In addition to wrapping the AES-CTR cipher into the async SIMD wrapper,
which exposes it as an async skcipher that defers processing to process
context, expose our AES-CTR implementation directly as a synchronous cipher
as well, but with a lower priority.
This makes the AES-CTR transform usable in places where synchronous
transforms are required, such as the MAC802.11 encryption code, which
executes in sotfirq context, where SIMD processing is allowed on arm64.
Users of the async transform will keep the existing behavior.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a straight port to arm64/NEON of the x86 SSE3 implementation
of the ChaCha20 stream cipher. It uses the new skcipher walksize
attribute to process the input in strides of 4x the block size.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch reverts the following commits:
8621caa0d48096667273
I should not have applied them because they had already been
obsoleted by a subsequent patch series. They also cause a build
failure because of the subsequent commit 9ae433bc79.
Fixes: 9ae433bc79 ("crypto: chacha20 - convert generic and...")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a straight port to arm64/NEON of the x86 SSE3 implementation
of the ChaCha20 stream cipher.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a combination of the the Intel algorithm implemented using SSE
and PCLMULQDQ instructions from arch/x86/crypto/crc32-pclmul_asm.S, and
the new CRC32 extensions introduced for both 32-bit and 64-bit ARM in
version 8 of the architecture. Two versions of the above combo are
provided, one for CRC32 and one for CRC32C.
The PMULL/NEON algorithm is faster, but operates on blocks of at least
64 bytes, and on multiples of 16 bytes only. For the remaining input,
or for all input on systems that lack the PMULL 64x64->128 instructions,
the CRC32 instructions will be used.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a transliteration of the Intel algorithm implemented
using SSE and PCLMULQDQ instructions that resides in the file
arch/x86/crypto/crct10dif-pcl-asm_64.S, but simplified to only
operate on buffers that are 16 byte aligned (but of any size)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes the ARM64 CE CCM implementation decryption by
using skcipher_walk_aead_decrypt instead of skcipher_walk_aead,
which ensures the correct length is used when doing the walk.
Fixes: cf2c0fe740 ("crypto: aes-ce-ccm - Use skcipher walk interface")
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fix a missing statement that got lost in the skcipher conversion of
the CTR transform.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When building the arm64 kernel with both CONFIG_CRYPTO_AES_ARM64_CE_BLK=y
and CONFIG_CRYPTO_AES_ARM64_NEON_BLK=y configured, the build breaks with
the following error:
arch/arm64/crypto/aes-neon-blk.o:(.bss+0x0): multiple definition of `aes_simd_algs'
arch/arm64/crypto/aes-ce-blk.o:(.bss+0x0): first defined here
Fix this by making aes_simd_algs 'static'.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The skcipher conversion for ARM missed the select on CRYPTO_SIMD,
causing build failures if SIMD was not otherwise enabled.
Fixes: da40e7a4ba ("crypto: aes-ce - Convert to skcipher")
Fixes: 211f41af53 ("crypto: aesbs - Convert to skcipher")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the files that are generated by the recently merged OpenSSL
SHA-256/512 implementation to .gitignore so Git disregards them
when showing untracked files.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch makes use of the new skcipher walk interface instead of
the obsolete blkcipher walk interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This integrates both the accelerated scalar and the NEON implementations
of SHA-224/256 as well as SHA-384/512 from the OpenSSL project.
Relative performance compared to the respective generic C versions:
| SHA256-scalar | SHA256-NEON* | SHA512 |
------------+-----------------+--------------+----------+
Cortex-A53 | 1.63x | 1.63x | 2.34x |
Cortex-A57 | 1.43x | 1.59x | 1.95x |
Cortex-A73 | 1.26x | 1.56x | ? |
The core crypto code was authored by Andy Polyakov of the OpenSSL
project, in collaboration with whom the upstream code was adapted so
that this module can be built from the same version of sha512-armv8.pl.
The version in this patch was taken from OpenSSL commit 32bbb62ea634
("sha/asm/sha512-armv8.pl: fix big-endian support in __KERNEL__ case.")
* The core SHA algorithm is fundamentally sequential, but there is a
secondary transformation involved, called the schedule update, which
can be performed independently. The NEON version of SHA-224/SHA-256
only implements this part of the algorithm using NEON instructions,
the sequential part is always done using scalar instructions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Emit the XTS tweak literal constants in the appropriate order for a
single 128-bit scalar literal load.
Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AES implementation using pure NEON instructions relies on the generic
AES key schedule generation routines, which store the round keys as arrays
of 32-bit quantities stored in memory using native endianness. This means
we should refer to these round keys using 4x4 loads rather than 16x1 loads.
In addition, the ShiftRows tables are loading using a single scalar load,
which is also affected by endianness, so emit these tables in the correct
order depending on whether we are building for big endian or not.
Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AES-CCM implementation that uses ARMv8 Crypto Extensions instructions
refers to the AES round keys as pairs of 64-bit quantities, which causes
failures when building the code for big endian. In addition, it byte swaps
the input counter unconditionally, while this is only required for little
endian builds. So fix both issues.
Fixes: 12ac3efe74 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The SHA256 digest is an array of 8 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x32 vector
ones where appropriate.
Fixes: 6ba6c74dfc ("arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The SHA1 digest is an array of 5 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x4 vector
ones where appropriate.
Fixes: 2c98833a42 ("arm64/crypto: SHA-1 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The GHASH key and digest are both pairs of 64-bit quantities, but the
GHASH code does not always refer to them as such, causing failures when
built for big endian. So replace the 16x1 loads and stores with 2x8 ones.
Fixes: b913a6404c ("arm64/crypto: improve performance of GHASH algorithm")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The core AES cipher implementation that uses ARMv8 Crypto Extensions
instructions erroneously loads the round keys as 64-bit quantities,
which causes the algorithm to fail when built for big endian. In
addition, the key schedule generation routine fails to take endianness
into account as well, when loading the combining the input key with
the round constants. So fix both issues.
Fixes: 12ac3efe74 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AES-CTR glue code avoids calling into the blkcipher API for the
tail portion of the walk, by comparing the remainder of walk.nbytes
modulo AES_BLOCK_SIZE with the residual nbytes, and jumping straight
into the tail processing block if they are equal. This tail processing
block checks whether nbytes != 0, and does nothing otherwise.
However, in case of an allocation failure in the blkcipher layer, we
may enter this code with walk.nbytes == 0, while nbytes > 0. In this
case, we should not dereference the source and destination pointers,
since they may be NULL. So instead of checking for nbytes != 0, check
for (walk.nbytes % AES_BLOCK_SIZE) != 0, which implies the former in
non-error conditions.
Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Cc: stable@vger.kernel.org
Reported-by: xiakaixu <xiakaixu@huawei.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto update from Herbert Xu:
"Here is the crypto update for 4.6:
API:
- Convert remaining crypto_hash users to shash or ahash, also convert
blkcipher/ablkcipher users to skcipher.
- Remove crypto_hash interface.
- Remove crypto_pcomp interface.
- Add crypto engine for async cipher drivers.
- Add akcipher documentation.
- Add skcipher documentation.
Algorithms:
- Rename crypto/crc32 to avoid name clash with lib/crc32.
- Fix bug in keywrap where we zero the wrong pointer.
Drivers:
- Support T5/M5, T7/M7 SPARC CPUs in n2 hwrng driver.
- Add PIC32 hwrng driver.
- Support BCM6368 in bcm63xx hwrng driver.
- Pack structs for 32-bit compat users in qat.
- Use crypto engine in omap-aes.
- Add support for sama5d2x SoCs in atmel-sha.
- Make atmel-sha available again.
- Make sahara hashing available again.
- Make ccp hashing available again.
- Make sha1-mb available again.
- Add support for multiple devices in ccp.
- Improve DMA performance in caam.
- Add hashing support to rockchip"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (116 commits)
crypto: qat - remove redundant arbiter configuration
crypto: ux500 - fix checks of error code returned by devm_ioremap_resource()
crypto: atmel - fix checks of error code returned by devm_ioremap_resource()
crypto: qat - Change the definition of icp_qat_uof_regtype
hwrng: exynos - use __maybe_unused to hide pm functions
crypto: ccp - Add abstraction for device-specific calls
crypto: ccp - CCP versioning support
crypto: ccp - Support for multiple CCPs
crypto: ccp - Remove check for x86 family and model
crypto: ccp - memset request context to zero during import
lib/mpi: use "static inline" instead of "extern inline"
lib/mpi: avoid assembler warning
hwrng: bcm63xx - fix non device tree compatibility
crypto: testmgr - allow rfc3686 aes-ctr variants in fips mode.
crypto: qat - The AE id should be less than the maximal AE number
lib/mpi: Endianness fix
crypto: rockchip - add hash support for crypto engine in rk3288
crypto: xts - fix compile errors
crypto: doc - add skcipher API documentation
crypto: doc - update AEAD AD handling
...
Commit 28856a9e52 missed the addition of the crypto/xts.h include file
for different architecture-specific AES implementations.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The patch centralizes the XTS key check logic into the service function
xts_check_key which is invoked from the different XTS implementations.
With this, the XTS implementations in ARM, ARM64, PPC and S390 have now
a sanity check for the XTS keys similar to the other arches.
In addition, this service function received a check to ensure that the
key != the tweak key which is mandated by FIPS 140-2 IG A.9. As the
check is not present in the standards defining XTS, it is only enforced
in FIPS mode of the kernel.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ECB modes don't use an initialization vector. The kernel
/proc/crypto interface doesn't reflect this properly.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The asynchronous, merged implementations of AES in CBC, CTR and XTS
modes are preferred when available (i.e., when instantiating ablkciphers
explicitly). However, the synchronous core AES cipher combined with the
generic CBC mode implementation will produce a 'cbc(aes)' blkcipher that
is callable asynchronously as well. To prevent this implementation from
being used when the accelerated asynchronous implemenation is also
available, lower its priority to 250 (i.e., below the asynchronous
module's priority of 300).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch converts the ARM64 aes-ce-ccm implementation to the
new AEAD interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Merge the mvebu/drivers branch of the arm-soc tree which contains
just a single patch bfa1ce5f38 ("bus:
mvebu-mbus: add mv_mbus_dram_info_nooverlap()") that happens to be
a prerequisite of the new marvell/cesa crypto driver.
Ensure that the asm code finalization path is not triggered when
invoked via final(), since it already takes care of that itself.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Ensure that the asm code finalization path is not triggered when
invoked via final(), since it already takes care of that itself.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 CRC32 (not CRC32c) implementation was not quite doing
the same thing as the generic one. Fix that.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All implementers of AEAD should include crypto/internal/aead.h
instead of include/linux/crypto.h.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: David S. Miller <davem@davemloft.net>
The main change here is a significant head.S rework that allows us to
boot on machines with physical memory at a really high address without
having to increase our mapped VA range. Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJVLnQpAAoJELescNyEwWM03RIH/iwcDc0MBZgkwfD5cnY+29p4
m89lMDo3SyGQT4NynHSw7P3R7c3zULmI+9hmJMw/yfjjjL6m7X+vVAF3xj1Am4Al
OzCqYLHyFnlRktzJ6dWeF1Ese7tWqPpxn+OCXgYNpz/r5MfF/HhlyX/qNzAQPKrw
ZpDvnt44DgUfweqjTbwQUg2wkyCRjmz57MQYxDcmJStdpHIu24jWOvDIo3OJGjyS
L49I9DU6DGUhkISZmmBE0T7vmKMD1BcgI7OIzX2WIqn521QT+GSLMhRxaHmK1s1V
A8gaMTwpo0xFhTAt7sbw/5+2663WmfRdZI+FtduvORsoxX6KdDn7DH1NQixIm8s=
=+F0I
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here are the core arm64 updates for 4.1.
Highlights include a significant rework to head.S (allowing us to boot
on machines with physical memory at a really high address), an AES
performance boost on Cortex-A57 and the ability to run a 32-bit
userspace with 64k pages (although this requires said userspace to be
built with a recent binutils).
The head.S rework spilt over into KVM, so there are some changes under
arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
In particular, the linker script changes caused us some issues in
-next, so there are a few merge commits where we had to apply fixes on
top of a stable branch.
Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
arm64: fix midr range for Cortex-A57 erratum 832075
arm64: errata: add workaround for cortex-a53 erratum #845719
arm64: Use bool function return values of true/false not 1/0
arm64: defconfig: updates for 4.1
arm64: Extract feature parsing code from cpu_errata.c
arm64: alternative: Allow immediate branch as alternative instruction
arm64: insn: Add aarch64_insn_decode_immediate
ARM: kvm: round HYP section to page size instead of log2 upper bound
ARM: kvm: assert on HYP section boundaries not actual code size
arm64: head.S: ensure idmap_t0sz is visible
arm64: pmu: add support for interrupt-affinity property
dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
arm64: head.S: ensure visibility of page tables
arm64: KVM: use ID map with increased VA range if required
arm64: mm: increase VA range of identity map
ARM: kvm: implement replacement for ld's LOG2CEIL()
arm64: proc: remove unused cpu_get_pgd macro
arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
arm64: remove __calc_phys_offset
arm64: merge __enable_mmu and __turn_mmu_on
...
Pull crypto update from Herbert Xu:
"Here is the crypto update for 4.1:
New interfaces:
- user-space interface for AEAD
- user-space interface for RNG (i.e., pseudo RNG)
New hashes:
- ARMv8 SHA1/256
- ARMv8 AES
- ARMv8 GHASH
- ARM assembler and NEON SHA256
- MIPS OCTEON SHA1/256/512
- MIPS img-hash SHA1/256 and MD5
- Power 8 VMX AES/CBC/CTR/GHASH
- PPC assembler AES, SHA1/256 and MD5
- Broadcom IPROC RNG driver
Cleanups/fixes:
- prevent internal helper algos from being exposed to user-space
- merge common code from assembly/C SHA implementations
- misc fixes"
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (169 commits)
crypto: arm - workaround for building with old binutils
crypto: arm/sha256 - avoid sha256 code on ARMv7-M
crypto: x86/sha512_ssse3 - move SHA-384/512 SSSE3 implementation to base layer
crypto: x86/sha256_ssse3 - move SHA-224/256 SSSE3 implementation to base layer
crypto: x86/sha1_ssse3 - move SHA-1 SSSE3 implementation to base layer
crypto: arm64/sha2-ce - move SHA-224/256 ARMv8 implementation to base layer
crypto: arm64/sha1-ce - move SHA-1 ARMv8 implementation to base layer
crypto: arm/sha2-ce - move SHA-224/256 ARMv8 implementation to base layer
crypto: arm/sha256 - move SHA-224/256 ASM/NEON implementation to base layer
crypto: arm/sha1-ce - move SHA-1 ARMv8 implementation to base layer
crypto: arm/sha1_neon - move SHA-1 NEON implementation to base layer
crypto: arm/sha1 - move SHA-1 ARM asm implementation to base layer
crypto: sha512-generic - move to generic glue implementation
crypto: sha256-generic - move to generic glue implementation
crypto: sha1-generic - move to generic glue implementation
crypto: sha512 - implement base layer for SHA-512
crypto: sha256 - implement base layer for SHA-256
crypto: sha1 - implement base layer for SHA-1
crypto: api - remove instance when test failed
crypto: api - Move alg ref count init to crypto_check_alg
...
This removes all the boilerplate from the existing implementation,
and replaces it with calls into the base layer.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This removes all the boilerplate from the existing implementation,
and replaces it with calls into the base layer.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Flag all 64 bit ARMv8 AES helper ciphers as internal ciphers to
prevent them from being called by normal users.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This changes the AES core transform implementations to issue aese/aesmc
(and aesd/aesimc) in pairs. This enables a micro-architectural optimization
in recent Cortex-A5x cores that improves performance by 50-90%.
Measured performance in cycles per byte (Cortex-A57):
CBC enc CBC dec CTR
before 3.64 1.34 1.32
after 1.95 0.85 0.93
Note that this results in a ~5% performance decrease for older cores.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch increases the interleave factor for parallel AES modes
to 4x. This improves performance on Cortex-A57 by ~35%. This is
due to the 3-cycle latency of AES instructions on the A57's
relatively deep pipeline (compared to Cortex-A53 where the AES
instruction latency is only 2 cycles).
At the same time, disable inline expansion of the core AES functions,
as the performance benefit of this feature is negligible.
Measured on AMD Seattle (using tcrypt.ko mode=500 sec=1):
Baseline (2x interleave, inline expansion)
------------------------------------------
testing speed of async cbc(aes) (cbc-aes-ce) decryption
test 4 (128 bit key, 8192 byte blocks): 95545 operations in 1 seconds
test 14 (256 bit key, 8192 byte blocks): 68496 operations in 1 seconds
This patch (4x interleave, no inline expansion)
-----------------------------------------------
testing speed of async cbc(aes) (cbc-aes-ce) decryption
test 4 (128 bit key, 8192 byte blocks): 124735 operations in 1 seconds
test 14 (256 bit key, 8192 byte blocks): 92328 operations in 1 seconds
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull crypto update from Herbert Xu:
- The crypto API is now documented :)
- Disallow arbitrary module loading through crypto API.
- Allow get request with empty driver name through crypto_user.
- Allow speed testing of arbitrary hash functions.
- Add caam support for ctr(aes), gcm(aes) and their derivatives.
- nx now supports concurrent hashing properly.
- Add sahara support for SHA1/256.
- Add ARM64 version of CRC32.
- Misc fixes.
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (77 commits)
crypto: tcrypt - Allow speed testing of arbitrary hash functions
crypto: af_alg - add user space interface for AEAD
crypto: qat - fix problem with coalescing enable logic
crypto: sahara - add support for SHA1/256
crypto: sahara - replace tasklets with kthread
crypto: sahara - add support for i.MX53
crypto: sahara - fix spinlock initialization
crypto: arm - replace memset by memzero_explicit
crypto: powerpc - replace memset by memzero_explicit
crypto: sha - replace memset by memzero_explicit
crypto: sparc - replace memset by memzero_explicit
crypto: algif_skcipher - initialize upon init request
crypto: algif_skcipher - removed unneeded code
crypto: algif_skcipher - Fixed blocking recvmsg
crypto: drbg - use memzero_explicit() for clearing sensitive data
crypto: drbg - use MODULE_ALIAS_CRYPTO
crypto: include crypto- module prefix in template
crypto: user - add MODULE_ALIAS
crypto: sha-mb - remove a bogus NULL check
crytpo: qat - Fix 64 bytes requests
...
This prefixes all crypto module loading with "crypto-" so we never run
the risk of exposing module auto-loading to userspace via a crypto API,
as demonstrated by Mathias Krause:
https://lkml.org/lkml/2013/3/4/70
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This module registers a crc32 algorithm and a crc32c algorithm
that use the optional CRC32 and CRC32C instructions in ARMv8.
Tested on AMD Seattle.
Improvement compared to crc32c-generic algorithm:
TCRYPT CRC32C speed test shows ~450% speedup.
Simple dd write tests to btrfs filesystem show ~30% speedup.
Signed-off-by: Yazen Ghannam <yazen.ghannam@linaro.org>
Acked-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch implements the AES key schedule generation using ARMv8
Crypto Instructions. It replaces the table based C implementation
in aes_generic.ko, which means we can drop the dependency on that
module.
Tested-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Originally found by cppcheck:
[arch/arm64/crypto/sha2-ce-glue.c:153]: (warning) Assignment of
function parameter has no effect outside the function. Did you
forget dereferencing it?
Updating data by blocks * SHA256_BLOCK_SIZE at the end of
sha2_finup is redundant code and can be removed.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Changes include:
- Context tracking support (NO_HZ_FULL) which narrowly missed 3.16
- vDSO layout rework following Andy's work on x86
- TEXT_OFFSET fuzzing for bootloader testing
- /proc/cpuinfo tidy-up
- Preliminary work to support 48-bit virtual addresses, but this is
currently disabled until KVM has been ported to use it (the patches
do, however, bring some nice clean-up)
- Boot-time CPU sanity checks (especially useful on heterogenous
systems)
- Support for syscall auditing
- Support for CC_STACKPROTECTOR
- defconfig updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJT3qkzAAoJEC379FI+VC/ZxwEP/3uYs9glDLTd1hmVFr1cRutg
j4m1Kc7RCO+zpbYCXJLAQLPjwjOaUWPZUeZPQZib6bO+4sTqFYe9vsaqRyvn/bxM
BaQhytpyxymfG8m3rmXaI97TzBwnRB2oQ0k36rsjMwG/VQMLf9kVuEwURoAHF07l
RyMK2sAwE0/8XIJZQFNo5SAbkO52EiHlehdlTzCXGWWOWdHDyVfks/k6YhIS991r
0W9Y0ghHaMz+mAumTSq7jzPQa3aF3GjTp0W7gJjk/PRBDHfPisphEO36zsA0yHtE
3uvEH0kUQK/ve4ZUQiNvuEZCSqalPFag6j5Z8BnFtafa66J5h414CGPAfER6Kz7+
KGpoEve+7Rpvvb1S4T0tTMg7HoGrvqc5wKS3uFxfoGooGUcUOchSkYiVTBMDJSKn
QlJbb1QSvuNFGhcKntTOe1QMT+x0w9urq/e+QfnQrZ/m5Er7J3qCZzeOfA2JFTjQ
sB24yjzAz5a5VwbKbuB2b4gDILY9oYNe94HFP08o/rJfANnL0dpP1Oyl0b12ILsI
a69EMdpaeEQo8703KLIlzfW6u92PqYs6UkYvya8o27FAvmNvDfB/PffjgVsOAHFi
Qc+dpYbnzNfwJgG9w0qhJ+MR8g5fiBYHqNpfGOY+g5M50j0hZUX9comoWw1xkl0X
HlvG7xzrTF7/VbWEtZ2o
=6XMc
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Once again, Catalin's off on holiday and I'm looking after the arm64
tree. Please can you pull the following arm64 updates for 3.17?
Note that this branch also includes the new GICv3 driver (merged via a
stable tag from Jason's irqchip tree), since there is a fix for older
binutils on top.
Changes include:
- context tracking support (NO_HZ_FULL) which narrowly missed 3.16
- vDSO layout rework following Andy's work on x86
- TEXT_OFFSET fuzzing for bootloader testing
- /proc/cpuinfo tidy-up
- preliminary work to support 48-bit virtual addresses, but this is
currently disabled until KVM has been ported to use it (the patches
do, however, bring some nice clean-up)
- boot-time CPU sanity checks (especially useful on heterogenous
systems)
- support for syscall auditing
- support for CC_STACKPROTECTOR
- defconfig updates"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (55 commits)
arm64: add newline to I-cache policy string
Revert "arm64: dmi: Add SMBIOS/DMI support"
arm64: fpsimd: fix a typo in fpsimd_save_partial_state ENDPROC
arm64: don't call break hooks for BRK exceptions from EL0
arm64: defconfig: enable devtmpfs mount option
arm64: vdso: fix build error when switching from LE to BE
arm64: defconfig: add virtio support for running as a kvm guest
arm64: gicv3: Allow GICv3 compilation with older binutils
arm64: fix soft lockup due to large tlb flush range
arm64/crypto: fix makefile rule for aes-glue-%.o
arm64: Do not invoke audit_syscall_* functions if !CONFIG_AUDIT_SYSCALL
arm64: Fix barriers used for page table modifications
arm64: Add support for 48-bit VA space with 64KB page configuration
arm64: asm/pgtable.h pmd/pud definitions clean-up
arm64: Determine the vmalloc/vmemmap space at build time based on VA_BITS
arm64: Clean up the initial page table creation in head.S
arm64: Remove asm/pgtable-*level-types.h files
arm64: Remove asm/pgtable-*level-hwdef.h files
arm64: Convert bool ARM64_x_LEVELS to int ARM64_PGTABLE_LEVELS
arm64: mm: Implement 4 levels of translation tables
...
Pull ARM AES crypto fixes from Herbert Xu:
"This push fixes a regression on ARM where odd-sized blocks supplied to
AES may cause crashes"
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: arm-aes - fix encryption of unaligned data
crypto: arm64-aes - fix encryption of unaligned data
cryptsetup fails on arm64 when using kernel encryption via AF_ALG socket.
See https://bugzilla.redhat.com/show_bug.cgi?id=1122937
The bug is caused by incorrect handling of unaligned data in
arch/arm64/crypto/aes-glue.c. Cryptsetup creates a buffer that is aligned
on 8 bytes, but not on 16 bytes. It opens AF_ALG socket and uses the
socket to encrypt data in the buffer. The arm64 crypto accelerator causes
data corruption or crashes in the scatterwalk_pagedone.
This patch fixes the bug by passing the residue bytes that were not
processed as the last parameter to blkcipher_walk_done.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>