkml.kernel.org/r/a0d9b53-bf5d-8bab-ac5-759dc61819c1@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Hugh Dickins
494334e43c mm/thp: fix vma_address() if virtual address below file offset
Running certain tests with a DEBUG_VM kernel would crash within hours,
on the total_mapcount BUG() in split_huge_page_to_list(), while trying
to free up some memory by punching a hole in a shmem huge page: split's
try_to_unmap() was unable to find all the mappings of the page (which,
on a !DEBUG_VM kernel, would then keep the huge page pinned in memory).

When that BUG() was changed to a WARN(), it would later crash on the
VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in
mm/internal.h:vma_address(), used by rmap_walk_file() for
try_to_unmap().

vma_address() is usually correct, but there's a wraparound case when the
vm_start address is unusually low, but vm_pgoff not so low:
vma_address() chooses max(start, vma->vm_start), but that decides on the
wrong address, because start has become almost ULONG_MAX.

Rewrite vma_address() to be more careful about vm_pgoff; move the
VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can
be safely used from page_mapped_in_vma() and page_address_in_vma() too.

Add vma_address_end() to apply similar care to end address calculation,
in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one();
though it raises a question of whether callers would do better to supply
pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch.

An irritation is that their apparent generality breaks down on KSM
pages, which cannot be located by the page->index that page_to_pgoff()
uses: as commit 4b0ece6fa0 ("mm: migrate: fix remove_migration_pte()
for ksm pages") once discovered.  I dithered over the best thing to do
about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both
vma_address() and vma_address_end(); though the only place in danger of
using it on them was try_to_unmap_one().

Sidenote: vma_address() and vma_address_end() now use compound_nr() on a
head page, instead of thp_size(): to make the right calculation on a
hugetlbfs page, whether or not THPs are configured.  try_to_unmap() is
used on hugetlbfs pages, but perhaps the wrong calculation never
mattered.

Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com
Fixes: a8fa41ad2f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Hugh Dickins
732ed55823 mm/thp: try_to_unmap() use TTU_SYNC for safe splitting
Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE
(!unmap_success): with dump_page() showing mapcount:1, but then its raw
struct page output showing _mapcount ffffffff i.e.  mapcount 0.

And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed,
it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)),
and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG():
all indicative of some mapcount difficulty in development here perhaps.
But the !CONFIG_DEBUG_VM path handles the failures correctly and
silently.

I believe the problem is that once a racing unmap has cleared pte or
pmd, try_to_unmap_one() may skip taking the page table lock, and emerge
from try_to_unmap() before the racing task has reached decrementing
mapcount.

Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that
follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding
TTU_SYNC to the options, and passing that from unmap_page().

When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same
for both: the slight overhead added should rarely matter, except perhaps
if splitting sparsely-populated multiply-mapped shmem.  Once confident
that bugs are fixed, TTU_SYNC here can be removed, and the race
tolerated.

Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com
Fixes: fec89c109f ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Shijie Luo
cb152a1a95 mm: fix some typos and code style problems
fix some typos and code style problems in mm.

gfp.h: s/MAXNODES/MAX_NUMNODES
mmzone.h: s/then/than
rmap.c: s/__vma_split()/__vma_adjust()
swap.c: s/__mod_zone_page_stat/__mod_zone_page_state, s/is is/is
swap_state.c: s/whoes/whose
z3fold.c: code style problem fix in z3fold_unregister_migration
zsmalloc.c: s/of/or, s/give/given

Link: https://lkml.kernel.org/r/20210419083057.64820-1-luoshijie1@huawei.com
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 00:26:33 -07:00
Miaohe Lin
ad8a20cf6d mm/rmap: correct obsolete comment of page_get_anon_vma()
Since commit 746b18d421 ("mm: use refcounts for page_lock_anon_vma()"),
page_lock_anon_vma() is renamed to page_get_anon_vma() and converted to
return a refcount increased anon_vma.  But it forgot to change the
relevant comment.

Link: https://lkml.kernel.org/r/20210203093215.31990-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
b7e188ec98 mm/rmap: use page_not_mapped in try_to_unmap()
page_mapcount_is_zero() calculates accurately how many mappings a hugepage
has in order to check against 0 only.  This is a waste of cpu time.  We
can do this via page_not_mapped() to save some possible atomic_read
cycles.  Remove the function page_mapcount_is_zero() as it's not used
anymore and move page_not_mapped() above try_to_unmap() to avoid
identifier undeclared compilation error.

Link: https://lkml.kernel.org/r/20210130084904.35307-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
90aaca852c mm/rmap: fix obsolete comment in __page_check_anon_rmap()
Commit 21333b2b66 ("ksm: no debug in page_dup_rmap()") has reverted
page_dup_rmap() to an inline atomic_inc of mapcount.  So page_dup_rmap()
does not call __page_check_anon_rmap() anymore.

Link: https://lkml.kernel.org/r/20210128110209.50857-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
e0af87ff7a mm/rmap: remove unneeded semicolon in page_not_mapped()
Remove extra semicolon without any functional change intended.

Link: https://lkml.kernel.org/r/20210127093425.39640-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
aaf1f990ae mm/rmap: correct some obsolete comments of anon_vma
commit 2b575eb64f ("mm: convert anon_vma->lock to a mutex") changed
spinlock used to serialize access to vma list to mutex.  And further, the
commit 5a505085f0 ("mm/rmap: Convert the struct anon_vma::mutex to an
rwsem") converted the mutex to an rwsem for solving scalability problem.
So replace spinlock with rwsem to make comment uptodate.

Link: https://lkml.kernel.org/r/20210123072459.25903-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Li Xinhai
ee8ab1903e mm: rmap: explicitly reset vma->anon_vma in unlink_anon_vmas()
In case the vma will continue to be used after unlink its relevant
anon_vma, we need to reset the vma->anon_vma pointer to NULL.  So, later
when fault happen within this vma again, a new anon_vma will be prepared.

By this way, the vma will only be checked for reverse mapping of pages
which been fault in after the unlink_anon_vmas call.

Currently, the mremap with MREMAP_DONTUNMAP scenario will continue use the
vma after moved its page table entries to a new vma.  For other scenarios,
the vma itself will be freed after call unlink_anon_vmas.

Link: https://lkml.kernel.org/r/20210119075126.3513154-1-lixinhai.lxh@gmail.com
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:30 -08:00
Muchun Song
380780e718 mm: memcontrol: convert NR_FILE_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_FILE_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
a1528e21f8 mm: memcontrol: convert NR_SHMEM_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_SHMEM_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
69473e5de8 mm: memcontrol: convert NR_ANON_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_ANON_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Hugh Dickins
15b4473617 mm/lru: revise the comments of lru_lock
Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to fix
the incorrect comments in code.  Also fixed some zone->lru_lock comment
error from ancient time.  etc.

I struggled to understand the comment above move_pages_to_lru() (surely
it never calls page_referenced()), and eventually realized that most of
it had got separated from shrink_active_list(): move that comment back.

Link: https://lkml.kernel.org/r/1604566549-62481-20-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:04 -08:00
Alex Shi
16f5e707d6 mm/rmap: stop store reordering issue on page->mapping
Hugh Dickins and Minchan Kim observed a long time issue which discussed
here, but actully the mentioned fix in

  https://lore.kernel.org/lkml/20150504031722.GA2768@blaptop/

was missed.

The store reordering may cause problem in the scenario:

	CPU 0						CPU1
   do_anonymous_page
	page_add_new_anon_rmap()
	  page->mapping = anon_vma + PAGE_MAPPING_ANON
	lru_cache_add_inactive_or_unevictable()
	  spin_lock(lruvec->lock)
	  SetPageLRU()
	  spin_unlock(lruvec->lock)
						/* idletacking judged it as LRU
						 * page so pass the page in
						 * page_idle_clear_pte_refs
						 */
						page_idle_clear_pte_refs
						  rmap_walk
						    if PageAnon(page)

Johannes give detailed examples how the store reordering could cause
trouble: "The concern is the SetPageLRU may get reorder before
'page->mapping' setting, That would make CPU 1 will observe at
page->mapping after observing PageLRU set on the page.

1. anon_vma + PAGE_MAPPING_ANON

   That's the in-order scenario and is fine.

2. NULL

   That's possible if the page->mapping store gets reordered to occur
   after SetPageLRU. That's fine too because we check for it.

3. anon_vma without the PAGE_MAPPING_ANON bit

   That would be a problem and could lead to all kinds of undesirable
   behavior including crashes and data corruption.

   Is it possible? AFAICT the compiler is allowed to tear the store to
   page->mapping and I don't see anything that would prevent it.

That said, I also don't see how the reader testing PageLRU under the
lru_lock would prevent that in the first place.  AFAICT we need that
WRITE_ONCE() around the page->mapping assignment."

[alex.shi@linux.alibaba.com: updated for comments change from Johannes]
  Link: https://lkml.kernel.org/r/e66ef2e5-c74c-6498-e8b3-56c37b9d2d15@linux.alibaba.com

Link: https://lkml.kernel.org/r/1604566549-62481-7-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:03 -08:00
Shakeel Butt
013339df11 mm/rmap: always do TTU_IGNORE_ACCESS
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check.  More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.

However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page.  So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.

There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim.  From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.

The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.

Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Mike Kravetz
336bf30eb7 hugetlbfs: fix anon huge page migration race
Qian Cai reported the following BUG in [1]

  LTP: starting move_pages12
  BUG: unable to handle page fault for address: ffffffffffffffe0
  ...
  RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63
  Call Trace:
    rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864
    try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763
    migrate_pages+0x1005/0x1fb0
    move_pages_and_store_status.isra.47+0xd7/0x1a0
    __x64_sys_move_pages+0xa5c/0x1100
    do_syscall_64+0x5f/0x310
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Hugh Dickins diagnosed this as a migration bug caused by code introduced
to use i_mmap_rwsem for pmd sharing synchronization.  Specifically, the
routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED
flag to try_to_unmap() while holding i_mmap_rwsem.  This is wrong for
anon pages as the anon_vma_lock should be held in this case.  Further
analysis suggested that i_mmap_rwsem was not required to he held at all
when calling try_to_unmap for anon pages as an anon page could never be
part of a shared pmd mapping.

Discussion also revealed that the hack in hugetlb_page_mapping_lock_write
to drop page lock and acquire i_mmap_rwsem is wrong.  There is no way to
keep mapping valid while dropping page lock.

This patch does the following:

 - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when
   calling try_to_unmap.

 - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine
   will now simply do a 'trylock' while still holding the page lock. If
   the trylock fails, it will return NULL. This could impact the
   callers:

    - migration calling code will receive -EAGAIN and retry up to the
      hard coded limit (10).

    - memory error code will treat the page as BUSY. This will force
      killing (SIGKILL) instead of SIGBUS any mapping tasks.

   Do note that this change in behavior only happens when there is a
   race. None of the standard kernel testing suites actually hit this
   race, but it is possible.

[1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/
[2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/

Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 11:26:04 -08:00
Matthew Wilcox (Oracle)
5eaf35ab12 mm/rmap: fix assumptions of THP size
Ask the page what size it is instead of assuming it's PMD size.  Do this
for anon pages as well as file pages for when someone decides to support
that.  Leave the assumption alone for pages which are PMD mapped; we don't
currently grow THPs beyond PMD size, so we don't need to change this code
yet.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.kernel.org/r/20200908195539.25896-9-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:15 -07:00
Alistair Popple
ad7df764b7 mm/rmap: fixup copying of soft dirty and uffd ptes
During memory migration a pte is temporarily replaced with a migration
swap pte.  Some pte bits from the existing mapping such as the soft-dirty
and uffd write-protect bits are preserved by copying these to the
temporary migration swap pte.

However these bits are not stored at the same location for swap and
non-swap ptes.  Therefore testing these bits requires using the
appropriate helper function for the given pte type.

Unfortunately several code locations were found where the wrong helper
function is being used to test soft_dirty and uffd_wp bits which leads to
them getting incorrectly set or cleared during page-migration.

Fix these by using the correct tests based on pte type.

Fixes: a5430dda8a ("mm/migrate: support un-addressable ZONE_DEVICE page in migration")
Fixes: 8c3328f1f3 ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200825064232.10023-2-alistair@popple.id.au
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05 12:14:30 -07:00
Qian Cai
9c1177b62a mm/rmap: annotate a data race at tlb_flush_batched
mm->tlb_flush_batched could be accessed concurrently as noticed by
KCSAN,

 BUG: KCSAN: data-race in flush_tlb_batched_pending / try_to_unmap_one

 write to 0xffff93f754880bd0 of 1 bytes by task 822 on cpu 6:
  try_to_unmap_one+0x59a/0x1ab0
  set_tlb_ubc_flush_pending at mm/rmap.c:635
  (inlined by) try_to_unmap_one at mm/rmap.c:1538
  rmap_walk_anon+0x296/0x650
  rmap_walk+0xdf/0x100
  try_to_unmap+0x18a/0x2f0
  shrink_page_list+0xef6/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  balance_pgdat+0x652/0xd90
  kswapd+0x396/0x8d0
  kthread+0x1e0/0x200
  ret_from_fork+0x27/0x50

 read to 0xffff93f754880bd0 of 1 bytes by task 6364 on cpu 4:
  flush_tlb_batched_pending+0x29/0x90
  flush_tlb_batched_pending at mm/rmap.c:682
  change_p4d_range+0x5dd/0x1030
  change_pte_range at mm/mprotect.c:44
  (inlined by) change_pmd_range at mm/mprotect.c:212
  (inlined by) change_pud_range at mm/mprotect.c:240
  (inlined by) change_p4d_range at mm/mprotect.c:260
  change_protection+0x222/0x310
  change_prot_numa+0x3e/0x60
  task_numa_work+0x219/0x350
  task_work_run+0xed/0x140
  prepare_exit_to_usermode+0x2cc/0x2e0
  ret_from_intr+0x32/0x42

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 4 PID: 6364 Comm: mtest01 Tainted: G        W    L 5.5.0-next-20200210+ #5
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

flush_tlb_batched_pending() is under PTL but the write is not, but
mm->tlb_flush_batched is only a bool type, so the value is unlikely to be
shattered.  Thus, mark it as an intentional data race by using the data
race macro.

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Link: http://lkml.kernel.org/r/1581450783-8262-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:57 -07:00
Matthew Wilcox (Oracle)
6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Mike Kravetz
34ae204f18 hugetlbfs: remove call to huge_pte_alloc without i_mmap_rwsem
Commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") requires callers of huge_pte_alloc to hold i_mmap_rwsem
in at least read mode.  This is because the explicit locking in
huge_pmd_share (called by huge_pte_alloc) was removed.  When restructuring
the code, the call to huge_pte_alloc in the else block at the beginning of
hugetlb_fault was missed.

Unfortunately, that else clause is exercised when there is no page table
entry.  This will likely lead to a call to huge_pmd_share.  If
huge_pmd_share thinks pmd sharing is possible, it will traverse the
mapping tree (i_mmap) without holding i_mmap_rwsem.  If someone else is
modifying the tree, bad things such as addressing exceptions or worse
could happen.

Simply remove the else clause.  It should have been removed previously.
The code following the else will call huge_pte_alloc with the appropriate
locking.

To prevent this type of issue in the future, add routines to assert that
i_mmap_rwsem is held, and call these routines in huge pmd sharing
routines.

Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A.Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/e670f327-5cf9-1959-96e4-6dc7cc30d3d5@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:56 -07:00
Michel Lespinasse
c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Johannes Weiner
468c398233 mm: memcontrol: switch to native NR_ANON_THPS counter
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a
small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the
native NR_ANON_THPS accounting sites.

[hannes@cmpxchg.org: fixes]
  Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>	[build-tested]
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner
be5d0a74c6 mm: memcontrol: switch to native NR_ANON_MAPPED counter
Memcg maintains a private MEMCG_RSS counter.  This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED.  We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.

With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time.  However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.

v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Palmer Dabbelt
4708f31885 mm: prevent a warning when casting void* -> enum
I recently build the RISC-V port with LLVM trunk, which has introduced a
new warning when casting from a pointer to an enum of a smaller size.
This patch simply casts to a long in the middle to stop the warning.  I'd
be surprised this is the only one in the kernel, but it's the only one I
saw.

Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200227211741.83165-1-palmer@dabbelt.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
Peter Xu
f45ec5ff16 userfaultfd: wp: support swap and page migration
For either swap and page migration, we all use the bit 2 of the entry to
identify whether this entry is uffd write-protected.  It plays a similar
role as the existing soft dirty bit in swap entries but only for keeping
the uffd-wp tracking for a specific PTE/PMD.

Something special here is that when we want to recover the uffd-wp bit
from a swap/migration entry to the PTE bit we'll also need to take care of
the _PAGE_RW bit and make sure it's cleared, otherwise even with the
_PAGE_UFFD_WP bit we can't trap it at all.

In change_pte_range() we do nothing for uffd if the PTE is a swap entry.
That can lead to data mismatch if the page that we are going to write
protect is swapped out when sending the UFFDIO_WRITEPROTECT.  This patch
also applies/removes the uffd-wp bit even for the swap entries.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:39 -07:00
Matthew Wilcox (Oracle)
396bcc5299 mm: remove CONFIG_TRANSPARENT_HUGE_PAGECACHE
Commit e496cf3d78 ("thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE")
notes that it should be reverted when the PowerPC problem was fixed.  The
commit fixing the PowerPC problem (953c66c2b2) did not revert the
commit; instead setting CONFIG_TRANSPARENT_HUGE_PAGECACHE to the same as
CONFIG_TRANSPARENT_HUGEPAGE.  Checking with Kirill and Aneesh, this was an
oversight, so remove the Kconfig symbol and undo the work of commit
e496cf3d78.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200318140253.6141-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:38 -07:00
Li Xinhai
23ab76bf90 Revert "mm/rmap.c: reuse mergeable anon_vma as parent when fork"
This reverts commit 4e4a9eb921 ("mm/rmap.c: reuse mergeable
anon_vma as parent when fork").

In dup_mmap(), anon_vma_fork() is called for attaching anon_vma and
parameter 'tmp' (i.e., the new vma of child) has same ->vm_next and
->vm_prev as its parent vma.  That causes the anon_vma used by parent been
mistakenly shared by child (In anon_vma_clone(), the code added by that
commit will do this reuse work).

Besides this issue, the design of reusing anon_vma from vma which has gone
through fork should be avoided ([1]).  So, this patch reverts that commit
and maintains the consistent logic of reusing anon_vma for
fork/split/merge vma.

Reusing anon_vma within the process is fine.  But if a vma has gone
through fork(), then that vma's anon_vma should not be shared with its
neighbor vma.  As explained in [1], when vma gone through fork(), the
check for list_is_singular(vma->anon_vma_chain) will be false, and
don't share anon_vma.

With current issue, one example can clarify more.  Parent process do
below two steps:

1. p_vma_1 is created and p_anon_vma_1 is prepared;

2. p_vma_2 is created and share p_anon_vma_1; (this is allowed,
   becaues p_vma_1 didn't gothrough fork()); parent process do fork():

3. c_vma_1 is dup from p_vma_1, and has its own c_anon_vma_1
   prepared; at this point, c_vma_1->anon_vma_chain has two items, one
   for p_anon_vma_1 and one for c_anon_vma_1;

4. c_vma_2 is dup from p_vma_2, it is not allowed to share
   c_anon_vma_1, because

c_vma_1->anon_vma_chain has two items.
[1] commit d0e9fe1758 ("Simplify and comment on anon_vma re-use for
    anon_vma_prepare()") explains the test of "list_is_singular()".

Fixes: 4e4a9eb921 ("mm/rmap.c: reuse mergeable anon_vma as parent when fork")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1581150928-3214-3-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:37 -07:00
Mike Kravetz
c0d0381ade hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.

While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races.  These issues are:

1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
   invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
   reserve counts and state.

A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2].  However, those patches were reverted starting with [3]
due to locking issues.

To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing.  However, during fault
processing we need to lock the page we will be adding.  Lock ordering
requires we take page lock before i_mmap_rwsem.  Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.

To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages.  This is not too invasive as hugetlbfs
processing is done separate from core mm in many places.  However, I don't
really like this idea.  Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.

The only other way I can think of to address these issues is by catching
all the races.  After catching a race, cleanup, backout, retry ...  etc,
as needed.  This can get really ugly, especially for huge page
reservations.  At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races.  Any other
suggestions would be welcome.

[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/

This patch (of 2):

While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with
  the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.

One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults.  This is not the order
specified in the rest of mm code.  Handling of hugetlbfs pages is mostly
isolated today.  Therefore, we use this alternative locking order for
PageHuge() pages.

         mapping->i_mmap_rwsem
           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
             page->flags PG_locked (lock_page)

To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.

In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma.  A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Anshuman Khandual
222100eed2 mm/vma: make is_vma_temporary_stack() available for general use
Currently the declaration and definition for is_vma_temporary_stack() are
scattered.  Lets make is_vma_temporary_stack() helper available for
general use and also drop the declaration from (include/linux/huge_mm.h)
which is no longer required.  While at this, rename this as
vma_is_temporary_stack() in line with existing helpers.  This should not
cause any functional change.

Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1582782965-3274-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
John Hubbard
47e29d32af mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS
scheme tends to overflow too easily, each tail page increments the head
page->_refcount by GUP_PIN_COUNTING_BIAS (1024).  That limits the number
of huge pages that can be pinned.

This patch removes that limitation, by using an exact form of pin counting
for compound pages of order > 1.  The "order > 1" is required because this
approach uses the 3rd struct page in the compound page, and order 1
compound pages only have two pages, so that won't work there.

A new struct page field, hpage_pinned_refcount, has been added, replacing
a padding field in the union (so no new space is used).

This enhancement also has a useful side effect: huge pages and compound
pages (of order > 1) do not suffer from the "potential false positives"
problem that is discussed in the page_dma_pinned() comment block.  That is
because these compound pages have extra space for tracking things, so they
get exact pin counts instead of overloading page->_refcount.

Documentation/core-api/pin_user_pages.rst is updated accordingly.

Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:27 -07:00
Kirill A. Shutemov
f1fe80d4ae mm, thp: do not queue fully unmapped pages for deferred split
Adding fully unmapped pages into deferred split queue is not productive:
these pages are about to be freed or they are pinned and cannot be split
anyway.

Link: http://lkml.kernel.org/r/20190913091849.11151-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:09 -08:00
Yang Shi
30c4638285 mm/rmap.c: use VM_BUG_ON_PAGE() in __page_check_anon_rmap()
The __page_check_anon_rmap() just calls two BUG_ON()s protected by
CONFIG_DEBUG_VM, the #ifdef could be eliminated by using VM_BUG_ON_PAGE().

Link: http://lkml.kernel.org/r/1573157346-111316-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:19 -08:00
Miles Chen
091e429954 mm/rmap.c: fix outdated comment in page_get_anon_vma()
Replace DESTROY_BY_RCU with SLAB_TYPESAFE_BY_RCU because
SLAB_DESTROY_BY_RCU has been renamed to SLAB_TYPESAFE_BY_RCU by commit
5f0d5a3ae7 ("mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU")

Link: http://lkml.kernel.org/r/20191017093554.22562-1-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:19 -08:00