Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vmalloc_to_page() was using pte_offset_map() (followed by pte_unmap()),
but it's intended for userspace page tables: prefer pte_offset_kernel().
Link: https://lkml.kernel.org/r/696386a-84f8-b33c-82e5-f865ed6eb39@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It would be better to replace the traditional ternary conditional
operator with min() in zero_iter
Link: https://lkml.kernel.org/r/20230609093057.27777-1-luhongfei@vivo.com
Signed-off-by: Lu Hongfei <luhongfei@vivo.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In __vmalloc_area_node() we always warn_alloc() when an allocation
performed by vm_area_alloc_pages() fails unless it was due to a pending
fatal signal.
However, huge page allocations instigated either by vmalloc_huge() or
__vmalloc_node_range() (or a caller that invokes this like kvmalloc() or
kvmalloc_node()) always falls back to order-0 allocations if the huge page
allocation fails.
This renders the warning useless and noisy, especially as all callers
appear to be aware that this may fallback. This has already resulted in
at least one bug report from a user who was confused by this (see link).
Therefore, simply update the code to only output this warning for order-0
pages when no fatal signal is pending.
Link: https://bugzilla.suse.com/show_bug.cgi?id=1211410
Link: https://lkml.kernel.org/r/20230605201107.83298-1-lstoakes@gmail.com
Fixes: 80b1d8fdfa ("mm: vmalloc: correct use of __GFP_NOWARN mask in __vmalloc_area_node()")
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Fixes for pte encapsulation bypasses", v3.
A series to improve the encapsulation of pte entries by disallowing
non-arch code from directly dereferencing pte_t pointers.
This patch (of 4):
It is bad practice to directly set pte entries within a pte table.
Instead all modifications must go through arch-provided helpers such as
set_pte_at() to give the arch code visibility and allow it to check (and
potentially modify) the operation.
Link: https://lkml.kernel.org/r/20230602092949.545577-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20230602092949.545577-2-ryan.roberts@arm.com
Fixes: 3e9a9e256b ("mm: add a vmap_pfn function")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Purging fragmented blocks is done unconditionally in several contexts:
1) From drain_vmap_area_work(), when the number of lazy to be freed
vmap_areas reached the threshold
2) Reclaiming vmalloc address space from pcpu_get_vm_areas()
3) _vm_unmap_aliases()
#1 There is no reason to zap fragmented vmap blocks unconditionally, simply
because reclaiming all lazy areas drains at least
32MB * fls(num_online_cpus())
per invocation which is plenty.
#2 Reclaiming when running out of space or due to memory pressure makes a
lot of sense
#3 _unmap_aliases() requires to touch everything because the caller has no
clue which vmap_area used a particular page last and the vmap_area lost
that information too.
Except for the vfree + VM_FLUSH_RESET_PERMS case, which removes the
vmap area first and then cares about the flush. That in turn requires
a full walk of _all_ vmap areas including the one which was just
added to the purge list.
But as this has to be flushed anyway this is an opportunity to combine
outstanding TLB flushes and do the housekeeping of purging freed areas,
but like #1 there is no real good reason to zap usable vmap blocks
unconditionally.
Add a @force_purge argument to the newly split out block purge function and
if not true only purge fragmented blocks which have less than 1/4 of their
capacity left.
Rename purge_vmap_area_lazy() to reclaim_and_purge_vmap_areas() to make it
clear what the function does.
[lstoakes@gmail.com: correct VMAP_PURGE_THRESHOLD check]
Link: https://lkml.kernel.org/r/3e92ef61-b910-4576-88e7-cf43211fd4e7@lucifer.local
Link: https://lkml.kernel.org/r/20230525124504.864005691@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
purge_fragmented_blocks() accesses vmap_block::free and vmap_block::dirty
lockless for a quick check.
Add the missing READ/WRITE_ONCE() annotations.
Link: https://lkml.kernel.org/r/20230525124504.807356682@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vb_alloc() unconditionally locks a vmap_block on the free list to check
the free space.
This can be done locklessly because vmap_block::free never increases, it's
only decreased on allocations.
Check the free space lockless and only if that succeeds, recheck under the
lock.
Link: https://lkml.kernel.org/r/20230525124504.750481992@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vmap blocks which have active mappings cannot be purged. Allocations
which have been freed are accounted for in vmap_block::dirty_min/max, so
that they can be detected in _vm_unmap_aliases() as potentially stale
TLBs.
If there are several invocations of _vm_unmap_aliases() then each of them
will flush the dirty range. That's pointless and just increases the
probability of full TLB flushes.
Avoid that by resetting the flush range after accounting for it. That's
safe versus other invocations of _vm_unmap_aliases() because this is all
serialized with vmap_purge_lock.
Link: https://lkml.kernel.org/r/20230525124504.692056496@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
_vunmap_aliases() walks the per CPU xarrays to find partially unmapped
blocks and then walks the per cpu free lists to purge fragmented blocks.
Arguably that's waste of CPU cycles and cache lines as the full xarray
walk already touches every block.
Avoid this double iteration:
- Split out the code to purge one block and the code to free the local
purge list into helper functions.
- Try to purge the fragmented blocks in the xarray walk before looking at
their dirty space.
Link: https://lkml.kernel.org/r/20230525124504.633469722@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/vmalloc: Assorted fixes and improvements", v2.
this series addresses the following issues:
1) Prevent the stale TLB problem related to fully utilized vmap blocks
2) Avoid the double per CPU list walk in _vm_unmap_aliases()
3) Avoid flushing dirty space over and over
4) Add a lockless quickcheck in vb_alloc() and add missing
READ/WRITE_ONCE() annotations
5) Prevent overeager purging of usable vmap_blocks if
not under memory/address space pressure.
This patch (of 6):
_vm_unmap_aliases() is used to ensure that no unflushed TLB entries for a
page are left in the system. This is required due to the lazy TLB flush
mechanism in vmalloc.
This is tried to achieve by walking the per CPU free lists, but those do
not contain fully utilized vmap blocks because they are removed from the
free list once the blocks free space became zero.
When the block is not fully unmapped then it is not on the purge list
either.
So neither the per CPU list iteration nor the purge list walk find the
block and if the page was mapped via such a block and the TLB has not yet
been flushed, the guarantee of _vm_unmap_aliases() that there are no stale
TLBs after returning is broken:
x = vb_alloc() // Removes vmap_block from free list because vb->free became 0
vb_free(x) // Unmaps page and marks in dirty_min/max range
// Block has still mappings and is not put on purge list
// Page is reused
vm_unmap_aliases() // Can't find vmap block with the dirty space -> FAIL
So instead of walking the per CPU free lists, walk the per CPU xarrays
which hold pointers to _all_ active blocks in the system including those
removed from the free lists.
Link: https://lkml.kernel.org/r/20230525122342.109672430@linutronix.de
Link: https://lkml.kernel.org/r/20230525124504.573987880@linutronix.de
Fixes: db64fe0225 ("mm: rewrite vmap layer")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Short the name of the addr_to_vb_xarray() function to the addr_to_vb_xa().
This aligns with other internal function abbreviations.
Link: https://lkml.kernel.org/r/20230331073727.6968-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Suggested-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A global vmap_blocks-xarray array can be contented under heavy usage of
the vm_map_ram()/vm_unmap_ram() APIs. The lock_stat shows that a
"vmap_blocks.xa_lock" lock is a second in a top-list when it comes to
contentions:
<snip>
----------------------------------------
class name con-bounces contentions ...
----------------------------------------
vmap_area_lock: 2554079 2554276 ...
--------------
vmap_area_lock 1297948 [<00000000dd41cbaa>] alloc_vmap_area+0x1c7/0x910
vmap_area_lock 1256330 [<000000009d927bf3>] free_vmap_block+0x4a/0xe0
vmap_area_lock 1 [<00000000c95c05a7>] find_vm_area+0x16/0x70
--------------
vmap_area_lock 1738590 [<00000000dd41cbaa>] alloc_vmap_area+0x1c7/0x910
vmap_area_lock 815688 [<000000009d927bf3>] free_vmap_block+0x4a/0xe0
vmap_area_lock 1 [<00000000c1d619d7>] __get_vm_area_node+0xd2/0x170
vmap_blocks.xa_lock: 862689 862698 ...
-------------------
vmap_blocks.xa_lock 378418 [<00000000625a5626>] vm_map_ram+0x359/0x4a0
vmap_blocks.xa_lock 484280 [<00000000caa2ef03>] xa_erase+0xe/0x30
-------------------
vmap_blocks.xa_lock 576226 [<00000000caa2ef03>] xa_erase+0xe/0x30
vmap_blocks.xa_lock 286472 [<00000000625a5626>] vm_map_ram+0x359/0x4a0
...
<snip>
that is a result of running vm_map_ram()/vm_unmap_ram() in
a loop. The test creates 64(on 64 CPUs system) threads and
each one maps/unmaps 1 page.
After this change the "xa_lock" can be considered as a noise
in the same test condition:
<snip>
...
&xa->xa_lock#1: 10333 10394 ...
--------------
&xa->xa_lock#1 5349 [<00000000bbbc9751>] xa_erase+0xe/0x30
&xa->xa_lock#1 5045 [<0000000018def45d>] vm_map_ram+0x3a4/0x4f0
--------------
&xa->xa_lock#1 7326 [<0000000018def45d>] vm_map_ram+0x3a4/0x4f0
&xa->xa_lock#1 3068 [<00000000bbbc9751>] xa_erase+0xe/0x30
...
<snip>
Running the test_vmalloc.sh run_test_mask=1024 nr_threads=64 nr_pages=5
shows around ~8 percent of throughput improvement of vm_map_ram() and
vm_unmap_ram() APIs.
This patch does not fix vmap_area_lock/free_vmap_area_lock and
purge_vmap_area_lock bottle-necks, it is rather a separate rework.
Link: https://lkml.kernel.org/r/20230330190639.431589-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similarly to kmsan_vmap_pages_range_noflush(), kmsan_ioremap_page_range()
must also properly handle allocation/mapping failures. In the case of
such, it must clean up the already created metadata mappings and return an
error code, so that the error can be propagated to ioremap_page_range().
Without doing so, KMSAN may silently fail to bring the metadata for the
page range into a consistent state, which will result in user-visible
crashes when trying to access them.
Link: https://lkml.kernel.org/r/20230413131223.4135168-2-glider@google.com
Fixes: b073d7f8ae ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As reported by Dipanjan Das, when KMSAN is used together with kernel fault
injection (or, generally, even without the latter), calls to kcalloc() or
__vmap_pages_range_noflush() may fail, leaving the metadata mappings for
the virtual mapping in an inconsistent state. When these metadata
mappings are accessed later, the kernel crashes.
To address the problem, we return a non-zero error code from
kmsan_vmap_pages_range_noflush() in the case of any allocation/mapping
failure inside it, and make vmap_pages_range_noflush() return an error if
KMSAN fails to allocate the metadata.
This patch also removes KMSAN_WARN_ON() from vmap_pages_range_noflush(),
as these allocation failures are not fatal anymore.
Link: https://lkml.kernel.org/r/20230413131223.4135168-1-glider@google.com
Fixes: b073d7f8ae ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Having previously laid the foundation for converting vread() to an
iterator function, pull the trigger and do so.
This patch attempts to provide minimal refactoring and to reflect the
existing logic as best we can, for example we continue to zero portions of
memory not read, as before.
Overall, there should be no functional difference other than a performance
improvement in /proc/kcore access to vmalloc regions.
Now we have eliminated the need for a bounce buffer in read_kcore_iter(),
we dispense with it, and try to write to user memory optimistically but
with faults disabled via copy_page_to_iter_nofault(). We already have
preemption disabled by holding a spin lock. We continue faulting in until
the operation is complete.
Additionally, we must account for the fact that at any point a copy may
fail (most likely due to a fault not being able to occur), we exit
indicating fewer bytes retrieved than expected.
[sfr@canb.auug.org.au: fix sparc64 warning]
Link: https://lkml.kernel.org/r/20230320144721.663280c3@canb.auug.org.au
[lstoakes@gmail.com: redo Stephen's sparc build fix]
Link: https://lkml.kernel.org/r/8506cbc667c39205e65a323f750ff9c11a463798.1679566220.git.lstoakes@gmail.com
[akpm@linux-foundation.org: unbreak uio.h includes]
Link: https://lkml.kernel.org/r/941f88bc5ab928e6656e1e2593b91bf0f8c81e1b.1679511146.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Code inspection reveals that PG_skip_kasan_poison is redundant with
kasantag, because the former is intended to be set iff the latter is the
match-all tag. It can also be observed that it's basically pointless to
poison pages which have kasantag=0, because any pages with this tag would
have been pointed to by pointers with match-all tags, so poisoning the
pages would have little to no effect in terms of bug detection.
Therefore, change the condition in should_skip_kasan_poison() to check
kasantag instead, and remove PG_skip_kasan_poison and associated flags.
Link: https://lkml.kernel.org/r/20230310042914.3805818-3-pcc@google.com
Link: https://linux-review.googlesource.com/id/I57f825f2eaeaf7e8389d6cf4597c8a5821359838
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Gao Xiang has reported that the page allocator complains about high order
__GFP_NOFAIL request coming from the vmalloc core:
__alloc_pages+0x1cb/0x5b0 mm/page_alloc.c:5549
alloc_pages+0x1aa/0x270 mm/mempolicy.c:2286
vm_area_alloc_pages mm/vmalloc.c:2989 [inline]
__vmalloc_area_node mm/vmalloc.c:3057 [inline]
__vmalloc_node_range+0x978/0x13c0 mm/vmalloc.c:3227
kvmalloc_node+0x156/0x1a0 mm/util.c:606
kvmalloc include/linux/slab.h:737 [inline]
kvmalloc_array include/linux/slab.h:755 [inline]
kvcalloc include/linux/slab.h:760 [inline]
it seems that I have completely missed high order allocation backing
vmalloc areas case when implementing __GFP_NOFAIL support. This means
that [k]vmalloc at al. can allocate higher order allocations with
__GFP_NOFAIL which can trigger OOM killer for non-costly orders easily or
cause a lot of reclaim/compaction activity if those requests cannot be
satisfied.
Fix the issue by falling back to zero order allocations for __GFP_NOFAIL
requests if the high order request fails.
Link: https://lkml.kernel.org/r/ZAXynvdNqcI0f6Us@dhcp22.suse.cz
Fixes: 9376130c39 ("mm/vmalloc: add support for __GFP_NOFAIL")
Reported-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lkml.kernel.org/r/20230305053035.1911-1-hsiangkao@linux.alibaba.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter". These filters provide users
with finer-grained control over DAMOS's actions. SeongJae has also done
some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series "mm:
support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with his
series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings. The previous BPF-based approach had
shortcomings. See "mm: In-kernel support for memory-deny-write-execute
(MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a per-node
basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage during
compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in ths
series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's series
"mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
"fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest of
the kernel in the series "Simplify the external interface for GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the series
"mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
=MlGs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
Provide a function for filling in a scatterlist from the list of pages
contained in an iterator.
If the iterator is UBUF- or IOBUF-type, the pages have a pin taken on them
(as FOLL_PIN).
If the iterator is BVEC-, KVEC- or XARRAY-type, no pin is taken on the
pages and it is left to the caller to manage their lifetime. It cannot be
assumed that a ref can be validly taken, particularly in the case of a KVEC
iterator.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: Steve French <sfrench@samba.org>
cc: Shyam Prasad N <nspmangalore@gmail.com>
cc: Rohith Surabattula <rohiths.msft@gmail.com>
cc: linux-cachefs@redhat.com
cc: linux-cifs@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
For areas allocated via vmalloc_xxx() APIs, it searches for unmapped area
to reserve and allocates new pages to map into, please see function
__vmalloc_node_range(). During the process, flag VM_UNINITIALIZED is set
in vm->flags to indicate that the pages allocation and mapping haven't
been done, until clear_vm_uninitialized_flag() is called to clear
VM_UNINITIALIZED.
For this kind of area, if VM_UNINITIALIZED is still set, let's ignore it
in vread() because pages newly allocated and being mapped in that area
only contains zero data. reading them out by aligned_vread() is wasting
time.
Link: https://lkml.kernel.org/r/20230206084020.174506-6-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now, by marking VMAP_RAM in vmap_area->flags for vm_map_ram area, we can
clearly differentiate it with other vmalloc areas. So identify
vm_map_area area by checking VMAP_RAM of vmap_area->flags when shown in
/proc/vmcoreinfo.
Meanwhile, the code comment above vm_map_ram area checking in s_show() is
not needed any more, remove it here.
Link: https://lkml.kernel.org/r/20230206084020.174506-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Stephen Brennan <stephen.s.brennan@oracle.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, vread can read out vmalloc areas which is associated with a
vm_struct. While this doesn't work for areas created by vm_map_ram()
interface because it doesn't have an associated vm_struct. Then in
vread(), these areas are all skipped.
Here, add a new function vmap_ram_vread() to read out vm_map_ram areas.
The area created with vmap_ram_vread() interface directly can be handled
like the other normal vmap areas with aligned_vread(). While areas which
will be further subdivided and managed with vmap_block need carefully read
out page-aligned small regions and zero fill holes.
Link: https://lkml.kernel.org/r/20230206084020.174506-4-bhe@redhat.com
Reported-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Tested-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Through vmalloc API, a virtual kernel area is reserved for physical
address mapping. And vmap_area is used to track them, while vm_struct is
allocated to associate with the vmap_area to store more information and
passed out.
However, area reserved via vm_map_ram() is an exception. It doesn't have
vm_struct to associate with vmap_area. And we can't recognize the
vmap_area with '->vm == NULL' as a vm_map_ram() area because the normal
freeing path will set va->vm = NULL before unmapping, please see function
remove_vm_area().
Meanwhile, there are two kinds of handling for vm_map_ram area. One is
the whole vmap_area being reserved and mapped at one time through
vm_map_area() interface; the other is the whole vmap_area with
VMAP_BLOCK_SIZE size being reserved, while mapped into split regions with
smaller size via vb_alloc().
To mark the area reserved through vm_map_ram(), add flags field into
struct vmap_area. Bit 0 indicates this is vm_map_ram area created through
vm_map_ram() interface, while bit 1 marks out the type of vm_map_ram area
which makes use of vmap_block to manage split regions via vb_alloc/free().
This is a preparation for later use.
Link: https://lkml.kernel.org/r/20230206084020.174506-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/vmalloc.c: allow vread() to read out vm_map_ram areas", v5.
Problem:
***
Stephen reported vread() will skip vm_map_ram areas when reading out
/proc/kcore with drgn utility. Please see below link to get more details.
/proc/kcore reads 0's for vmap_block
https://lore.kernel.org/all/87ilk6gos2.fsf@oracle.com/T/#u
Root cause:
***
The normal vmalloc API uses struct vmap_area to manage the virtual kernel
area allocated, and associate a vm_struct to store more information and
pass out. However, area reserved through vm_map_ram() interface doesn't
allocate vm_struct to associate with. So the current code in vread() will
skip the vm_map_ram area through 'if (!va->vm)' conditional checking.
Solution:
***
To mark the area reserved through vm_map_ram() interface, add field
'flags' into struct vmap_area. Bit 0 indicates this is vm_map_ram area
created through vm_map_ram() interface, bit 1 marks out the type of
vm_map_ram area which makes use of vmap_block to manage split regions via
vb_alloc/free().
And also add bitmap field 'used_map' into struct vmap_block to mark those
further subdivided regions being used to differentiate with dirty and free
regions in vmap_block.
With the help of above vmap_area->flags and vmap_block->used_map, we can
recognize and handle vm_map_ram areas successfully. All these are done in
patch 1~3.
Meanwhile, do some improvement on areas related to vm_map_ram areas in
patch 4, 5. And also change area flag from VM_ALLOC to VM_IOREMAP in
patch 6, 7 because this will show them as 'ioremap' in /proc/vmallocinfo,
and exclude them from /proc/kcore.
This patch (of 7):
In one vmap_block area, there could be three types of regions: region
being used which is allocated through vb_alloc(), dirty region which is
freed via vb_free() and free region. Among them, only used region has
available data. While there's no way to track those used regions
currently.
Here, add bitmap field used_map into vmap_block, and set/clear it during
allocation or freeing regions of vmap_block area.
This is a preparation for later use.
Link: https://lkml.kernel.org/r/20230206084020.174506-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20230206084020.174506-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Stephen Brennan <stephen.s.brennan@oracle.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As per the coding standards, in the event of an abnormal condition that
should not occur under normal circumstances, the kernel should attempt
recovery and proceed with execution, rather than halting the machine.
Specifically, in the alloc_vmap_area() function, use a simple if()
instead of using BUG_ON() halting the machine.
Link: https://lkml.kernel.org/r/20230201115142.GA7772@min-iamroot
Co-developed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Signed-off-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Co-developed-by: Jeungwoo Yoo <casionwoo@gmail.com>
Signed-off-by: Jeungwoo Yoo <casionwoo@gmail.com>
Co-developed-by: Sangyun Kim <sangyun.kim@snu.ac.kr>
Signed-off-by: Sangyun Kim <sangyun.kim@snu.ac.kr>
Signed-off-by: Hyunmin Lee <hn.min.lee@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.
[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move the VM_FLUSH_RESET_PERMS to the caller and rename the function to
better describe what it is doing.
Link: https://lkml.kernel.org/r/20230121071051.1143058-11-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vunmap only needs to find and free the vmap_area and vm_strut, so open
code that there and merge the rest of the code into vfree.
Link: https://lkml.kernel.org/r/20230121071051.1143058-10-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All these checks apply to the free_vm_area interface as well, so move them
to the common routine.
Link: https://lkml.kernel.org/r/20230121071051.1143058-9-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the common helper to find and remove a vmap_area instead of open
coding it.
Link: https://lkml.kernel.org/r/20230121071051.1143058-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__remove_vm_area is the only part of va_remove_mappings that requires a
vmap_area. Move the call out to the caller and only pass the vm_struct to
va_remove_mappings.
Link: https://lkml.kernel.org/r/20230121071051.1143058-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds an extra, never taken, in_interrupt() branch, but will allow to
cut down the maze of vfree helpers.
Link: https://lkml.kernel.org/r/20230121071051.1143058-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move these two functions around a bit to avoid forward declarations.
Link: https://lkml.kernel.org/r/20230121071051.1143058-5-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Fold __vfree_deferred into vfree_atomic, and call vfree_atomic early on
from vfree if called from interrupt context so that the extra low-level
helper can be avoided.
Link: https://lkml.kernel.org/r/20230121071051.1143058-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__vfree is a subset of vfree that just skips a few checks, and which is
only used by vfree and an error cleanup path. Fold __vfree into vfree and
switch the only other caller to call vfree() instead.
Link: https://lkml.kernel.org/r/20230121071051.1143058-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "cleanup vfree and vunmap".
This little series untangles the vfree and vunmap code path a bit.
This patch (of 10):
VM_FLUSH_RESET_PERMS is just for use with vmalloc as it is tied to freeing
the underlying pages.
Link: https://lkml.kernel.org/r/20230121071051.1143058-1-hch@lst.de
Link: https://lkml.kernel.org/r/20230121071051.1143058-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently a vm_unmap_ram() functions triggers a BUG() if an area is not
found. Replace it by the WARN_ON_ONCE() error message and keep machine
alive instead of stopping it.
The worst case is a memory leaking.
Link: https://lkml.kernel.org/r/20221222190022.134380-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently the __vunmap() path calls __find_vmap_area() twice. Once on
entry to check that the area exists, then inside the remove_vm_area()
function which also performs a new search for the VA.
In order to improvie it from a performance point of view we split
remove_vm_area() into two new parts:
- find_unlink_vmap_area() that does a search and unlink from tree;
- __remove_vm_area() that removes without searching.
In this case there is no any functional change for remove_vm_area()
whereas vm_remove_mappings(), where a second search happens, switches to
the __remove_vm_area() variant where the already detached VA is passed as
a parameter, so there is no need to find it again.
Performance wise, i use test_vmalloc.sh with 32 threads doing alloc
free on a 64-CPUs-x86_64-box:
perf without this patch:
- 31.41% 0.50% vmalloc_test/10 [kernel.vmlinux] [k] __vunmap
- 30.92% __vunmap
- 17.67% _raw_spin_lock
native_queued_spin_lock_slowpath
- 12.33% remove_vm_area
- 11.79% free_vmap_area_noflush
- 11.18% _raw_spin_lock
native_queued_spin_lock_slowpath
0.76% free_unref_page
perf with this patch:
- 11.35% 0.13% vmalloc_test/14 [kernel.vmlinux] [k] __vunmap
- 11.23% __vunmap
- 8.28% find_unlink_vmap_area
- 7.95% _raw_spin_lock
7.44% native_queued_spin_lock_slowpath
- 1.93% free_vmap_area_noflush
- 0.56% _raw_spin_lock
0.53% native_queued_spin_lock_slowpath
0.60% __vunmap_range_noflush
__vunmap() consumes around ~20% less CPU cycles on this test.
Also, switch from find_vmap_area() to find_unlink_vmap_area() to prevent a
double access to the vmap_area_lock: one for finding area, second time is
for unlinking from a tree.
[urezki@gmail.com: switch to find_unlink_vmap_area() in vm_unmap_ram()]
Link: https://lkml.kernel.org/r/20221222190022.134380-2-urezki@gmail.com
Link: https://lkml.kernel.org/r/20221222190022.134380-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reported-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This function sets __GFP_NOWARN in the gfp_mask rendering the warn_alloc()
invocations no-ops. Remove this and instead rely on this flag being set
only for the vm_area_alloc_pages() function, ensuring it is cleared for
each of the warn_alloc() calls.
Link: https://lkml.kernel.org/r/20221219123659.90614-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It is for debug purposes and is called when a vmap area gets freed. This
event gives some indication about:
- a start address of released area;
- a current number of outstanding pages;
- a maximum number of allowed outstanding pages.
Link: https://lkml.kernel.org/r/20221018181053.434508-7-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This is for debug purposes and is called when all outstanding areas are
removed back to the vmap space. It gives some extra information about:
- a start:end range where set of vmap ares were freed;
- a number of purged areas which were backed off.
[urezki@gmail.com: simplify return boolean expression]
Link: https://lkml.kernel.org/r/20221020125247.5053-1-urezki@gmail.com
Link: https://lkml.kernel.org/r/20221018181053.434508-6-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This is for debug purpose and is called when an allocation attempt occurs.
This event gives some information about:
- start address of allocated area;
- size that is requested;
- alignment that is required;
- vstart/vend restriction;
- if an allocation fails.
Link: https://lkml.kernel.org/r/20221018181053.434508-5-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
find_vmap_lowest_match() is now able to handle different roots. With
DEBUG_AUGMENT_LOWEST_MATCH_CHECK enabled as:
: --- a/mm/vmalloc.c
: +++ b/mm/vmalloc.c
: @@ -713,7 +713,7 @@ EXPORT_SYMBOL(vmalloc_to_pfn);
: /*** Global kva allocator ***/
:
: -#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
: +#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1
compilation failed as:
mm/vmalloc.c: In function 'find_vmap_lowest_match_check':
mm/vmalloc.c:1328:32: warning: passing argument 1 of 'find_vmap_lowest_match' makes pointer from integer without a cast [-Wint-conversion]
1328 | va_1 = find_vmap_lowest_match(size, align, vstart, false);
| ^~~~
| |
| long unsigned int
mm/vmalloc.c:1236:40: note: expected 'struct rb_root *' but argument is of type 'long unsigned int'
1236 | find_vmap_lowest_match(struct rb_root *root, unsigned long size,
| ~~~~~~~~~~~~~~~~^~~~
mm/vmalloc.c:1328:9: error: too few arguments to function 'find_vmap_lowest_match'
1328 | va_1 = find_vmap_lowest_match(size, align, vstart, false);
| ^~~~~~~~~~~~~~~~~~~~~~
mm/vmalloc.c:1236:1: note: declared here
1236 | find_vmap_lowest_match(struct rb_root *root, unsigned long size,
| ^~~~~~~~~~~~~~~~~~~~~~
Extend find_vmap_lowest_match_check() and find_vmap_lowest_linear_match()
with extra arguments to fix this.
Link: https://lkml.kernel.org/r/20220906060548.1127396-1-song@kernel.org
Link: https://lkml.kernel.org/r/20220831052734.3423079-1-song@kernel.org
Fixes: f9863be493 ("mm/vmalloc: extend __alloc_vmap_area() with extra arguments")
Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>