Commit Graph

1079 Commits

Author SHA1 Message Date
Gang Li
d5c3eb3f50 hugetlb: split hugetlb_hstate_alloc_pages
1G and 2M huge pages have different allocation and initialization logic,
which leads to subtle differences in parallelization.  Therefore, it is
appropriate to split hugetlb_hstate_alloc_pages into gigantic and
non-gigantic.

This patch has no functional changes.

Link: https://lkml.kernel.org/r/20240222140422.393911-3-gang.li@linux.dev
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:17 -08:00
Gang Li
fc37bbb328 hugetlb: code clean for hugetlb_hstate_alloc_pages
Patch series "hugetlb: parallelize hugetlb page init on boot", v6.

Introduction
------------
Hugetlb initialization during boot takes up a considerable amount of time.
For instance, on a 2TB system, initializing 1,800 1GB huge pages takes
1-2 seconds out of 10 seconds.  Initializing 11,776 1GB pages on a 12TB
Intel host takes more than 1 minute[1].  This is a noteworthy figure.

Inspired by [2] and [3], hugetlb initialization can also be accelerated
through parallelization.  Kernel already has infrastructure like
padata_do_multithreaded, this patch uses it to achieve effective results
by minimal modifications.

[1] https://lore.kernel.org/all/783f8bac-55b8-5b95-eb6a-11a583675000@google.com/
[2] https://lore.kernel.org/all/20200527173608.2885243-1-daniel.m.jordan@oracle.com/
[3] https://lore.kernel.org/all/20230906112605.2286994-1-usama.arif@bytedance.com/
[4] https://lore.kernel.org/all/76becfc1-e609-e3e8-2966-4053143170b6@google.com/

max_threads
-----------
This patch use `padata_do_multithreaded` like this:

```
job.max_threads	= num_node_state(N_MEMORY) * multiplier;
padata_do_multithreaded(&job);
```

To fully utilize the CPU, the number of parallel threads needs to be
carefully considered.  `max_threads = num_node_state(N_MEMORY)` does not
fully utilize the CPU, so we need to multiply it by a multiplier.

Tests below indicate that a multiplier of 2 significantly improves
performance, and although larger values also provide improvements, the
gains are marginal.

  multiplier     1       2       3       4       5
 ------------ ------- ------- ------- ------- -------
  256G 2node   358ms   215ms   157ms   134ms   126ms
  2T   4node   979ms   679ms   543ms   489ms   481ms
  50G  2node   71ms    44ms    37ms    30ms    31ms

Therefore, choosing 2 as the multiplier strikes a good balance between
enhancing parallel processing capabilities and maintaining efficient
resource management.

Test result
-----------
      test case       no patch(ms)   patched(ms)   saved
 ------------------- -------------- ------------- --------
  256c2T(4 node) 1G           4745          2024   57.34%
  128c1T(2 node) 1G           3358          1712   49.02%
     12T         1G          77000         18300   76.23%

  256c2T(4 node) 2M           3336          1051   68.52%
  128c1T(2 node) 2M           1943           716   63.15%


This patch (of 8):

The readability of `hugetlb_hstate_alloc_pages` is poor.  By cleaning the
code, its readability can be improved, facilitating future modifications.

This patch extracts two functions to reduce the complexity of
`hugetlb_hstate_alloc_pages` and has no functional changes.

- hugetlb_hstate_alloc_pages_node_specific() to handle iterates through
  each online node and performs allocation if necessary.
- hugetlb_hstate_alloc_pages_report() report error during allocation.
  And the value of h->max_huge_pages is updated accordingly.

Link: https://lkml.kernel.org/r/20240222140422.393911-1-gang.li@linux.dev
Link: https://lkml.kernel.org/r/20240222140422.393911-2-gang.li@linux.dev
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:17 -08:00
Vishal Moola (Oracle)
7c43a55379 hugetlb: allow faults to be handled under the VMA lock
Hugetlb can now safely handle faults under the VMA lock, so allow it to do
so.

This patch may cause ltp hugemmap10 to "fail".  Hugemmap10 tests hugetlb
counters, and expects the counters to remain unchanged on failure to
handle a fault.

In hugetlb_no_page(), vmf_anon_prepare() may bailout with no anon_vma
under the VMA lock after allocating a folio for the hugepage.  In
free_huge_folio(), this folio is completely freed on bailout iff there is
a surplus of hugetlb pages.  This will remove a folio off the freelist and
decrement the number of hugepages while ltp expects these counters to
remain unchanged on failure.

Originally this could only happen due to OOM failures, but now it may also
occur after we allocate a hugetlb folio without a suitable anon_vma under
the VMA lock.  This should only happen for the first freshly allocated
hugepage in this vma.

Link: https://lkml.kernel.org/r/20240221234732.187629-6-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:16 -08:00
Vishal Moola (Oracle)
9acad7ba3e hugetlb: use vmf_anon_prepare() instead of anon_vma_prepare()
hugetlb_no_page() and hugetlb_wp() call anon_vma_prepare().  In
preparation for hugetlb to safely handle faults under the VMA lock, use
vmf_anon_prepare() here instead.

Additionally, passing hugetlb_wp() the vm_fault struct from
hugetlb_fault() works toward cleaning up the hugetlb code and function
stack.

Link: https://lkml.kernel.org/r/20240221234732.187629-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:15 -08:00
Vishal Moola (Oracle)
7dac0ec8fa hugetlb: pass struct vm_fault through to hugetlb_handle_userfault()
Now that hugetlb_fault() has a struct vm_fault, have
hugetlb_handle_userfault() use it instead of creating one of its own.

This lets us reduce the number of arguments passed to
hugetlb_handle_userfault() from 7 to 3, cleaning up the code and stack.

Link: https://lkml.kernel.org/r/20240221234732.187629-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:15 -08:00
Vishal Moola (Oracle)
0ca22723e3 hugetlb: move vm_fault declaration to the top of hugetlb_fault()
hugetlb_fault() currently defines a vm_fault to pass to the generic
handle_userfault() function.  We can move this definition to the top of
hugetlb_fault() so that it can be used throughout the rest of the hugetlb
fault path.

This will help cleanup a number of excess variables and function arguments
throughout the stack.  Also, since vm_fault already has space to store the
page offset, use that instead and get rid of idx.

Link: https://lkml.kernel.org/r/20240221234732.187629-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:15 -08:00
Anshuman Khandual
ce70cfb145 mm/hugetlb: move page order check inside hugetlb_cma_reserve()
All platforms could benefit from page order check against MAX_PAGE_ORDER
before allocating a CMA area for gigantic hugetlb pages.  Let's move this
check from individual platforms to generic hugetlb.

Link: https://lkml.kernel.org/r/20240209054221.1403364-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:59 -08:00
Baolin Wang
831bc31a5e mm: hugetlb: improve the handling of hugetlb allocation failure for freed or in-use hugetlb
alloc_and_dissolve_hugetlb_folio() preallocates a new hugetlb page before
it takes hugetlb_lock.  In 3 out of 4 cases the page is not really used
and therefore the newly allocated page is just freed right away.  This is
wasteful and it might cause pre-mature failures in those cases.

Address that by moving the allocation down to the only case (hugetlb page
is really in the free pages pool).  We need to drop hugetlb_lock to do so
and therefore need to recheck the page state after regaining it.

The patch is more of a cleanup than an actual fix to an existing problem. 
There are no known reports about pre-mature failures.

Link: https://lkml.kernel.org/r/62890fd60b1ecd5bf1cdc476c973f60fe37aa0cb.1707181934.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
Breno Leitao
df7a6d1f64 mm/hugetlb: restore the reservation if needed
Patch series "mm/hugetlb: Restore the reservation", v2.

This is a fix for a case where a backing huge page could stolen after
madvise(MADV_DONTNEED).

A full reproducer is in selftest. See
https://lore.kernel.org/all/20240105155419.1939484-1-leitao@debian.org/

In order to test this patch, I instrumented the kernel with LOCKDEP and
KASAN, and run the following tests, without any regression:
  * The self test that reproduces the problem
  * All mm hugetlb selftests
	SUMMARY: PASS=9 SKIP=0 FAIL=0
  * All libhugetlbfs tests
	PASS:     0     86
	FAIL:     0      0


This patch (of 2):

Currently there is a bug that a huge page could be stolen, and when the
original owner tries to fault in it, it causes a page fault.

You can achieve that by:
  1) Creating a single page
	echo 1 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

  2) mmap() the page above with MAP_HUGETLB into (void *ptr1).
	* This will mark the page as reserved
  3) touch the page, which causes a page fault and allocates the page
	* This will move the page out of the free list.
	* It will also unreserved the page, since there is no more free
	  page
  4) madvise(MADV_DONTNEED) the page
	* This will free the page, but not mark it as reserved.
  5) Allocate a secondary page with mmap(MAP_HUGETLB) into (void *ptr2).
	* it should fail, but, since there is no more available page.
	* But, since the page above is not reserved, this mmap() succeed.
  6) Faulting at ptr1 will cause a SIGBUS
	* it will try to allocate a huge page, but there is none
	  available

A full reproducer is in selftest. See
https://lore.kernel.org/all/20240105155419.1939484-1-leitao@debian.org/

Fix this by restoring the reserved page if necessary.

These are the condition for the page restore:

 * The system is not using surplus pages. The goal is to reduce the
   surplus usage for this case.
 * If the VMA has the HPAGE_RESV_OWNER flag set, and is PRIVATE. This is
   safely checked using __vma_private_lock()
 * The page is anonymous

Once this is scenario is found, set the `hugetlb_restore_reserve` bit in
the folio. Then check if the resv reservations need to be adjusted
later, done later, after the spinlock, since the vma_xxxx_reservation()
might touch the file system lock.

Link: https://lkml.kernel.org/r/20240205191843.4009640-1-leitao@debian.org
Link: https://lkml.kernel.org/r/20240205191843.4009640-2-leitao@debian.org
Signed-off-by: Breno Leitao <leitao@debian.org>
Suggested-by: Rik van Riel <riel@surriel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:53 -08:00
Linus Torvalds
fb46e22a9e Many singleton patches against the MM code. The patch series which
are included in this merge do the following:
 
 - Peng Zhang has done some mapletree maintainance work in the
   series
 
 	"maple_tree: add mt_free_one() and mt_attr() helpers"
 	"Some cleanups of maple tree"
 
 - In the series "mm: use memmap_on_memory semantics for dax/kmem"
   Vishal Verma has altered the interworking between memory-hotplug
   and dax/kmem so that newly added 'device memory' can more easily
   have its memmap placed within that newly added memory.
 
 - Matthew Wilcox continues folio-related work (including a few
   fixes) in the patch series
 
 	"Add folio_zero_tail() and folio_fill_tail()"
 	"Make folio_start_writeback return void"
 	"Fix fault handler's handling of poisoned tail pages"
 	"Convert aops->error_remove_page to ->error_remove_folio"
 	"Finish two folio conversions"
 	"More swap folio conversions"
 
 - Kefeng Wang has also contributed folio-related work in the series
 
 	"mm: cleanup and use more folio in page fault"
 
 - Jim Cromie has improved the kmemleak reporting output in the
   series "tweak kmemleak report format".
 
 - In the series "stackdepot: allow evicting stack traces" Andrey
   Konovalov to permits clients (in this case KASAN) to cause
   eviction of no longer needed stack traces.
 
 - Charan Teja Kalla has fixed some accounting issues in the page
   allocator's atomic reserve calculations in the series "mm:
   page_alloc: fixes for high atomic reserve caluculations".
 
 - Dmitry Rokosov has added to the samples/ dorectory some sample
   code for a userspace memcg event listener application.  See the
   series "samples: introduce cgroup events listeners".
 
 - Some mapletree maintanance work from Liam Howlett in the series
   "maple_tree: iterator state changes".
 
 - Nhat Pham has improved zswap's approach to writeback in the
   series "workload-specific and memory pressure-driven zswap
   writeback".
 
 - DAMON/DAMOS feature and maintenance work from SeongJae Park in
   the series
 
 	"mm/damon: let users feed and tame/auto-tune DAMOS"
 	"selftests/damon: add Python-written DAMON functionality tests"
 	"mm/damon: misc updates for 6.8"
 
 - Yosry Ahmed has improved memcg's stats flushing in the series
   "mm: memcg: subtree stats flushing and thresholds".
 
 - In the series "Multi-size THP for anonymous memory" Ryan Roberts
   has added a runtime opt-in feature to transparent hugepages which
   improves performance by allocating larger chunks of memory during
   anonymous page faults.
 
 - Matthew Wilcox has also contributed some cleanup and maintenance
   work against eh buffer_head code int he series "More buffer_head
   cleanups".
 
 - Suren Baghdasaryan has done work on Andrea Arcangeli's series
   "userfaultfd move option".  UFFDIO_MOVE permits userspace heap
   compaction algorithms to move userspace's pages around rather than
   UFFDIO_COPY'a alloc/copy/free.
 
 - Stefan Roesch has developed a "KSM Advisor", in the series
   "mm/ksm: Add ksm advisor".  This is a governor which tunes KSM's
   scanning aggressiveness in response to userspace's current needs.
 
 - Chengming Zhou has optimized zswap's temporary working memory
   use in the series "mm/zswap: dstmem reuse optimizations and
   cleanups".
 
 - Matthew Wilcox has performed some maintenance work on the
   writeback code, both code and within filesystems.  The series is
   "Clean up the writeback paths".
 
 - Andrey Konovalov has optimized KASAN's handling of alloc and
   free stack traces for secondary-level allocators, in the series
   "kasan: save mempool stack traces".
 
 - Andrey also performed some KASAN maintenance work in the series
   "kasan: assorted clean-ups".
 
 - David Hildenbrand has gone to town on the rmap code.  Cleanups,
   more pte batching, folio conversions and more.  See the series
   "mm/rmap: interface overhaul".
 
 - Kinsey Ho has contributed some maintenance work on the MGLRU
   code in the series "mm/mglru: Kconfig cleanup".
 
 - Matthew Wilcox has contributed lruvec page accounting code
   cleanups in the series "Remove some lruvec page accounting
   functions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
 jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
 =0NHs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Peng Zhang has done some mapletree maintainance work in the series

	'maple_tree: add mt_free_one() and mt_attr() helpers'
	'Some cleanups of maple tree'

   - In the series 'mm: use memmap_on_memory semantics for dax/kmem'
     Vishal Verma has altered the interworking between memory-hotplug
     and dax/kmem so that newly added 'device memory' can more easily
     have its memmap placed within that newly added memory.

   - Matthew Wilcox continues folio-related work (including a few fixes)
     in the patch series

	'Add folio_zero_tail() and folio_fill_tail()'
	'Make folio_start_writeback return void'
	'Fix fault handler's handling of poisoned tail pages'
	'Convert aops->error_remove_page to ->error_remove_folio'
	'Finish two folio conversions'
	'More swap folio conversions'

   - Kefeng Wang has also contributed folio-related work in the series

	'mm: cleanup and use more folio in page fault'

   - Jim Cromie has improved the kmemleak reporting output in the series
     'tweak kmemleak report format'.

   - In the series 'stackdepot: allow evicting stack traces' Andrey
     Konovalov to permits clients (in this case KASAN) to cause eviction
     of no longer needed stack traces.

   - Charan Teja Kalla has fixed some accounting issues in the page
     allocator's atomic reserve calculations in the series 'mm:
     page_alloc: fixes for high atomic reserve caluculations'.

   - Dmitry Rokosov has added to the samples/ dorectory some sample code
     for a userspace memcg event listener application. See the series
     'samples: introduce cgroup events listeners'.

   - Some mapletree maintanance work from Liam Howlett in the series
     'maple_tree: iterator state changes'.

   - Nhat Pham has improved zswap's approach to writeback in the series
     'workload-specific and memory pressure-driven zswap writeback'.

   - DAMON/DAMOS feature and maintenance work from SeongJae Park in the
     series

	'mm/damon: let users feed and tame/auto-tune DAMOS'
	'selftests/damon: add Python-written DAMON functionality tests'
	'mm/damon: misc updates for 6.8'

   - Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
     memcg: subtree stats flushing and thresholds'.

   - In the series 'Multi-size THP for anonymous memory' Ryan Roberts
     has added a runtime opt-in feature to transparent hugepages which
     improves performance by allocating larger chunks of memory during
     anonymous page faults.

   - Matthew Wilcox has also contributed some cleanup and maintenance
     work against eh buffer_head code int he series 'More buffer_head
     cleanups'.

   - Suren Baghdasaryan has done work on Andrea Arcangeli's series
     'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
     compaction algorithms to move userspace's pages around rather than
     UFFDIO_COPY'a alloc/copy/free.

   - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
     Add ksm advisor'. This is a governor which tunes KSM's scanning
     aggressiveness in response to userspace's current needs.

   - Chengming Zhou has optimized zswap's temporary working memory use
     in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.

   - Matthew Wilcox has performed some maintenance work on the writeback
     code, both code and within filesystems. The series is 'Clean up the
     writeback paths'.

   - Andrey Konovalov has optimized KASAN's handling of alloc and free
     stack traces for secondary-level allocators, in the series 'kasan:
     save mempool stack traces'.

   - Andrey also performed some KASAN maintenance work in the series
     'kasan: assorted clean-ups'.

   - David Hildenbrand has gone to town on the rmap code. Cleanups, more
     pte batching, folio conversions and more. See the series 'mm/rmap:
     interface overhaul'.

   - Kinsey Ho has contributed some maintenance work on the MGLRU code
     in the series 'mm/mglru: Kconfig cleanup'.

   - Matthew Wilcox has contributed lruvec page accounting code cleanups
     in the series 'Remove some lruvec page accounting functions'"

* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
  mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
  mm, treewide: introduce NR_PAGE_ORDERS
  selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
  selftests/mm: skip test if application doesn't has root privileges
  selftests/mm: conform test to TAP format output
  selftests: mm: hugepage-mmap: conform to TAP format output
  selftests/mm: gup_test: conform test to TAP format output
  mm/selftests: hugepage-mremap: conform test to TAP format output
  mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
  mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
  mm/memcontrol: remove __mod_lruvec_page_state()
  mm/khugepaged: use a folio more in collapse_file()
  slub: use a folio in __kmalloc_large_node
  slub: use folio APIs in free_large_kmalloc()
  slub: use alloc_pages_node() in alloc_slab_page()
  mm: remove inc/dec lruvec page state functions
  mm: ratelimit stat flush from workingset shrinker
  kasan: stop leaking stack trace handles
  mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
  mm/mglru: add dummy pmd_dirty()
  ...
2024-01-09 11:18:47 -08:00
Kirill A. Shutemov
5e0a760b44 mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a3 ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive.  This has caused
issues with code that was not yet upstream and depended on the previous
definition.

To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.

Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08 15:27:15 -08:00
Linus Torvalds
c604110e66 vfs-6.8.misc
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZZUxRQAKCRCRxhvAZXjc
 ov/QAQDzvge3oQ9MEymmOiyzzcF+HhAXBr+9oEsYJjFc1p0TsgEA61gXjZo7F1jY
 KBqd6znOZCR+Waj0kIVJRAo/ISRBqQc=
 =0bRl
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull misc vfs updates from Christian Brauner:
 "This contains the usual miscellaneous features, cleanups, and fixes
  for vfs and individual fses.

  Features:

   - Add Jan Kara as VFS reviewer

   - Show correct device and inode numbers in proc/<pid>/maps for vma
     files on stacked filesystems. This is now easily doable thanks to
     the backing file work from the last cycles. This comes with
     selftests

  Cleanups:

   - Remove a redundant might_sleep() from wait_on_inode()

   - Initialize pointer with NULL, not 0

   - Clarify comment on access_override_creds()

   - Rework and simplify eventfd_signal() and eventfd_signal_mask()
     helpers

   - Process aio completions in batches to avoid needless wakeups

   - Completely decouple struct mnt_idmap from namespaces. We now only
     keep the actual idmapping around and don't stash references to
     namespaces

   - Reformat maintainer entries to indicate that a given subsystem
     belongs to fs/

   - Simplify fput() for files that were never opened

   - Get rid of various pointless file helpers

   - Rename various file helpers

   - Rename struct file members after SLAB_TYPESAFE_BY_RCU switch from
     last cycle

   - Make relatime_need_update() return bool

   - Use GFP_KERNEL instead of GFP_USER when allocating superblocks

   - Replace deprecated ida_simple_*() calls with their current ida_*()
     counterparts

  Fixes:

   - Fix comments on user namespace id mapping helpers. They aren't
     kernel doc comments so they shouldn't be using /**

   - s/Retuns/Returns/g in various places

   - Add missing parameter documentation on can_move_mount_beneath()

   - Rename i_mapping->private_data to i_mapping->i_private_data

   - Fix a false-positive lockdep warning in pipe_write() for watch
     queues

   - Improve __fget_files_rcu() code generation to improve performance

   - Only notify writer that pipe resizing has finished after setting
     pipe->max_usage otherwise writers are never notified that the pipe
     has been resized and hang

   - Fix some kernel docs in hfsplus

   - s/passs/pass/g in various places

   - Fix kernel docs in ntfs

   - Fix kcalloc() arguments order reported by gcc 14

   - Fix uninitialized value in reiserfs"

* tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (36 commits)
  reiserfs: fix uninit-value in comp_keys
  watch_queue: fix kcalloc() arguments order
  ntfs: dir.c: fix kernel-doc function parameter warnings
  fs: fix doc comment typo fs tree wide
  selftests/overlayfs: verify device and inode numbers in /proc/pid/maps
  fs/proc: show correct device and inode numbers in /proc/pid/maps
  eventfd: Remove usage of the deprecated ida_simple_xx() API
  fs: super: use GFP_KERNEL instead of GFP_USER for super block allocation
  fs/hfsplus: wrapper.c: fix kernel-doc warnings
  fs: add Jan Kara as reviewer
  fs/inode: Make relatime_need_update return bool
  pipe: wakeup wr_wait after setting max_usage
  file: remove __receive_fd()
  file: stop exposing receive_fd_user()
  fs: replace f_rcuhead with f_task_work
  file: remove pointless wrapper
  file: s/close_fd_get_file()/file_close_fd()/g
  Improve __fget_files_rcu() code generation (and thus __fget_light())
  file: massage cleanup of files that failed to open
  fs/pipe: Fix lockdep false-positive in watchqueue pipe_write()
  ...
2024-01-08 10:26:08 -08:00
David Hildenbrand
ebe2e35ec0 mm/rmap: introduce and use hugetlb_try_dup_anon_rmap()
hugetlb rmap handling differs quite a lot from "ordinary" rmap code.  For
example, hugetlb currently only supports entire mappings, and treats any
mapping as mapped using a single "logical PTE".  Let's move it out of the
way so we can overhaul our "ordinary" rmap.  implementation/interface.

So let's introduce and use hugetlb_try_dup_anon_rmap() to make all hugetlb
handling use dedicated hugetlb_* rmap functions.

Add sanity checks that we end up with the right folios in the right
functions.

Note that is_device_private_page() does not apply to hugetlb.

Link: https://lkml.kernel.org/r/20231220224504.646757-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:48 -08:00
David Hildenbrand
44887f3994 mm/rmap: introduce and use hugetlb_add_file_rmap()
hugetlb rmap handling differs quite a lot from "ordinary" rmap code.  For
example, hugetlb currently only supports entire mappings, and treats any
mapping as mapped using a single "logical PTE".  Let's move it out of the
way so we can overhaul our "ordinary" rmap.  implementation/interface.

Right now we're using page_dup_file_rmap() in some cases where "ordinary"
rmap code would have used page_add_file_rmap().  So let's introduce and
use hugetlb_add_file_rmap() instead.  We won't be adding a
"hugetlb_dup_file_rmap()" functon for the fork() case, as it would be
doing the same: "dup" is just an optimization for "add".

What remains is a single page_dup_file_rmap() call in fork() code.

Add sanity checks that we end up with the right folios in the right
functions.

Link: https://lkml.kernel.org/r/20231220224504.646757-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:47 -08:00
David Hildenbrand
e135826b2d mm/rmap: introduce and use hugetlb_remove_rmap()
hugetlb rmap handling differs quite a lot from "ordinary" rmap code.  For
example, hugetlb currently only supports entire mappings, and treats any
mapping as mapped using a single "logical PTE".  Let's move it out of the
way so we can overhaul our "ordinary" rmap.  implementation/interface.

Let's introduce and use hugetlb_remove_rmap() and remove the hugetlb code
from page_remove_rmap().  This effectively removes one check on the
small-folio path as well.

Add sanity checks that we end up with the right folios in the right
functions.

Note: all possible candidates that need care are page_remove_rmap() that
      pass compound=true.

Link: https://lkml.kernel.org/r/20231220224504.646757-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:47 -08:00
David Hildenbrand
9d5fafd5d8 mm/rmap: rename hugepage_add* to hugetlb_add*
Patch series "mm/rmap: interface overhaul", v2.

This series overhauls the rmap interface, to get rid of the "bool
compound" / RMAP_COMPOUND parameter with the goal of making the interface
less error prone, more future proof, and more natural to extend to
"batching".  Also, this converts the interface to always consume
folio+subpage, which speeds up operations on large folios.

Further, this series adds PTE-batching variants for 4 rmap functions,
whereby only folio_add_anon_rmap_ptes() is used for batching in this
series when PTE-remapping a PMD-mapped THP.  folio_remove_rmap_ptes(),
folio_try_dup_anon_rmap_ptes() and folio_dup_file_rmap_ptes() will soon
come in handy[1,2].

This series performs a lot of folio conversion along the way.  Most of the
added LOC in the diff are only due to documentation.

As we're moving to a pte/pmd interface where we clearly express the
mapping granularity we are dealing with, we first get the remainder of
hugetlb out of the way, as it is special and expected to remain special:
it treats everything as a "single logical PTE" and only currently allows
entire mappings.

Even if we'd ever support partial mappings, I strongly assume the
interface and implementation will still differ heavily: hopefull we can
avoid working on subpages/subpage mapcounts completely and only add a
"count" parameter for them to enable batching.

New (extended) hugetlb interface that operates on entire folio:
 * hugetlb_add_new_anon_rmap() -> Already existed
 * hugetlb_add_anon_rmap() -> Already existed
 * hugetlb_try_dup_anon_rmap()
 * hugetlb_try_share_anon_rmap()
 * hugetlb_add_file_rmap()
 * hugetlb_remove_rmap()

New "ordinary" interface for small folios / THP::
 * folio_add_new_anon_rmap() -> Already existed
 * folio_add_anon_rmap_[pte|ptes|pmd]()
 * folio_try_dup_anon_rmap_[pte|ptes|pmd]()
 * folio_try_share_anon_rmap_[pte|pmd]()
 * folio_add_file_rmap_[pte|ptes|pmd]()
 * folio_dup_file_rmap_[pte|ptes|pmd]()
 * folio_remove_rmap_[pte|ptes|pmd]()

folio_add_new_anon_rmap() will always map at the largest granularity
possible (currently, a single PMD to cover a PMD-sized THP).  Could be
extended if ever required.

In the future, we might want "_pud" variants and eventually "_pmds"
variants for batching.

I ran some simple microbenchmarks on an Intel(R) Xeon(R) Silver 4210R:
measuring munmap(), fork(), cow, MADV_DONTNEED on each PTE ...  and PTE
remapping PMD-mapped THPs on 1 GiB of memory.

For small folios, there is barely a change (< 1% improvement for me).

For PTE-mapped THP:
* PTE-remapping a PMD-mapped THP is more than 10% faster.
* fork() is more than 4% faster.
* MADV_DONTNEED is 2% faster
* COW when writing only a single byte on a COW-shared PTE is 1% faster
* munmap() barely changes (< 1%).

[1] https://lkml.kernel.org/r/20230810103332.3062143-1-ryan.roberts@arm.com
[2] https://lkml.kernel.org/r/20231204105440.61448-1-ryan.roberts@arm.com


This patch (of 40):

Let's just call it "hugetlb_".

Yes, it's all already inconsistent and confusing because we have a lot of
"hugepage_" functions for legacy reasons.  But "hugetlb" cannot possibly
be confused with transparent huge pages, and it matches "hugetlb.c" and
"folio_test_hugetlb()".  So let's minimize confusion in rmap code.

Link: https://lkml.kernel.org/r/20231220224504.646757-1-david@redhat.com
Link: https://lkml.kernel.org/r/20231220224504.646757-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:47 -08:00
Mike Kravetz
187da0f825 hugetlb: fix null-ptr-deref in hugetlb_vma_lock_write
The routine __vma_private_lock tests for the existence of a reserve map
associated with a private hugetlb mapping.  A pointer to the reserve map
is in vma->vm_private_data.  __vma_private_lock was checking the pointer
for NULL.  However, it is possible that the low bits of the pointer could
be used as flags.  In such instances, vm_private_data is not NULL and not
a valid pointer.  This results in the null-ptr-deref reported by syzbot:

general protection fault, probably for non-canonical address 0xdffffc000000001d:
 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000000e8-0x00000000000000ef]
CPU: 0 PID: 5048 Comm: syz-executor139 Not tainted 6.6.0-rc7-syzkaller-00142-g88
8cf78c29e2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 1
0/09/2023
RIP: 0010:__lock_acquire+0x109/0x5de0 kernel/locking/lockdep.c:5004
...
Call Trace:
 <TASK>
 lock_acquire kernel/locking/lockdep.c:5753 [inline]
 lock_acquire+0x1ae/0x510 kernel/locking/lockdep.c:5718
 down_write+0x93/0x200 kernel/locking/rwsem.c:1573
 hugetlb_vma_lock_write mm/hugetlb.c:300 [inline]
 hugetlb_vma_lock_write+0xae/0x100 mm/hugetlb.c:291
 __hugetlb_zap_begin+0x1e9/0x2b0 mm/hugetlb.c:5447
 hugetlb_zap_begin include/linux/hugetlb.h:258 [inline]
 unmap_vmas+0x2f4/0x470 mm/memory.c:1733
 exit_mmap+0x1ad/0xa60 mm/mmap.c:3230
 __mmput+0x12a/0x4d0 kernel/fork.c:1349
 mmput+0x62/0x70 kernel/fork.c:1371
 exit_mm kernel/exit.c:567 [inline]
 do_exit+0x9ad/0x2a20 kernel/exit.c:861
 __do_sys_exit kernel/exit.c:991 [inline]
 __se_sys_exit kernel/exit.c:989 [inline]
 __x64_sys_exit+0x42/0x50 kernel/exit.c:989
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Mask off low bit flags before checking for NULL pointer.  In addition, the
reserve map only 'belongs' to the OWNER (parent in parent/child
relationships) so also check for the OWNER flag.

Link: https://lkml.kernel.org/r/20231114012033.259600-1-mike.kravetz@oracle.com
Reported-by: syzbot+6ada951e7c0f7bc8a71e@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-mm/00000000000078d1e00608d7878b@google.com/
Fixes: bf4916922c ("hugetlbfs: extend hugetlb_vma_lock to private VMAs")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Edward Adam Davis <eadavis@qq.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Tom Rix <trix@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06 16:12:43 -08:00
Matthew Wilcox (Oracle)
600f111ef5 fs: Rename mapping private members
It is hard to find where mapping->private_lock, mapping->private_list and
mapping->private_data are used, due to private_XXX being a relatively
common name for variables and structure members in the kernel.  To fit
with other members of struct address_space, rename them all to have an
i_ prefix.  Tested with an allmodconfig build.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-11-21 11:57:10 +01:00
Hugh Dickins
72e315f7a7 mempolicy: mmap_lock is not needed while migrating folios
mbind(2) holds down_write of current task's mmap_lock throughout
(exclusive because it needs to set the new mempolicy on the vmas);
migrate_pages(2) holds down_read of pid's mmap_lock throughout.

They both hold mmap_lock across the internal migrate_pages(), under which
all new page allocations (huge or small) are made.  I'm nervous about it;
and migrate_pages() certainly does not need mmap_lock itself.  It's done
this way for mbind(2), because its page allocator is vma_alloc_folio() or
alloc_hugetlb_folio_vma(), both of which depend on vma and address.

Now that we have alloc_pages_mpol(), depending on (refcounted) memory
policy and interleave index, mbind(2) can be modified to use that or
alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the
internal migrate_pages() at all: add alloc_migration_target_by_mpol() to
replace mbind's new_page().

(After that change, alloc_hugetlb_folio_vma() is used by nothing but a
userfaultfd function: move it out of hugetlb.h and into the #ifdef.)

migrate_pages(2) has chosen its target node before migrating, so can
continue to use the standard alloc_migration_target(); but let it take and
drop mmap_lock just around migrate_to_node()'s queue_pages_range():
neither the node-to-node calculations nor the page migrations need it.

It seems unlikely, but it is conceivable that some userspace depends on
the kernel's mmap_lock exclusion here, instead of doing its own locking:
more likely in a testsuite than in real life.  It is also possible, of
course, that some pages on the list will be munmapped by another thread
before they are migrated, or a newer memory policy applied to the range by
that time: but such races could happen before, as soon as mmap_lock was
dropped, so it does not appear to be a concern.

Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Usama Arif
c5ad3233ea hugetlb_vmemmap: use folio argument for hugetlb_vmemmap_* functions
Most function calls in hugetlb.c are made with folio arguments.  This
brings hugetlb_vmemmap calls inline with them by using folio instead of
head struct page.  Head struct page is still needed within these
functions.

The set/clear/test functions for hugepages are also changed to folio
versions.

Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.com
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:08 -07:00
Mike Kravetz
cfb8c75099 hugetlb: perform vmemmap restoration on a list of pages
The routine update_and_free_pages_bulk already performs vmemmap
restoration on the list of hugetlb pages in a separate step.  In
preparation for more functionality to be added in this step, create a new
routine hugetlb_vmemmap_restore_folios() that will restore vmemmap for a
list of folios.

This new routine must provide sufficient feedback about errors and actual
restoration performed so that update_and_free_pages_bulk can perform
optimally.

Special care must be taken when encountering an error from
hugetlb_vmemmap_restore_folios.  We want to continue making as much
forward progress as possible.  A new routine bulk_vmemmap_restore_error
handles this specific situation.

Link: https://lkml.kernel.org/r/20231019023113.345257-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
79359d6d24 hugetlb: perform vmemmap optimization on a list of pages
When adding hugetlb pages to the pool, we first create a list of the
allocated pages before adding to the pool.  Pass this list of pages to a
new routine hugetlb_vmemmap_optimize_folios() for vmemmap optimization.

Due to significant differences in vmemmmap initialization for bootmem
allocated hugetlb pages, a new routine prep_and_add_bootmem_folios is
created.

We also modify the routine vmemmap_should_optimize() to check for pages
that are already optimized.  There are code paths that might request
vmemmap optimization twice and we want to make sure this is not attempted.

Link: https://lkml.kernel.org/r/20231019023113.345257-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
d67e32f267 hugetlb: restructure pool allocations
Allocation of a hugetlb page for the hugetlb pool is done by the routine
alloc_pool_huge_page.  This routine will allocate contiguous pages from a
low level allocator, prep the pages for usage as a hugetlb page and then
add the resulting hugetlb page to the pool.

In the 'prep' stage, optional vmemmap optimization is done.  For
performance reasons we want to perform vmemmap optimization on multiple
hugetlb pages at once.  To do this, restructure the hugetlb pool
allocation code such that vmemmap optimization can be isolated and later
batched.

The code to allocate hugetlb pages from bootmem was also modified to
allow batching.

No functional changes, only code restructure.

Link: https://lkml.kernel.org/r/20231019023113.345257-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
d2cf88c27f hugetlb: optimize update_and_free_pages_bulk to avoid lock cycles
Patch series "Batch hugetlb vmemmap modification operations", v8.

When hugetlb vmemmap optimization was introduced, the overhead of enabling
the option was measured as described in commit 426e5c429d [1].  The
summary states that allocating a hugetlb page should be ~2x slower with
optimization and freeing a hugetlb page should be ~2-3x slower.  Such
overhead was deemed an acceptable trade off for the memory savings
obtained by freeing vmemmap pages.

It was recently reported that the overhead associated with enabling
vmemmap optimization could be as high as 190x for hugetlb page
allocations.  Yes, 190x!  Some actual numbers from other environments are:

Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895
------------------------------------------------
Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m4.119s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m4.477s

Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m28.973s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m36.748s

VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan
-----------------------------------------------------------
Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m2.463s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m2.931s

Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    2m27.609s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    2m29.924s

In the VM environment, the slowdown of enabling hugetlb vmemmap optimization
resulted in allocation times being 61x slower.

A quick profile showed that the vast majority of this overhead was due to
TLB flushing.  Each time we modify the kernel pagetable we need to flush
the TLB.  For each hugetlb that is optimized, there could be potentially
two TLB flushes performed.  One for the vmemmap pages associated with the
hugetlb page, and potentially another one if the vmemmap pages are mapped
at the PMD level and must be split.  The TLB flushes required for the
kernel pagetable, result in a broadcast IPI with each CPU having to flush
a range of pages, or do a global flush if a threshold is exceeded.  So,
the flush time increases with the number of CPUs.  In addition, in virtual
environments the broadcast IPI can’t be accelerated by hypervisor
hardware and leads to traps that need to wakeup/IPI all vCPUs which is
very expensive.  Because of this the slowdown in virtual environments is
even worse than bare metal as the number of vCPUS/CPUs is increased.

The following series attempts to reduce amount of time spent in TLB
flushing.  The idea is to batch the vmemmap modification operations for
multiple hugetlb pages.  Instead of doing one or two TLB flushes for each
page, we do two TLB flushes for each batch of pages.  One flush after
splitting pages mapped at the PMD level, and another after remapping
vmemmap associated with all hugetlb pages.  Results of such batching are
as follows:

Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895
------------------------------------------------
next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m4.719s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m4.245s

next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m7.267s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m13.199s

VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan
-----------------------------------------------------------
next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m2.715s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m3.186s

next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m4.799s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m5.273s

With batching, results are back in the 2-3x slowdown range.


This patch (of 8):

update_and_free_pages_bulk is designed to free a list of hugetlb pages
back to their associated lower level allocators.  This may require
allocating vmemmmap pages associated with each hugetlb page.  The hugetlb
page destructor must be changed before pages are freed to lower level
allocators.  However, the destructor must be changed under the hugetlb
lock.  This means there is potentially one lock cycle per page.

Minimize the number of lock cycles in update_and_free_pages_bulk by:
1) allocating necessary vmemmap for all hugetlb pages on the list
2) take hugetlb lock and clear destructor for all pages on the list
3) free all pages on list back to low level allocators

Link: https://lkml.kernel.org/r/20231019023113.345257-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20231019023113.345257-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Nhat Pham
8cba9576df hugetlb: memcg: account hugetlb-backed memory in memory controller
Currently, hugetlb memory usage is not acounted for in the memory
controller, which could lead to memory overprotection for cgroups with
hugetlb-backed memory.  This has been observed in our production system.

For instance, here is one of our usecases: suppose there are two 32G
containers.  The machine is booted with hugetlb_cma=6G, and each container
may or may not use up to 3 gigantic page, depending on the workload within
it.  The rest is anon, cache, slab, etc.  We can set the hugetlb cgroup
limit of each cgroup to 3G to enforce hugetlb fairness.  But it is very
difficult to configure memory.max to keep overall consumption, including
anon, cache, slab etc.  fair.

What we have had to resort to is to constantly poll hugetlb usage and
readjust memory.max.  Similar procedure is done to other memory limits
(memory.low for e.g).  However, this is rather cumbersome and buggy. 
Furthermore, when there is a delay in memory limits correction, (for e.g
when hugetlb usage changes within consecutive runs of the userspace
agent), the system could be in an over/underprotected state.

This patch rectifies this issue by charging the memcg when the hugetlb
folio is utilized, and uncharging when the folio is freed (analogous to
the hugetlb controller).  Note that we do not charge when the folio is
allocated to the hugetlb pool, because at this point it is not owned by
any memcg.

Some caveats to consider:
  * This feature is only available on cgroup v2.
  * There is no hugetlb pool management involved in the memory
    controller. As stated above, hugetlb folios are only charged towards
    the memory controller when it is used. Host overcommit management
    has to consider it when configuring hard limits.
  * Failure to charge towards the memcg results in SIGBUS. This could
    happen even if the hugetlb pool still has pages (but the cgroup
    limit is hit and reclaim attempt fails).
  * When this feature is enabled, hugetlb pages contribute to memory
    reclaim protection. low, min limits tuning must take into account
    hugetlb memory.
  * Hugetlb pages utilized while this option is not selected will not
    be tracked by the memory controller (even if cgroup v2 is remounted
    later on).

Link: https://lkml.kernel.org/r/20231006184629.155543-4-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frank van der Linden <fvdl@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tejun heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Frank van der Linden
59838b2566 mm, hugetlb: remove HUGETLB_CGROUP_MIN_ORDER
Originally, hugetlb_cgroup was the only hugetlb user of tail page
structure fields.  So, the code defined and checked against
HUGETLB_CGROUP_MIN_ORDER to make sure pages weren't too small to use.

However, by now, tail page #2 is used to store hugetlb hwpoison and
subpool information as well.  In other words, without that tail page
hugetlb doesn't work.

Acknowledge this fact by getting rid of HUGETLB_CGROUP_MIN_ORDER and
checks against it.  Instead, just check for the minimum viable page order
at hstate creation time.

Link: https://lkml.kernel.org/r/20231004153248.3842997-1-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
David Hildenbrand
069686255c mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()
Let's convert it to consume a folio.

[akpm@linux-foundation.org: fix kerneldoc]
Link: https://lkml.kernel.org/r/20231002142949.235104-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
David Hildenbrand
5ca432896a mm/rmap: move SetPageAnonExclusive() out of page_move_anon_rmap()
Patch series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()".

Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the
callers handle PageAnonExclusive.  I'm including cleanup patch #3 because
it fits into the picture and can be done cleaner by the conversion.


This patch (of 3):

Let's move it into the caller: there is a difference between whether an
anon folio can only be mapped by one process (e.g., into one VMA), and
whether it is truly exclusive (e.g., no references -- including GUP --
from other processes).

Further, for large folios the page might not actually be pointing at the
head page of the folio, so it better be handled in the caller.  This is a
preparation for converting page_move_anon_rmap() to consume a folio.

Link: https://lkml.kernel.org/r/20231002142949.235104-1-david@redhat.com
Link: https://lkml.kernel.org/r/20231002142949.235104-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Muhammad Usama Anjum
52526ca7fd fs/proc/task_mmu: implement IOCTL to get and optionally clear info about PTEs
The PAGEMAP_SCAN IOCTL on the pagemap file can be used to get or optionally
clear the info about page table entries. The following operations are
supported in this IOCTL:
- Scan the address range and get the memory ranges matching the provided
  criteria. This is performed when the output buffer is specified.
- Write-protect the pages. The PM_SCAN_WP_MATCHING is used to write-protect
  the pages of interest. The PM_SCAN_CHECK_WPASYNC aborts the operation if
  non-Async Write Protected pages are found. The ``PM_SCAN_WP_MATCHING``
  can be used with or without PM_SCAN_CHECK_WPASYNC.
- Both of those operations can be combined into one atomic operation where
  we can get and write protect the pages as well.

Following flags about pages are currently supported:
- PAGE_IS_WPALLOWED - Page has async-write-protection enabled
- PAGE_IS_WRITTEN - Page has been written to from the time it was write protected
- PAGE_IS_FILE - Page is file backed
- PAGE_IS_PRESENT - Page is present in the memory
- PAGE_IS_SWAPPED - Page is in swapped
- PAGE_IS_PFNZERO - Page has zero PFN
- PAGE_IS_HUGE - Page is THP or Hugetlb backed

This IOCTL can be extended to get information about more PTE bits. The
entire address range passed by user [start, end) is scanned until either
the user provided buffer is full or max_pages have been found.

[akpm@linux-foundation.org: update it for "mm: hugetlb: add huge page size param to set_huge_pte_at()"]
[akpm@linux-foundation.org: fix CONFIG_HUGETLB_PAGE=n warning]
[arnd@arndb.de: hide unused pagemap_scan_backout_range() function]
  Link: https://lkml.kernel.org/r/20230927060257.2975412-1-arnd@kernel.org
[sfr@canb.auug.org.au: fix "fs/proc/task_mmu: hide unused pagemap_scan_backout_range() function"]
  Link: https://lkml.kernel.org/r/20230928092223.0625c6bf@canb.auug.org.au
Link: https://lkml.kernel.org/r/20230821141518.870589-3-usama.anjum@collabora.com
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Reviewed-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Miroslaw <emmir@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yun Zhou <yun.zhou@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Peter Xu
d61ea1cb00 userfaultfd: UFFD_FEATURE_WP_ASYNC
Patch series "Implement IOCTL to get and optionally clear info about
PTEs", v33.

*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() and ResetWriteWatch() syscalls [1].  The GetWriteWatch()
retrieves the addresses of the pages that are written to in a region of
virtual memory.

This syscall is used in Windows applications and games etc.  This syscall
is being emulated in pretty slow manner in userspace.  Our purpose is to
enhance the kernel such that we translate it efficiently in a better way. 
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels.  We intend to replace those with these
patches.  So the whole gaming on Linux can effectively get benefit from
this.  It means there would be tons of users of this code.

CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.

Andrei defines the following uses of this code:
* it is more granular and allows us to track changed pages more
  effectively. The current interface can clear dirty bits for the entire
  process only. In addition, reading info about pages is a separate
  operation. It means we must freeze the process to read information
  about all its pages, reset dirty bits, only then we can start dumping
  pages. The information about pages becomes more and more outdated,
  while we are processing pages. The new interface solves both these
  downsides. First, it allows us to read pte bits and clear the
  soft-dirty bit atomically. It means that CRIU will not need to freeze
  processes to pre-dump their memory. Second, it clears soft-dirty bits
  for a specified region of memory. It means CRIU will have actual info
  about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
  is happening in the kernel. With the old interface, we have to read
  pagemap for each page.

*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically

So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.

At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)

All the different masks were added on the request of CRIU devs to create
interface more generic and better.

[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.com
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.com
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com


This patch (of 6):

Add a new userfaultfd-wp feature UFFD_FEATURE_WP_ASYNC, that allows
userfaultfd wr-protect faults to be resolved by the kernel directly.

It can be used like a high accuracy version of soft-dirty, without vma
modifications during tracking, and also with ranged support by default
rather than for a whole mm when reset the protections due to existence of
ioctl(UFFDIO_WRITEPROTECT).

Several goals of such a dirty tracking interface:

1. All types of memory should be supported and tracable. This is nature
   for soft-dirty but should mention when the context is userfaultfd,
   because it used to only support anon/shmem/hugetlb. The problem is for
   a dirty tracking purpose these three types may not be enough, and it's
   legal to track anything e.g. any page cache writes from mmap.

2. Protections can be applied to partial of a memory range, without vma
   split/merge fuss.  The hope is that the tracking itself should not
   affect any vma layout change.  It also helps when reset happens because
   the reset will not need mmap write lock which can block the tracee.

3. Accuracy needs to be maintained.  This means we need pte markers to work
   on any type of VMA.

One could question that, the whole concept of async dirty tracking is not
really close to fundamentally what userfaultfd used to be: it's not "a
fault to be serviced by userspace" anymore. However, using userfaultfd-wp
here as a framework is convenient for us in at least:

1. VM_UFFD_WP vma flag, which has a very good name to suite something like
   this, so we don't need VM_YET_ANOTHER_SOFT_DIRTY. Just use a new
   feature bit to identify from a sync version of uffd-wp registration.

2. PTE markers logic can be leveraged across the whole kernel to maintain
   the uffd-wp bit as long as an arch supports, this also applies to this
   case where uffd-wp bit will be a hint to dirty information and it will
   not go lost easily (e.g. when some page cache ptes got zapped).

3. Reuse ioctl(UFFDIO_WRITEPROTECT) interface for either starting or
   resetting a range of memory, while there's no counterpart in the old
   soft-dirty world, hence if this is wanted in a new design we'll need a
   new interface otherwise.

We can somehow understand that commonality because uffd-wp was
fundamentally a similar idea of write-protecting pages just like
soft-dirty.

This implementation allows WP_ASYNC to imply WP_UNPOPULATED, because so
far WP_ASYNC seems to not usable if without WP_UNPOPULATE.  This also
gives us chance to modify impl of WP_ASYNC just in case it could be not
depending on WP_UNPOPULATED anymore in the future kernels.  It's also fine
to imply that because both features will rely on PTE_MARKER_UFFD_WP config
option, so they'll show up together (or both missing) in an UFFDIO_API
probe.

vma_can_userfault() now allows any VMA if the userfaultfd registration is
only about async uffd-wp.  So we can track dirty for all kinds of memory
including generic file systems (like XFS, EXT4 or BTRFS).

One trick worth mention in do_wp_page() is that we need to manually update
vmf->orig_pte here because it can be used later with a pte_same() check -
this path always has FAULT_FLAG_ORIG_PTE_VALID set in the flags.

The major defect of this approach of dirty tracking is we need to populate
the pgtables when tracking starts.  Soft-dirty doesn't do it like that. 
It's unwanted in the case where the range of memory to track is huge and
unpopulated (e.g., tracking updates on a 10G file with mmap() on top,
without having any page cache installed yet).  One way to improve this is
to allow pte markers exist for larger than PTE level for PMD+.  That will
not change the interface if to implemented, so we can leave that for
later.

Link: https://lkml.kernel.org/r/20230821141518.870589-1-usama.anjum@collabora.com
Link: https://lkml.kernel.org/r/20230821141518.870589-2-usama.anjum@collabora.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Co-developed-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Miroslaw <emmir@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yun Zhou <yun.zhou@windriver.com>
Cc: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Mike Kravetz
30a89adf87 hugetlb: check for hugetlb folio before vmemmap_restore
In commit d8f5f7e445 ("hugetlb: set hugetlb page flag before
optimizing vmemmap") checks were added to print a warning if
hugetlb_vmemmap_restore was called on a non-hugetlb page.

This was mostly due to ordering issues in the hugetlb page set up and tear
down sequencees.  One place missed was the routine
dissolve_free_huge_page.

Naoya Horiguchi noted: "I saw that VM_WARN_ON_ONCE() in
hugetlb_vmemmap_restore is triggered when memory_failure() is called on a
free hugetlb page with vmemmap optimization disabled (the warning is not
triggered if vmemmap optimization is enabled).  I think that we need check
folio_test_hugetlb() before dissolve_free_huge_page() calls
hugetlb_vmemmap_restore_folio()."

Perform the check as suggested by Naoya.

Link: https://lkml.kernel.org/r/20231017032140.GA3680@monkey
Fixes: d8f5f7e445 ("hugetlb: set hugetlb page flag before optimizing vmemmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Tested-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Andrew Morton
5ef8f1b2b4 Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes. 2023-10-18 14:32:58 -07:00
Rik van Riel
2820b0f09b hugetlbfs: close race between MADV_DONTNEED and page fault
Malloc libraries, like jemalloc and tcalloc, take decisions on when to
call madvise independently from the code in the main application.

This sometimes results in the application page faulting on an address,
right after the malloc library has shot down the backing memory with
MADV_DONTNEED.

Usually this is harmless, because we always have some 4kB pages sitting
around to satisfy a page fault.  However, with hugetlbfs systems often
allocate only the exact number of huge pages that the application wants.

Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of
any lock taken on the page fault path, which can open up the following
race condition:

       CPU 1                            CPU 2

       MADV_DONTNEED
       unmap page
       shoot down TLB entry
                                       page fault
                                       fail to allocate a huge page
                                       killed with SIGBUS
       free page

Fix that race by pulling the locking from __unmap_hugepage_final_range
into helper functions called from zap_page_range_single.  This ensures
page faults stay locked out of the MADV_DONTNEED VMA until the huge pages
have actually been freed.

Link: https://lkml.kernel.org/r/20231006040020.3677377-4-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Rik van Riel
bf4916922c hugetlbfs: extend hugetlb_vma_lock to private VMAs
Extend the locking scheme used to protect shared hugetlb mappings from
truncate vs page fault races, in order to protect private hugetlb mappings
(with resv_map) against MADV_DONTNEED.

Add a read-write semaphore to the resv_map data structure, and use that
from the hugetlb_vma_(un)lock_* functions, in preparation for closing the
race between MADV_DONTNEED and page faults.

Link: https://lkml.kernel.org/r/20231006040020.3677377-3-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Rik van Riel
92fe9dcbe4 hugetlbfs: clear resv_map pointer if mmap fails
Patch series "hugetlbfs: close race between MADV_DONTNEED and page fault", v7.

Malloc libraries, like jemalloc and tcalloc, take decisions on when to
call madvise independently from the code in the main application.

This sometimes results in the application page faulting on an address,
right after the malloc library has shot down the backing memory with
MADV_DONTNEED.

Usually this is harmless, because we always have some 4kB pages sitting
around to satisfy a page fault.  However, with hugetlbfs systems often
allocate only the exact number of huge pages that the application wants.

Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of
any lock taken on the page fault path, which can open up the following
race condition:

       CPU 1                            CPU 2

       MADV_DONTNEED
       unmap page
       shoot down TLB entry
                                       page fault
                                       fail to allocate a huge page
                                       killed with SIGBUS
       free page

Fix that race by extending the hugetlb_vma_lock locking scheme to also
cover private hugetlb mappings (with resv_map), and pulling the locking
from __unmap_hugepage_final_range into helper functions called from
zap_page_range_single.  This ensures page faults stay locked out of the
MADV_DONTNEED VMA until the huge pages have actually been freed.


This patch (of 3):

Hugetlbfs leaves a dangling pointer in the VMA if mmap fails.  This has
not been a problem so far, but other code in this patch series tries to
follow that pointer.

Link: https://lkml.kernel.org/r/20231006040020.3677377-1-riel@surriel.com
Link: https://lkml.kernel.org/r/20231006040020.3677377-2-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Sidhartha Kumar
a48bf7b475 mm/hugetlb: replace page_ref_freeze() with folio_ref_freeze() in hugetlb_folio_init_vmemmap()
No functional difference, folio_ref_freeze() is currently a wrapper for
page_ref_freeze().

Link: https://lkml.kernel.org/r/20230926174433.81241-1-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com> 
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-16 15:44:38 -07:00
Sidhartha Kumar
a08c7193e4 mm/filemap: remove hugetlb special casing in filemap.c
Remove special cased hugetlb handling code within the page cache by
changing the granularity of ->index to the base page size rather than the
huge page size.  The motivation of this patch is to reduce complexity
within the filemap code while also increasing performance by removing
branches that are evaluated on every page cache lookup.

To support the change in index, new wrappers for hugetlb page cache
interactions are added.  These wrappers perform the conversion to a linear
index which is now expected by the page cache for huge pages.

========================= PERFORMANCE ======================================

Perf was used to check the performance differences after the patch. 
Overall the performance is similar to mainline with a very small larger
overhead that occurs in __filemap_add_folio() and
hugetlb_add_to_page_cache().  This is because of the larger overhead that
occurs in xa_load() and xa_store() as the xarray is now using more entries
to store hugetlb folios in the page cache.

Timing

aarch64
    2MB Page Size
        6.5-rc3 + this patch:
            [root@sidhakum-ol9-1 hugepages]# time fallocate -l 700GB test.txt
            real    1m49.568s
            user    0m0.000s
            sys     1m49.461s

        6.5-rc3:
            [root]# time fallocate -l 700GB test.txt
            real    1m47.495s
            user    0m0.000s
            sys     1m47.370s
    1GB Page Size
        6.5-rc3 + this patch:
            [root@sidhakum-ol9-1 hugepages1G]# time fallocate -l 700GB test.txt
            real    1m47.024s
            user    0m0.000s
            sys     1m46.921s

        6.5-rc3:
            [root@sidhakum-ol9-1 hugepages1G]# time fallocate -l 700GB test.txt
            real    1m44.551s
            user    0m0.000s
            sys     1m44.438s

x86
    2MB Page Size
        6.5-rc3 + this patch:
            [root@sidhakum-ol9-2 hugepages]# time fallocate -l 100GB test.txt
            real    0m22.383s
            user    0m0.000s
            sys     0m22.255s

        6.5-rc3:
            [opc@sidhakum-ol9-2 hugepages]$ time sudo fallocate -l 100GB /dev/hugepages/test.txt
            real    0m22.735s
            user    0m0.038s
            sys     0m22.567s

    1GB Page Size
        6.5-rc3 + this patch:
            [root@sidhakum-ol9-2 hugepages1GB]# time fallocate -l 100GB test.txt
            real    0m25.786s
            user    0m0.001s
            sys     0m25.589s

        6.5-rc3:
            [root@sidhakum-ol9-2 hugepages1G]# time fallocate -l 100GB test.txt
            real    0m33.454s
            user    0m0.001s
            sys     0m33.193s

aarch64:
    workload - fallocate a 700GB file backed by huge pages

    6.5-rc3 + this patch:
        2MB Page Size:
            --100.00%--__arm64_sys_fallocate
                          ksys_fallocate
                          vfs_fallocate
                          hugetlbfs_fallocate
                          |
                          |--95.04%--__pi_clear_page
                          |
                          |--3.57%--clear_huge_page
                          |          |
                          |          |--2.63%--rcu_all_qs
                          |          |
                          |           --0.91%--__cond_resched
                          |
                           --0.67%--__cond_resched
            0.17%     0.00%             0  fallocate  [kernel.vmlinux]       [k] hugetlb_add_to_page_cache
            0.14%     0.10%            11  fallocate  [kernel.vmlinux]       [k] __filemap_add_folio

    6.5-rc3
        2MB Page Size:
                --100.00%--__arm64_sys_fallocate
                          ksys_fallocate
                          vfs_fallocate
                          hugetlbfs_fallocate
                          |
                          |--94.91%--__pi_clear_page
                          |
                          |--4.11%--clear_huge_page
                          |          |
                          |          |--3.00%--rcu_all_qs
                          |          |
                          |           --1.10%--__cond_resched
                          |
                           --0.59%--__cond_resched
            0.08%     0.01%             1  fallocate  [kernel.kallsyms]  [k] hugetlb_add_to_page_cache
            0.05%     0.03%             3  fallocate  [kernel.kallsyms]  [k] __filemap_add_folio

x86
    workload - fallocate a 100GB file backed by huge pages

    6.5-rc3 + this patch:
        2MB Page Size:
            hugetlbfs_fallocate
            |
            --99.57%--clear_huge_page
                |
                --98.47%--clear_page_erms
                    |
                    --0.53%--asm_sysvec_apic_timer_interrupt

            0.04%     0.04%             1  fallocate  [kernel.kallsyms]     [k] xa_load
            0.04%     0.00%             0  fallocate  [kernel.kallsyms]     [k] hugetlb_add_to_page_cache
            0.04%     0.00%             0  fallocate  [kernel.kallsyms]     [k] __filemap_add_folio
            0.04%     0.00%             0  fallocate  [kernel.kallsyms]     [k] xas_store

    6.5-rc3
        2MB Page Size:
                --99.93%--__x64_sys_fallocate
                          vfs_fallocate
                          hugetlbfs_fallocate
                          |
                           --99.38%--clear_huge_page
                                     |
                                     |--98.40%--clear_page_erms
                                     |
                                      --0.59%--__cond_resched
            0.03%     0.03%             1  fallocate  [kernel.kallsyms]  [k] __filemap_add_folio

========================= TESTING ======================================

This patch passes libhugetlbfs tests and LTP hugetlb tests

********** TEST SUMMARY
*                      2M
*                      32-bit 64-bit
*     Total testcases:   110    113
*             Skipped:     0      0
*                PASS:   107    113
*                FAIL:     0      0
*    Killed by signal:     3      0
*   Bad configuration:     0      0
*       Expected FAIL:     0      0
*     Unexpected PASS:     0      0
*    Test not present:     0      0
* Strange test result:     0      0
**********

    Done executing testcases.
    LTP Version:  20220527-178-g2761a81c4

page migration was also tested using Mike Kravetz's test program.[8]

[dan.carpenter@linaro.org: fix an NULL vs IS_ERR() bug]
  Link: https://lkml.kernel.org/r/1772c296-1417-486f-8eef-171af2192681@moroto.mountain
Link: https://lkml.kernel.org/r/20230926192017.98183-1-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reported-and-tested-by: syzbot+c225dea486da4d5592bd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=c225dea486da4d5592bd
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-16 15:44:38 -07:00
Matthew Wilcox (Oracle)
d5b43e9683 hugetlb: convert remove_pool_huge_page() to remove_pool_hugetlb_folio()
Convert the callers to expect a folio and remove the unnecesary conversion
back to a struct page.

Link: https://lkml.kernel.org/r/20230824141325.2704553-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:31 -07:00
Matthew Wilcox (Oracle)
04bbfd844b hugetlb: remove a few calls to page_folio()
Anything found on a linked list threaded through ->lru is guaranteed to be
a folio as the compound_head found in a tail page overlaps the ->lru
member of struct page.  So we can pull folios directly off these lists no
matter whether pages or folios were added to the list.

Link: https://lkml.kernel.org/r/20230824141325.2704553-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:31 -07:00
Matthew Wilcox (Oracle)
3ec145f9d0 hugetlb: use a folio in free_hpage_workfn()
Patch series "Small hugetlb cleanups", v2.

Some trivial folio conversions


This patch (of 3):

update_and_free_hugetlb_folio puts the memory on hpage_freelist as a folio
so we can take it off the list as a folio.

Link: https://lkml.kernel.org/r/20230824141325.2704553-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230824141325.2704553-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:31 -07:00
Usama Arif
fde1c4ecf9 mm: hugetlb: skip initialization of gigantic tail struct pages if freed by HVO
The new boot flow when it comes to initialization of gigantic pages is as
follows:

- At boot time, for a gigantic page during __alloc_bootmem_hugepage, the
  region after the first struct page is marked as noinit.

- This results in only the first struct page to be initialized in
  reserve_bootmem_region.  As the tail struct pages are not initialized at
  this point, there can be a significant saving in boot time if HVO
  succeeds later on.

- Later on in the boot, the head page is prepped and the first
  HUGETLB_VMEMMAP_RESERVE_SIZE / sizeof(struct page) - 1 tail struct pages
  are initialized.

- HVO is attempted.  If it is not successful, then the rest of the tail
  struct pages are initialized.  If it is successful, no more tail struct
  pages need to be initialized saving significant boot time.

The WARN_ON for increased ref count in gather_bootmem_prealloc was changed
to a VM_BUG_ON.  This is OK as there should be no speculative references
this early in boot process.  The VM_BUG_ON's are there just in case such
code is introduced.

[akpm@linux-foundation.org: make it nicer for 80 cols]
Link: https://lkml.kernel.org/r/20230913105401.519709-5-usama.arif@bytedance.com
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:30 -07:00
Zi Yan
426056efe8 mm/hugetlb: use nth_page() in place of direct struct page manipulation
When dealing with hugetlb pages, manipulating struct page pointers
directly can get to wrong struct page, since struct page is not guaranteed
to be contiguous on SPARSEMEM without VMEMMAP.  Use nth_page() to handle
it properly.

A wrong or non-existing page might be tried to be grabbed, either
leading to a non freeable page or kernel memory access errors.  No bug
is reported.  It comes from code inspection.

Link: https://lkml.kernel.org/r/20230913201248.452081-3-zi.yan@sent.com
Fixes: 57a196a584 ("hugetlb: simplify hugetlb handling in follow_page_mask")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:29 -07:00
Xueshi Hu
b72b3c9c34 mm/hugetlb: fix nodes huge page allocation when there are surplus pages
In set_nr_huge_pages(), local variable "count" is used to record
persistent_huge_pages(), but when it cames to nodes huge page allocation,
the semantics changes to nr_huge_pages.  When there exists surplus huge
pages and using the interface under
/sys/devices/system/node/node*/hugepages to change huge page pool size,
this difference can result in the allocation of an unexpected number of
huge pages.

Steps to reproduce the bug:

Starting with:

				  Node 0          Node 1    Total
	HugePages_Total             0.00            0.00     0.00
	HugePages_Free              0.00            0.00     0.00
	HugePages_Surp              0.00            0.00     0.00

create 100 huge pages in Node 0 and consume it, then set Node 0 's
nr_hugepages to 0.

yields:

				  Node 0          Node 1    Total
	HugePages_Total           200.00            0.00   200.00
	HugePages_Free              0.00            0.00     0.00
	HugePages_Surp            200.00            0.00   200.00

write 100 to Node 1's nr_hugepages

		echo 100 > /sys/devices/system/node/node1/\
	hugepages/hugepages-2048kB/nr_hugepages

gets:

				  Node 0          Node 1    Total
	HugePages_Total           200.00          400.00   600.00
	HugePages_Free              0.00          400.00   400.00
	HugePages_Surp            200.00            0.00   200.00

Kernel is expected to create only 100 huge pages and it gives 200.

Link: https://lkml.kernel.org/r/20230829033343.467779-1-xueshi.hu@smartx.com
Fixes: 9a30523066 ("hugetlb: add per node hstate attributes")
Signed-off-by: Xueshi Hu <xueshi.hu@smartx.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Mike Kravetz
d8f5f7e445 hugetlb: set hugetlb page flag before optimizing vmemmap
Currently, vmemmap optimization of hugetlb pages is performed before the
hugetlb flag (previously hugetlb destructor) is set identifying it as a
hugetlb folio.  This means there is a window of time where an ordinary
folio does not have all associated vmemmap present.  The core mm only
expects vmemmap to be potentially optimized for hugetlb and device dax. 
This can cause problems in code such as memory error handling that may
want to write to tail struct pages.

There is only one call to perform hugetlb vmemmap optimization today.  To
fix this issue, simply set the hugetlb flag before that call.

There was a similar issue in the free hugetlb path that was previously
addressed.  The two routines that optimize or restore hugetlb vmemmap
should only be passed hugetlb folios/pages.  To catch any callers not
following this rule, add VM_WARN_ON calls to the routines.  In the hugetlb
free code paths, some calls could be made to restore vmemmap after
clearing the hugetlb flag.  This was 'safe' as in these cases vmemmap was
already present and the call was a NOOP.  However, for consistency these
calls where eliminated so that we can add the VM_WARN_ON checks.

Link: https://lkml.kernel.org/r/20230829213734.69673-1-mike.kravetz@oracle.com
Fixes: f41f2ed43c ("mm: hugetlb: free the vmemmap pages associated with each HugeTLB page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Ryan Roberts
935d4f0c6d mm: hugetlb: add huge page size param to set_huge_pte_at()
Patch series "Fix set_huge_pte_at() panic on arm64", v2.

This series fixes a bug in arm64's implementation of set_huge_pte_at(),
which can result in an unprivileged user causing a kernel panic.  The
problem was triggered when running the new uffd poison mm selftest for
HUGETLB memory.  This test (and the uffd poison feature) was merged for
v6.5-rc7.

Ideally, I'd like to get this fix in for v6.6 and I've cc'ed stable
(correctly this time) to get it backported to v6.5, where the issue first
showed up.


Description of Bug
==================

arm64's huge pte implementation supports multiple huge page sizes, some of
which are implemented in the page table with multiple contiguous entries. 
So set_huge_pte_at() needs to work out how big the logical pte is, so that
it can also work out how many physical ptes (or pmds) need to be written. 
It previously did this by grabbing the folio out of the pte and querying
its size.

However, there are cases when the pte being set is actually a swap entry. 
But this also used to work fine, because for huge ptes, we only ever saw
migration entries and hwpoison entries.  And both of these types of swap
entries have a PFN embedded, so the code would grab that and everything
still worked out.

But over time, more calls to set_huge_pte_at() have been added that set
swap entry types that do not embed a PFN.  And this causes the code to go
bang.  The triggering case is for the uffd poison test, commit
99aa77215a ("selftests/mm: add uffd unit test for UFFDIO_POISON"), which
causes a PTE_MARKER_POISONED swap entry to be set, coutesey of commit
8a13897fb0 ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs") -
added in v6.5-rc7.  Although review shows that there are other call sites
that set PTE_MARKER_UFFD_WP (which also has no PFN), these don't trigger
on arm64 because arm64 doesn't support UFFD WP.

If CONFIG_DEBUG_VM is enabled, we do at least get a BUG(), but otherwise,
it will dereference a bad pointer in page_folio():

    static inline struct folio *hugetlb_swap_entry_to_folio(swp_entry_t entry)
    {
        VM_BUG_ON(!is_migration_entry(entry) && !is_hwpoison_entry(entry));

        return page_folio(pfn_to_page(swp_offset_pfn(entry)));
    }


Fix
===

The simplest fix would have been to revert the dodgy cleanup commit
18f3962953 ("mm: hugetlb: kill set_huge_swap_pte_at()"), but since
things have moved on, this would have required an audit of all the new
set_huge_pte_at() call sites to see if they should be converted to
set_huge_swap_pte_at().  As per the original intent of the change, it
would also leave us open to future bugs when people invariably get it
wrong and call the wrong helper.

So instead, I've added a huge page size parameter to set_huge_pte_at(). 
This means that the arm64 code has the size in all cases.  It's a bigger
change, due to needing to touch the arches that implement the function,
but it is entirely mechanical, so in my view, low risk.

I've compile-tested all touched arches; arm64, parisc, powerpc, riscv,
s390, sparc (and additionally x86_64).  I've additionally booted and run
mm selftests against arm64, where I observe the uffd poison test is fixed,
and there are no other regressions.


This patch (of 2):

In order to fix a bug, arm64 needs to be told the size of the huge page
for which the pte is being set in set_huge_pte_at().  Provide for this by
adding an `unsigned long sz` parameter to the function.  This follows the
same pattern as huge_pte_clear().

This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, parisc, powerpc,
riscv, s390, sparc).  The actual arm64 bug will be fixed in a separate
commit.

No behavioral changes intended.

Link: https://lkml.kernel.org/r/20230922115804.2043771-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20230922115804.2043771-2-ryan.roberts@arm.com
Fixes: 8a13897fb0 ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>	[powerpc 8xx]
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>	[vmalloc change]
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>	[6.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-29 17:20:47 -07:00
Matthew Wilcox (Oracle)
8cfd014efd hugetlb: add documentation for vma_kernel_pagesize()
This is an exported symbol, so it should have kernel-doc.  Update it to
mention folios, and point out that they might be larger than the supported
page size for this VMA.

Link: https://lkml.kernel.org/r/20230822172459.4190699-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:20:31 -07:00
Mike Kravetz
6c14197308 hugetlb: clear flags in tail pages that will be freed individually
hugetlb manually creates and destroys compound pages.  As such it makes
assumptions about struct page layout.  Commit ebc1baf5c9 ("mm: free up a
word in the first tail page") breaks hugetlb.  The following will fix the
breakage.

Link: https://lkml.kernel.org/r/20230822231741.GC4509@monkey
Fixes: ebc1baf5c9 ("mm: free up a word in the first tail page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:20:15 -07:00
Matthew Wilcox (Oracle)
9c5ccf2db0 mm: remove HUGETLB_PAGE_DTOR
We can use a bit in page[1].flags to indicate that this folio belongs to
hugetlb instead of using a value in page[1].dtors.  That lets
folio_test_hugetlb() become an inline function like it should be.  We can
also get rid of NULL_COMPOUND_DTOR.

Link: https://lkml.kernel.org/r/20230816151201.3655946-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 14:28:44 -07:00
Matthew Wilcox (Oracle)
454a00c40a mm: convert free_huge_page() to free_huge_folio()
Pass a folio instead of the head page to save a few instructions.  Update
the documentation, at least in English.

Link: https://lkml.kernel.org/r/20230816151201.3655946-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 14:28:43 -07:00
Andrew Morton
5994eabf3b merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes 2023-08-21 14:26:20 -07:00
Suren Baghdasaryan
e727bfd5e7 mm: replace mmap with vma write lock assertions when operating on a vma
Vma write lock assertion always includes mmap write lock assertion and
additional vma lock checks when per-VMA locks are enabled. Replace
weaker mmap_assert_write_locked() assertions with stronger
vma_assert_write_locked() ones when we are operating on a vma which
is expected to be locked.

Link: https://lkml.kernel.org/r/20230804152724.3090321-4-surenb@google.com
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:45 -07:00
ZhangPeng
6c1aa2d37f mm/hugetlb.c: use helper macro K()
Use helper macro K() to improve code readability.  No functional
modification involved.

Link: https://lkml.kernel.org/r/20230804012559.2617515-8-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:45 -07:00
Kefeng Wang
f720b471fd mm: hugetlb: use flush_hugetlb_tlb_range() in move_hugetlb_page_tables()
Archs may need to do special things when flushing hugepage tlb, so use the
more applicable flush_hugetlb_tlb_range() instead of flush_tlb_range().

Link: https://lkml.kernel.org/r/20230801023145.17026-2-wangkefeng.wang@huawei.com
Fixes: 550a7d60bd ("mm, hugepages: add mremap() support for hugepage backed vma")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:40 -07:00
Matthew Wilcox (Oracle)
4ec31152a8 mm: move FAULT_FLAG_VMA_LOCK check from handle_mm_fault()
Handle a little more of the page fault path outside the mmap sem.  The
hugetlb path doesn't need to check whether the VMA is anonymous; the
VM_HUGETLB flag is only set on hugetlbfs VMAs.  There should be no
performance change from the previous commit; this is simply a step to ease
bisection of any problems.

Link: https://lkml.kernel.org/r/20230724185410.1124082-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:51 -07:00
Alistair Popple
1af5a81099 mmu_notifiers: rename invalidate_range notifier
There are two main use cases for mmu notifiers.  One is by KVM which uses
mmu_notifier_invalidate_range_start()/end() to manage a software TLB.

The other is to manage hardware TLBs which need to use the
invalidate_range() callback because HW can establish new TLB entries at
any time.  Hence using start/end() can lead to memory corruption as these
callbacks happen too soon/late during page unmap.

mmu notifier users should therefore either use the start()/end() callbacks
or the invalidate_range() callbacks.  To make this usage clearer rename
the invalidate_range() callback to arch_invalidate_secondary_tlbs() and
update documention.

Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:41 -07:00
Alistair Popple
ec8832d007 mmu_notifiers: don't invalidate secondary TLBs as part of mmu_notifier_invalidate_range_end()
Secondary TLBs are now invalidated from the architecture specific TLB
invalidation functions.  Therefore there is no need to explicitly notify
or invalidate as part of the range end functions.  This means we can
remove mmu_notifier_invalidate_range_end_only() and some of the
ptep_*_notify() functions.

Link: https://lkml.kernel.org/r/90d749d03cbab256ca0edeb5287069599566d783.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:41 -07:00
Sidhartha Kumar
affd26b1fb mm/hugetlb: get rid of page_hstate()
Convert the last page_hstate() user to use folio_hstate() so page_hstate()
can be safely removed.

Link: https://lkml.kernel.org/r/20230719184145.301911-1-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:39 -07:00
Axel Rasmussen
8a13897fb0 mm: userfaultfd: support UFFDIO_POISON for hugetlbfs
The behavior here is the same as it is for anon/shmem.  This is done
separately because hugetlb pte marker handling is a bit different.

Link: https://lkml.kernel.org/r/20230707215540.2324998-6-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gaosheng Cui <cuigaosheng1@huawei.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:17 -07:00
Axel Rasmussen
af19487f00 mm: make PTE_MARKER_SWAPIN_ERROR more general
Patch series "add UFFDIO_POISON to simulate memory poisoning with UFFD",
v4.

This series adds a new userfaultfd feature, UFFDIO_POISON. See commit 4
for a detailed description of the feature.


This patch (of 8):

Future patches will reuse PTE_MARKER_SWAPIN_ERROR to implement
UFFDIO_POISON, so make some various preparations for that:

First, rename it to just PTE_MARKER_POISONED.  The "SWAPIN" can be
confusing since we're going to re-use it for something not really related
to swap.  This can be particularly confusing for things like hugetlbfs,
which doesn't support swap whatsoever.  Also rename some various helper
functions.

Next, fix pte marker copying for hugetlbfs.  Previously, it would WARN on
seeing a PTE_MARKER_SWAPIN_ERROR, since hugetlbfs doesn't support swap. 
But, since we're going to re-use it, we want it to go ahead and copy it
just like non-hugetlbfs memory does today.  Since the code to do this is
more complicated now, pull it out into a helper which can be re-used in
both places.  While we're at it, also make it slightly more explicit in
its handling of e.g.  uffd wp markers.

For non-hugetlbfs page faults, instead of returning VM_FAULT_SIGBUS for an
error entry, return VM_FAULT_HWPOISON.  For most cases this change doesn't
matter, e.g.  a userspace program would receive a SIGBUS either way.  But
for UFFDIO_POISON, this change will let KVM guests get an MCE out of the
box, instead of giving a SIGBUS to the hypervisor and requiring it to
somehow inject an MCE.

Finally, for hugetlbfs faults, handle PTE_MARKER_POISONED, and return
VM_FAULT_HWPOISON_LARGE in such cases.  Note that this can't happen today
because the lack of swap support means we'll never end up with such a PTE
anyway, but this behavior will be needed once such entries *can* show up
via UFFDIO_POISON.

Link: https://lkml.kernel.org/r/20230707215540.2324998-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230707215540.2324998-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gaosheng Cui <cuigaosheng1@huawei.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:16 -07:00
Peter Xu
4849807114 mm/gup: retire follow_hugetlb_page()
Now __get_user_pages() should be well prepared to handle thp completely,
as long as hugetlb gup requests even without the hugetlb's special path.

Time to retire follow_hugetlb_page().

Tweak misc comments to reflect reality of follow_hugetlb_page()'s removal.

Link: https://lkml.kernel.org/r/20230628215310.73782-7-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A . Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:04 -07:00
Peter Xu
5502ea44f5 mm/hugetlb: add page_mask for hugetlb_follow_page_mask()
follow_page() doesn't need it, but we'll start to need it when unifying
gup for hugetlb.

Link: https://lkml.kernel.org/r/20230628215310.73782-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A . Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:03 -07:00
Peter Xu
458568c929 mm/hugetlb: prepare hugetlb_follow_page_mask() for FOLL_PIN
follow_page() doesn't use FOLL_PIN, meanwhile hugetlb seems to not be the
target of FOLL_WRITE either.  However add the checks.

Namely, either the need to CoW due to missing write bit, or proper
unsharing on !AnonExclusive pages over R/O pins to reject the follow page.
That brings this function closer to follow_hugetlb_page().

So we don't care before, and also for now.  But we'll care if we switch
over slow-gup to use hugetlb_follow_page_mask().  We'll also care when to
return -EMLINK properly, as that's the gup internal api to mean "we should
unshare".  Not really needed for follow page path, though.

When at it, switching the try_grab_page() to use WARN_ON_ONCE(), to be
clear that it just should never fail.  When error happens, instead of
setting page==NULL, capture the errno instead.

Link: https://lkml.kernel.org/r/20230628215310.73782-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A . Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:03 -07:00
Peter Xu
dd767aaa2f mm/hugetlb: handle FOLL_DUMP well in follow_page_mask()
Patch series "mm/gup: Unify hugetlb, speed up thp", v4.

Hugetlb has a special path for slow gup that follow_page_mask() is
actually skipped completely along with faultin_page().  It's not only
confusing, but also duplicating a lot of logics that generic gup already
has, making hugetlb slightly special.

This patchset tries to dedup the logic, by first touching up the slow gup
code to be able to handle hugetlb pages correctly with the current follow
page and faultin routines (where we're mostly there..  due to 10 years ago
we did try to optimize thp, but half way done; more below), then at the
last patch drop the special path, then the hugetlb gup will always go the
generic routine too via faultin_page().

Note that hugetlb is still special for gup, mostly due to the pgtable
walking (hugetlb_walk()) that we rely on which is currently per-arch.  But
this is still one small step forward, and the diffstat might be a proof
too that this might be worthwhile.

Then for the "speed up thp" side: as a side effect, when I'm looking at
the chunk of code, I found that thp support is actually partially done. 
It doesn't mean that thp won't work for gup, but as long as **pages
pointer passed over, the optimization will be skipped too.  Patch 6 should
address that, so for thp we now get full speed gup.

For a quick number, "chrt -f 1 ./gup_test -m 512 -t -L -n 1024 -r 10"
gives me 13992.50us -> 378.50us.  Gup_test is an extreme case, but just to
show how it affects thp gups.


This patch (of 8):

Firstly, the no_page_table() is meaningless for hugetlb which is a no-op
there, because a hugetlb page always satisfies:

  - vma_is_anonymous() == false
  - vma->vm_ops->fault != NULL

So we can already safely remove it in hugetlb_follow_page_mask(), alongside
with the page* variable.

Meanwhile, what we do in follow_hugetlb_page() actually makes sense for a
dump: we try to fault in the page only if the page cache is already
allocated.  Let's do the same here for follow_page_mask() on hugetlb.

It should so far has zero effect on real dumps, because that still goes
into follow_hugetlb_page().  But this may start to influence a bit on
follow_page() users who mimics a "dump page" scenario, but hopefully in a
good way.  This also paves way for unifying the hugetlb gup-slow.

Link: https://lkml.kernel.org/r/20230628215310.73782-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230628215310.73782-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A . Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:03 -07:00
Mike Kravetz
32c877191e hugetlb: do not clear hugetlb dtor until allocating vmemmap
Patch series "Fix hugetlb free path race with memory errors".

In the discussion of Jiaqi Yan's series "Improve hugetlbfs read on
HWPOISON hugepages" the race window was discovered. 
https://lore.kernel.org/linux-mm/20230616233447.GB7371@monkey/

Freeing a hugetlb page back to low level memory allocators is performed
in two steps.
1) Under hugetlb lock, remove page from hugetlb lists and clear destructor
2) Outside lock, allocate vmemmap if necessary and call low level free
Between these two steps, the hugetlb page will appear as a normal
compound page.  However, vmemmap for tail pages could be missing.
If a memory error occurs at this time, we could try to update page
flags non-existant page structs.

A much more detailed description is in the first patch.

The first patch addresses the race window.  However, it adds a
hugetlb_lock lock/unlock cycle to every vmemmap optimized hugetlb page
free operation.  This could lead to slowdowns if one is freeing a large
number of hugetlb pages.

The second path optimizes the update_and_free_pages_bulk routine to only
take the lock once in bulk operations.

The second patch is technically not a bug fix, but includes a Fixes tag
and Cc stable to avoid a performance regression.  It can be combined with
the first, but was done separately make reviewing easier.


This patch (of 2):

Freeing a hugetlb page and releasing base pages back to the underlying
allocator such as buddy or cma is performed in two steps:
- remove_hugetlb_folio() is called to remove the folio from hugetlb
  lists, get a ref on the page and remove hugetlb destructor.  This
  all must be done under the hugetlb lock.  After this call, the page
  can be treated as a normal compound page or a collection of base
  size pages.
- update_and_free_hugetlb_folio() is called to allocate vmemmap if
  needed and the free routine of the underlying allocator is called
  on the resulting page.  We can not hold the hugetlb lock here.

One issue with this scheme is that a memory error could occur between
these two steps.  In this case, the memory error handling code treats
the old hugetlb page as a normal compound page or collection of base
pages.  It will then try to SetPageHWPoison(page) on the page with an
error.  If the page with error is a tail page without vmemmap, a write
error will occur when trying to set the flag.

Address this issue by modifying remove_hugetlb_folio() and
update_and_free_hugetlb_folio() such that the hugetlb destructor is not
cleared until after allocating vmemmap.  Since clearing the destructor
requires holding the hugetlb lock, the clearing is done in
remove_hugetlb_folio() if the vmemmap is present.  This saves a
lock/unlock cycle.  Otherwise, destructor is cleared in
update_and_free_hugetlb_folio() after allocating vmemmap.

Note that this will leave hugetlb pages in a state where they are marked
free (by hugetlb specific page flag) and have a ref count.  This is not
a normal state.  The only code that would notice is the memory error
code, and it is set up to retry in such a case.

A subsequent patch will create a routine to do bulk processing of
vmemmap allocation.  This will eliminate a lock/unlock cycle for each
hugetlb page in the case where we are freeing a large number of pages.

Link: https://lkml.kernel.org/r/20230711220942.43706-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20230711220942.43706-2-mike.kravetz@oracle.com
Fixes: ad2fa3717b ("mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-04 13:03:41 -07:00
John Hubbard
191fcdb6c9 mm/hugetlb.c: fix a bug within a BUG(): inconsistent pte comparison
The following crash happens for me when running the -mm selftests (below).
Specifically, it happens while running the uffd-stress subtests:

kernel BUG at mm/hugetlb.c:7249!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 3238 Comm: uffd-stress Not tainted 6.4.0-hubbard-github+ #109
Hardware name: ASUS X299-A/PRIME X299-A, BIOS 1503 08/03/2018
RIP: 0010:huge_pte_alloc+0x12c/0x1a0
...
Call Trace:
 <TASK>
 ? __die_body+0x63/0xb0
 ? die+0x9f/0xc0
 ? do_trap+0xab/0x180
 ? huge_pte_alloc+0x12c/0x1a0
 ? do_error_trap+0xc6/0x110
 ? huge_pte_alloc+0x12c/0x1a0
 ? handle_invalid_op+0x2c/0x40
 ? huge_pte_alloc+0x12c/0x1a0
 ? exc_invalid_op+0x33/0x50
 ? asm_exc_invalid_op+0x16/0x20
 ? __pfx_put_prev_task_idle+0x10/0x10
 ? huge_pte_alloc+0x12c/0x1a0
 hugetlb_fault+0x1a3/0x1120
 ? finish_task_switch+0xb3/0x2a0
 ? lock_is_held_type+0xdb/0x150
 handle_mm_fault+0xb8a/0xd40
 ? find_vma+0x5d/0xa0
 do_user_addr_fault+0x257/0x5d0
 exc_page_fault+0x7b/0x1f0
 asm_exc_page_fault+0x22/0x30

That happens because a BUG() statement in huge_pte_alloc() attempts to
check that a pte, if present, is a hugetlb pte, but it does so in a
non-lockless-safe manner that leads to a false BUG() report.

We got here due to a couple of bugs, each of which by itself was not quite
enough to cause a problem:

First of all, before commit c33c794828f2("mm: ptep_get() conversion"), the
BUG() statement in huge_pte_alloc() was itself fragile: it relied upon
compiler behavior to only read the pte once, despite using it twice in the
same conditional.

Next, commit c33c794828 ("mm: ptep_get() conversion") broke that
delicate situation, by causing all direct pte reads to be done via
READ_ONCE().  And so READ_ONCE() got called twice within the same BUG()
conditional, leading to comparing (potentially, occasionally) different
versions of the pte, and thus to false BUG() reports.

Fix this by taking a single snapshot of the pte before using it in the
BUG conditional.

Now, that commit is only partially to blame here but, people doing
bisections will invariably land there, so this will help them find a fix
for a real crash.  And also, the previous behavior was unlikely to ever
expose this bug--it was fragile, yet not actually broken.

So that's why I chose this commit for the Fixes tag, rather than the
commit that created the original BUG() statement.

Link: https://lkml.kernel.org/r/20230701010442.2041858-1-jhubbard@nvidia.com
Fixes: c33c794828 ("mm: ptep_get() conversion")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: James Houghton <jthoughton@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-08 09:29:29 -07:00
Mike Kravetz
fd4aed8d98 hugetlb: revert use of page_cache_next_miss()
Ackerley Tng reported an issue with hugetlbfs fallocate as noted in the
Closes tag.  The issue showed up after the conversion of hugetlb page
cache lookup code to use page_cache_next_miss.  User visible effects are:

- hugetlbfs fallocate incorrectly returns -EEXIST if pages are presnet
  in the file.
- hugetlb pages will not be included in core dumps if they need to be
  brought in via GUP.
- userfaultfd UFFDIO_COPY will not notice pages already present in the
  cache.  It may try to allocate a new page and potentially return
  ENOMEM as opposed to EEXIST.

Revert the use page_cache_next_miss() in hugetlb code.

IMPORTANT NOTE FOR STABLE BACKPORTS:
This patch will apply cleanly to v6.3.  However, due to the change of
filemap_get_folio() return values, it will not function correctly.  This
patch must be modified for stable backports.

[dan.carpenter@linaro.org: fix hugetlbfs_pagecache_present()]
  Link: https://lkml.kernel.org/r/efa86091-6a2c-4064-8f55-9b44e1313015@moroto.mountain
Link: https://lkml.kernel.org/r/20230621212403.174710-2-mike.kravetz@oracle.com
Fixes: d0ce0e47b3 ("mm/hugetlb: convert hugetlb fault paths to use alloc_hugetlb_folio()")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reported-by: Ackerley Tng <ackerleytng@google.com>
Closes: https://lore.kernel.org/linux-mm/cover.1683069252.git.ackerleytng@google.com
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-23 16:59:32 -07:00
Ryan Roberts
c33c794828 mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper.  This means that by default, the accesses change from a
C dereference to a READ_ONCE().  This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.

But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte.  Arch code
is deliberately not converted, as the arch code knows best.  It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.

Conversion was done using Coccinelle:

----

// $ make coccicheck \
//          COCCI=ptepget.cocci \
//          SPFLAGS="--include-headers" \
//          MODE=patch

virtual patch

@ depends on patch @
pte_t *v;
@@

- *v
+ ptep_get(v)

----

Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so.  This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.

Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot.  The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get().  HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined.  Fix by continuing to do a direct dereference
when MMU=n.  This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.

Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:25 -07:00
Peter Xu
349d167000 mm/hugetlb: fix pgtable lock on pmd sharing
Huge pmd sharing operates on PUD not PMD, huge_pte_lock() is not suitable
in this case because it should only work for last level pte changes, while
pmd sharing is always one level higher.

Meanwhile, here we're locking over the spte pgtable lock which is even not
a lock for current mm but someone else's.

It seems even racy on operating on the lock, as after put_page() of the
spte pgtable page logically the page can be released, so at least the
spin_unlock() needs to be done after the put_page().

No report I am aware, I'm not even sure whether it'll just work on taking
the spte pmd lock, because while we're holding i_mmap read lock it probably
means the vma interval tree is frozen, all pte allocators over this pud
entry could always find the specific svma and spte page, so maybe they'll
serialize on this spte page lock?  Even so, doesn't seem to be expected.
It just seems to be an accident of cb900f4121.

Fix it with the proper pud lock (which is the mm's page_table_lock).

Link: https://lkml.kernel.org/r/20230612160420.809818-1-peterx@redhat.com
Fixes: cb900f4121 ("mm, hugetlb: convert hugetlbfs to use split pmd lock")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:19 -07:00
Tarun Sahu
e3b7bf972d mm/folio: avoid special handling for order value 0 in folio_set_order
folio_set_order(folio, 0) is used in kernel at two places
__destroy_compound_gigantic_folio and __prep_compound_gigantic_folio.
Currently, It is called to clear out the folio->_folio_nr_pages and
folio->_folio_order.

For __destroy_compound_gigantic_folio:
In past, folio_set_order(folio, 0) was needed because page->mapping used
to overlap with _folio_nr_pages and _folio_order. So if these fields were
left uncleared during freeing gigantic hugepages, they were causing
"BUG: bad page state" due to non-zero page->mapping. Now, After
Commit a01f43901c ("hugetlb: be sure to free demoted CMA pages to
CMA") page->mapping has explicitly been cleared out for tail pages. Also,
_folio_order and _folio_nr_pages no longer overlaps with page->mapping.

So, folio_set_order(folio, 0) can be removed from freeing gigantic
folio path (__destroy_compound_gigantic_folio).

Another place, folio_set_order(folio, 0) is called inside
__prep_compound_gigantic_folio during error path. Here,
folio_set_order(folio, 0) can also be removed if we move
folio_set_order(folio, order) after for loop.

The patch also moves _folio_set_head call in __prep_compound_gigantic_folio()
such that we avoid clearing them in the error path.

Also, as Mike pointed out:
"It would actually be better to move the calls _folio_set_head and
folio_set_order in __prep_compound_gigantic_folio() as suggested here. Why?
In the current code, the ref count on the 'head page' is still 1 (or more)
while those calls are made. So, someone could take a speculative ref on the
page BEFORE the tail pages are set up."

This way, folio_set_order(folio, 0) is no more needed. And it will also
helps removing the confusion of folio order being set to 0 (as _folio_order
field is part of first tail page).

Testing: I have run LTP tests, which all passes. and also I have written
the test in LTP which tests the bug caused by compound_nr and page->mapping
overlapping.

https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/mem/hugetlb/hugemmap/hugemmap32.c

Running on older kernel ( < 5.10-rc7) with the above bug this fails while
on newer kernel and, also with this patch it passes.

Link: https://lkml.kernel.org/r/20230609162907.111756-1-tsahu@linux.ibm.com
Signed-off-by: Tarun Sahu <tsahu@linux.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:11 -07:00
ZhangPeng
061e62e818 mm/hugetlb: use a folio in hugetlb_fault()
We can replace seven implicit calls to compound_head() with one by using
folio.

[akpm@linux-foundation.org: update comment, per Sidhartha]
Link: https://lkml.kernel.org/r/20230606062013.2947002-4-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:04 -07:00
ZhangPeng
959a78b6dd mm/hugetlb: use a folio in hugetlb_wp()
We can replace nine implict calls to compound_head() with one by using
old_folio.  The page we get back is always a head page, so we just convert
old_page to old_folio.

Link: https://lkml.kernel.org/r/20230606062013.2947002-3-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:03 -07:00
ZhangPeng
ad27ce206a mm/hugetlb: use a folio in copy_hugetlb_page_range()
Patch series "Convert several functions in hugetlb.c to use a folio", v2.

This patch series converts three functions in hugetlb.c to use a folio,
which can remove several implicit calls to compound_head().


This patch (of 3):

We can replace five implict calls to compound_head() with one by using
pte_folio.  The page we get back is always a head page, so we just convert
ptepage to pte_folio.

Link: https://lkml.kernel.org/r/20230606062013.2947002-1-zhangpeng362@huawei.com
Link: https://lkml.kernel.org/r/20230606062013.2947002-2-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:03 -07:00
Lorenzo Stoakes
b2cac24819 mm/gup: remove vmas array from internal GUP functions
Now we have eliminated all callers to GUP APIs which use the vmas
parameter, eliminate it altogether.

This eliminates a class of bugs where vmas might have been kept around
longer than the mmap_lock and thus we need not be concerned about locks
being dropped during this operation leaving behind dangling pointers.

This simplifies the GUP API and makes it considerably clearer as to its
purpose - follow flags are applied and if pinning, an array of pages is
returned.

Link: https://lkml.kernel.org/r/6811b4b2b4b3baf3dd07f422bb18853bb2cd09fb.1684350871.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:26 -07:00
Linus Torvalds
7fa8a8ee94 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
 
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
 
 - zsmalloc performance improvements from Sergey Senozhatsky.
 
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 
 - VFS rationalizations from Christoph Hellwig:
 
   - removal of most of the callers of write_one_page().
 
   - make __filemap_get_folio()'s return value more useful
 
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing.  Use `mount -o noswap'.
 
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
   than exclusive, and has fixed a bunch of errors which were caused by its
   unintuitive meaning.
 
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 
 - Lorenzo has also contributed further cleanups of vma_merge().
 
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 
 - Yosry Ahmed has improved the performance of memcg statistics flushing.
 
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 
 - Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
 
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
 jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
 =J+Dj
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
   switching from a user process to a kernel thread.

 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
   Raghav.

 - zsmalloc performance improvements from Sergey Senozhatsky.

 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.

 - VFS rationalizations from Christoph Hellwig:
     - removal of most of the callers of write_one_page()
     - make __filemap_get_folio()'s return value more useful

 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing. Use `mount -o noswap'.

 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.

 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).

 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.

 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
   rather than exclusive, and has fixed a bunch of errors which were
   caused by its unintuitive meaning.

 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.

 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.

 - Cleanups to do_fault_around() by Lorenzo Stoakes.

 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.

 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.

 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.

 - Lorenzo has also contributed further cleanups of vma_merge().

 - Chaitanya Prakash provides some fixes to the mmap selftesting code.

 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.

 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.

 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.

 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.

 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.

 - Yosry Ahmed has improved the performance of memcg statistics
   flushing.

 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.

 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.

 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.

 - Pankaj Raghav has made page_endio() unneeded and has removed it.

 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.

 - Yosry Ahmed has fixed an issue around memcg's page recalim
   accounting.

 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.

 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.

 - Peter Xu fixes a few issues with uffd-wp at fork() time.

 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.

* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
  mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
  shmem: restrict noswap option to initial user namespace
  mm/khugepaged: fix conflicting mods to collapse_file()
  sparse: remove unnecessary 0 values from rc
  mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
  hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
  maple_tree: fix allocation in mas_sparse_area()
  mm: do not increment pgfault stats when page fault handler retries
  zsmalloc: allow only one active pool compaction context
  selftests/mm: add new selftests for KSM
  mm: add new KSM process and sysfs knobs
  mm: add new api to enable ksm per process
  mm: shrinkers: fix debugfs file permissions
  mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
  migrate_pages_batch: fix statistics for longterm pin retry
  userfaultfd: use helper function range_in_vma()
  lib/show_mem.c: use for_each_populated_zone() simplify code
  mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
  fs/buffer: convert create_page_buffers to folio_create_buffers
  fs/buffer: add folio_create_empty_buffers helper
  ...
2023-04-27 19:42:02 -07:00
Linus Torvalds
888d3c9f7f sysctl-6.4-rc1
This pull request goes with only a few sysctl moves from the
 kernel/sysctl.c file, the rest of the work has been put towards
 deprecating two API calls which incur recursion and prevent us
 from simplifying the registration process / saving memory per
 move. Most of the changes have been soaking on linux-next since
 v6.3-rc3.
 
 I've slowed down the kernel/sysctl.c moves due to Matthew Wilcox's
 feedback that we should see if we could *save* memory with these
 moves instead of incurring more memory. We currently incur more
 memory since when we move a syctl from kernel/sysclt.c out to its
 own file we end up having to add a new empty sysctl used to register
 it. To achieve saving memory we want to allow syctls to be passed
 without requiring the end element being empty, and just have our
 registration process rely on ARRAY_SIZE(). Without this, supporting
 both styles of sysctls would make the sysctl registration pretty
 brittle, hard to read and maintain as can be seen from Meng Tang's
 efforts to do just this [0]. Fortunately, in order to use ARRAY_SIZE()
 for all sysctl registrations also implies doing the work to deprecate
 two API calls which use recursion in order to support sysctl
 declarations with subdirectories.
 
 And so during this development cycle quite a bit of effort went into
 this deprecation effort. I've annotated the following two APIs are
 deprecated and in few kernel releases we should be good to remove them:
 
   * register_sysctl_table()
   * register_sysctl_paths()
 
 During this merge window we should be able to deprecate and unexport
 register_sysctl_paths(), we can probably do that towards the end
 of this merge window.
 
 Deprecating register_sysctl_table() will take a bit more time but
 this pull request goes with a few example of how to do this.
 
 As it turns out each of the conversions to move away from either of
 these two API calls *also* saves memory. And so long term, all these
 changes *will* prove to have saved a bit of memory on boot.
 
 The way I see it then is if remove a user of one deprecated call, it
 gives us enough savings to move one kernel/sysctl.c out from the
 generic arrays as we end up with about the same amount of bytes.
 
 Since deprecating register_sysctl_table() and register_sysctl_paths()
 does not require maintainer coordination except the final unexport
 you'll see quite a bit of these changes from other pull requests, I've
 just kept the stragglers after rc3.
 
 Most of these changes have been soaking on linux-next since around rc3.
 
 [0] https://lkml.kernel.org/r/ZAD+cpbrqlc5vmry@bombadil.infradead.org
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRHAjQSHG1jZ3JvZkBr
 ZXJuZWwub3JnAAoJEM4jHQowkoinTzgQAI/uKHKi0VlUR1l2Psl0XbseUVueuyj3
 ZDxSJpbVUmsoDf2MlLjzB8mYE3ricnNTDbLr7qOyA6pXdM1N0mY5LQmRVRu8/ffd
 2T1hQ5pl7YnJdWP5dPhcF9Y+jnu1tjX1MW5DS4fzllwK7FnD86HuIruGq52RAPS/
 /FH+BD9eodLWWXk6A/o2GFqoWxPKQI0GLxEYWa7Hg7yt8E/3PQL9QsRzn8i6U+HW
 BrN/+G3YD1VCCzXu0UAeXnm+i1Z7CdvqNdZuSkvE3DObiZ5WpOS+/i7FrDB7zdiu
 zAbHaifHnDPtcK3w2ZodbLAAwEWD/mG4iwIjE2kgIMVYxBv7TFDBRREXAWYAevIT
 UUuZnWDQsGaWdjywrebaUycEfd6dytKyan0fTXgMFkcoWRjejhitfdM2iZDdQROg
 q453p4HqOw4vTrhy4ov4zOX7J3EFiBzpZdl+SmLqcXk+jbLVb/Q9snUWz1AFtHBl
 gHoP5bS82uVktGG3MsObjgTzYYMQjO9YGIrVuW1VP9uWs8WaoWx6M9FQJIIhtwE+
 h6wG2s7CjuFWnS0/IxWmDOn91QyUn1w7ohiz9TuvYj/5GLSBpBDGCJHsNB5T2WS1
 qbQRaZ2Kg3j9TeyWfXxdlxBx7bt3ni+J/IXDY0zom2sTpGHKl8D2g5AzmEXJDTpl
 kd7Z3gsmwhDh
 =0U0W
 -----END PGP SIGNATURE-----

Merge tag 'sysctl-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux

Pull sysctl updates from Luis Chamberlain:
 "This only does a few sysctl moves from the kernel/sysctl.c file, the
  rest of the work has been put towards deprecating two API calls which
  incur recursion and prevent us from simplifying the registration
  process / saving memory per move. Most of the changes have been
  soaking on linux-next since v6.3-rc3.

  I've slowed down the kernel/sysctl.c moves due to Matthew Wilcox's
  feedback that we should see if we could *save* memory with these moves
  instead of incurring more memory. We currently incur more memory since
  when we move a syctl from kernel/sysclt.c out to its own file we end
  up having to add a new empty sysctl used to register it. To achieve
  saving memory we want to allow syctls to be passed without requiring
  the end element being empty, and just have our registration process
  rely on ARRAY_SIZE(). Without this, supporting both styles of sysctls
  would make the sysctl registration pretty brittle, hard to read and
  maintain as can be seen from Meng Tang's efforts to do just this [0].
  Fortunately, in order to use ARRAY_SIZE() for all sysctl registrations
  also implies doing the work to deprecate two API calls which use
  recursion in order to support sysctl declarations with subdirectories.

  And so during this development cycle quite a bit of effort went into
  this deprecation effort. I've annotated the following two APIs are
  deprecated and in few kernel releases we should be good to remove
  them:

   - register_sysctl_table()
   - register_sysctl_paths()

  During this merge window we should be able to deprecate and unexport
  register_sysctl_paths(), we can probably do that towards the end of
  this merge window.

  Deprecating register_sysctl_table() will take a bit more time but this
  pull request goes with a few example of how to do this.

  As it turns out each of the conversions to move away from either of
  these two API calls *also* saves memory. And so long term, all these
  changes *will* prove to have saved a bit of memory on boot.

  The way I see it then is if remove a user of one deprecated call, it
  gives us enough savings to move one kernel/sysctl.c out from the
  generic arrays as we end up with about the same amount of bytes.

  Since deprecating register_sysctl_table() and register_sysctl_paths()
  does not require maintainer coordination except the final unexport
  you'll see quite a bit of these changes from other pull requests, I've
  just kept the stragglers after rc3"

Link: https://lkml.kernel.org/r/ZAD+cpbrqlc5vmry@bombadil.infradead.org [0]

* tag 'sysctl-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (29 commits)
  fs: fix sysctls.c built
  mm: compaction: remove incorrect #ifdef checks
  mm: compaction: move compaction sysctl to its own file
  mm: memory-failure: Move memory failure sysctls to its own file
  arm: simplify two-level sysctl registration for ctl_isa_vars
  ia64: simplify one-level sysctl registration for kdump_ctl_table
  utsname: simplify one-level sysctl registration for uts_kern_table
  ntfs: simplfy one-level sysctl registration for ntfs_sysctls
  coda: simplify one-level sysctl registration for coda_table
  fs/cachefiles: simplify one-level sysctl registration for cachefiles_sysctls
  xfs: simplify two-level sysctl registration for xfs_table
  nfs: simplify two-level sysctl registration for nfs_cb_sysctls
  nfs: simplify two-level sysctl registration for nfs4_cb_sysctls
  lockd: simplify two-level sysctl registration for nlm_sysctls
  proc_sysctl: enhance documentation
  xen: simplify sysctl registration for balloon
  md: simplify sysctl registration
  hv: simplify sysctl registration
  scsi: simplify sysctl registration with register_sysctl()
  csky: simplify alignment sysctl registration
  ...
2023-04-27 16:52:33 -07:00
Peter Xu
0f230bc24b mm/hugetlb: fix uffd-wp bit lost when unsharing happens
When we try to unshare a pinned page for a private hugetlb, uffd-wp bit
can get lost during unsharing.

When above condition met, one can lose uffd-wp bit on the privately mapped
hugetlb page.  It allows the page to be writable even if it should still be
wr-protected.  I assume it can mean data loss.

This should be very rare, only if an unsharing happened on a private
hugetlb page with uffd-wp protected (e.g.  in a child which shares the
same page with parent with UFFD_FEATURE_EVENT_FORK enabled).

When I wrote the reproducer (provided in the last patch) I needed to
use the newest gup_test cmd introduced by David to trigger it because I
don't even know another way to do a proper RO longerm pin.

Besides that, it needs a bunch of other conditions all met:

        (1) hugetlb being mapped privately,
        (2) userfaultfd registered with WP and EVENT_FORK,
        (3) the user app fork()s, then,
        (4) RO longterm pin onto a wr-protected anonymous page.

If it's not impossible to hit in production I'd say extremely rare.

Link: https://lkml.kernel.org/r/20230417195317.898696-3-peterx@redhat.com
Fixes: 166f3ecc0d ("mm/hugetlb: hook page faults for uffd write protection")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mika Penttilä <mpenttil@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-21 14:52:00 -07:00
Peter Xu
5a2f8d22ac mm/hugetlb: fix uffd-wp during fork()
Patch series "mm/hugetlb: More fixes around uffd-wp vs fork() / RO pins",
v2.


This patch (of 6):

There're a bunch of things that were wrong:

  - Reading uffd-wp bit from a swap entry should use pte_swp_uffd_wp()
    rather than huge_pte_uffd_wp().

  - When copying over a pte, we should drop uffd-wp bit when
    !EVENT_FORK (aka, when !userfaultfd_wp(dst_vma)).

  - When doing early CoW for private hugetlb (e.g. when the parent page was
    pinned), uffd-wp bit should be properly carried over if necessary.

No bug reported probably because most people do not even care about these
corner cases, but they are still bugs and can be exposed by the recent unit
tests introduced, so fix all of them in one shot.

Link: https://lkml.kernel.org/r/20230417195317.898696-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230417195317.898696-2-peterx@redhat.com
Fixes: bc70fbf269 ("mm/hugetlb: handle uffd-wp during fork()")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mika Penttilä <mpenttil@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-21 14:51:59 -07:00
Liu Shixin
1cb9dc4b47 mm: hwpoison: support recovery from HugePage copy-on-write faults
copy-on-write of hugetlb user pages with uncorrectable errors will result
in a kernel crash.  This is because the copy is performed in kernel mode
and in general we can not handle accessing memory with such errors while
in kernel mode.  Commit a873dfe103 ("mm, hwpoison: try to recover from
copy-on write faults") introduced the routine copy_user_highpage_mc() to
gracefully handle copying of user pages with uncorrectable errors. 
However, the separate hugetlb copy-on-write code paths were not modified
as part of commit a873dfe103.

Modify hugetlb copy-on-write code paths to use copy_mc_user_highpage() so
that they can also gracefully handle uncorrectable errors in user pages. 
This involves changing the hugetlb specific routine
copy_user_large_folio() from type void to int so that it can return an
error.  Modify the hugetlb userfaultfd code in the same way so that it can
return -EHWPOISON if it encounters an uncorrectable error.

Link: https://lkml.kernel.org/r/20230413131349.2524210-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:30:09 -07:00
ZhangPeng
c0e8150e14 mm: convert copy_user_huge_page() to copy_user_large_folio()
Replace copy_user_huge_page() with copy_user_large_folio(). 
copy_user_large_folio() does the same as copy_user_huge_page(), but takes
in folios instead of pages.  Remove pages_per_huge_page from
copy_user_large_folio(), because we can get that from folio_nr_pages(dst).

Convert copy_user_gigantic_page() to take in folios.

Link: https://lkml.kernel.org/r/20230410133932.32288-6-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:55 -07:00
ZhangPeng
0169fd518a userfaultfd: convert mfill_atomic_hugetlb() to use a folio
Convert hugetlb_mfill_atomic_pte() to take in a folio pointer instead of
a page pointer.

Convert mfill_atomic_hugetlb() to use a folio.

Link: https://lkml.kernel.org/r/20230410133932.32288-5-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:55 -07:00
ZhangPeng
e87340ca5c userfaultfd: convert copy_huge_page_from_user() to copy_folio_from_user()
Replace copy_huge_page_from_user() with copy_folio_from_user(). 
copy_folio_from_user() does the same as copy_huge_page_from_user(), but
takes in a folio instead of a page.

Convert page_kaddr to kaddr in copy_folio_from_user() to do indenting
cleanup.

Link: https://lkml.kernel.org/r/20230410133932.32288-4-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:55 -07:00
Matthew Wilcox (Oracle)
957ebbdf43 hugetlb: remove PageHeadHuge()
Sidhartha Kumar removed the last caller of PageHeadHuge(), so we can now
remove it and make folio_test_hugetlb() the real implementation.  Add
kernel-doc for folio_test_hugetlb().

Link: https://lkml.kernel.org/r/20230327151050.1787744-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:46 -07:00
Andrew Morton
e492cd61b9 sync mm-stable with mm-hotfixes-stable to pick up depended-upon upstream changes 2023-04-16 12:31:58 -07:00
Axel Rasmussen
d971293703 mm: userfaultfd: combine 'mode' and 'wp_copy' arguments
Many userfaultfd ioctl functions take both a 'mode' and a 'wp_copy'
argument.  In future commits we plan to plumb the flags through to more
places, so we'd be proliferating the very long argument list even further.

Let's take the time to simplify the argument list.  Combine the two
arguments into one - and generalize, so when we add more flags in the
future, it doesn't imply more function arguments.

Since the modes (copy, zeropage, continue) are mutually exclusive, store
them as an integer value (0, 1, 2) in the low bits.  Place combine-able
flag bits in the high bits.

This is quite similar to an earlier patch proposed by Nadav Amit
("userfaultfd: introduce uffd_flags" [1]).  The main difference is that
patch only handled flags, whereas this patch *also* combines the "mode"
argument into the same type to shorten the argument list.

[1]: https://lore.kernel.org/all/20220619233449.181323-2-namit@vmware.com/

Link: https://lkml.kernel.org/r/20230314221250.682452-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: James Houghton <jthoughton@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:48 -07:00
Axel Rasmussen
61c5004022 mm: userfaultfd: don't pass around both mm and vma
Quite a few userfaultfd functions took both mm and vma pointers as
arguments.  Since the mm is trivially accessible via vma->vm_mm, there's
no reason to pass both; it just needlessly extends the already long
argument list.

Get rid of the mm pointer, where possible, to shorten the argument list.

Link: https://lkml.kernel.org/r/20230314221250.682452-3-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:47 -07:00
Axel Rasmussen
a734991cca mm: userfaultfd: rename functions for clarity + consistency
Patch series "mm: userfaultfd: refactor and add UFFDIO_CONTINUE_MODE_WP",
v5.

- Commits 1-3 refactor userfaultfd ioctl code without behavior changes, with the
  main goal of improving consistency and reducing the number of function args.

- Commit 4 adds UFFDIO_CONTINUE_MODE_WP.


This patch (of 4):

The basic problem is, over time we've added new userfaultfd ioctls, and
we've refactored the code so functions which used to handle only one case
are now re-used to deal with several cases.  While this happened, we
didn't bother to rename the functions.

Similarly, as we added new functions, we cargo-culted pieces of the
now-inconsistent naming scheme, so those functions too ended up with names
that don't make a lot of sense.

A key point here is, "copy" in most userfaultfd code refers specifically
to UFFDIO_COPY, where we allocate a new page and copy its contents from
userspace.  There are many functions with "copy" in the name that don't
actually do this (at least in some cases).

So, rename things into a consistent scheme.  The high level idea is that
the call stack for userfaultfd ioctls becomes:

userfaultfd_ioctl
  -> userfaultfd_(particular ioctl)
    -> mfill_atomic_(particular kind of fill operation)
      -> mfill_atomic    /* loops over pages in range */
        -> mfill_atomic_pte    /* deals with single pages */
          -> mfill_atomic_pte_(particular kind of fill operation)
            -> mfill_atomic_install_pte

There are of course some special cases (shmem, hugetlb), but this is the
general structure which all function names now adhere to.

Link: https://lkml.kernel.org/r/20230314221250.682452-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230314221250.682452-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:47 -07:00
Kirill A. Shutemov
23baf831a3 mm, treewide: redefine MAX_ORDER sanely
MAX_ORDER currently defined as number of orders page allocator supports:
user can ask buddy allocator for page order between 0 and MAX_ORDER-1.

This definition is counter-intuitive and lead to number of bugs all over
the kernel.

Change the definition of MAX_ORDER to be inclusive: the range of orders
user can ask from buddy allocator is 0..MAX_ORDER now.

[kirill@shutemov.name: fix min() warning]
  Link: https://lkml.kernel.org/r/20230315153800.32wib3n5rickolvh@box
[akpm@linux-foundation.org: fix another min_t warning]
[kirill@shutemov.name: fixups per Zi Yan]
  Link: https://lkml.kernel.org/r/20230316232144.b7ic4cif4kjiabws@box.shutemov.name
[akpm@linux-foundation.org: fix underlining in docs]
  Link: https://lore.kernel.org/oe-kbuild-all/202303191025.VRCTk6mP-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230315113133.11326-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:46 -07:00
Christoph Hellwig
66dabbb65d mm: return an ERR_PTR from __filemap_get_folio
Instead of returning NULL for all errors, distinguish between:

 - no entry found and not asked to allocated (-ENOENT)
 - failed to allocate memory (-ENOMEM)
 - would block (-EAGAIN)

so that callers don't have to guess the error based on the passed in
flags.

Also pass through the error through the direct callers: filemap_get_folio,
filemap_lock_folio filemap_grab_folio and filemap_get_incore_folio.

[hch@lst.de: fix null-pointer deref]
  Link: https://lkml.kernel.org/r/20230310070023.GA13563@lst.de
  Link: https://lkml.kernel.org/r/20230310043137.GA1624890@u2004
Link: https://lkml.kernel.org/r/20230307143410.28031-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs2]
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:42 -07:00
Peter Xu
60d5b473d6 mm/hugetlb: fix uffd wr-protection for CoW optimization path
This patch fixes an issue that a hugetlb uffd-wr-protected mapping can be
writable even with uffd-wp bit set.  It only happens with hugetlb private
mappings, when someone firstly wr-protects a missing pte (which will
install a pte marker), then a write to the same page without any prior
access to the page.

Userfaultfd-wp trap for hugetlb was implemented in hugetlb_fault() before
reaching hugetlb_wp() to avoid taking more locks that userfault won't
need.  However there's one CoW optimization path that can trigger
hugetlb_wp() inside hugetlb_no_page(), which will bypass the trap.

This patch skips hugetlb_wp() for CoW and retries the fault if uffd-wp bit
is detected.  The new path will only trigger in the CoW optimization path
because generic hugetlb_fault() (e.g.  when a present pte was
wr-protected) will resolve the uffd-wp bit already.  Also make sure
anonymous UNSHARE won't be affected and can still be resolved, IOW only
skip CoW not CoR.

This patch will be needed for v5.19+ hence copy stable.

[peterx@redhat.com: v2]
  Link: https://lkml.kernel.org/r/ZBzOqwF2wrHgBVZb@x1n
[peterx@redhat.com: v3]
  Link: https://lkml.kernel.org/r/20230324142620.2344140-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230321191840.1897940-1-peterx@redhat.com
Fixes: 166f3ecc0d ("mm/hugetlb: hook page faults for uffd write protection")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Tested-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 18:06:22 -07:00
Kefeng Wang
962de54828 mm: hugetlb: move hugeltb sysctls to its own file
This moves all hugetlb sysctls to its own file, also kill an
useless hugetlb_treat_movable_handler() defination.

Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-03-20 22:39:03 -07:00
Baolin Wang
9747b9e924 mm: hugetlb: change to return bool for isolate_hugetlb()
Now the isolate_hugetlb() only returns 0 or -EBUSY, and most users did not
care about the negative value, thus we can convert the isolate_hugetlb()
to return a boolean value to make code more clear when checking the
hugetlb isolation state.  Moreover converts 2 users which will consider
the negative value returned by isolate_hugetlb().

No functional changes intended.

[akpm@linux-foundation.org: shorten locked section, per SeongJae Park]
Link: https://lkml.kernel.org/r/12a287c5bebc13df304387087bbecc6421510849.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-20 12:46:17 -08:00
Sidhartha Kumar
371607a3c7 mm/hugetlb: convert hugetlb_wp() to take in a folio
Change the pagecache_page argument of hugetlb_wp to pagecache_folio. 
Replaces a call to find_lock_page() with filemap_lock_folio().

Link: https://lkml.kernel.org/r/20230125170537.96973-8-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reported-by: gerald.schaefer@linux.ibm.com
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:29 -08:00
Sidhartha Kumar
9b91c0e277 mm/hugetlb: convert hugetlb_add_to_page_cache to take in a folio
Every caller of hugetlb_add_to_page_cache() is now passing in
&folio->page, change the function to take in a folio directly and clean up
the call sites.

Link: https://lkml.kernel.org/r/20230125170537.96973-7-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:29 -08:00
Sidhartha Kumar
d2d7bb44bf mm/hugetlb: convert restore_reserve_on_error to take in a folio
Every caller of restore_reserve_on_error() is now passing in &folio->page,
change the function to take in a folio directly and clean up the call
sites.

Link: https://lkml.kernel.org/r/20230125170537.96973-6-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:29 -08:00
Sidhartha Kumar
d0ce0e47b3 mm/hugetlb: convert hugetlb fault paths to use alloc_hugetlb_folio()
Change alloc_huge_page() to alloc_hugetlb_folio() by changing all callers
to handle the now folio return type of the function.  In this conversion,
alloc_huge_page_vma() is also changed to alloc_hugetlb_folio_vma() and
hugepage_add_new_anon_rmap() is changed to take in a folio directly.  Many
additions of '&folio->page' are cleaned up in subsequent patches.

hugetlbfs_fallocate() is also refactored to use the RCU +
page_cache_next_miss() API.

Link: https://lkml.kernel.org/r/20230125170537.96973-5-sidhartha.kumar@oracle.com
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:29 -08:00
Sidhartha Kumar
ea8e72f411 mm/hugetlb: convert putback_active_hugepage to take in a folio
Convert putback_active_hugepage() to folio_putback_active_hugetlb(), this
removes one user of the Huge Page macros which take in a page.  The
callers in migrate.c are also cleaned up by being able to directly use the
src and dst folio variables.

Link: https://lkml.kernel.org/r/20230125170537.96973-4-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:28 -08:00
Sidhartha Kumar
91a2fb956a mm/hugetlb: convert hugetlbfs_pagecache_present() to folios
Refactor hugetlbfs_pagecache_present() to avoid getting and dropping a
refcount on a page.  Use RCU and page_cache_next_miss() instead.

Link: https://lkml.kernel.org/r/20230125170537.96973-3-sidhartha.kumar@oracle.com
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:28 -08:00
Sidhartha Kumar
ea4c353df3 mm/hugetlb: convert hugetlb_install_page to folios
Patch series "convert hugetlb fault functions to folios", v2.

This series converts the hugetlb page faulting functions to operate on
folios. These include hugetlb_no_page(), hugetlb_wp(),
copy_hugetlb_page_range(), and hugetlb_mcopy_atomic_pte().


This patch (of 8):

Change hugetlb_install_page() to hugetlb_install_folio().  This reduces
one user of the Huge Page flag macros which take in a page.

Link: https://lkml.kernel.org/r/20230125170537.96973-1-sidhartha.kumar@oracle.com
Link: https://lkml.kernel.org/r/20230125170537.96973-2-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:28 -08:00
Sidhartha Kumar
bdd7be075a mm/hugetlb: convert demote_free_huge_page to folios
Change demote_free_huge_page to demote_free_hugetlb_folio() and change
demote_pool_huge_page() pass in a folio.

Link: https://lkml.kernel.org/r/20230113223057.173292-9-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:28 -08:00
Sidhartha Kumar
0ffdc38eb5 mm/hugetlb: convert restore_reserve_on_error() to folios
Use the hugetlb folio flag macros inside restore_reserve_on_error() and
update the comments to reflect the use of folios.

Link: https://lkml.kernel.org/r/20230113223057.173292-8-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:28 -08:00