Commit Graph

303 Commits

Author SHA1 Message Date
Feng Zhou
2569c7b872 bpf: support access variable length array of integer type
After this commit:
bpf: Support variable length array in tracing programs (9c5f8a1008)
Trace programs can access variable length array, but for structure
type. This patch adds support for integer type.

Example:
Hook load_balance
struct sched_domain {
	...
	unsigned long span[];
}

The access: sd->span[0].

Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20230420032735.27760-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-19 21:29:39 -07:00
Dave Marchevsky
404ad75a36 bpf: Migrate bpf_rbtree_remove to possibly fail
This patch modifies bpf_rbtree_remove to account for possible failure
due to the input rb_node already not being in any collection.
The function can now return NULL, and does when the aforementioned
scenario occurs. As before, on successful removal an owning reference to
the removed node is returned.

Adding KF_RET_NULL to bpf_rbtree_remove's kfunc flags - now KF_RET_NULL |
KF_ACQUIRE - provides the desired verifier semantics:

  * retval must be checked for NULL before use
  * if NULL, retval's ref_obj_id is released
  * retval is a "maybe acquired" owning ref, not a non-owning ref,
    so it will live past end of critical section (bpf_spin_unlock), and
    thus can be checked for NULL after the end of the CS

BPF programs must add checks
============================

This does change bpf_rbtree_remove's verifier behavior. BPF program
writers will need to add NULL checks to their programs, but the
resulting UX looks natural:

  bpf_spin_lock(&glock);

  n = bpf_rbtree_first(&ghead);
  if (!n) { /* ... */}
  res = bpf_rbtree_remove(&ghead, &n->node);

  bpf_spin_unlock(&glock);

  if (!res)  /* Newly-added check after this patch */
    return 1;

  n = container_of(res, /* ... */);
  /* Do something else with n */
  bpf_obj_drop(n);
  return 0;

The "if (!res)" check above is the only addition necessary for the above
program to pass verification after this patch.

bpf_rbtree_remove no longer clobbers non-owning refs
====================================================

An issue arises when bpf_rbtree_remove fails, though. Consider this
example:

  struct node_data {
    long key;
    struct bpf_list_node l;
    struct bpf_rb_node r;
    struct bpf_refcount ref;
  };

  long failed_sum;

  void bpf_prog()
  {
    struct node_data *n = bpf_obj_new(/* ... */);
    struct bpf_rb_node *res;
    n->key = 10;

    bpf_spin_lock(&glock);

    bpf_list_push_back(&some_list, &n->l); /* n is now a non-owning ref */
    res = bpf_rbtree_remove(&some_tree, &n->r, /* ... */);
    if (!res)
      failed_sum += n->key;  /* not possible */

    bpf_spin_unlock(&glock);
    /* if (res) { do something useful and drop } ... */
  }

The bpf_rbtree_remove in this example will always fail. Similarly to
bpf_spin_unlock, bpf_rbtree_remove is a non-owning reference
invalidation point. The verifier clobbers all non-owning refs after a
bpf_rbtree_remove call, so the "failed_sum += n->key" line will fail
verification, and in fact there's no good way to get information about
the node which failed to add after the invalidation. This patch removes
non-owning reference invalidation from bpf_rbtree_remove to allow the
above usecase to pass verification. The logic for why this is now
possible is as follows:

Before this series, bpf_rbtree_add couldn't fail and thus assumed that
its input, a non-owning reference, was in the tree. But it's easy to
construct an example where two non-owning references pointing to the same
underlying memory are acquired and passed to rbtree_remove one after
another (see rbtree_api_release_aliasing in
selftests/bpf/progs/rbtree_fail.c).

So it was necessary to clobber non-owning refs to prevent this
case and, more generally, to enforce "non-owning ref is definitely
in some collection" invariant. This series removes that invariant and
the failure / runtime checking added in this patch provide a clean way
to deal with the aliasing issue - just fail to remove.

Because the aliasing issue prevented by clobbering non-owning refs is no
longer an issue, this patch removes the invalidate_non_owning_refs
call from verifier handling of bpf_rbtree_remove. Note that
bpf_spin_unlock - the other caller of invalidate_non_owning_refs -
clobbers non-owning refs for a different reason, so its clobbering
behavior remains unchanged.

No BPF program changes are necessary for programs to remain valid as a
result of this clobbering change. A valid program before this patch
passed verification with its non-owning refs having shorter (or equal)
lifetimes due to more aggressive clobbering.

Also, update existing tests to check bpf_rbtree_remove retval for NULL
where necessary, and move rbtree_api_release_aliasing from
progs/rbtree_fail.c to progs/rbtree.c since it's now expected to pass
verification.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-8-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
d54730b50b bpf: Introduce opaque bpf_refcount struct and add btf_record plumbing
A 'struct bpf_refcount' is added to the set of opaque uapi/bpf.h types
meant for use in BPF programs. Similarly to other opaque types like
bpf_spin_lock and bpf_rbtree_node, the verifier needs to know where in
user-defined struct types a bpf_refcount can be located, so necessary
btf_record plumbing is added to enable this. bpf_refcount is sized to
hold a refcount_t.

Similarly to bpf_spin_lock, the offset of a bpf_refcount is cached in
btf_record as refcount_off in addition to being in the field array.
Caching refcount_off makes sense for this field because further patches
in the series will modify functions that take local kptrs (e.g.
bpf_obj_drop) to change their behavior if the type they're operating on
is refcounted. So enabling fast "is this type refcounted?" checks is
desirable.

No such verifier behavior changes are introduced in this patch, just
logic to recognize 'struct bpf_refcount' in btf_record.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
Dave Marchevsky
cd2a807901 bpf: Remove btf_field_offs, use btf_record's fields instead
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.

This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.

Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:

  if (btf_record_successfully_initialized) {
    foffs = btf_parse_field_offs(rec);
    if (IS_ERR_OR_NULL(foffs))
      // free the btf_record and return err
  }

Other changes in this patch are pretty mechanical:

  * foffs->field_off[i] -> rec->fields[i].offset
  * foffs->field_sz[i] -> rec->fields[i].size
  * Sort rec->fields in btf_parse_fields before returning
    * It's possible that this is necessary independently of other
      changes in this patch. btf_record_find in syscall.c expects
      btf_record's fields to be sorted by offset, yet there's no
      explicit sorting of them before this patch, record's fields are
      populated in the order they're read from BTF struct definition.
      BTF docs don't say anything about the sortedness of struct fields.
  * All functions taking struct btf_field_offs * input now instead take
    struct btf_record *. All callsites of these functions already have
    access to the correct btf_record.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
Jakub Kicinski
c2865b1122 bpf-next-for-netdev
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZDhSiwAKCRDbK58LschI
 g8cbAQCH4xrquOeDmYyGXFQGchHZAIj++tKg8ABU4+hYeJtrlwEA6D4W6wjoSZRk
 mLSptZ9qro8yZA86BvyPvlBT1h9ELQA=
 =StAc
 -----END PGP SIGNATURE-----

Daniel Borkmann says:

====================
pull-request: bpf-next 2023-04-13

We've added 260 non-merge commits during the last 36 day(s) which contain
a total of 356 files changed, 21786 insertions(+), 11275 deletions(-).

The main changes are:

1) Rework BPF verifier log behavior and implement it as a rotating log
   by default with the option to retain old-style fixed log behavior,
   from Andrii Nakryiko.

2) Adds support for using {FOU,GUE} encap with an ipip device operating
   in collect_md mode and add a set of BPF kfuncs for controlling encap
   params, from Christian Ehrig.

3) Allow BPF programs to detect at load time whether a particular kfunc
   exists or not, and also add support for this in light skeleton,
   from Alexei Starovoitov.

4) Optimize hashmap lookups when key size is multiple of 4,
   from Anton Protopopov.

5) Enable RCU semantics for task BPF kptrs and allow referenced kptr
   tasks to be stored in BPF maps, from David Vernet.

6) Add support for stashing local BPF kptr into a map value via
   bpf_kptr_xchg(). This is useful e.g. for rbtree node creation
   for new cgroups, from Dave Marchevsky.

7) Fix BTF handling of is_int_ptr to skip modifiers to work around
   tracing issues where a program cannot be attached, from Feng Zhou.

8) Migrate a big portion of test_verifier unit tests over to
   test_progs -a verifier_* via inline asm to ease {read,debug}ability,
   from Eduard Zingerman.

9) Several updates to the instruction-set.rst documentation
   which is subject to future IETF standardization
   (https://lwn.net/Articles/926882/), from Dave Thaler.

10) Fix BPF verifier in the __reg_bound_offset's 64->32 tnum sub-register
    known bits information propagation, from Daniel Borkmann.

11) Add skb bitfield compaction work related to BPF with the overall goal
    to make more of the sk_buff bits optional, from Jakub Kicinski.

12) BPF selftest cleanups for build id extraction which stand on its own
    from the upcoming integration work of build id into struct file object,
    from Jiri Olsa.

13) Add fixes and optimizations for xsk descriptor validation and several
    selftest improvements for xsk sockets, from Kal Conley.

14) Add BPF links for struct_ops and enable switching implementations
    of BPF TCP cong-ctls under a given name by replacing backing
    struct_ops map, from Kui-Feng Lee.

15) Remove a misleading BPF verifier env->bypass_spec_v1 check on variable
    offset stack read as earlier Spectre checks cover this,
    from Luis Gerhorst.

16) Fix issues in copy_from_user_nofault() for BPF and other tracers
    to resemble copy_from_user_nmi() from safety PoV, from Florian Lehner
    and Alexei Starovoitov.

17) Add --json-summary option to test_progs in order for CI tooling to
    ease parsing of test results, from Manu Bretelle.

18) Batch of improvements and refactoring to prep for upcoming
    bpf_local_storage conversion to bpf_mem_cache_{alloc,free} allocator,
    from Martin KaFai Lau.

19) Improve bpftool's visual program dump which produces the control
    flow graph in a DOT format by adding C source inline annotations,
    from Quentin Monnet.

20) Fix attaching fentry/fexit/fmod_ret/lsm to modules by extracting
    the module name from BTF of the target and searching kallsyms of
    the correct module, from Viktor Malik.

21) Improve BPF verifier handling of '<const> <cond> <non_const>'
    to better detect whether in particular jmp32 branches are taken,
    from Yonghong Song.

22) Allow BPF TCP cong-ctls to write app_limited of struct tcp_sock.
    A built-in cc or one from a kernel module is already able to write
    to app_limited, from Yixin Shen.

Conflicts:

Documentation/bpf/bpf_devel_QA.rst
  b7abcd9c65 ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
  0f10f647f4 ("bpf, docs: Use internal linking for link to netdev subsystem doc")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/

include/net/ip_tunnels.h
  bc9d003dc4 ("ip_tunnel: Preserve pointer const in ip_tunnel_info_opts")
  ac931d4cde ("ipip,ip_tunnel,sit: Add FOU support for externally controlled ipip devices")
https://lore.kernel.org/all/20230413161235.4093777-1-broonie@kernel.org/

net/bpf/test_run.c
  e5995bc7e2 ("bpf, test_run: fix crashes due to XDP frame overwriting/corruption")
  294635a816 ("bpf, test_run: fix &xdp_frame misplacement for LIVE_FRAMES")
https://lore.kernel.org/all/20230320102619.05b80a98@canb.auug.org.au/
====================

Link: https://lore.kernel.org/r/20230413191525.7295-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-13 16:43:38 -07:00
Feng Zhou
91f2dc6838 bpf/btf: Fix is_int_ptr()
When tracing a kernel function with arg type is u32*, btf_ctx_access()
would report error: arg2 type INT is not a struct.

The commit bb6728d756 ("bpf: Allow access to int pointer arguments
in tracing programs") added support for int pointer, but did not skip
modifiers before checking it's type. This patch fixes it.

Fixes: bb6728d756 ("bpf: Allow access to int pointer arguments in tracing programs")
Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230410085908.98493-2-zhoufeng.zf@bytedance.com
2023-04-11 20:29:30 +02:00
Andrii Nakryiko
bdcab4144f bpf: Simplify internal verifier log interface
Simplify internal verifier log API down to bpf_vlog_init() and
bpf_vlog_finalize(). The former handles input arguments validation in
one place and makes it easier to change it. The latter subsumes -ENOSPC
(truncation) and -EFAULT handling and simplifies both caller's code
(bpf_check() and btf_parse()).

For btf_parse(), this patch also makes sure that verifier log
finalization happens even if there is some error condition during BTF
verification process prior to normal finalization step.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-14-andrii@kernel.org
2023-04-11 18:05:44 +02:00
Andrii Nakryiko
47a71c1f9a bpf: Add log_true_size output field to return necessary log buffer size
Add output-only log_true_size and btf_log_true_size field to
BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return
the size of log buffer necessary to fit in all the log contents at
specified log_level. This is very useful for BPF loader libraries like
libbpf to be able to size log buffer correctly, but could be used by
users directly, if necessary, as well.

This patch plumbs all this through the code, taking into account actual
bpf_attr size provided by user to determine if these new fields are
expected by users. And if they are, set them from kernel on return.

We refactory btf_parse() function to accommodate this, moving attr and
uattr handling inside it. The rest is very straightforward code, which
is split from the logging accounting changes in the previous patch to
make it simpler to review logic vs UAPI changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
2023-04-11 18:05:43 +02:00
Andrii Nakryiko
8a6ca6bc55 bpf: Simplify logging-related error conditions handling
Move log->level == 0 check into bpf_vlog_truncated() instead of doing it
explicitly. Also remove unnecessary goto in kernel/bpf/verifier.c.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-11-andrii@kernel.org
2023-04-11 18:05:43 +02:00
Andrii Nakryiko
971fb5057d bpf: Fix missing -EFAULT return on user log buf error in btf_parse()
btf_parse() is missing -EFAULT error return if log->ubuf was NULL-ed out
due to error while copying data into user-provided buffer. Add it, but
handle a special case of BPF_LOG_KERNEL in which log->ubuf is always NULL.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-9-andrii@kernel.org
2023-04-11 18:05:43 +02:00
Andrii Nakryiko
1216640938 bpf: Switch BPF verifier log to be a rotating log by default
Currently, if user-supplied log buffer to collect BPF verifier log turns
out to be too small to contain full log, bpf() syscall returns -ENOSPC,
fails BPF program verification/load, and preserves first N-1 bytes of
the verifier log (where N is the size of user-supplied buffer).

This is problematic in a bunch of common scenarios, especially when
working with real-world BPF programs that tend to be pretty complex as
far as verification goes and require big log buffers. Typically, it's
when debugging tricky cases at log level 2 (verbose). Also, when BPF program
is successfully validated, log level 2 is the only way to actually see
verifier state progression and all the important details.

Even with log level 1, it's possible to get -ENOSPC even if the final
verifier log fits in log buffer, if there is a code path that's deep
enough to fill up entire log, even if normally it would be reset later
on (there is a logic to chop off successfully validated portions of BPF
verifier log).

In short, it's not always possible to pre-size log buffer. Also, what's
worse, in practice, the end of the log most often is way more important
than the beginning, but verifier stops emitting log as soon as initial
log buffer is filled up.

This patch switches BPF verifier log behavior to effectively behave as
rotating log. That is, if user-supplied log buffer turns out to be too
short, verifier will keep overwriting previously written log,
effectively treating user's log buffer as a ring buffer. -ENOSPC is
still going to be returned at the end, to notify user that log contents
was truncated, but the important last N bytes of the log would be
returned, which might be all that user really needs. This consistent
-ENOSPC behavior, regardless of rotating or fixed log behavior, allows
to prevent backwards compatibility breakage. The only user-visible
change is which portion of verifier log user ends up seeing *if buffer
is too small*. Given contents of verifier log itself is not an ABI,
there is no breakage due to this behavior change. Specialized tools that
rely on specific contents of verifier log in -ENOSPC scenario are
expected to be easily adapted to accommodate old and new behaviors.

Importantly, though, to preserve good user experience and not require
every user-space application to adopt to this new behavior, before
exiting to user-space verifier will rotate log (in place) to make it
start at the very beginning of user buffer as a continuous
zero-terminated string. The contents will be a chopped off N-1 last
bytes of full verifier log, of course.

Given beginning of log is sometimes important as well, we add
BPF_LOG_FIXED (which equals 8) flag to force old behavior, which allows
tools like veristat to request first part of verifier log, if necessary.
BPF_LOG_FIXED flag is also a simple and straightforward way to check if
BPF verifier supports rotating behavior.

On the implementation side, conceptually, it's all simple. We maintain
64-bit logical start and end positions. If we need to truncate the log,
start position will be adjusted accordingly to lag end position by
N bytes. We then use those logical positions to calculate their matching
actual positions in user buffer and handle wrap around the end of the
buffer properly. Finally, right before returning from bpf_check(), we
rotate user log buffer contents in-place as necessary, to make log
contents contiguous. See comments in relevant functions for details.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-4-andrii@kernel.org
2023-04-11 18:05:43 +02:00
Alexei Starovoitov
63260df139 bpf: Refactor btf_nested_type_is_trusted().
btf_nested_type_is_trusted() tries to find a struct member at corresponding offset.
It works for flat structures and falls apart in more complex structs with nested structs.
The offset->member search is already performed by btf_struct_walk() including nested structs.
Reuse this work and pass {field name, field btf id} into btf_nested_type_is_trusted()
instead of offset to make BTF_TYPE_SAFE*() logic more robust.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-4-alexei.starovoitov@gmail.com
2023-04-04 16:57:14 -07:00
Dave Marchevsky
9e36a204bd bpf: Disable migration when freeing stashed local kptr using obj drop
When a local kptr is stashed in a map and freed when the map goes away,
currently an error like the below appears:

[   39.195695] BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u32:15/2875
[   39.196549] caller is bpf_mem_free+0x56/0xc0
[   39.196958] CPU: 15 PID: 2875 Comm: kworker/u32:15 Tainted: G           O       6.2.0-13016-g22df776a9a86 #4477
[   39.197897] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[   39.198949] Workqueue: events_unbound bpf_map_free_deferred
[   39.199470] Call Trace:
[   39.199703]  <TASK>
[   39.199911]  dump_stack_lvl+0x60/0x70
[   39.200267]  check_preemption_disabled+0xbf/0xe0
[   39.200704]  bpf_mem_free+0x56/0xc0
[   39.201032]  ? bpf_obj_new_impl+0xa0/0xa0
[   39.201430]  bpf_obj_free_fields+0x1cd/0x200
[   39.201838]  array_map_free+0xad/0x220
[   39.202193]  ? finish_task_switch+0xe5/0x3c0
[   39.202614]  bpf_map_free_deferred+0xea/0x210
[   39.203006]  ? lockdep_hardirqs_on_prepare+0xe/0x220
[   39.203460]  process_one_work+0x64f/0xbe0
[   39.203822]  ? pwq_dec_nr_in_flight+0x110/0x110
[   39.204264]  ? do_raw_spin_lock+0x107/0x1c0
[   39.204662]  ? lockdep_hardirqs_on_prepare+0xe/0x220
[   39.205107]  worker_thread+0x74/0x7a0
[   39.205451]  ? process_one_work+0xbe0/0xbe0
[   39.205818]  kthread+0x171/0x1a0
[   39.206111]  ? kthread_complete_and_exit+0x20/0x20
[   39.206552]  ret_from_fork+0x1f/0x30
[   39.206886]  </TASK>

This happens because the call to __bpf_obj_drop_impl I added in the patch
adding support for stashing local kptrs doesn't disable migration. Prior
to that patch, __bpf_obj_drop_impl logic only ran when called by a BPF
progarm, whereas now it can be called from map free path, so it's
necessary to explicitly disable migration.

Also, refactor a bit to just call __bpf_obj_drop_impl directly instead
of bothering w/ dtor union and setting pointer-to-obj_drop.

Fixes: c8e1875409 ("bpf: Support __kptr to local kptrs")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230313214641.3731908-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-13 16:55:04 -07:00
Dave Marchevsky
c8e1875409 bpf: Support __kptr to local kptrs
If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module
BTF - it must have been allocated by bpf_obj_new and therefore must be
free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local
kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new.

This patch adds support for treating __kptr-tagged pointers to "local
kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr
acquire / release semantics. Consider the following example:

  struct node_data {
          long key;
          long data;
          struct bpf_rb_node node;
  };

  struct map_value {
          struct node_data __kptr *node;
  };

  struct {
          __uint(type, BPF_MAP_TYPE_ARRAY);
          __type(key, int);
          __type(value, struct map_value);
          __uint(max_entries, 1);
  } some_nodes SEC(".maps");

If struct node_data had a matching definition in kernel BTF, the verifier would
expect a destructor for the type to be registered. Since struct node_data does
not match any type in kernel BTF, the verifier knows that there is no kfunc
that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can
only come from bpf_obj_new. So instead of searching for a registered dtor,
a bpf_obj_drop dtor can be assumed.

This allows the runtime to properly destruct such kptrs in
bpf_obj_free_fields, which enables maps to clean up map_vals w/ such
kptrs when going away.

Implementation notes:
  * "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr.
    Before this patch, the variable would only ever point to vmlinux or
    module BTFs, but now it can point to some program BTF for local kptr
    type. It's later used to populate the (btf, btf_id) pair in kptr btf
    field.
  * It's necessary to btf_get the program BTF when populating btf_field
    for local kptr. btf_record_free later does a btf_put.
  * Behavior for non-local referenced kptrs is not modified, as
    bpf_find_btf_id helper only searches vmlinux and module BTFs for
    matching BTF type. If such a type is found, btf_field_kptr's btf will
    pass btf_is_kernel check, and the associated release function is
    some one-argument dtor. If btf_is_kernel check fails, associated
    release function is two-arg bpf_obj_drop_impl. Before this patch
    only btf_field_kptr's w/ kernel or module BTFs were created.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10 16:38:05 -08:00
Dave Marchevsky
a4aa38897b bpf: btf: Remove unused btf_field_info_type enum
This enum was added and used in commit aa3496accc ("bpf: Refactor kptr_off_tab
into btf_record"). Later refactoring in commit db55911782 ("bpf: Consolidate
spin_lock, timer management into btf_record") resulted in the enum
values no longer being used anywhere.

Let's remove them.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230309180111.1618459-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10 12:16:37 -08:00
Jakub Kicinski
d0ddf5065f Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Documentation/bpf/bpf_devel_QA.rst
  b7abcd9c65 ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
  d56b0c461d ("bpf, docs: Fix link to netdev-FAQ target")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-03-09 22:22:11 -08:00
Andrii Nakryiko
215bf4962f bpf: add iterator kfuncs registration and validation logic
Add ability to register kfuncs that implement BPF open-coded iterator
contract and enforce naming and function proto convention. Enforcement
happens at the time of kfunc registration and significantly simplifies
the rest of iterators logic in the verifier.

More details follow in subsequent patches, but we enforce the following
conditions.

All kfuncs (constructor, next, destructor) have to be named consistenly
as bpf_iter_<type>_{new,next,destroy}(), respectively. <type> represents
iterator type, and iterator state should be represented as a matching
`struct bpf_iter_<type>` state type. Also, all iter kfuncs should have
a pointer to this `struct bpf_iter_<type>` as the very first argument.

Additionally:
  - Constructor, i.e., bpf_iter_<type>_new(), can have arbitrary extra
  number of arguments. Return type is not enforced either.
  - Next method, i.e., bpf_iter_<type>_next(), has to return a pointer
  type and should have exactly one argument: `struct bpf_iter_<type> *`
  (const/volatile/restrict and typedefs are ignored).
  - Destructor, i.e., bpf_iter_<type>_destroy(), should return void and
  should have exactly one argument, similar to the next method.
  - struct bpf_iter_<type> size is enforced to be positive and
  a multiple of 8 bytes (to fit stack slots correctly).

Such strictness and consistency allows to build generic helpers
abstracting important, but boilerplate, details to be able to use
open-coded iterators effectively and ergonomically (see bpf_for_each()
in subsequent patches). It also simplifies the verifier logic in some
places. At the same time, this doesn't hurt generality of possible
iterator implementations. Win-win.

Constructor kfunc is marked with a new KF_ITER_NEW flags, next method is
marked with KF_ITER_NEXT (and should also have KF_RET_NULL, of course),
while destructor kfunc is marked as KF_ITER_DESTROY.

Additionally, we add a trivial kfunc name validation: it should be
a valid non-NULL and non-empty string.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-08 16:19:50 -08:00
Lorenz Bauer
9b459804ff btf: fix resolving BTF_KIND_VAR after ARRAY, STRUCT, UNION, PTR
btf_datasec_resolve contains a bug that causes the following BTF
to fail loading:

    [1] DATASEC a size=2 vlen=2
        type_id=4 offset=0 size=1
        type_id=7 offset=1 size=1
    [2] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
    [3] PTR (anon) type_id=2
    [4] VAR a type_id=3 linkage=0
    [5] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
    [6] TYPEDEF td type_id=5
    [7] VAR b type_id=6 linkage=0

This error message is printed during btf_check_all_types:

    [1] DATASEC a size=2 vlen=2
        type_id=7 offset=1 size=1 Invalid type

By tracing btf_*_resolve we can pinpoint the problem:

    btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_TBD) = 0
        btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_TBD) = 0
            btf_ptr_resolve(depth: 3, type_id: 3, mode: RESOLVE_PTR) = 0
        btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_PTR) = 0
    btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_PTR) = -22

The last invocation of btf_datasec_resolve should invoke btf_var_resolve
by means of env_stack_push, instead it returns EINVAL. The reason is that
env_stack_push is never executed for the second VAR.

    if (!env_type_is_resolve_sink(env, var_type) &&
        !env_type_is_resolved(env, var_type_id)) {
        env_stack_set_next_member(env, i + 1);
        return env_stack_push(env, var_type, var_type_id);
    }

env_type_is_resolve_sink() changes its behaviour based on resolve_mode.
For RESOLVE_PTR, we can simplify the if condition to the following:

    (btf_type_is_modifier() || btf_type_is_ptr) && !env_type_is_resolved()

Since we're dealing with a VAR the clause evaluates to false. This is
not sufficient to trigger the bug however. The log output and EINVAL
are only generated if btf_type_id_size() fails.

    if (!btf_type_id_size(btf, &type_id, &type_size)) {
        btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
        return -EINVAL;
    }

Most types are sized, so for example a VAR referring to an INT is not a
problem. The bug is only triggered if a VAR points at a modifier. Since
we skipped btf_var_resolve that modifier was also never resolved, which
means that btf_resolved_type_id returns 0 aka VOID for the modifier.
This in turn causes btf_type_id_size to return NULL, triggering EINVAL.

To summarise, the following conditions are necessary:

- VAR pointing at PTR, STRUCT, UNION or ARRAY
- Followed by a VAR pointing at TYPEDEF, VOLATILE, CONST, RESTRICT or
  TYPE_TAG

The fix is to reset resolve_mode to RESOLVE_TBD before attempting to
resolve a VAR from a DATASEC.

Fixes: 1dc9285184 ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230306112138.155352-2-lmb@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-03-06 11:44:13 -08:00
Alexei Starovoitov
6fcd486b3a bpf: Refactor RCU enforcement in the verifier.
bpf_rcu_read_lock/unlock() are only available in clang compiled kernels. Lack
of such key mechanism makes it impossible for sleepable bpf programs to use RCU
pointers.

Allow bpf_rcu_read_lock/unlock() in GCC compiled kernels (though GCC doesn't
support btf_type_tag yet) and allowlist certain field dereferences in important
data structures like tast_struct, cgroup, socket that are used by sleepable
programs either as RCU pointer or full trusted pointer (which is valid outside
of RCU CS). Use BTF_TYPE_SAFE_RCU and BTF_TYPE_SAFE_TRUSTED macros for such
tagging. They will be removed once GCC supports btf_type_tag.

With that refactor check_ptr_to_btf_access(). Make it strict in enforcing
PTR_TRUSTED and PTR_UNTRUSTED while deprecating old PTR_TO_BTF_ID without
modifier flags. There is a chance that this strict enforcement might break
existing programs (especially on GCC compiled kernels), but this cleanup has to
start sooner than later. Note PTR_TO_CTX access still yields old deprecated
PTR_TO_BTF_ID. Once it's converted to strict PTR_TRUSTED or PTR_UNTRUSTED the
kfuncs and helpers will be able to default to KF_TRUSTED_ARGS. KF_RCU will
remain as a weaker version of KF_TRUSTED_ARGS where obj refcnt could be 0.

Adjust rcu_read_lock selftest to run on gcc and clang compiled kernels.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-7-alexei.starovoitov@gmail.com
2023-03-03 17:42:20 +01:00
Alexei Starovoitov
03b77e17ae bpf: Rename __kptr_ref -> __kptr and __kptr -> __kptr_untrusted.
__kptr meant to store PTR_UNTRUSTED kernel pointers inside bpf maps.
The concept felt useful, but didn't get much traction,
since bpf_rdonly_cast() was added soon after and bpf programs received
a simpler way to access PTR_UNTRUSTED kernel pointers
without going through restrictive __kptr usage.

Rename __kptr_ref -> __kptr and __kptr -> __kptr_untrusted to indicate
its intended usage.
The main goal of __kptr_untrusted was to read/write such pointers
directly while bpf_kptr_xchg was a mechanism to access refcnted
kernel pointers. The next patch will allow RCU protected __kptr access
with direct read. At that point __kptr_untrusted will be deprecated.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-2-alexei.starovoitov@gmail.com
2023-03-03 17:42:20 +01:00
Joanne Koong
b5964b968a bpf: Add skb dynptrs
Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)

For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.

For examples of how skb dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
Joanne Koong
2f46439346 bpf: Support "sk_buff" and "xdp_buff" as valid kfunc arg types
The bpf mirror of the in-kernel sk_buff and xdp_buff data structures are
__sk_buff and xdp_md. Currently, when we pass in the program ctx to a
kfunc where the program ctx is a skb or xdp buffer, we reject the
program if the in-kernel definition is sk_buff/xdp_buff instead of
__sk_buff/xdp_md.

This change allows "sk_buff <--> __sk_buff" and "xdp_buff <--> xdp_md"
to be recognized as valid matches. The user program may pass in their
program ctx as a __sk_buff or xdp_md, and the in-kernel definition
of the kfunc may define this arg as a sk_buff or xdp_buff.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-2-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:23 -08:00
Andrii Nakryiko
d384dce281 bpf: Fix global subprog context argument resolution logic
KPROBE program's user-facing context type is defined as typedef
bpf_user_pt_regs_t. This leads to a problem when trying to passing
kprobe/uprobe/usdt context argument into global subprog, as kernel
always strip away mods and typedefs of user-supplied type, but takes
expected type from bpf_ctx_convert as is, which causes mismatch.

Current way to work around this is to define a fake struct with the same
name as expected typedef:

  struct bpf_user_pt_regs_t {};

  __noinline my_global_subprog(struct bpf_user_pt_regs_t *ctx) { ... }

This patch fixes the issue by resolving expected type, if it's not
a struct. It still leaves the above work-around working for backwards
compatibility.

Fixes: 91cc1a9974 ("bpf: Annotate context types")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230216045954.3002473-2-andrii@kernel.org
2023-02-17 21:20:44 +01:00
Dave Marchevsky
a40d363243 bpf: Special verifier handling for bpf_rbtree_{remove, first}
Newly-added bpf_rbtree_{remove,first} kfuncs have some special properties
that require handling in the verifier:

  * both bpf_rbtree_remove and bpf_rbtree_first return the type containing
    the bpf_rb_node field, with the offset set to that field's offset,
    instead of a struct bpf_rb_node *
    * mark_reg_graph_node helper added in previous patch generalizes
      this logic, use it

  * bpf_rbtree_remove's node input is a node that's been inserted
    in the tree - a non-owning reference.

  * bpf_rbtree_remove must invalidate non-owning references in order to
    avoid aliasing issue. Use previously-added
    invalidate_non_owning_refs helper to mark this function as a
    non-owning ref invalidation point.

  * Unlike other functions, which convert one of their input arg regs to
    non-owning reference, bpf_rbtree_first takes no arguments and just
    returns a non-owning reference (possibly null)
    * For now verifier logic for this is special-cased instead of
      adding new kfunc flag.

This patch, along with the previous one, complete special verifier
handling for all rbtree API functions added in this series.

With functional verifier handling of rbtree_remove, under current
non-owning reference scheme, a node type with both bpf_{list,rb}_node
fields could cause the verifier to accept programs which remove such
nodes from collections they haven't been added to.

In order to prevent this, this patch adds a check to btf_parse_fields
which rejects structs with both bpf_{list,rb}_node fields. This is a
temporary measure that can be removed after "collection identity"
followup. See comment added in btf_parse_fields. A linked_list BTF test
exercising the new check is added in this patch as well.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:53 -08:00
Dave Marchevsky
9c395c1b99 bpf: Add basic bpf_rb_{root,node} support
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.

structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.

btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.

btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.

After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:31:13 -08:00
Jakub Kicinski
de42873367 bpf-next-for-netdev
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY+bZrwAKCRDbK58LschI
 gzi4AP4+TYo0jnSwwkrOoN9l4f5VO9X8osmj3CXfHBv7BGWVxAD/WnvA3TDZyaUd
 agIZTkRs6BHF9He8oROypARZxTeMLwM=
 =nO1C
 -----END PGP SIGNATURE-----

Daniel Borkmann says:

====================
pull-request: bpf-next 2023-02-11

We've added 96 non-merge commits during the last 14 day(s) which contain
a total of 152 files changed, 4884 insertions(+), 962 deletions(-).

There is a minor conflict in drivers/net/ethernet/intel/ice/ice_main.c
between commit 5b246e533d ("ice: split probe into smaller functions")
from the net-next tree and commit 66c0e13ad2 ("drivers: net: turn on
XDP features") from the bpf-next tree. Remove the hunk given ice_cfg_netdev()
is otherwise there a 2nd time, and add XDP features to the existing
ice_cfg_netdev() one:

        [...]
        ice_set_netdev_features(netdev);
        netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
                               NETDEV_XDP_ACT_XSK_ZEROCOPY;
        ice_set_ops(netdev);
        [...]

Stephen's merge conflict mail:
https://lore.kernel.org/bpf/20230207101951.21a114fa@canb.auug.org.au/

The main changes are:

1) Add support for BPF trampoline on s390x which finally allows to remove many
   test cases from the BPF CI's DENYLIST.s390x, from Ilya Leoshkevich.

2) Add multi-buffer XDP support to ice driver, from Maciej Fijalkowski.

3) Add capability to export the XDP features supported by the NIC.
   Along with that, add a XDP compliance test tool,
   from Lorenzo Bianconi & Marek Majtyka.

4) Add __bpf_kfunc tag for marking kernel functions as kfuncs,
   from David Vernet.

5) Add a deep dive documentation about the verifier's register
   liveness tracking algorithm, from Eduard Zingerman.

6) Fix and follow-up cleanups for resolve_btfids to be compiled
   as a host program to avoid cross compile issues,
   from Jiri Olsa & Ian Rogers.

7) Batch of fixes to the BPF selftest for xdp_hw_metadata which resulted
   when testing on different NICs, from Jesper Dangaard Brouer.

8) Fix libbpf to better detect kernel version code on Debian, from Hao Xiang.

9) Extend libbpf to add an option for when the perf buffer should
   wake up, from Jon Doron.

10) Follow-up fix on xdp_metadata selftest to just consume on TX
    completion, from Stanislav Fomichev.

11) Extend the kfuncs.rst document with description on kfunc
    lifecycle & stability expectations, from David Vernet.

12) Fix bpftool prog profile to skip attaching to offline CPUs,
    from Tonghao Zhang.

====================

Link: https://lore.kernel.org/r/20230211002037.8489-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-10 17:51:27 -08:00
Jakub Kicinski
82b4a9412b Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
net/core/gro.c
  7d2c89b325 ("skb: Do mix page pool and page referenced frags in GRO")
  b1a78b9b98 ("net: add support for ipv4 big tcp")
https://lore.kernel.org/all/20230203094454.5766f160@canb.auug.org.au/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-02 14:49:55 -08:00
Ilya Leoshkevich
49f67f393f bpf: btf: Add BTF_FMODEL_SIGNED_ARG flag
s390x eBPF JIT needs to know whether a function return value is signed
and which function arguments are signed, in order to generate code
compliant with the s390x ABI.

Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/20230128000650.1516334-26-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-28 12:45:15 -08:00
David Vernet
b613d335a7 bpf: Allow trusted args to walk struct when checking BTF IDs
When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.

For example, if you have the following type:

struct  nf_conn___init {
	struct nf_conn ct;
};

The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.

On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF.  For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).

Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().

If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).

In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).

Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-24 20:15:13 -08:00
David Vernet
57539b1c0a bpf: Enable annotating trusted nested pointers
In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is
safe, and which the verifier will allow to be passed to a
KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any
pointer to be passed at a nonzero offset, but sometimes this is in fact
safe if the "nested" pointer's lifetime is inherited from its parent.
For example, the const cpumask_t *cpus_ptr field in a struct task_struct
will remain valid until the task itself is destroyed, and thus would
also be safe to pass to a KF_TRUSTED_ARGS kfunc.

While it would be conceptually simple to enable this by using BTF tags,
gcc unfortunately does not yet support this. In the interim, this patch
enables support for this by using a type-naming convention. A new
BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a
developer to specify the nested fields of a type which are considered
trusted if its parent is also trusted. The verifier is also updated to
account for this. A patch with selftests will be added in a follow-on
change, along with documentation for this feature.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-24 20:15:01 -08:00
Jiri Olsa
74bc3a5acc bpf: Add missing btf_put to register_btf_id_dtor_kfuncs
We take the BTF reference before we register dtors and we need
to put it back when it's done.

We probably won't se a problem with kernel BTF, but module BTF
would stay loaded (because of the extra ref) even when its module
is removed.

Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 5ce937d613 ("bpf: Populate pairs of btf_id and destructor kfunc in btf")
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230120122148.1522359-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 08:19:56 -08:00
Connor O'Brien
9cb61e50bf bpf: btf: limit logging of ignored BTF mismatches
Enabling CONFIG_MODULE_ALLOW_BTF_MISMATCH is an indication that BTF
mismatches are expected and module loading should proceed
anyway. Logging with pr_warn() on every one of these "benign"
mismatches creates unnecessary noise when many such modules are
loaded. Instead, handle this case with a single log warning that BTF
info may be unavailable.

Mismatches also result in calls to __btf_verifier_log() via
__btf_verifier_log_type() or btf_verifier_log_member(), adding several
additional lines of logging per mismatched module. Add checks to these
paths to skip logging for module BTF mismatches in the "allow
mismatch" case.

All existing logging behavior is preserved in the default
CONFIG_MODULE_ALLOW_BTF_MISMATCH=n case.

Signed-off-by: Connor O'Brien <connoro@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230107025331.3240536-1-connoro@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-01-10 15:58:30 -08:00
Dave Marchevsky
30465003ad bpf: rename list_head -> graph_root in field info types
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:

include/linux/bpf.h:
  struct btf_field_list_head -> struct btf_field_graph_root
  list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
  list_head -> graph_root in struct btf_field_info

This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-28 20:14:22 -08:00
Alexei Starovoitov
0a6ea1ce82 for-alexei-2022120701
-----BEGIN PGP SIGNATURE-----
 
 iQJSBAABCAA8FiEEoEVH9lhNrxiMPSyI7MXwXhnZSjYFAmOQpWweHGJlbmphbWlu
 LnRpc3NvaXJlc0ByZWRoYXQuY29tAAoJEOzF8F4Z2Uo23ooQAJR4JBv+WKxyDplY
 m2Kk1t156kenJNhyRojwNWlYk7S0ziClwfjnJEsiki4S0RAwHcVNuuMLjKSjcDIP
 TFrs3kFIlgLITpkPFdMIqMniq0Fynb3N5QDsaohQPQvtLeDx5ASH9D6J+20bcdky
 PE+xOo1Nkn1DpnBiGX7P6irMsqrm5cXfBES2u9c7He9VLThviP2v+TvB80gmRi7w
 zUU4Uikcr8wlt+9MZoLVoVwAOg5aZmVa/9ogNqaT+cKnW6hQ+3CymxiyiyOdRrAQ
 e521+GhQOVTiM0w5C6BwhMx+Wu8r0Qz4Vp49UWf04U/KU+M1TzqAk1z7Vvt72TCr
 965qb19TSRNTGQzebAIRd09mFb/nech54dhpyceONBGnUs9r2dDWjfDd/PA7e2WO
 FbDE0HGnz/XK7GUrk/BXWU+n9VA7itnhJzB+zr3i6IKFgwwDJ1V4e81CWdBEsp9I
 WNDC8LF2bcgHvzFVC23AkKujmbirS6K4Wq+R0f2PISQIs2FdUBl1mgjh2E47lK8E
 zCozMRf9bMya5aGkd4S4dtn0NFGByFSXod2TMgfHPvBz06t6YG00DajALzcE5l8U
 GAoP5Nz9hRSbmHJCNMqy0SN0WN9Cz+JIFx5Vlb9az3lduRRBOVptgnjx9LOjErVr
 +aWWxuQgoHZmB5Ja5WNVN1lIf39/
 =FX5W
 -----END PGP SIGNATURE-----

Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-next

Merge commit 5b481acab4 ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret")
from hid tree into bpf-next.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07 13:49:21 -08:00
Benjamin Tissoires
5b481acab4 bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret
The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.

Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.

Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
2022-12-07 15:31:08 +01:00
Yonghong Song
c0c852dd18 bpf: Do not mark certain LSM hook arguments as trusted
Martin mentioned that the verifier cannot assume arguments from
LSM hook sk_alloc_security being trusted since after the hook
is called, the sk ref_count is set to 1. This will overwrite
the ref_count changed by the bpf program and may cause ref_count
underflow later on.

I then further checked some other hooks. For example,
for bpf_lsm_file_alloc() hook in fs/file_table.c,

        f->f_cred = get_cred(cred);
        error = security_file_alloc(f);
        if (unlikely(error)) {
                file_free_rcu(&f->f_rcuhead);
                return ERR_PTR(error);
        }

        atomic_long_set(&f->f_count, 1);

The input parameter 'f' to security_file_alloc() cannot be trusted
as well.

Specifically, I investiaged bpf_map/bpf_prog/file/sk/task alloc/free
lsm hooks. Except bpf_map_alloc and task_alloc, arguments for all other
hooks should not be considered as trusted. This may not be a complete
list, but it covers common usage for sk and task.

Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203204954.2043348-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-04 12:59:58 -08:00
Alexei Starovoitov
c6b0337f01 bpf: Don't mark arguments to fentry/fexit programs as trusted.
The PTR_TRUSTED flag should only be applied to pointers where the verifier can
guarantee that such pointers are valid.
The fentry/fexit/fmod_ret programs are not in this category.
Only arguments of SEC("tp_btf") and SEC("iter") programs are trusted
(which have BPF_TRACE_RAW_TP and BPF_TRACE_ITER attach_type correspondingly)

This bug was masked because convert_ctx_accesses() was converting trusted
loads into BPF_PROBE_MEM loads. Fix it as well.
The loads from trusted pointers don't need exception handling.

Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221124215314.55890-1-alexei.starovoitov@gmail.com
2022-11-24 23:47:09 +01:00
Yonghong Song
9bb00b2895 bpf: Add kfunc bpf_rcu_read_lock/unlock()
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().

  struct task_struct {
    ...
    struct task_struct              *last_wakee;
    struct task_struct __rcu        *real_parent;
    ...
  };

Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
  - 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
    region. This is to simulate rcu_dereference() operation. The
    'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
    inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
    MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
  - 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
    region since it tries to access rcu protected memory.
  - the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
    it is not clear whether the object pointed by 'last_wakee' is valid or
    not even inside bpf_rcu_read_lock region.

The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.

The current implementation does not support nested rcu read lock
region in the prog.

Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-24 12:54:13 -08:00
Stanislav Fomichev
5bad3587b7 bpf: Unify and simplify btf_func_proto_check error handling
Replace 'err = x; break;' with 'return x;'.

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221124002838.2700179-1-sdf@google.com
2022-11-24 01:43:22 +01:00
Stanislav Fomichev
f17472d459 bpf: Prevent decl_tag from being referenced in func_proto arg
Syzkaller managed to hit another decl_tag issue:

  btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
  btf_check_all_types kernel/bpf/btf.c:4734 [inline]
  btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
  btf_parse kernel/bpf/btf.c:5042 [inline]
  btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
  bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
  __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
  __do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
  __se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
  __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
  do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48

This seems similar to commit ea68376c8b ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.

Reported-by: syzbot+8dd0551dda6020944c5d@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221123035422.872531-2-sdf@google.com
2022-11-24 00:48:50 +01:00
Yonghong Song
fd264ca020 bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:43:37 -08:00
Yonghong Song
cfe1456440 bpf: Add support for kfunc set with common btf_ids
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and
bpf_rdonly_cast() which apply to all program types. Currently kfunc set
only supports individual prog types. This patch added support for kfunc
applying to all program types.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 15:43:37 -08:00
David Vernet
3f00c52393 bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.

The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.

There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:

SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
             struct task_struct *task,
             u64 clone_flags)
{
        struct task_struct *acquired, *nested;

        nested = task->last_wakee;

        /* Would not be rejected by the verifier. */
        acquired = bpf_task_acquire(nested);
        if (!acquired)
                return 0;

        bpf_task_release(acquired);
        return 0;
}

To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.

A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20 09:16:21 -08:00
Kumar Kartikeya Dwivedi
c22dfdd215 bpf: Add comments for map BTF matching requirement for bpf_list_head
The old behavior of bpf_map_meta_equal was that it compared timer_off
to be equal (but not spin_lock_off, because that was not allowed), and
did memcmp of kptr_off_tab.

Now, we memcmp the btf_record of two bpf_map structs, which has all
fields.

We preserve backwards compat as we kzalloc the array, so if only spin
lock and timer exist in map, we only compare offset while the rest of
unused members in the btf_field struct are zeroed out.

In case of kptr, btf and everything else is of vmlinux or module, so as
long type is same it will match, since kernel btf, module, dtor pointer
will be same across maps.

Now with list_head in the mix, things are a bit complicated. We
implicitly add a requirement that both BTFs are same, because struct
btf_field_list_head has btf and value_rec members.

We obviously shouldn't force BTFs to be equal by default, as that breaks
backwards compatibility.

Currently it is only implicitly required due to list_head matching
struct btf and value_rec member. value_rec points back into a btf_record
stashed in the map BTF (btf member of btf_field_list_head). So that
pointer and btf member has to match exactly.

Document all these subtle details so that things don't break in the
future when touching this code.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-19-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:22:14 -08:00
Kumar Kartikeya Dwivedi
00b85860fe bpf: Rewrite kfunc argument handling
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.

This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.

Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:16:49 -08:00
Kumar Kartikeya Dwivedi
865ce09a49 bpf: Verify ownership relationships for user BTF types
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.

Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:32 -08:00
Kumar Kartikeya Dwivedi
8ffa5cc142 bpf: Recognize lock and list fields in allocated objects
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.

Also update btf_struct_access to reject direct access to these special
fields.

A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.

While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.

Note that the specification of such types can be done just like map
values, e.g.:

struct bar {
	struct bpf_list_node node;
};

struct foo {
	struct bpf_spin_lock lock;
	struct bpf_list_head head __contains(bar, node);
	struct bpf_list_node node;
};

struct map_value {
	struct bpf_spin_lock lock;
	struct bpf_list_head head __contains(foo, node);
};

To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.

Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.

A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:32 -08:00
Kumar Kartikeya Dwivedi
282de143ea bpf: Introduce allocated objects support
Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.

Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.

For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.

No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:32 -08:00
Kumar Kartikeya Dwivedi
6728aea721 bpf: Refactor btf_struct_access
Instead of having to pass multiple arguments that describe the register,
pass the bpf_reg_state into the btf_struct_access callback. Currently,
all call sites simply reuse the btf and btf_id of the reg they want to
check the access of. The only exception to this pattern is the callsite
in check_ptr_to_map_access, hence for that case create a dummy reg to
simulate PTR_TO_BTF_ID access.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14 21:52:45 -08:00
Kumar Kartikeya Dwivedi
f0c5941ff5 bpf: Support bpf_list_head in map values
Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.

The definition of bpf_list_head in a map value will be done as follows:

struct foo {
	struct bpf_list_node node;
	int data;
};

struct map_value {
	struct bpf_list_head head __contains(foo, node);
};

Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.

The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.

This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.

For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.

Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.

While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14 21:52:45 -08:00