Commit Graph

235 Commits

Author SHA1 Message Date
Linus Torvalds
6f664045c8 Not a lot of material this cycle. Many singleton patches against various
subsystems.   Most notably some maintenance work in ocfs2 and initramfs.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo/6xQAKCRDdBJ7gKXxA
 jkD9AQCPczLBbRWpe1edL+5VHvel9ePoHQmvbHQnufdTh9rB5QEAu0Uilxz4q9cx
 xSZypNhj2n9f8FCYca/ZrZneBsTnAA8=
 =AJEO
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2022-05-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc updates from Andrew Morton:
 "The non-MM patch queue for this merge window.

  Not a lot of material this cycle. Many singleton patches against
  various subsystems. Most notably some maintenance work in ocfs2
  and initramfs"

* tag 'mm-nonmm-stable-2022-05-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (65 commits)
  kcov: update pos before writing pc in trace function
  ocfs2: dlmfs: fix error handling of user_dlm_destroy_lock
  ocfs2: dlmfs: don't clear USER_LOCK_ATTACHED when destroying lock
  fs/ntfs: remove redundant variable idx
  fat: remove time truncations in vfat_create/vfat_mkdir
  fat: report creation time in statx
  fat: ignore ctime updates, and keep ctime identical to mtime in memory
  fat: split fat_truncate_time() into separate functions
  MAINTAINERS: add Muchun as a memcg reviewer
  proc/sysctl: make protected_* world readable
  ia64: mca: drop redundant spinlock initialization
  tty: fix deadlock caused by calling printk() under tty_port->lock
  relay: remove redundant assignment to pointer buf
  fs/ntfs3: validate BOOT sectors_per_clusters
  lib/string_helpers: fix not adding strarray to device's resource list
  kernel/crash_core.c: remove redundant check of ck_cmdline
  ELF, uapi: fixup ELF_ST_TYPE definition
  ipc/mqueue: use get_tree_nodev() in mqueue_get_tree()
  ipc: update semtimedop() to use hrtimer
  ipc/sem: remove redundant assignments
  ...
2022-05-27 11:22:03 -07:00
David Howells
189b0ddc24 pipe: Fix missing lock in pipe_resize_ring()
pipe_resize_ring() needs to take the pipe->rd_wait.lock spinlock to
prevent post_one_notification() from trying to insert into the ring
whilst the ring is being replaced.

The occupancy check must be done after the lock is taken, and the lock
must be taken after the new ring is allocated.

The bug can lead to an oops looking something like:

 BUG: KASAN: use-after-free in post_one_notification.isra.0+0x62e/0x840
 Read of size 4 at addr ffff88801cc72a70 by task poc/27196
 ...
 Call Trace:
  post_one_notification.isra.0+0x62e/0x840
  __post_watch_notification+0x3b7/0x650
  key_create_or_update+0xb8b/0xd20
  __do_sys_add_key+0x175/0x340
  __x64_sys_add_key+0xbe/0x140
  do_syscall_64+0x5c/0xc0
  entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported by Selim Enes Karaduman @Enesdex working with Trend Micro Zero
Day Initiative.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: zdi-disclosures@trendmicro.com # ZDI-CAN-17291
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-05-27 10:45:59 -07:00
Kuniyuki Iwashima
f485922d8f pipe: make poll_usage boolean and annotate its access
Patch series "Fix data-races around epoll reported by KCSAN."

This series suppresses a false positive KCSAN's message and fixes a real
data-race.


This patch (of 2):

pipe_poll() runs locklessly and assigns 1 to poll_usage.  Once poll_usage
is set to 1, it never changes in other places.  However, concurrent writes
of a value trigger KCSAN, so let's make KCSAN happy.

BUG: KCSAN: data-race in pipe_poll / pipe_poll

write to 0xffff8880042f6678 of 4 bytes by task 174 on cpu 3:
 pipe_poll (fs/pipe.c:656)
 ep_item_poll.isra.0 (./include/linux/poll.h:88 fs/eventpoll.c:853)
 do_epoll_wait (fs/eventpoll.c:1692 fs/eventpoll.c:1806 fs/eventpoll.c:2234)
 __x64_sys_epoll_wait (fs/eventpoll.c:2246 fs/eventpoll.c:2241 fs/eventpoll.c:2241)
 do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)

write to 0xffff8880042f6678 of 4 bytes by task 177 on cpu 1:
 pipe_poll (fs/pipe.c:656)
 ep_item_poll.isra.0 (./include/linux/poll.h:88 fs/eventpoll.c:853)
 do_epoll_wait (fs/eventpoll.c:1692 fs/eventpoll.c:1806 fs/eventpoll.c:2234)
 __x64_sys_epoll_wait (fs/eventpoll.c:2246 fs/eventpoll.c:2241 fs/eventpoll.c:2241)
 do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)

Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 177 Comm: epoll_race Not tainted 5.17.0-58927-gf443e374ae13 #6
Hardware name: Red Hat KVM, BIOS 1.11.0-2.amzn2 04/01/2014

Link: https://lkml.kernel.org/r/20220322002653.33865-1-kuniyu@amazon.co.jp
Link: https://lkml.kernel.org/r/20220322002653.33865-2-kuniyu@amazon.co.jp
Fixes: 3b844826b6 ("pipe: avoid unnecessary EPOLLET wakeups under normal loads")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kuniyuki Iwashima <kuni1840@gmail.com>
Cc: "Soheil Hassas Yeganeh" <soheil@google.com>
Cc: "Sridhar Samudrala" <sridhar.samudrala@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-29 14:38:01 -07:00
Linus Torvalds
906f904097 Revert "fs/pipe: use kvcalloc to allocate a pipe_buffer array"
This reverts commit 5a519c8fe4.

It turns out that making the pipe almost arbitrarily large has some
rather unexpected downsides.  The kernel test robot reports a kernel
warning that is due to pipe->max_usage now growing to the point where
the iter_file_splice_write() buffer allocation can no longer be
satisfied as a slab allocation, and the

        int nbufs = pipe->max_usage;
        struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
                                        GFP_KERNEL);

code sequence there will now always fail as a result.

That code could be modified to use kvcalloc() too, but I feel very
uncomfortable making those kinds of changes for a very niche use case
that really should have other options than make these kinds of
fundamental changes to pipe behavior.

Maybe the CRIU process dumping should be multi-threaded, and use
multiple pipes and multiple cores, rather than try to use one larger
pipe to minimize splice() calls.

Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/all/20220420073717.GD16310@xsang-OptiPlex-9020/
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-20 12:07:53 -07:00
Andrei Vagin
aeb213cdde fs/pipe.c: local vars have to match types of proper pipe_inode_info fields
head, tail, ring_size are declared as unsigned int, so all local
variables that operate with these fields have to be unsigned to avoid
signed integer overflow.

Right now, it isn't an issue because the maximum pipe size is limited by
1U<<31.

Link: https://lkml.kernel.org/r/20220106171946.36128-1-avagin@gmail.com
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Suggested-by: Dmitry Safonov <0x7f454c46@gmail.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 19:00:34 -07:00
Andrei Vagin
5a519c8fe4 fs/pipe: use kvcalloc to allocate a pipe_buffer array
Right now, kcalloc is used to allocate a pipe_buffer array.  The size of
the pipe_buffer struct is 40 bytes.  kcalloc allows allocating reliably
chunks with sizes less or equal to PAGE_ALLOC_COSTLY_ORDER (3).  It
means that the maximum pipe size is 3.2MB in this case.

In CRIU, we use pipes to dump processes memory.  CRIU freezes a target
process, injects a parasite code into it and then this code splices
memory into pipes.  If a maximum pipe size is small, we need to do many
iterations or create many pipes.

kvcalloc attempt to allocate physically contiguous memory, but upon
failure, fall back to non-contiguous (vmalloc) allocation and so it
isn't limited by PAGE_ALLOC_COSTLY_ORDER.

The maximum pipe size for non-root users is limited by the
/proc/sys/fs/pipe-max-size sysctl that is 1MB by default, so only the
root user will be able to trigger vmalloc allocations.

Link: https://lkml.kernel.org/r/20220104171058.22580-1-avagin@gmail.com
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 19:00:34 -07:00
David Howells
2ed147f015 watch_queue: Fix lack of barrier/sync/lock between post and read
There's nothing to synchronise post_one_notification() versus
pipe_read().  Whilst posting is done under pipe->rd_wait.lock, the
reader only takes pipe->mutex which cannot bar notification posting as
that may need to be made from contexts that cannot sleep.

Fix this by setting pipe->head with a barrier in post_one_notification()
and reading pipe->head with a barrier in pipe_read().

If that's not sufficient, the rd_wait.lock will need to be taken,
possibly in a ->confirm() op so that it only applies to notifications.
The lock would, however, have to be dropped before copy_page_to_iter()
is invoked.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-11 10:17:13 -08:00
David Howells
db8facfc9f watch_queue, pipe: Free watchqueue state after clearing pipe ring
In free_pipe_info(), free the watchqueue state after clearing the pipe
ring as each pipe ring descriptor has a release function, and in the
case of a notification message, this is watch_queue_pipe_buf_release()
which tries to mark the allocation bitmap that was previously released.

Fix this by moving the put of the pipe's ref on the watch queue to after
the ring has been cleared.  We still need to call watch_queue_clear()
before doing that to make sure that the pipe is disconnected from any
notification sources first.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-11 10:17:12 -08:00
Luis Chamberlain
1998f19324 fs: move pipe sysctls to is own file
kernel/sysctl.c is a kitchen sink where everyone leaves their dirty
dishes, this makes it very difficult to maintain.

To help with this maintenance let's start by moving sysctls to places
where they actually belong.  The proc sysctl maintainers do not want to
know what sysctl knobs you wish to add for your own piece of code, we
just care about the core logic.

So move the pipe sysctls to its own file.

Link: https://lkml.kernel.org/r/20211129205548.605569-10-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-22 08:33:36 +02:00
Linus Torvalds
cd1adf1b63 Revert "mm/gup: remove try_get_page(), call try_get_compound_head() directly"
This reverts commit 9857a17f20.

That commit was completely broken, and I should have caught on to it
earlier.  But happily, the kernel test robot noticed the breakage fairly
quickly.

The breakage is because "try_get_page()" is about avoiding the page
reference count overflow case, but is otherwise the exact same as a
plain "get_page()".

In contrast, "try_get_compound_head()" is an entirely different beast,
and uses __page_cache_add_speculative() because it's not just about the
page reference count, but also about possibly racing with the underlying
page going away.

So all the commentary about how

 "try_get_page() has fallen a little behind in terms of maintenance,
  try_get_compound_head() handles speculative page references more
  thoroughly"

was just completely wrong: yes, try_get_compound_head() handles
speculative page references, but the point is that try_get_page() does
not, and must not.

So there's no lack of maintainance - there are fundamentally different
semantics.

A speculative page reference would be entirely wrong in "get_page()",
and it's entirely wrong in "try_get_page()".  It's not about
speculation, it's purely about "uhhuh, you can't get this page because
you've tried to increment the reference count too much already".

The reason the kernel test robot noticed this bug was that it hit the
VM_BUG_ON() in __page_cache_add_speculative(), which is all about
verifying that the context of any speculative page access is correct.
But since that isn't what try_get_page() is all about, the VM_BUG_ON()
tests things that are not correct to test for try_get_page().

Reported-by: kernel test robot <oliver.sang@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 11:03:45 -07:00
John Hubbard
9857a17f20 mm/gup: remove try_get_page(), call try_get_compound_head() directly
try_get_page() is very similar to try_get_compound_head(), and in fact
try_get_page() has fallen a little behind in terms of maintenance:
try_get_compound_head() handles speculative page references more
thoroughly.

There are only two try_get_page() callsites, so just call
try_get_compound_head() directly from those, and remove try_get_page()
entirely.

Also, seeing as how this changes try_get_compound_head() into a non-static
function, provide some kerneldoc documentation for it.

Link: https://lkml.kernel.org/r/20210813044133.1536842-4-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:11 -07:00
Linus Torvalds
fe67f4dd8d pipe: do FASYNC notifications for every pipe IO, not just state changes
It turns out that the SIGIO/FASYNC situation is almost exactly the same
as the EPOLLET case was: user space really wants to be notified after
every operation.

Now, in a perfect world it should be sufficient to only notify user
space on "state transitions" when the IO state changes (ie when a pipe
goes from unreadable to readable, or from unwritable to writable).  User
space should then do as much as possible - fully emptying the buffer or
what not - and we'll notify it again the next time the state changes.

But as with EPOLLET, we have at least one case (stress-ng) where the
kernel sent SIGIO due to the pipe being marked for asynchronous
notification, but the user space signal handler then didn't actually
necessarily read it all before returning (it read more than what was
written, but since there could be multiple writes, it could leave data
pending).

The user space code then expected to get another SIGIO for subsequent
writes - even though the pipe had been readable the whole time - and
would only then read more.

This is arguably a user space bug - and Colin King already fixed the
stress-ng code in question - but the kernel regression rules are clear:
it doesn't matter if kernel people think that user space did something
silly and wrong.  What matters is that it used to work.

So if user space depends on specific historical kernel behavior, it's a
regression when that behavior changes.  It's on us: we were silly to
have that non-optimal historical behavior, and our old kernel behavior
was what user space was tested against.

Because of how the FASYNC notification was tied to wakeup behavior, this
was first broken by commits f467a6a664 and 1b6b26ae70 ("pipe: fix
and clarify pipe read/write wakeup logic"), but at the time it seems
nobody noticed.  Probably because the stress-ng problem case ends up
being timing-dependent too.

It was then unwittingly fixed by commit 3a34b13a88 ("pipe: make pipe
writes always wake up readers") only to be broken again when by commit
3b844826b6 ("pipe: avoid unnecessary EPOLLET wakeups under normal
loads").

And at that point the kernel test robot noticed the performance
refression in the stress-ng.sigio.ops_per_sec case.  So the "Fixes" tag
below is somewhat ad hoc, but it matches when the issue was noticed.

Fix it for good (knock wood) by simply making the kill_fasync() case
separate from the wakeup case.  FASYNC is quite rare, and we clearly
shouldn't even try to use the "avoid unnecessary wakeups" logic for it.

Link: https://lore.kernel.org/lkml/20210824151337.GC27667@xsang-OptiPlex-9020/
Fixes: 3b844826b6 ("pipe: avoid unnecessary EPOLLET wakeups under normal loads")
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-08-25 10:27:16 -07:00
Linus Torvalds
3b844826b6 pipe: avoid unnecessary EPOLLET wakeups under normal loads
I had forgotten just how sensitive hackbench is to extra pipe wakeups,
and commit 3a34b13a88 ("pipe: make pipe writes always wake up
readers") ended up causing a quite noticeable regression on larger
machines.

Now, hackbench isn't necessarily a hugely meaningful benchmark, and it's
not clear that this matters in real life all that much, but as Mel
points out, it's used often enough when comparing kernels and so the
performance regression shows up like a sore thumb.

It's easy enough to fix at least for the common cases where pipes are
used purely for data transfer, and you never have any exciting poll
usage at all.  So set a special 'poll_usage' flag when there is polling
activity, and make the ugly "EPOLLET has crazy legacy expectations"
semantics explicit to only that case.

I would love to limit it to just the broken EPOLLET case, but the pipe
code can't see the difference between epoll and regular select/poll, so
any non-read/write waiting will trigger the extra wakeup behavior.  That
is sufficient for at least the hackbench case.

Apart from making the odd extra wakeup cases more explicitly about
EPOLLET, this also makes the extra wakeup be at the _end_ of the pipe
write, not at the first write chunk.  That is actually much saner
semantics (as much as you can call any of the legacy edge-triggered
expectations for EPOLLET "sane") since it means that you know the wakeup
will happen once the write is done, rather than possibly in the middle
of one.

[ For stable people: I'm putting a "Fixes" tag on this, but I leave it
  up to you to decide whether you actually want to backport it or not.
  It likely has no impact outside of synthetic benchmarks  - Linus ]

Link: https://lore.kernel.org/lkml/20210802024945.GA8372@xsang-OptiPlex-9020/
Fixes: 3a34b13a88 ("pipe: make pipe writes always wake up readers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Sandeep Patil <sspatil@android.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-08-18 11:39:46 -07:00
Alex Xu (Hello71)
46c4c9d1be pipe: increase minimum default pipe size to 2 pages
This program always prints 4096 and hangs before the patch, and always
prints 8192 and exits successfully after:

  int main()
  {
      int pipefd[2];
      for (int i = 0; i < 1025; i++)
          if (pipe(pipefd) == -1)
              return 1;
      size_t bufsz = fcntl(pipefd[1], F_GETPIPE_SZ);
      printf("%zd\n", bufsz);
      char *buf = calloc(bufsz, 1);
      write(pipefd[1], buf, bufsz);
      read(pipefd[0], buf, bufsz-1);
      write(pipefd[1], buf, 1);
  }

Note that you may need to increase your RLIMIT_NOFILE before running the
program.

Fixes: 759c01142a ("pipe: limit the per-user amount of pages allocated in pipes")
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/
Link: https://lore.kernel.org/lkml/1628127094.lxxn016tj7.none@localhost/
Signed-off-by: Alex Xu (Hello71) <alex_y_xu@yahoo.ca>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-08-05 10:30:47 -07:00
Linus Torvalds
3a34b13a88 pipe: make pipe writes always wake up readers
Since commit 1b6b26ae70 ("pipe: fix and clarify pipe write wakeup
logic") we have sanitized the pipe write logic, and would only try to
wake up readers if they needed it.

In particular, if the pipe already had data in it before the write,
there was no point in trying to wake up a reader, since any existing
readers must have been aware of the pre-existing data already.  Doing
extraneous wakeups will only cause potential thundering herd problems.

However, it turns out that some Android libraries have misused the EPOLL
interface, and expected "edge triggered" be to "any new write will
trigger it".  Even if there was no edge in sight.

Quoting Sandeep Patil:
 "The commit 1b6b26ae70 ('pipe: fix and clarify pipe write wakeup
  logic') changed pipe write logic to wakeup readers only if the pipe
  was empty at the time of write. However, there are libraries that
  relied upon the older behavior for notification scheme similar to
  what's described in [1]

  One such library 'realm-core'[2] is used by numerous Android
  applications. The library uses a similar notification mechanism as GNU
  Make but it never drains the pipe until it is full. When Android moved
  to v5.10 kernel, all applications using this library stopped working.

  The library has since been fixed[3] but it will be a while before all
  applications incorporate the updated library"

Our regression rule for the kernel is that if applications break from
new behavior, it's a regression, even if it was because the application
did something patently wrong.  Also note the original report [4] by
Michal Kerrisk about a test for this epoll behavior - but at that point
we didn't know of any actual broken use case.

So add the extraneous wakeup, to approximate the old behavior.

[ I say "approximate", because the exact old behavior was to do a wakeup
  not for each write(), but for each pipe buffer chunk that was filled
  in. The behavior introduced by this change is not that - this is just
  "every write will cause a wakeup, whether necessary or not", which
  seems to be sufficient for the broken library use. ]

It's worth noting that this adds the extraneous wakeup only for the
write side, while the read side still considers the "edge" to be purely
about reading enough from the pipe to allow further writes.

See commit f467a6a664 ("pipe: fix and clarify pipe read wakeup logic")
for the pipe read case, which remains that "only wake up if the pipe was
full, and we read something from it".

Link: https://lore.kernel.org/lkml/CAHk-=wjeG0q1vgzu4iJhW5juPkTsjTYmiqiMUYAebWW+0bam6w@mail.gmail.com/ [1]
Link: https://github.com/realm/realm-core [2]
Link: https://github.com/realm/realm-core/issues/4666 [3]
Link: https://lore.kernel.org/lkml/CAKgNAkjMBGeAwF=2MKK758BhxvW58wYTgYKB2V-gY1PwXxrH+Q@mail.gmail.com/ [4]
Link: https://lore.kernel.org/lkml/20210729222635.2937453-1-sspatil@android.com/
Reported-by: Sandeep Patil <sspatil@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-30 15:42:34 -07:00
Randy Dunlap
3d742d4b6e fs: delete repeated words in comments
Delete duplicate words in fs/*.c.
The doubled words that are being dropped are:
  that, be, the, in, and, for

Link: https://lkml.kernel.org/r/20201224052810.25315-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:26 -08:00
Johannes Berg
f8ad8187c3 fs/pipe: allow sendfile() to pipe again
After commit 36e2c7421f ("fs: don't allow splice read/write
without explicit ops") sendfile() could no longer send data
from a real file to a pipe, breaking for example certain cgit
setups (e.g. when running behind fcgiwrap), because in this
case cgit will try to do exactly this: sendfile() to a pipe.

Fix this by using iter_file_splice_write for the splice_write
method of pipes, as suggested by Christoph.

Cc: stable@vger.kernel.org
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-25 12:32:26 -08:00
Christoph Hellwig
4e7b5671c6 block: remove i_bdev
Switch the block device lookup interfaces to directly work with a dev_t
so that struct block_device references are only acquired by the
blkdev_get variants (and the blk-cgroup special case).  This means that
we now don't need an extra reference in the inode and can generally
simplify handling of struct block_device to keep the lookups contained
in the core block layer code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Coly Li <colyli@suse.de>		[bcache]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-12-01 14:53:39 -07:00
Linus Torvalds
5b697f86f9 Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fix from Al Viro:
 "Fixes an obvious bug (memory leak introduced in 5.8)"

* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  pipe: Fix memory leaks in create_pipe_files()
2020-10-11 11:11:35 -07:00
Linus Torvalds
472e5b056f pipe: remove pipe_wait() and fix wakeup race with splice
The pipe splice code still used the old model of waiting for pipe IO by
using a non-specific "pipe_wait()" that waited for any pipe event to
happen, which depended on all pipe IO being entirely serialized by the
pipe lock.  So by checking the state you were waiting for, and then
adding yourself to the wait queue before dropping the lock, you were
guaranteed to see all the wakeups.

Strictly speaking, the actual wakeups were not done under the lock, but
the pipe_wait() model still worked, because since the waiter held the
lock when checking whether it should sleep, it would always see the
current state, and the wakeup was always done after updating the state.

However, commit 0ddad21d3e ("pipe: use exclusive waits when reading or
writing") split the single wait-queue into two, and in the process also
made the "wait for event" code wait for _two_ wait queues, and that then
showed a race with the wakers that were not serialized by the pipe lock.

It's only splice that used that "pipe_wait()" model, so the problem
wasn't obvious, but Josef Bacik reports:

 "I hit a hang with fstest btrfs/187, which does a btrfs send into
  /dev/null. This works by creating a pipe, the write side is given to
  the kernel to write into, and the read side is handed to a thread that
  splices into a file, in this case /dev/null.

  The box that was hung had the write side stuck here [pipe_write] and
  the read side stuck here [splice_from_pipe_next -> pipe_wait].

  [ more details about pipe_wait() scenario ]

  The problem is we're doing the prepare_to_wait, which sets our state
  each time, however we can be woken up either with reads or writes. In
  the case above we race with the WRITER waking us up, and re-set our
  state to INTERRUPTIBLE, and thus never break out of schedule"

Josef had a patch that avoided the issue in pipe_wait() by just making
it set the state only once, but the deeper problem is that pipe_wait()
depends on a level of synchonization by the pipe mutex that it really
shouldn't.  And the whole "wait for any pipe state change" model really
isn't very good to begin with.

So rather than trying to work around things in pipe_wait(), remove that
legacy model of "wait for arbitrary pipe event" entirely, and actually
create functions that wait for the pipe actually being readable or
writable, and can do so without depending on the pipe lock serializing
everything.

Fixes: 0ddad21d3e ("pipe: use exclusive waits when reading or writing")
Link: https://lore.kernel.org/linux-fsdevel/bfa88b5ad6f069b2b679316b9e495a970130416c.1601567868.git.josef@toxicpanda.com/
Reported-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-01 19:14:36 -07:00
Qian Cai
8a018eb55e pipe: Fix memory leaks in create_pipe_files()
Calling pipe2() with O_NOTIFICATION_PIPE could results in memory
leaks unless watch_queue_init() is successful.

        In case of watch_queue_init() failure in pipe2() we are left
with inode and pipe_inode_info instances that need to be freed.  That
failure exit has been introduced in commit c73be61ced ("pipe: Add
general notification queue support") and its handling should've been
identical to nearby treatment of alloc_file_pseudo() failures - it
is dealing with the same situation.  As it is, the mainline kernel
leaks in that case.

        Another problem is that CONFIG_WATCH_QUEUE and !CONFIG_WATCH_QUEUE
cases are treated differently (and the former leaks just pipe_inode_info,
the latter - both pipe_inode_info and inode).

        Fixed by providing a dummy wacth_queue_init() in !CONFIG_WATCH_QUEUE
case and by having failures of wacth_queue_init() handled the same way
we handle alloc_file_pseudo() ones.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Signed-off-by: Qian Cai <cai@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-10-01 09:40:35 -04:00
Linus Torvalds
6c32978414 Notifications over pipes + Keyring notifications
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7U/i8ACgkQ+7dXa6fL
 C2u2eg/+Oy6ybq0hPovYVkFI9WIG7ZCz7w9Q6BEnfYMqqn3dnfJxKQ3l4pnQEOWw
 f4QfvpvevsYfMtOJkYcG6s66rQgbFdqc5TEyBBy0QNp3acRolN7IXkcopvv9xOpQ
 JxedpbFG1PTFLWjvBpyjlrUPouwLzq2FXAf1Ox0ZIMw6165mYOMWoli1VL8dh0A0
 Ai7JUB0WrvTNbrwhV413obIzXT/rPCdcrgbQcgrrLPex8lQ47ZAE9bq6k4q5HiwK
 KRzEqkQgnzId6cCNTFBfkTWsx89zZunz7jkfM5yx30MvdAtPSxvvpfIPdZRZkXsP
 E2K9Fk1/6OQZTC0Op3Pi/bt+hVG/mD1p0sQUDgo2MO3qlSS+5mMkR8h3mJEgwK12
 72P4YfOJkuAy2z3v4lL0GYdUDAZY6i6G8TMxERKu/a9O3VjTWICDOyBUS6F8YEAK
 C7HlbZxAEOKTVK0BTDTeEUBwSeDrBbvH6MnRlZCG5g1Fos2aWP0udhjiX8IfZLO7
 GN6nWBvK1fYzfsUczdhgnoCzQs3suoDo04HnsTPGJ8De52T4x2RsjV+gPx0nrNAq
 eWChl1JvMWsY2B3GLnl9XQz4NNN+EreKEkk+PULDGllrArrPsp5Vnhb9FJO1PVCU
 hMDJHohPiXnKbc8f4Bd78OhIvnuoGfJPdM5MtNe2flUKy2a2ops=
 =YTGf
 -----END PGP SIGNATURE-----

Merge tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull notification queue from David Howells:
 "This adds a general notification queue concept and adds an event
  source for keys/keyrings, such as linking and unlinking keys and
  changing their attributes.

  Thanks to Debarshi Ray, we do have a pull request to use this to fix a
  problem with gnome-online-accounts - as mentioned last time:

     https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47

  Without this, g-o-a has to constantly poll a keyring-based kerberos
  cache to find out if kinit has changed anything.

  [ There are other notification pending: mount/sb fsinfo notifications
    for libmount that Karel Zak and Ian Kent have been working on, and
    Christian Brauner would like to use them in lxc, but let's see how
    this one works first ]

  LSM hooks are included:

   - A set of hooks are provided that allow an LSM to rule on whether or
     not a watch may be set. Each of these hooks takes a different
     "watched object" parameter, so they're not really shareable. The
     LSM should use current's credentials. [Wanted by SELinux & Smack]

   - A hook is provided to allow an LSM to rule on whether or not a
     particular message may be posted to a particular queue. This is
     given the credentials from the event generator (which may be the
     system) and the watch setter. [Wanted by Smack]

  I've provided SELinux and Smack with implementations of some of these
  hooks.

  WHY
  ===

  Key/keyring notifications are desirable because if you have your
  kerberos tickets in a file/directory, your Gnome desktop will monitor
  that using something like fanotify and tell you if your credentials
  cache changes.

  However, we also have the ability to cache your kerberos tickets in
  the session, user or persistent keyring so that it isn't left around
  on disk across a reboot or logout. Keyrings, however, cannot currently
  be monitored asynchronously, so the desktop has to poll for it - not
  so good on a laptop. This facility will allow the desktop to avoid the
  need to poll.

  DESIGN DECISIONS
  ================

   - The notification queue is built on top of a standard pipe. Messages
     are effectively spliced in. The pipe is opened with a special flag:

        pipe2(fds, O_NOTIFICATION_PIPE);

     The special flag has the same value as O_EXCL (which doesn't seem
     like it will ever be applicable in this context)[?]. It is given up
     front to make it a lot easier to prohibit splice&co from accessing
     the pipe.

     [?] Should this be done some other way?  I'd rather not use up a new
         O_* flag if I can avoid it - should I add a pipe3() system call
         instead?

     The pipe is then configured::

        ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);
        ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);

     Messages are then read out of the pipe using read().

   - It should be possible to allow write() to insert data into the
     notification pipes too, but this is currently disabled as the
     kernel has to be able to insert messages into the pipe *without*
     holding pipe->mutex and the code to make this work needs careful
     auditing.

   - sendfile(), splice() and vmsplice() are disabled on notification
     pipes because of the pipe->mutex issue and also because they
     sometimes want to revert what they just did - but one or more
     notification messages might've been interleaved in the ring.

   - The kernel inserts messages with the wait queue spinlock held. This
     means that pipe_read() and pipe_write() have to take the spinlock
     to update the queue pointers.

   - Records in the buffer are binary, typed and have a length so that
     they can be of varying size.

     This allows multiple heterogeneous sources to share a common
     buffer; there are 16 million types available, of which I've used
     just a few, so there is scope for others to be used. Tags may be
     specified when a watchpoint is created to help distinguish the
     sources.

   - Records are filterable as types have up to 256 subtypes that can be
     individually filtered. Other filtration is also available.

   - Notification pipes don't interfere with each other; each may be
     bound to a different set of watches. Any particular notification
     will be copied to all the queues that are currently watching for it
     - and only those that are watching for it.

   - When recording a notification, the kernel will not sleep, but will
     rather mark a queue as having lost a message if there's
     insufficient space. read() will fabricate a loss notification
     message at an appropriate point later.

   - The notification pipe is created and then watchpoints are attached
     to it, using one of:

        keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);
        watch_mount(AT_FDCWD, "/", 0, fd, 0x02);
        watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03);

     where in both cases, fd indicates the queue and the number after is
     a tag between 0 and 255.

   - Watches are removed if either the notification pipe is destroyed or
     the watched object is destroyed. In the latter case, a message will
     be generated indicating the enforced watch removal.

  Things I want to avoid:

   - Introducing features that make the core VFS dependent on the
     network stack or networking namespaces (ie. usage of netlink).

   - Dumping all this stuff into dmesg and having a daemon that sits
     there parsing the output and distributing it as this then puts the
     responsibility for security into userspace and makes handling
     namespaces tricky. Further, dmesg might not exist or might be
     inaccessible inside a container.

   - Letting users see events they shouldn't be able to see.

  TESTING AND MANPAGES
  ====================

   - The keyutils tree has a pipe-watch branch that has keyctl commands
     for making use of notifications. Proposed manual pages can also be
     found on this branch, though a couple of them really need to go to
     the main manpages repository instead.

     If the kernel supports the watching of keys, then running "make
     test" on that branch will cause the testing infrastructure to spawn
     a monitoring process on the side that monitors a notifications pipe
     for all the key/keyring changes induced by the tests and they'll
     all be checked off to make sure they happened.

        https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch

   - A test program is provided (samples/watch_queue/watch_test) that
     can be used to monitor for keyrings, mount and superblock events.
     Information on the notifications is simply logged to stdout"

* tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  smack: Implement the watch_key and post_notification hooks
  selinux: Implement the watch_key security hook
  keys: Make the KEY_NEED_* perms an enum rather than a mask
  pipe: Add notification lossage handling
  pipe: Allow buffers to be marked read-whole-or-error for notifications
  Add sample notification program
  watch_queue: Add a key/keyring notification facility
  security: Add hooks to rule on setting a watch
  pipe: Add general notification queue support
  pipe: Add O_NOTIFICATION_PIPE
  security: Add a hook for the point of notification insertion
  uapi: General notification queue definitions
2020-06-13 09:56:21 -07:00
Christoph Hellwig
c928f642c2 fs: rename pipe_buf ->steal to ->try_steal
And replace the arcane return value convention with a simple bool
where true means success and false means failure.

[AV: braino fix folded in]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-05-20 12:14:10 -04:00
Christoph Hellwig
b8d9e7f241 fs: make the pipe_buf_operations ->confirm operation optional
Just return 0 for success if it is not present.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-05-20 12:11:26 -04:00
Christoph Hellwig
f6dd975583 pipe: merge anon_pipe_buf*_ops
All the op vectors are exactly the same, they are just used to encode
packet or nomerge behavior.  There already is a flag for the packet
behavior, so just add a new one to allow for merging.  Inverting it vs
the previous nomerge special casing actually allows for much nicer code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-05-20 12:11:26 -04:00
David Howells
e7d553d69c pipe: Add notification lossage handling
Add handling for loss of notifications by having read() insert a
loss-notification message after it has read the pipe buffer that was last
in the ring when the loss occurred.

Lossage can come about either by running out of notification descriptors or
by running out of space in the pipe ring.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:40:28 +01:00
David Howells
8cfba76383 pipe: Allow buffers to be marked read-whole-or-error for notifications
Allow a buffer to be marked such that read() must return the entire buffer
in one go or return ENOBUFS.  Multiple buffers can be amalgamated into a
single read, but a short read will occur if the next "whole" buffer won't
fit.

This is useful for watch queue notifications to make sure we don't split a
notification across multiple reads, especially given that we need to
fabricate an overrun record under some circumstances - and that isn't in
the buffers.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:38:18 +01:00
David Howells
c73be61ced pipe: Add general notification queue support
Make it possible to have a general notification queue built on top of a
standard pipe.  Notifications are 'spliced' into the pipe and then read
out.  splice(), vmsplice() and sendfile() are forbidden on pipes used for
notifications as post_one_notification() cannot take pipe->mutex.  This
means that notifications could be posted in between individual pipe
buffers, making iov_iter_revert() difficult to effect.

The way the notification queue is used is:

 (1) An application opens a pipe with a special flag and indicates the
     number of messages it wishes to be able to queue at once (this can
     only be set once):

	pipe2(fds, O_NOTIFICATION_PIPE);
	ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);

 (2) The application then uses poll() and read() as normal to extract data
     from the pipe.  read() will return multiple notifications if the
     buffer is big enough, but it will not split a notification across
     buffers - rather it will return a short read or EMSGSIZE.

     Notification messages include a length in the header so that the
     caller can split them up.

Each message has a header that describes it:

	struct watch_notification {
		__u32	type:24;
		__u32	subtype:8;
		__u32	info;
	};

The type indicates the source (eg. mount tree changes, superblock events,
keyring changes, block layer events) and the subtype indicates the event
type (eg. mount, unmount; EIO, EDQUOT; link, unlink).  The info field
indicates a number of things, including the entry length, an ID assigned to
a watchpoint contributing to this buffer and type-specific flags.

Supplementary data, such as the key ID that generated an event, can be
attached in additional slots.  The maximum message size is 127 bytes.
Messages may not be padded or aligned, so there is no guarantee, for
example, that the notification type will be on a 4-byte bounary.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:08:24 +01:00
Roman Gushchin
f4b00eab50 mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page()
to better reflect what they are actually doing:

1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge
   the current memcg

2) set or clear the PageKmemcg flag

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Linus Torvalds
6551d5c56e pipe: make sure to wake up everybody when the last reader/writer closes
Andrei Vagin reported that commit 0ddad21d3e ("pipe: use exclusive
waits when reading or writing") broke one of the CRIU tests.  He even
has a trivial reproducer:

    #include <unistd.h>
    #include <sys/types.h>
    #include <sys/wait.h>

    int main()
    {
            int p[2];
            pid_t p1, p2;
            int status;

            if (pipe(p) == -1)
                    return 1;

            p1 = fork();
            if (p1 == 0) {
                    close(p[1]);
                    read(p[0], &status, sizeof(status));
                    return 0;
            }
            p2 = fork();
            if (p2 == 0) {
                    close(p[1]);
                    read(p[0], &status, sizeof(status));
                    return 0;
            }
            sleep(1);
            close(p[1]);
            wait(&status);
            wait(&status);

            return 0;
    }

and the problem - once he points it out - is obvious.  We use these nice
exclusive waits, but when the last writer goes away, it then needs to
wake up _every_ reader (and conversely, the last reader disappearing
needs to wake every writer, of course).

In fact, when going through this, we had several small oddities around
how to wake things.  We did in fact wake every reader when we changed
the size of the pipe buffers.  But that's entirely pointless, since that
just acts as a possible source of new space - no new data to read.

And when we change the size of the buffer, we don't need to wake all
writers even when we add space - that case acts just as if somebody made
space by reading, and any writer that finds itself not filling it up
entirely will wake the next one.

On the other hand, on the exit path, we tried to limit the wakeups with
the proper poll keys etc, which is entirely pointless, because at that
point we obviously need to wake up everybody.  So don't do that: just
wake up everybody - but only do that if the counts changed to zero.

So fix those non-IO wakeups to be more proper: space change doesn't add
any new data, but it might make room for writers, so it wakes up a
writer.  And the actual changes to reader/writer counts should wake up
everybody, since everybody is affected (ie readers will all see EOF if
the writers have gone away, and writers will all get EPIPE if all
readers have gone away).

Fixes: 0ddad21d3e ("pipe: use exclusive waits when reading or writing")
Reported-and-tested-by: Andrei Vagin <avagin@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-18 14:34:36 -08:00
Linus Torvalds
0ddad21d3e pipe: use exclusive waits when reading or writing
This makes the pipe code use separate wait-queues and exclusive waiting
for readers and writers, avoiding a nasty thundering herd problem when
there are lots of readers waiting for data on a pipe (or, less commonly,
lots of writers waiting for a pipe to have space).

While this isn't a common occurrence in the traditional "use a pipe as a
data transport" case, where you typically only have a single reader and
a single writer process, there is one common special case: using a pipe
as a source of "locking tokens" rather than for data communication.

In particular, the GNU make jobserver code ends up using a pipe as a way
to limit parallelism, where each job consumes a token by reading a byte
from the jobserver pipe, and releases the token by writing a byte back
to the pipe.

This pattern is fairly traditional on Unix, and works very well, but
will waste a lot of time waking up a lot of processes when only a single
reader needs to be woken up when a writer releases a new token.

A simplified test-case of just this pipe interaction is to create 64
processes, and then pass a single token around between them (this
test-case also intentionally passes another token that gets ignored to
test the "wake up next" logic too, in case anybody wonders about it):

    #include <unistd.h>

    int main(int argc, char **argv)
    {
        int fd[2], counters[2];

        pipe(fd);
        counters[0] = 0;
        counters[1] = -1;
        write(fd[1], counters, sizeof(counters));

        /* 64 processes */
        fork(); fork(); fork(); fork(); fork(); fork();

        do {
                int i;
                read(fd[0], &i, sizeof(i));
                if (i < 0)
                        continue;
                counters[0] = i+1;
                write(fd[1], counters, (1+(i & 1)) *sizeof(int));
        } while (counters[0] < 1000000);
        return 0;
    }

and in a perfect world, passing that token around should only cause one
context switch per transfer, when the writer of a token causes a
directed wakeup of just a single reader.

But with the "writer wakes all readers" model we traditionally had, on
my test box the above case causes more than an order of magnitude more
scheduling: instead of the expected ~1M context switches, "perf stat"
shows

        231,852.37 msec task-clock                #   15.857 CPUs utilized
        11,250,961      context-switches          #    0.049 M/sec
           616,304      cpu-migrations            #    0.003 M/sec
             1,648      page-faults               #    0.007 K/sec
 1,097,903,998,514      cycles                    #    4.735 GHz
   120,781,778,352      instructions              #    0.11  insn per cycle
    27,997,056,043      branches                  #  120.754 M/sec
       283,581,233      branch-misses             #    1.01% of all branches

      14.621273891 seconds time elapsed

       0.018243000 seconds user
       3.611468000 seconds sys

before this commit.

After this commit, I get

          5,229.55 msec task-clock                #    3.072 CPUs utilized
         1,212,233      context-switches          #    0.232 M/sec
           103,951      cpu-migrations            #    0.020 M/sec
             1,328      page-faults               #    0.254 K/sec
    21,307,456,166      cycles                    #    4.074 GHz
    12,947,819,999      instructions              #    0.61  insn per cycle
     2,881,985,678      branches                  #  551.096 M/sec
        64,267,015      branch-misses             #    2.23% of all branches

       1.702148350 seconds time elapsed

       0.004868000 seconds user
       0.110786000 seconds sys

instead. Much better.

[ Note! This kernel improvement seems to be very good at triggering a
  race condition in the make jobserver (in GNU make 4.2.1) for me. It's
  a long known bug that was fixed back in June 2017 by GNU make commit
  b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to
  avoid hangs.").

  But there wasn't a new release of GNU make until 4.3 on Jan 19 2020,
  so a number of distributions may still have the buggy version. Some
  have backported the fix to their 4.2.1 release, though, and even
  without the fix it's quite timing-dependent whether the bug actually
  is hit. ]

Josh Triplett says:
 "I've been hammering on your pipe fix patch (switching to exclusive
  wait queues) for a month or so, on several different systems, and I've
  run into no issues with it. The patch *substantially* improves
  parallel build times on large (~100 CPU) systems, both with parallel
  make and with other things that use make's pipe-based jobserver.

  All current distributions (including stable and long-term stable
  distributions) have versions of GNU make that no longer have the
  jobserver bug"

Tested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-08 11:39:19 -08:00
Jan Stancek
0dd1e3773a pipe: fix empty pipe check in pipe_write()
LTP pipeio_1 test is hanging with v5.5-rc2-385-gb8e382a185eb,
with read side observing empty pipe and sleeping and write
side running out of space and then sleeping as well. In this
scenario there are 5 writers and 1 reader.

Problem is that after pipe_write() reacquires pipe lock, it
re-checks for empty pipe with potentially stale 'head' and
doesn't wake up read side anymore. pipe->tail can advance
beyond 'head', because there are multiple writers.

Use pipe->head for empty pipe check after reacquiring lock
to observe current state.

Testing: With patch, LTP pipeio_1 ran successfully in loop for 1 hour.
         Without patch it hanged within a minute.

Fixes: 1b6b26ae70 ("pipe: fix and clarify pipe write wakeup logic")
Reported-by: Rachel Sibley <rasibley@redhat.com>
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-22 09:47:47 -08:00
Linus Torvalds
d1c6a2aa02 pipe: simplify signal handling in pipe_read() and add comments
There's no need to separately check for signals while inside the locked
region, since we're going to do "wait_event_interruptible()" right
afterwards anyway, and the error handling is much simpler there.

The check for whether we had already read anything was also redundant,
since we no longer do the odd merging of reads when there are pending
writers.

But perhaps more importantly, this adds commentary about why we still
need to wake up possible writers even though we didn't read any data,
and why we can skip all the finishing touches now if we get a signal (or
had a signal pending) while waiting for more data.

[ This is a split-out cleanup from my "make pipe IO use exclusive wait
  queues" thing, which I can't apply because it triggers a nasty bug in
  the GNU make jobserver   - Linus ]

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-11 11:46:19 -08:00
Linus Torvalds
85190d15f4 pipe: don't use 'pipe_wait() for basic pipe IO
pipe_wait() may be simple, but since it relies on the pipe lock, it
means that we have to do the wakeup while holding the lock.  That's
unfortunate, because the very first thing the waked entity will want to
do is to get the pipe lock for itself.

So get rid of the pipe_wait() usage by simply releasing the pipe lock,
doing the wakeup (if required) and then using wait_event_interruptible()
to wait on the right condition instead.

wait_event_interruptible() handles races on its own by comparing the
wakeup condition before and after adding itself to the wait queue, so
you can use an optimistic unlocked condition for it.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 13:53:09 -08:00
Linus Torvalds
a28c8b9db8 pipe: remove 'waiting_writers' merging logic
This code is ancient, and goes back to when we only had a single page
for the pipe buffers.  The exact history is hidden in the mists of time
(ie "before git", and in fact predates the BK repository too).

At that long-ago point in time, it actually helped to try to merge big
back-and-forth pipe reads and writes, and not limit pipe reads to the
single pipe buffer in length just because that was all we had at a time.

However, since then we've expanded the pipe buffers to multiple pages,
and this logic really doesn't seem to make sense.  And a lot of it is
somewhat questionable (ie "hmm, the user asked for a non-blocking read,
but we see that there's a writer pending, so let's wait anyway to get
the extra data that the writer will have").

But more importantly, it makes the "go to sleep" logic much less
obvious, and considering the wakeup issues we've had, I want to make for
less of those kinds of things.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 13:21:01 -08:00
Linus Torvalds
f467a6a664 pipe: fix and clarify pipe read wakeup logic
This is the read side version of the previous commit: it simplifies the
logic to only wake up waiting writers when necessary, and makes sure to
use a synchronous wakeup.  This time not so much for GNU make jobserver
reasons (that pipe never fills up), but simply to get the writer going
quickly again.

A bit less verbose commentary this time, if only because I assume that
the write side commentary isn't going to be ignored if you touch this
code.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 12:54:26 -08:00
Linus Torvalds
1b6b26ae70 pipe: fix and clarify pipe write wakeup logic
The pipe rework ends up having been extra painful, partly becaused of
actual bugs with ordering and caching of the pipe state, but also
because of subtle performance issues.

In particular, the pipe rework caused the kernel build to inexplicably
slow down.

The reason turns out to be that the GNU make jobserver (which limits the
parallelism of the build) uses a pipe to implement a "token" system: a
parallel submake will read a character from the pipe to get the job
token before starting a new job, and will write a character back to the
pipe when it is done.  The overall job limit is thus easily controlled
by just writing the appropriate number of initial token characters into
the pipe.

But to work well, that really means that the old behavior of write
wakeups being synchronous (WF_SYNC) is very important - when the pipe
writer wakes up a reader, we want the reader to actually get scheduled
immediately.  Otherwise you lose the parallelism of the build.

The pipe rework lost that synchronous wakeup on write, and we had
clearly all forgotten the reasons and rules for it.

This rewrites the pipe write wakeup logic to do the required Wsync
wakeups, but also clarifies the logic and avoids extraneous wakeups.

It also ends up addign a number of comments about what oit does and why,
so that we hopefully don't end up forgetting about this next time we
change this code.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 12:14:28 -08:00
Linus Torvalds
ad910e36da pipe: fix poll/select race introduced by the pipe rework
The kernel wait queues have a basic rule to them: you add yourself to
the wait-queue first, and then you check the things that you're going to
wait on.  That avoids the races with the event you're waiting for.

The same goes for poll/select logic: the "poll_wait()" goes first, and
then you check the things you're polling for.

Of course, if you use locking, the ordering doesn't matter since the
lock will serialize with anything that changes the state you're looking
at. That's not the case here, though.

So move the poll_wait() first in pipe_poll(), before you start looking
at the pipe state.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 10:41:17 -08:00
Linus Torvalds
da73fcd8cf Merge branch 'pipe-rework' (patches from David Howells)
Merge two fixes for the pipe rework from David Howells:
 "Here are a couple of patches to fix bugs syzbot found in the pipe
  changes:

   - An assertion check will sometimes trip when polling a pipe because
     the ring size and indices used are approximate and may be being
     changed simultaneously.

     An equivalent approximate calculation was done previously, but
     without the assertion check, so I've just dropped the check. To
     make it accurate, the pipe mutex would need to be taken or the spin
     lock could be used - but usage of the spinlock would need to be
     rolled out into splice, iov_iter and other places for that.

   - The index mask and the max_usage values cannot be cached across
     pipe_wait() as F_SETPIPE_SZ could have been called during the wait.
     This can cause pipe_write() to break"

* pipe-rework:
  pipe: Fix missing mask update after pipe_wait()
  pipe: Remove assertion from pipe_poll()
2019-12-05 16:35:53 -08:00
David Howells
8f868d68d3 pipe: Fix missing mask update after pipe_wait()
Fix pipe_write() to not cache the ring index mask and max_usage as their
values are invalidated by calling pipe_wait() because the latter
function drops the pipe lock, thereby allowing F_SETPIPE_SZ change them.
Without this, pipe_write() may subsequently miscalculate the array
indices and pipe fullness, leading to an oops like the following:

  BUG: KASAN: slab-out-of-bounds in pipe_write+0xc25/0xe10 fs/pipe.c:481
  Write of size 8 at addr ffff8880771167a8 by task syz-executor.3/7987
  ...
  CPU: 1 PID: 7987 Comm: syz-executor.3 Not tainted 5.4.0-rc2-syzkaller #0
  ...
  Call Trace:
    pipe_write+0xc25/0xe10 fs/pipe.c:481
    call_write_iter include/linux/fs.h:1895 [inline]
    new_sync_write+0x3fd/0x7e0 fs/read_write.c:483
    __vfs_write+0x94/0x110 fs/read_write.c:496
    vfs_write+0x18a/0x520 fs/read_write.c:558
    ksys_write+0x105/0x220 fs/read_write.c:611
    __do_sys_write fs/read_write.c:623 [inline]
    __se_sys_write fs/read_write.c:620 [inline]
    __x64_sys_write+0x6e/0xb0 fs/read_write.c:620
    do_syscall_64+0xca/0x5d0 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

This is not a problem for pipe_read() as the mask is recalculated on
each pass of the loop, after pipe_wait() has been called.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+838eb0878ffd51f27c41@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Eric Biggers <ebiggers@kernel.org>
[ Changed it to use a temporary variable 'mask' to avoid long lines -Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 15:56:20 -08:00
David Howells
8c7b8c34ae pipe: Remove assertion from pipe_poll()
An assertion check was added to pipe_poll() to make sure that the ring
occupancy isn't seen to overflow the ring size.  However, since no locks
are held when the three values are read, it is possible for F_SETPIPE_SZ
to intervene and muck up the calculation, thereby causing the oops.

Fix this by simply removing the assertion and accepting that the
calculation might be approximate.

Note that the previous code also had a similar issue, though there was
no assertion check, since the occupancy counter and the ring size were
not read with a lock held, so it's possible that the poll check might
have malfunctioned then too.

Also wake up all the waiters so that they can reissue their checks if
there was a competing read or write.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+d37abaade33a934f16f2@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 15:33:50 -08:00
Linus Torvalds
6a965666b7 Pipework for general notification queue
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl3O0OoACgkQ+7dXa6fL
 C2tAwA//VH9Y81azemXFdflDF90sSH3TCASlKHVYHbBNAkH/QP5F00G4BEM4nNqH
 F3x7qcU9vzfGdumF1pc90Yt6XSYlsQEGF+xMyMw/VS2wKs40yv+b/doVbzOWbN9C
 NfrklgHeuuBk+JzU2llDisVqKRTLt4SmDpYu1ZdcchUQFZCCl3BpgdSEC+xXrHay
 +KlRPVNMSd2kXMCDuSWrr71lVNdCTdf3nNC5p1i780+VrgpIBIG/jmiNdCcd7PLH
 1aesPlr8UZY3+bmRtqe587fVRAhT2qA2xibKtyf9R0hrDtUKR4NSnpPmaeIjb26e
 LhVntcChhYxQqzy/T4ScTDNVjpSlwi6QMo5DwAwzNGf2nf/v5/CZ+vGYDVdXRFHj
 tgH1+8eDpHsi7jJp6E4cmZjiolsUx/ePDDTrQ4qbdDMO7fmIV6YQKFAMTLJepLBY
 qnJVqoBq3qn40zv6tVZmKgWiXQ65jEkBItZhEUmcQRBiSbBDPweIdEzx/mwzkX7U
 1gShGdut6YP4GX7BnOhkiQmzucS85mgkUfG43+mBfYXb+4zNTEjhhkqhEduz2SQP
 xnjHxEM+MTGCj3PozIpJxNKzMTEceYY7cAUdNEMDQcHog7OCnIdGBIc7BPnsN8yA
 CPzntwP4mmLfK3weq3PIGC6d9xfc9PpmiR9docxQOvE6sk2Ifeo=
 =FKC7
 -----END PGP SIGNATURE-----

Merge tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull pipe rework from David Howells:
 "This is my set of preparatory patches for building a general
  notification queue on top of pipes. It makes a number of significant
  changes:

   - It removes the nr_exclusive argument from __wake_up_sync_key() as
     this is always 1. This prepares for the next step:

   - Adds wake_up_interruptible_sync_poll_locked() so that poll can be
     woken up from a function that's holding the poll waitqueue
     spinlock.

   - Change the pipe buffer ring to be managed in terms of unbounded
     head and tail indices rather than bounded index and length. This
     means that reading the pipe only needs to modify one index, not
     two.

   - A selection of helper functions are provided to query the state of
     the pipe buffer, plus a couple to apply updates to the pipe
     indices.

   - The pipe ring is allowed to have kernel-reserved slots. This allows
     many notification messages to be spliced in by the kernel without
     allowing userspace to pin too many pages if it writes to the same
     pipe.

   - Advance the head and tail indices inside the pipe waitqueue lock
     and use wake_up_interruptible_sync_poll_locked() to poke poll
     without having to take the lock twice.

   - Rearrange pipe_write() to preallocate the buffer it is going to
     write into and then drop the spinlock. This allows kernel
     notifications to then be added the ring whilst it is filling the
     buffer it allocated. The read side is stalled because the pipe
     mutex is still held.

   - Don't wake up readers on a pipe if there was already data in it
     when we added more.

   - Don't wake up writers on a pipe if the ring wasn't full before we
     removed a buffer"

* tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  pipe: Remove sync on wake_ups
  pipe: Increase the writer-wakeup threshold to reduce context-switch count
  pipe: Check for ring full inside of the spinlock in pipe_write()
  pipe: Remove redundant wakeup from pipe_write()
  pipe: Rearrange sequence in pipe_write() to preallocate slot
  pipe: Conditionalise wakeup in pipe_read()
  pipe: Advance tail pointer inside of wait spinlock in pipe_read()
  pipe: Allow pipes to have kernel-reserved slots
  pipe: Use head and tail pointers for the ring, not cursor and length
  Add wake_up_interruptible_sync_poll_locked()
  Remove the nr_exclusive argument from __wake_up_sync_key()
  pipe: Reduce #inclusion of pipe_fs_i.h
2019-11-30 14:12:13 -08:00
Linus Torvalds
d8e464ecc1 vfs: mark pipes and sockets as stream-like file descriptors
In commit 3975b097e5 ("convert stream-like files -> stream_open, even
if they use noop_llseek") Kirill used a coccinelle script to change
"nonseekable_open()" to "stream_open()", which changed the trivial cases
of stream-like file descriptors to the new model with FMODE_STREAM.

However, the two big cases - sockets and pipes - don't actually have
that trivial pattern at all, and were thus never converted to
FMODE_STREAM even though it makes lots of sense to do so.

That's particularly true when looking forward to the next change:
getting rid of FMODE_ATOMIC_POS entirely, and just using FMODE_STREAM to
decide whether f_pos updates are needed or not.  And if they are, we'll
always do them atomically.

This came up because KCSAN (correctly) noted that the non-locked f_pos
updates are data races: they are clearly benign for the case where we
don't care, but it would be good to just not have that issue exist at
all.

Note that the reason we used FMODE_ATOMIC_POS originally is that only
doing it for the minimal required case is "safer" in that it's possible
that the f_pos locking can cause unnecessary serialization across the
whole write() call.  And in the worst case, that kind of serialization
can cause deadlock issues: think writers that need readers to empty the
state using the same file descriptor.

[ Note that the locking is per-file descriptor - because it protects
  "f_pos", which is obviously per-file descriptor - so it only affects
  cases where you literally use the same file descriptor to both read
  and write.

  So a regular pipe that has separate reading and writing file
  descriptors doesn't really have this situation even though it's the
  obvious case of "reader empties what a bit writer concurrently fills"

  But we want to make pipes as being stream-line anyway, because we
  don't want the unnecessary overhead of locking, and because a named
  pipe can be (ab-)used by reading and writing to the same file
  descriptor. ]

There are likely a lot of other cases that might want FMODE_STREAM, and
looking for ".llseek = no_llseek" users and other cases that don't have
an lseek file operation at all and making them use "stream_open()" might
be a good idea.  But pipes and sockets are likely to be the two main
cases.

Cc: Kirill Smelkov <kirr@nexedi.com>
Cc: Eic Dumazet <edumazet@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Marco Elver <elver@google.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Paul McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-25 09:12:11 -08:00
David Howells
3c0edea9b2 pipe: Remove sync on wake_ups 2019-11-15 16:22:54 +00:00
David Howells
cefa80ced5 pipe: Increase the writer-wakeup threshold to reduce context-switch count
Increase the threshold at which the reader sends a wake event to the
writers in the queue such that the queue must be half empty before the wake
is issued rather than the wake being issued when just a single slot
available.

This reduces the number of context switches in the tests significantly,
without altering the amount of work achieved.  With my pipe-bench program,
there's a 20% reduction versus an unpatched kernel.

Suggested-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
8df441294d pipe: Check for ring full inside of the spinlock in pipe_write()
Make pipe_write() check to see if the ring has become full between it
taking the pipe mutex, checking the ring status and then taking the
spinlock.

This can happen if a notification is written into the pipe as that happens
without the pipe mutex.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
7e25a73f1a pipe: Remove redundant wakeup from pipe_write()
Remove a redundant wakeup from pipe_write().

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
a194dfe6e6 pipe: Rearrange sequence in pipe_write() to preallocate slot
Rearrange the sequence in pipe_write() so that the allocation of the new
buffer, the allocation of a ring slot and the attachment to the ring is
done under the pipe wait spinlock and then the lock is dropped and the
buffer can be filled.

The data copy needs to be done with the spinlock unheld and irqs enabled,
so the lock needs to be dropped first.  However, the reader can't progress
as we're holding pipe->mutex.

We also need to drop the lock as that would impact others looking at the
pipe waitqueue, such as poll(), the consumer and a future kernel message
writer.

We just abandon the preallocated slot if we get a copy error.  Future
writes may continue it and a future read will eventually recycle it.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
8446487feb pipe: Conditionalise wakeup in pipe_read()
Only do a wakeup in pipe_read() if we made space in a completely full
buffer.  The producer shouldn't be waiting on pipe->wait otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
b667b86734 pipe: Advance tail pointer inside of wait spinlock in pipe_read()
Advance the pipe ring tail pointer inside of wait spinlock in pipe_read()
so that the pipe can be written into with kernel notifications from
contexts where pipe->mutex cannot be taken.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00